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Abstract
Graph neural networks (GNNs) have become a standard method to process
graph data, but their performance is often poorly understood. It is easy to find
examples in which a GNN is unable to learn useful graph representations, but
generally hard to explain why. In this work, we analyse the effectiveness of
graph representations learned by GNNs for input graphs with different structural
properties and feature information. We expand on the failure cases by decoupling
the impact of structural and feature information on the learning process. Our
results indicate that GNNs’ implicit architectural assumptions are tightly related
to the structural properties of the input graph and may impair its learning ability.
In case of mismatch, they can often be outperformed by structure-agnostic
methods like multi-layer perceptrons.

1 Introduction

Graph neural networks (GNNs) have emerged as the default approach for graph representation
learning in machine learning tasks. These models have clearly demonstrated their ability to learn
from relational data and have achieved multiple successful applications in diverse domains such as
drug design [1], biology [2] and complex physics simulations [3]. Despite this fact, one can easily
find examples in which a GNN is unable to learn useful node/graph representations and underperform
when compared to structure-agnostic counterparts [4, 5], such as multilayer perceptrons (MLPs).

GNNs make class predictions using two sources of information: the individual node properties
described by the feature vectors associated with each node, and structural information represented
by the relationships (edges) between the different nodes. The main idea behind using graph repre-
sentations is that relational information can provide additional information to solve the target task,
e.g. friendship links in a social network can be predictive of a person’s interests. Given that we are
augmenting the node properties with additional information from node relations, one might assume
that GNNs always outperform feature-only methods that do not exploit any structural information.
However, recent benchmark results [4, 5] show state-of-the-art GNNs performing on-par or worse
than basic MLPs on a variety of node classification tasks. These results hint at the fact that the use of
structural information by GNNs is not always helpful and may even be detrimental to classification
performance, not only for the simplest network architectures but also for the more recent and complex
ones.

While several authors have investigated the phenomena of oversmoothing and loss of expressivity in
GNNs [5–8], these works typically focus on representational power as related to the depth of the graph
neural networks and consider feature and structure information as a whole. In this work, we intend to
decouple the influence of these two levels of information on graph learning to determine in which
way the underlying assumptions of GNN architectures are key to determining their performance. To
this end, we consider the problem of semi-supervised node classification and conduct a methodical,
empiric investigation of the use of structural vs. feature information by different GNN methods. By
applying our methodology, we show that, due to fundamental limitations, basic GNNs are unable
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to learn useful representations when local smoothing is not beneficial, either due to the structure
or feature components, even when their depth is small. Furthermore, we provide evidence that
more advanced GNN architectures can avoid this limitation, but may still fail to exploit structural
information altogether and reduce to feature-only representations in case these cannot encode such
structure productively.

The main contributions of this work are two-fold:

1. The proposition of an empirical, model-agnostic method for decoupling feature and structure
influence on GNN node classification performance (Section 3);

2. The disclosure of novel empirical insights on how each of the two levels of graph information
- structure and node features - can influence GNN classification performance, which can in-
spire future research directions towards improving graph learning methods (Sections 4 and 5),
including the following:

• Simple GCNs need both feature and structural information to be meaningful to learn useful
node representations. If only one of these is present, the model cannot separate useful
information from meaningless. However, GCNs can significantly outperform feature-only
methods when the feature signal is weak but the structure is relevant for the final task.

• The absolute gains of using a certain GNN compared to feature-only methods can be
measured in a model-agnostic way. We show that these gains are a function of how much
each model can leverage the graph structure and how relevant the features are for the final
classification task.

1.1 Related Work

Causes of poor GNN performance. Many authors have investigated poor GNN performance due
to apparent oversmoothing or loss of expressivity in deeper GNNs [5–10]. This phenomenon is
typically explained as deeper networks excessively smoothing the features between distant graph
nodes. Others have argued that poor results are not necessarily associated with oversmoothing, but are
rather a consequence of the training difficulty of GNNs [11–13]. Oversquashing [14] and heterophily
[5] have also been pointed out as causes for performance degradation. Despite their generalized
acceptance within the GNN research community, these different causes/concepts are to some extent
intertwined and it is difficult to detach one from the others and measure their individual contribution
to the performance degradation witnessed downstream.

This fact could be the reason why it is currently possible to find contradictory information in
theoretical studies regarding GNN learning behaviors [13, 15]. Therefore, there is a demand for
relevant empirical studies addressing these questions. In Luan et al. [16], for example, the authors
show how GNN’s performance goes beyond homo-/heterophily alone through empirical analyses with
dedicated quantitative metrics; however, no relation with feature distribution/quality was explored.
Our work aims to fill this gap, bringing forward novel insights on the key conditions for effective
GNN learning (both on structural and feature levels) through a dedicated set of experiments under
full control of graph attributes.

Advanced GNN architectures. New GNN architectures have emerged in recent years aiming to
address specific challenges/limitations of these networks, including improving expressivity [17, 18],
decreasing computational cost [19, 20], handling graph oversmoothing [21, 22] and overcoming
harmful node-level heterophily [5, 23, 24]. While these networks have proved successful in addressing
some of the above limitations, their empirical gains for the classification task are not always well
understood. It can also be difficult to fully compare these approaches, due to the higher complexity,
the different base assumptions, and insufficient benchmarking analyses. This makes the identification
of learning bottlenecks a non-trivial problem for GNNs. The adoption of more robust model-agnostic,
experimental analyses, such as the ones proposed in this work, could help the community better
understand these bottlenecks.

Feature/structure influence in graph learning. Decoupling feature and structure impact in GNNs
has recently been investigated for transfer learning and graph generation purposes [25]. However,
the authors assume node homophily and do not explore the cases where this condition is not met,
which is one of the aspects in which our work differs. Other works also explore homo-/heterophilic
settings and create advanced architectures to handle challenging scenarios [26]. Nevertheless, it is not
clear whether these architectures lead to more useful node representations or if they solely overcome
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its performance hindering impact, as we can see in recent benchmarks [4]. Our work intends to
complement these efforts by providing insights on how structure can not only be harmful but also
simply uninformative, leading to local smoothing operations that decrease feature expressivity, in
which case one might simply resort to feature-only methods.

2 Background
2.1 Graph Convolution

Let us represent our graph as G = (V,A), where V is the set of all n vertices {v1, ..., vn} and A is
an adjacency matrix of size n× n. Each element aij of A defines the edge between nodes vi and vj ,
assuming the value of 1 if vi and vj are connected, and 0 otherwise. Each node vi is associated with
a m-dimensional feature vector xi. A feature matrix X ∈ Rn×m can also be defined by stacking all n
feature vectors.

We introduce Graph Convolutional Networks (GCNs) as proposed by Kipf & Welling [27] in the
context of semi-supervised node classification. In this work, a normalized version of the adjacency

matrix of G with added self-loops is defined by ˆ̃A = D̃
−1/2

ÃD̃
−1/2

, where Ã = A+ In, D̃ = D+ In,
and D is the diagonal degree matrix of G, where the degree of vi can be defined as di =

∑
j aij .

Hl = σ( ˆ̃AHl−1Wl) (1)

The initial node representations H0 = X are transformed by graph convolutions in the form of
Equation 1, where l ∈ {1, ..., L} represents the graph convolution layer, Wl consists of a matrix of
learned weights and σ is a nonlinear activation function, such as ReLU. For node-level tasks, the final
representation HL is finally fed to a classification head consisting of a linear layer and an activation
function, providing the final predictions Y ∈ Rn×c, where c is the number of classes.

2.2 Graph Smoothing

By relying on consecutive local averaging operations, graph convolutions are local smoothers by
nature. This smoothing can be beneficial, and has even been considered the major benefit of GCN
layers [28]. For this reason, GCNs often perform outstandingly on homophilic graphs, i.e., graphs for
which links between nodes of the same class are more frequent than inter-class links. In these graphs,
same-class node clusters are common, making operations such as local averaging particularly useful,
as these lead to a smoother graph signal in these regions. Thus, the resulting node representations
often lead to evident empirical gains for the downstream task when compared to their non-smoothed
versions, such as those used by feature-only methods.

However, the same is not necessarily true for heterophilic graphs [5, 29]; in this case, downstream
benefits are not as evident, and local smoothing can even deteriorate overall performance. The
consecutive aggregation of node representations by stacking multiple graph convolutional layers
can also have dire consequences. This phenomena is known as oversmoothing, and can be defined
as the exponential convergence of all node representations to the same constant [30], inevitably
leading to the loss of the discriminative power of the network. These conflicting consequences of
graph convolutions pose challenging obstacles to the establishment of GNNs as the one-size-fits-all
approach for machine learning on graphs, and have been motivating the development of new, more
complex network architectures and the definition of best practices in the field.

Assumption 1. Given this context, we propose to evaluate when the following assumption holds
and when it fails: the local smoothing obtained through a certain sequence of graph convolution
operations leads to useful node embeddings, suitable for solving a downstream task. We consider
simple and advanced models paired with highly controlled synthetic and real-world tasks to perform
cross-comparisons among said pairs and disclose new insights on the patterns of GNN learning.

3 Model-agnostic Feature/Structure Decoupling Method
In order to study when GNNs can and cannot learn useful node representations, we propose a new,
model-agnostic method which intends to decouple the influence of feature and structure information
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Figure 1: Graph transformations proposed in this work to methodically destroy structure and/or fea-
tures while preserving the remaining graph attributes. For each original graph G, three combinations
of feature/structure transformations are created (mutations).

in each node classification task and separately violate GNNs’ assumptions of meaningful underlying
structure and features. This method can provide a quantitative measure of how much the GNN
is leveraging the structure vs. feature components, thus assisting the identification of learning
bottlenecks.

Graph mutations. We implement two operations designed to derive a set of mutations for each
original graph. These operations are set to methodically destroy structure and/or feature information
while preserving the remaining graph attributes (Figure 1). Each input graph (artificial or real-world)
is submitted to transformations on the structural and feature levels: (1) Random connectivity: shuffle
columns of graph connectivity matrix; (2) Random feature assignment: randomize the attribution of
feature vectors across all nodes. With these operations, we conceive up to three mutations (Figure 1)
for each original graph whenever appropriate: a mutation with random connectivity but same feature
distribution (GA); another with same structural information but random feature assignment (GB);
and a final one with both transformations (GA+B).

Comparison with baselines. Each original graph and respective mutations are then separately used
to train two different types of models - a GNN, with no restrictions on complexity or architecture,
and a structure-agnostic model (in this case, an MLP). These outputs can be interpreted on their own
or yet be used to compute two metrics for measuring the separate contributions of structure (SC) and
feature (FC) components, when appropriate. These are calculated by Equations 2 and 3, where sG,
sGA

, sGB
, sGA+B

refer to the scores of GNNs trained on the original graph, random connectivity,
random feature assignment and both, respectively. Together, these metrics give an indication of how
sensitive a certain type of GNN model is to the structure and feature information of a particular
dataset (please refer to Appendix A.2 for further discussion on the interpretation of SC and FC).

SC = (sG − sGA
) + (sGB

− sGA+B
) (2)

FC = (sG − sGB
) + (sGA

− sGA+B
) (3)

Finally, the comparison with the MLP evidences whether structure encoding using the GNN architec-
ture under analysis is generally successful or harmful, i.e., GNN performance on the original graph is
superior to feature-only MLP or not, respectively.

4 Experiments
Our investigation of the cases when GNNs can and cannot learn useful node representations is
conducted by applying our previously introduced features/structure decoupling method to artificial
graphs with certain engineered properties. In particular, we manipulate homophily and edge density
(structural properties) and feature signal-to-noise ratio (SNR), due to their direct relation with the
implicit assumptions of message-passing graph models. This is a fully controlled scenario in which
we can measure how GNNs respond to variations of the graph structure and the feature vector from
an empirical perspective.

These experiments are further extended by extrapolating our insights to more challenging settings by
means of several real-world datasets, commonly used as benchmarks for machine learning on graphs,
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Table 1: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
models on an artificial graph G with highly informative structure and features, and the mutations of
G with random connectivity (uninformative structure), random feature assignment (uninformative
features), and both (uninformative structure and features).

Structure

Informative Uninformative

Features

Informative GCN 0.96 ± 0.02 GCN 0.69 ± 0.02
MLP 0.92 ± 0.02 MLP 0.90 ± 0.04

Uninformative GCN 0.61 ± 0.04 GCN 0.48 ± 0.03
MLP 0.50 ± 0.05 MLP 0.50 ± 0.03

and more advanced network architectures. All details concerning experimental setup, including
artificial graph generation, benchmark datasets and model selection, training and evaluation can be
found in Appendix A.1.

4.1 Graph Convolution on Artificial Graphs with Engineered Properties

While GCNs seem to be an efficient and straightforward method to apply machine learning to graphs,
the fact that they perform on-par or worse than basic MLPs on certain tasks makes us question whether
GCNs are able to encode graph structure productively for all tasks. Is there always a practical benefit
in encoding both feature and structure information for node representation learning with GCNs?
And, if not, can we identify under which conditions is the exploitation of both levels of information
detrimental for the classification task? In this subsection, we provide an answer to this question
by decoupling the influence of feature/structure in GCN’s performance on artificial graphs with
engineered properties using our newly proposed method (as introduced in Section 3).

4.1.1 Informative graph

Let us consider the simple case of binary node classification in a graph with both highly informative
features (SNR = 1.5) and structure (homophily = 0.95; edge density = 0.06). Table 1 compares the
performance of a 2-layer vanilla-GCN with that of a structure-agnostic model (MLP) on the original
version of this graph and its mutations (uninformative versions).

While GCN exhibits adequate performance (superior to the MLP) when both structural and feature
information are present, results show an evident drop when either is lost. Despite the fact that features
are highly informative, GCN does not seem able to fully leverage them when the structure of the input
graph is meaningless towards its inherent assumptions, leading to a significant loss of performance
even relatively to its structure-agnostic counterpart. A similar drop is verified in the scenario where
structure is preserved but feature information is lost, as GCNs are not able to aggregate neighborhood
information in meaningful node representations, despite the highly informative structure of the
input graph. We verify this behavior using shallow models of 2 message-passing layers, for which
graph oversmoothing does not occur, as the appropriate performance in the informative scenario
corroborates.

These results suggest that GCN models need both feature and structural information to be meaningful
in order to learn useful node representations. When only one of these is present, the model does not
seem to be able to separate the useful from meaningless information. This result makes sense given
the intuition of GCN as a smoothing operator [9]. Blindly aggregating either features of dissimilar
nodes due to lack of structural information or combining non-informative features of similar nodes
does not extract useful node descriptions.

4.1.2 Graphs with different properties

Given the empirical verification that GCN performance can be closely related to feature information
and structural properties of the input graph, we consider these attributes in separate methodical
studies. Let us take a base graph with fixed characteristics (homophily = 0.8; edge density = 0.03;
feature SNR = 1.2). Tables 2 and 3 present the node classification results on several versions of this
graph that correspond to assigning it different connectivity matrices (and respective mutations). These
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Table 2: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
(baseline) models on artificial graphs with fixed edge density (0.03) and features (SNR = 1.2) and
different homophily (H). Results are shown for each original graph G and the respective mutations
of G with random connectivity, random feature assignment, and both. Given its feature-only nature, a
single MLP result is shown per feature transformation.

H
Structure MLP

(baseline)
Original Random

Original
Features

0.2 0.78 ± 0.08 0.58 ± 0.03
0.71 ± 0.030.5 0.60 ± 0.02 0.61 ± 0.03

0.8 0.81 ± 0.03 0.59 ± 0.03

Random
Feature
Assignment

0.2 0.51 ± 0.05 0.48 ± 0.04
0.49± 0.030.5 0.53 ± 0.04 0.50 ± 0.03

0.8 0.49 ± 0.03 0.49 ± 0.02

Table 3: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
(baseline) models on artificial graphs with fixed homophily (0.8) and features (SNR = 1.2) and
different edge density (De). Results are shown for each original graph G and the respective mutations
of G with random connectivity, random feature assignment, and both. Given its feature-only nature, a
single MLP result is shown per feature transformation.

De
Structure MLP

(baseline)
Original Random

Original
Features

0.003 0.78 ± 0.03 0.63 ± 0.05
0.71 ± 0.030.03 0.81 ± 0.03 0.59 ± 0.03

0.15 0.79 ± 0.02 0.57 ± 0.02

Random
Feature
Assignment

0.003 0.49 ± 0.06 0.48 ± 0.05
0.49± 0.030.03 0.49 ± 0.03 0.49 ± 0.02

0.15 0.52 ± 0.04 0.49 ± 0.04

matrices define structures of different homophily, while keeping density constant (and vice-versa,
for Table 2 and Table 3, respectively). Analogously, Table 4 displays node classification results for
versions of the base graph with different feature information, measured by its SNR; results for the
respective random connectivity mutations are also shown.

Homophily. The inspection of GCN’s response to different homophily conditions (Table 2) reveals
its adequate performance on the most and least homophilic original graphs. While adequate perfor-
mance in the most heterophilic scenario might seem surprising at first glance, as GCN’s limitations
in dealing with such settings are well-know, it is not unexpected in our experiment. This behavior
relates to the fact that our learning problem only considers two distinguishable types of nodes and has
also been recently reported in other works [29]. Nodes are able to encode meaningful representations
through neighborhood aggregation, despite most of their neighbors belonging to a different class,
due to its consistency. While this outcome may not hold under different conditions (such as some
multi-class problems), it also draws attention to the potential insufficiency of solely resorting to
homophily-related assumptions to steer GNN architecture research endeavors, as discussed by recent
works [16, 29].

Similar to the previous highly informative artificial graph, we verify a significant loss of performance
when structure and/or feature information of original graphs are destroyed, except for when homophily
is close to 0.5 (mediocre performance on the original graph, on-par with the random structure
mutation). This means that when nodes are equally likely to be connected to nodes of a different
class as to those of the same class, this produces an uninformative structure. A GCN will use this
structure to perform local smoothing operations that will decrease feature expressivity and lead to
poor node representations. These results verify that simply attributing a GCN’s poor performance to
graph heterophily may be insufficient, as some heterophilous graphs can encode relevant structure
information while others do not.

6



Understanding Feature/Structure Interplay in GNNs

Table 4: Node classification performance (mean accuracy ± standard deviation) of GCN and MLP
(baseline) models on artificial graphs with fixed structure (homophily = 0.8; edge density = 0.03) and
different feature signal-to-noise ratio (SNR). Results are shown for each original graph G and the
respective mutations of G with random connectivity.

SNR
Structure MLP

(baseline)
Original Random

1.0 0.57 ± 0.05 0.51 ± 0.03 0.51 ± 0.05
1.2 0.81 ± 0.03 0.59 ± 0.03 0.71 ± 0.03
1.5 0.92 ± 0.02 0.68 ± 0.02 0.91 ± 0.02
2.0 0.99 ± 0.01 0.72 ± 0.01 1.00 ± 0.00

Edge density. Varying edge density appears to have a minimal effect in overall performance
under the tested conditions (Table 3). In theory, we would expect to see better node representations
for graphs with fewer connections when structure is irrelevant, as these would lead to a minimal
smoothing effect. However, while the average performance for random structure decreases as graphs
become more densely connected, these results cannot be deemed statistically significant.

Feature SNR. Table 4 shows the impact of considering different levels of separability of node
features when structure encodes useful information and when it does not. The results indicate a
significant loss of performance for the random connectivity mutation in comparison with the original
version, even in scenarios when base features are easily separable by a feature-only method. A
meaningful graph structure can, however, greatly assist the classification task in cases when features
are not easily separable, as we can verify by the significant performance gains of using GCN with the
original structure in comparison with the feature-only MLP for SNR ∈ [1.0, 1.2]. This scenario is
thus the more evident sweet spot for representation learning tasks through graph convolutions.

4.2 Feature/Structure Decoupling in Complex Scenarios

The previous subsection shows evidence of a certain level of co-dependence between feature/structure
information when deriving node representations with the simplest form of GCNs. This subsection
extends the insights of the previous by stepping out of the controlled scenarios and discussing the
impact of applying the same feature/structure decoupling methodology to more advanced GNN
architectures and real-world benchmarks.

Figure 2: Node classification performance (accuracy) of different GNN architectures and MLP
(baseline) models on real-world benchmarks. Results are shown in table and graphical form for
each original graph G and the respective mutations of G with random connectivity (GA), random
feature assignment (GB), and both (GA+B). A single MLP (feature-only) result is shown per feature
transformation. Shaded areas (MLP) and error bars (GNNs) represent standard deviation.

The results depicted in Figure 2 show that models that are generally more feature-dependent (i.e., those
that respond more to changes of the feature distribution than to structural changes) are particularly
robust in handling meaningless structural information and overcoming its potentially harmful effect.
However, the same models can also underperform compared to vanilla-GCN for cases in which
encoding graph structure through graph convolutions is particularly beneficial (e.g., Cora and CiteSeer
with original structure). This is the case for RevGCN and FiLM. Their feature-preserving quality can
be particularly observed in their overlap with MLP performance for random connectivity scenarios
(see consistent overlap between RevGCN/FiLM and MLP performance for GA mutation in Figure 2).
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Figure 3: Structure/Feature contribution interaction plot. Each data point represents the metrics for a
specific dataset+GNN pair (see Table 9 of the Appendix). For small values of feature contribution
(below median), there is a strong positive relation between structure contribution and absolute gains;
this relation is much weaker for high feature contribution (above/equal median).

GCN and APPNP seem to lack this feature-preserving quality. For these models, feature and structure
information are both highly important. In cases in which either of these components holds irrelevant
information for the downstream task, we can see significant performance drops compared to the
original scenario (see GCN and APPNP performance for GA and GB mutations on the informative
artificial graph, Cora and CiteSeer).

By decoupling feature/structure influence, we show evidence of how the several levels of graph
information can impact the performance of different architectures for the same classification task.
Our results support that new, advanced architectures (robust to some GNN limitations, like harmful
smoothing) are not necessarily superior to vanilla methods, as it all depends on how the assumptions
of each network architecture match the input graph’s properties.

4.3 Measuring the Interplay between Feature and Structure Components

The results in the previous subsections strongly hint at the fact that there is an interplay between
feature and structure components when using a GNN to solve a graph-related task. But can we make
this conclusion stronger? In particular, can we find quantitative evidence of the role of feature and
structure interaction in successful GNNs?

To provide an answer to this question, let us consider the absolute gains of a certain GNN model
over a feature-agnostic counterpart (i.e., the MLP) as a measure of how much the GNN model is
successfully exploiting all levels of graph information. Let us yet take the metrics introduced in
Equations 2 and 3 (Section 3) as a measure of the separate contribution of the structure (SC) and
feature (FC) components, respectively, in the classification task. Our hypothesis is that SC and FC
can be adequate predictors of the quantitative benefits of using a certain GNN to solve a task and that
a statistically relevant model using these predictors to estimate such gains can disclose new insights
on the dynamics between structure and features in a GNN model. We tested this hypothesis through
regression modelling. Our results show that we can make a valuable prediction of the gains of a
GNN model using SC and FC as predictors. This prediction is particularly accurate and statistically
significant if we include an interaction coefficient between the two variables in the form of SC×FC,
instead of considering their independent contributions alone (see details in Appendix A.2.1).

Figure 3 shows how this interaction manifests: when feature contribution is small for a certain
dataset+GNN pair, the relationship between structure contribution and the effective gains of using that
GNN is strongly positive; on the other hand, if feature contribution is high, the relationship between
structure contribution and GNN gains is much weaker. This outcome advises for caution when
dataset+GNN pairs resolve to more feature-preserving encoding, as their results may be sub-optimal
in cases when the input graph structure leads to beneficial smoothing (at least when considering the
same number of graph convolution steps), as per the example annotated in Figure 3 where feature
preserving methods (in this case, RevGCN and FiLM) are outperformed by vanilla-GCN on Cora.
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5 Discussion
Engineering the Structural Properties of the Input Graph. Our experiments indicate that GNNs
can lead to poor representation learning if they are unable to leverage structure to usefully aggregate
neighbouring feature vectors. These results encourage caution against blindly applying GNNs, as
they may be outperformed by structure-agnostic methods.

Engineering the structural properties of the input graph to help GNNs learn better representations is
rather common in the literature. Among common strategies are the creation of virtual nodes [31],
graph rewiring algorithms [32], and the interchangeable definition of edges as directed/undirected
for message-passing [24]. The idea behind these approaches is improving the flows of information
through message-passing. However, it is hard to measure whether the new, engineered graph
properties better fit GNNs’ assumptions. Most rewiring efforts are motivated by either intelligible,
domain-specific knowledge or some constraints on the graph representation, which can be relevant
but yet insufficient. Our feature/structure decoupling method can assist this process of graph problem
re-engineering from an empirical angle, providing a quantitative metric of the influence of the tested
structures in GNN performance. This shall help guarantee that the rewiring efforts are also taking
into account GNN’s assumptions, potentially leading to more powerful models.

Denoising Feature Component via Graph Convolutions. Our results show that GCNs are very
effective at feature denoising when the graph problem can be defined by structural information that
promotes beneficial local smoothing. This means that they can bring major performance boosts when
compared to feature-only methods in cases in which the feature signal is not particularly strong but the
structural information is relevant. As such, we consider this the sweet spot for graph representation
learning with GCNs.

The method proposed in Section 3 to decouple feature/structure influence in GNN classification
can help researchers decide on whether a certain structure is relevant or not towards solving a
graph problem. This is an important contribution since defining what is an informative structure is
not straightforward and one can find conflicting points of view in the literature regarding GNNs’
response to some graph properties, such as homo-/hetero-phily [5, 16]. We expect that our insights
can complement those of other works [16] towards better understanding under which conditions
should we expect GNNs to perform exceedingly well and when these models might not be the most
appropriate to solve our downstream task.

Need for More Expressive GNNs. The experiment with more advanced GNN architectures on
real-world benchmarks suggests an evident need for more expressive and general graph operations.
This need has also been noted by several other authors [33, 34], as the field has been overflowing
with new methods and layer types that only bring minor incremental gains or are crafted to fit specific
applications. For example, new GNN architectures that allow deeper models without oversmoothing
have been proposed in [20, 35–37]. Unfortunately, these models typically do not see the performance
benefits of deeper networks seen in traditional deep learning [10]. We also evaluated some of these
models in the scope of this work and our results suggest that some of these advanced methods are
able to rely more on basic node features rather than on network structure. While they preserve feature
information, they do not remedy the fact that GCN-like operations may not extract more useful
features, which is an evidence of the demand for more expressive message-passing methods.

6 Conclusion
This work expanded on the cases when GNNs may not be better than feature-only methods for node
classification on graphs. We propose a method that provides new insights on GNN learning behavior
by decoupling how much we can learn from features vs. structure for each task. This can be an
important outcome towards GNN explainability and effectively assist the identification of learning
bottlenecks. Our results suggest that GCNs may lead to poor node representations when the input
graph does not fit the inherent assumptions of their architectures, even without oversmoothing. While
some advanced architectures can avoid this limitation, we verify that when they cannot leverage
structural information, these mostly refrain from exploiting it and ultimately resort to a feature-
preserving encoding, similar to feature-only methods, which can lead to sub-optimal results. This
conclusion supports that GNNs should not be considered a one-size-fits-all approach for machine
learning on graphs, but rather demand careful inspection of all levels of graph information prior to
their application.
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A Appendix
A.1 Experimental Details

Artificial Graphs Generation. Artificial graphs are generated using the stochastic block model
(SBM) as implemented by Palowitch et al. [38], which enables control of certain graph properties,
namely edge density, homophily, and feature SNR (a metric of feature homogeneity between classes,
which equals to 1 in homogeneous scenarios and increases with heterogenity, i.e. as features become
more separable). Please refer to [38] for more framework-specific details. We generate graphs with
1000 nodes. Each node is assigned a label to create a class-balanced binary node classification
problem, i.e., each graph comprises 500 nodes of each class. All artificially generated graphs are
available as supplementary material1 for repeatability.

Benchmarks. Four real-world datasets with different properties are also selected to extend our
experiments and for benchmarking purposes. Cora [39] and CiteSeer [39] are homophilic citation
networks; Chameleon [40] and Texas [41] are heterophilic graphs, where nodes correspond to web
pages and edges to hyperlinks between them. A complete description of these datasets, including
relevant properties, can be found in Table 5.

Table 5: Graph properties of benchmark datasets.

Dataset #N #E #C H De

Cora [39] 2485 10138 7 0.81 0.002
CiteSeer [39] 2120 7358 6 0.74 0.002
Chameleon [40] 2277 65019 5 0.23 0.013
Texas [41] 183 558 5 0.11 0.017
N: Nodes; E: Edges; C: Classes; H: Homophily; De: Edge density

Models and Evaluation. We consider the GCN [27] as a base for all experiments. More complex
layer and model types are also used to extend our analyses: reversible GCN (RevGCN) [20], due to
its robustness to oversmoothing even for deep GNNs; APPNP [35] and FiLM convolution [42] which
seem to perform adequately for input graphs that belong to different parts of the graph properties
spectrum proposed in [38], where vanilla-GCNs do not. Reported results refer to performance
(accuracy) on the test sets (best epoch on the validation set, averaged over 10 runs). Configuration
files are available as supplementary material for repeatability.

1https://github.com/dsg95/decoupling-graph-info
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Table 6: Graph convolution layers of RevGCN, APPNP and FiLM. fθ and gθ correspond to learnable
functions.

Method Layer

RevGCN [20] Hl = ˆ̃A · Dropout(ReLU(Norm(Hl−1))) · Wl

APPNP [35] Zl = (1− α) ˆ̃AZl−1 + αH, Z0 = H = fθ(X), α ∈ (0, 1]

FiLM [42] Hl = σ(γl−1 ˆ̃AHl−1Wl + βl−1), βl−1, γl−1 = gθ(Hl−1)

Implementation. All neural network architectures consist of a single linear layer for feature
transformation into 8 channels, followed by 2 message-passing layers (or fully connected layers
for the MLP baseline), and a node classification head (linear layer). We use the PyG library [43]
and all experiments are run using GraphGym framework [44], which we extended to include more
advanced architectures (new layer types or models) when needed. We performed mini-batch training
using neighbourhood sampling (batch size of 32) and considered a train-validation-test split of
80%-10%-10%.

A.2 Component Interplay Measurement Details

Interpretation of SC and FC. The intuition behind SC and FC is to provide simple and compact
measures of the contribution of each component, by quantifying how much we gain/lose with the
original/random versions. Thus, we measure SC (Equation 2) by summing how much we lose by
destroying structure (compared to the original graph) with how much we gain from the original
structure (compared to the analogous random graph). Similarly for FC, in Equation 3, the first
coefficient measures how much lose by destroying the feature signal and the second measures
how much we gain from the original feature distribution (using the original and random graphs as
references, respectively).

A.2.1 Regression Results

Figure 4: Regression plots with and without considering variable interaction (SC×FC). A significant
better fit is achieved when interaction is considered. Further details on the statistical significance of
these curves can be found in Tables 7 and 8.
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Table 7: Regression without interaction: summary of statistics.

Regression Statistics

F Significance F
F-Statistic 22.9 3.35e-6

Coefficients P-value
Intercept -0.0955 6.93e-4
Structure Component (SC) 0.231 3.21e-5
Feature Component (FC) 0.146 8.14e-3

Table 8: Regression with interaction: summary of statistics.

Regression Statistics

F Significance F
F-Statistic 34.4 1.73e-8

Coefficients P-value
Intercept -0.179 6.61e-7
Structure Component (SC) 0.930 7.74e-6
Feature Component (FC) 0.435 7.58e-6
Interaction (SC × FC) -1.80 1.97e-4

Table 9: Regression: data points (structure and feature components) and target (absolute gains of
GNN compared to MLP).

Dataset Model SC FC Absolute Gains

Artificial (informative) GCN 0.40 0.56 0.07
Artificial (homophily=0.2) GCN 0.23 0.37 0.04
Artificial (homophily=0.5) GCN 0.02 0.18 -0.11
Artificial (homophily=0.8) GCN 0.22 0.42 0.10
Artificial (density=0.003) GCN 0.16 0.44 0.07
Artificial (density=0.03) GCN 0.22 0.42 0.10
Artificial (density=0.15) GCN 0.25 0.35 0.08
Cora GCN 0.69 0.41 0.14
CiteSeer GCN 0.64 0.42 0.07
Chameleon GCN -0.02 0.34 -0.04
Texas GCN 0.02 -0.02 -0.16
Artificial (informative) RevGCN 0.23 0.71 0.04
Cora RevGCN 0.31 0.75 0.08
CiteSeer RevGCN 0.25 0.81 0.06
Chameleon RevGCN -0.03 0.37 -0.04
Texas RevGCN -0.04 0.26 -0.15
Artificial (informative) APPNP 0.30 0.62 0.03
Cora APPNP 0.70 0.38 0.15
CiteSeer APPNP 0.66 0.42 0.08
Chameleon APPNP -0.06 0.44 -0.02
Texas APPNP 0.02 0.06 -0.13
Artificial (informative) FiLM 0.19 0.73 0.04
Cora FiLM 0.22 0.72 0.03
CiteSeer FiLM 0.18 0.78 0.02
Chameleon FiLM -0.05 0.41 -0.03
Texas FiLM 0.02 0.34 0.03

A.3 Limitations and Future Work

Our results suggest that we should not only explore feature/structure co-dependence but also how
models respond to certain combinations of graph properties. This scenario was not yet explored in
our controlled experiments. We also relied on artificial graphs for which we occasionally make an
assumption of how meaningful is their information based on theoretical criteria, which can limit
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the empirical conclusions drawn upon those graphs. These limitations are tied to the fact that we
only experimented with extreme scenarios. Conducting more experiments could further validate
our assumptions by considering more demanding and diverse conditions, for both artificial graphs
and benchmarks. Furthermore, our method for destroying structure information does not destroy all
structural properties (e.g. edge density remains the same); this fact should not affect in the conclusions
of this work, but can limit further applications.

As future work, we must deepen our insights on how models respond to graph properties by extending
our method to more complex scenarios, including combinations of structural properties (e.g. simul-
taneous variation of sets of properties) and feature information. We shall also explore the potential
of the feature/structure decoupling method as an empirical indication of how informative graph
structures are to a certain network architecture, as such methods are still in demand.
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