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ABSTRACT

Large language models (LLMs) have exhibited remarkable reasoning capabilities.
However, when self-evolution frameworks are employed to further enhance these
models, a key challenge lies in balancing correctness, which ensures reliable su-
pervision, and exploration, which promotes diverse reasoning trajectories. To ad-
dress this dilemma, we propose an entropy-aware self-evolution framework that
integrates verifier feedback with both sequence-level and token-level entropy. Our
approach incorporates two key strategies: (i) high-entropy selection of verified
trajectories to provide informative yet reliable signals; and (ii) entropy-aware re-
thinking, which revisits uncertain reasoning steps to uncover alternative solutions.
Theoretically, we establish the connection between entropy and the expected su-
pervised fine-tuning loss, showing that high-entropy trajectories yield stronger
learning signals. Empirically, experiments across multiple reasoning benchmarks
demonstrate that our framework consistently improves both reliability and ex-
ploratory capacity over strong baselines. With the assistance of the proposed
framework, InternLM2.5-1.8B achieves an improvement of 8.27% and surpasses
the strong baseline by 1.82% on the GSM8K task, as measured by Pass@16.
Our results highlight entropy as a principled driver of self-improvement, enabling
LLMs to evolve toward models that are not only more accurate but also more
exploratory.

1 INTRODUCTION

Large language models (LLMs) have shown impressive reasoning capabilities across tasks such as
mathematical problem solving, code generation, and scientific discovery (OpenAI, 2024; DeepSeek-
AI, 2025; Zhu et al., 2025). Despite these successes, traditional training methods often rely on
static datasets and may not fully exploit the models’ potential for iterative improvement. A growing
trend, known as self-evolution, addresses this by generating new training trajectories and fine-tuning
models iteratively on them (Wang et al., 2022; Xu et al., 2025; Zhou et al., 2025). While this
approach supports scalable iterative self-improvement, it faces a fundamental dilemma: models must
balance correctness (ensuring generated trajectories are valid and high-quality) with exploration
(encouraging diverse and novel reasoning paths that might reveal new insights).

Existing approaches to self evolution typically lean towards one side of this trade-off. Verifier-
based or reinforcement learning with verifiable rewards (RLVR) methods (Lambert et al., 2025;
Shao et al., 2024) prioritize correctness by filtering out invalid trajectories and aligning models with
reliable supervision. However, these methods often bias learning toward low-perplexity, determinis-
tic reasoning paths, thereby diminishing exploration and leading to convergent behaviors (Yue et al.,
2025). Conversely, exploration-driven strategies based on entropy, perplexity, or trial-and-error sam-
pling (Wang et al., 2025b; Li et al., 2025; Deng et al., 2025) encourage diversity, but correctness is
not guaranteed, producing noisy or misleading training signals. Consequently, despite significant
progress, current self-evolution frameworks struggle to balance correctness and exploration effec-
tively.

To address the correctness–exploration trade-off, we present an entropy-aware self-evolution frame-
work. Our key insight is that verified high-entropy trajectories not only furnish reliable supervision
but also, by leveraging their intrinsic uncertainty, illuminate alternative reasoning paths that warrant
exploration. By exploiting entropy at both the sequence and token level, and integrating verifier
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feedback, our framework achieves a principled balance between correctness—providing dependable
learning signals—and exploration—enabling diverse and informative data generation. Specifically,
the framework employs two complementary strategies: (i) High-Entropy Selection, which pri-
oritizes trajectories with high uncertainty yet verified correctness to supply both informative and
reliable training signals; and (ii) Entropy-Aware Revisiting of Reasoning Steps, which identifies
high-uncertainty reasoning positions for truncation and regeneration, uncovering alternative solu-
tions and promoting exploratory reasoning. Experiments across different models and tasks demon-
strate the superiority of our proposed method, surpassing the strong baseline by 1.44%-5.52% at
average performance on four math reasoning tasks. Our contributions are as follows:

• We propose a novel high-entropy trajectory selection strategy that balances correctness and
exploration, addressing a key limitation of prior low-perplexity–biased frameworks.

• We introduce an entropy-aware rethinking mechanism that revisits uncertain reasoning
steps, systematically enriching solution diversity while preserving reliability.

• We provide both theoretical analysis, establishing the link between sequence-level entropy
and expected supervised fine-tuning loss, and extensive empirical validation on reasoning
benchmarks, demonstrating that our framework consistently improves both reliability and
exploratory capacity compared to strong baselines.

2 RELATED WORK

Self-Evolution with Data Synthesis and Selection. Existing self-evolution approaches for LLMs
have explored a variety of strategies for data synthesis and selection. Prior work on data synthe-
sis for self-evolution has relied on heuristic filtering (Wang et al., 2022), confidence-based ranking
(Huang et al., 2023), or similarity measures (Chen et al., 2024), while others incorporate external
verifiers or interactive environments (Xu et al., 2025; Zhou et al., 2025). Although these strategies
improve correctness, they often sacrifice data diversity, leading to convergent trajectories in later
training stages. Recent uncertainty-aware approaches leverage entropy (Wang et al., 2025b), per-
plexity (Li et al., 2025), or exploration-driven sampling (Deng et al., 2025) to encourage diversity,
but lack fine-grained utilization of trajectory entropy dynamics. In contrast, our method combines
an external verifier with both trajectory-level and token-level entropy guidance, ensuring correct-
ness while systematically enriching diversity and exploration, thus achieving a balanced and robust
self-evolution process.

Reinforcement Learning using Verifiable Rewards. With the increasing adoption of reinforce-
ment learning in LLM training, Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
et al., 2025) has emerged as a promising paradigm for enhancing reasoning in LLMs. Similar to
our study, RLVR can be viewed as a self-evolution framework that integrates external verifiers. No-
tably, models such as OpenAI o1(OpenAI, 2024) and DeepSeek-R1(DeepSeek-AI, 2025) exemplify
the effectiveness of this approach. In particular, DeepSeek-R1 employs the GRPO (Shao et al.,
2024), which eliminates reliance on a reward model and has inspired a range of extensions such as
DAPO(Yu et al., 2025) and VAPO(Yue et al., 2025). However, recent analyses indicate several lim-
itations: post-RL models often exhibit reduced exploration compared to their base counterparts(Yue
et al., 2025); and correct rewards may still be entangled with erroneous reasoning steps, leading to
noisy training signals(Yee et al., 2024; Wan et al., 2025; Wen et al., 2025). Similar to some works
on RL with an entropy perspective(Wang et al., 2025a; Cheng et al., 2025), our method leverages
entropy-driven self-evolution to preserve exploration ability, operates effectively in domain-specific
tasks without requiring long nature language CoTs, and employs a robust external verifier to ensure
correctness, thereby avoiding reinforcement of spurious reasoning.

3 METHOD

As shown in Figure 1, We propose an entropy-aware self-evolution framework for LLMs, com-
posed of three stages: (1) Trajectory Exploration — generating candidate reasoning trajectories to
probe the task space, (2) Trajectory Rethinking — revisiting uncertain reasoning steps to diversify
problem-solving paths, and (3) Trajectory Selection — curating informative trajectories to enhance
both training signal and model exploration ability.
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The central advantage of this design lies in its explicit focus on high-entropy samples, which are
indicative of epistemic uncertainty and exploratory potential. By prioritizing such samples and
leveraging verifier feedback, our framework not only improves data quality but also systematically
encourages the model to explore alternative reasoning paths. The pipeline is iterated for I steps,
starting with a base model π0 at iteration i = 0.

3.1 ENTROPY MEASURES FOR MODEL TRAJECTORIES.

We quantify uncertainty in model-generated trajectories using token-level and sequence-level en-
tropy.

Local uncertainty: We utilize the token-level entropy to capture local uncertainty and inform high-
entropy truncation and revisiting during trajectory refinement. Formally, the token-level entropy at
position t is defined as

Ht = −
V∑
i=1

pθ(vi|y<t,x) log pθ(vi|y<t,x), (1)

where pθ(vi|y<t,x) is the model’s predictive probability for token vi given prefix y<t and input x.
A low Ht indicates that the model’s predictions are concentrated on a small set of tokens, reflecting
high confidence, while high Ht reflects multiple plausible alternatives, creating branching points
that can decisively influence the trajectory.

Global uncertainty: We utilize the sequence-level entropy that aggregates token-level uncertainties
to measure global unpredictability of a trajectory y = (y1, . . . , yT ):

Hseq(y | x) = 1

T

T∑
t=1

Ht. (2)

Trajectories with high Hseq contain multiple positions with substantial uncertainty, indicating both
higher exploratory potential and richer information content. Conversely, low Hseq trajectories corre-
spond to more deterministic generations. Sequence-level entropy thus provides an effective criterion
for selecting uncertainty and exploratory trajectories in supervised fine-tuning (SFT).

In out framework, token-level entropy identifies critical positions for trajectory refinement, while
sequence-level entropy selects high-information trajectories for SFT. By leveraging both, the model
benefits from trajectories that are both exploratory and informative, thereby enhancing the task-
specific performance of LLMs.

3.2 TRAJECTORY EXPLORATION

We start by broadly exploring the solution space, allowing the model to generate candidate tra-
jectories while quantifying their uncertainty. Let D denote a task-specific dataset comprising
instruction-answer pairs (x, a). At iteration i, the current model πi generates K trajectories for
each input x: {yk}Kk=1 ∼ πi(· | x). For each trajectory yk, we compute its sequence-level en-
tropy: hk = Hseq(yk | x). Each trajectory is then verified by an external checker (Xu et al., 2025),
yielding a correctness label: rk = validator(yk, a), rk ∈ {0, 1}. The final quadruple is stored as
Tk = (x,yk, hk, rk). All positively verified trajectories are aggregated into the exploration pool:

P+
i = {Tk | rk = 1 }Kk=1 ∪ P+

i−1, P+
−1 = ∅. (3)

This pool serves as the foundation for subsequent trajectory selection.

3.3 TRAJECTORY RETHINKING

Prior work (Wang et al., 2025c; Gao et al., 2025) emphasizes that medium-difficulty and uncertain
samples play a crucial role in self-training. To better exploit such informative cases, we introduce
trajectory rethinking, which revisits high-entropy reasoning steps to encourage exploration of alter-
native solutions.

From the verified trajectories of this iteration {Tk | rk = 1 }Kk=1, we select the positive trajectory
with the highest sequence-level entropy: y⋆ = argmaxyk∈P+

i
Hseq(yk | x). Let T be the length

3
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Figure 1: (Left) Pipeline shows our entropy-aware self-evolution framework. (Right) Three stages
for the framework. Three background colors in the left—blue, green, and yellow—indicate the same
stages as those in the right from top to bottom.The trajectory exploration stage, highlighted in blue,
illustrates how the model explores and verifies candidate trajectories, as detailed in Section 3.2;The
trajectory rethinking stage, highlighted in green, illustrates how we leverage the explored correct tra-
jectories to truncate and regenerate, as detailed in Section 3.3.The trajectory selection stage, high-
lighted in yellow, selects highly exploratory and informative trajectories to enhance the model’s
capabilities, as detailed in Section 3.3. Through repeated iterations of this framework, we construct
a set of trajectories that are both reliable and exploratory, which facilitates the enhancement of the
model’s task execution and exploratory capabilities.The three stages progressively transform raw
trajectories into reliable yet diverse supervision signals.

of y⋆. Token-level entropies Ht are used to identify uncertain positions. With hyperparameters
α ∈ (0, 1) (fraction of top-entropy tokens) and β ∈ (0, 1) (maximum truncation ratio), we define
the candidate set:

I = {t | t ≤ ⌊βT ⌋, y⋆t ∈ Topα(Ht)} . (4)

We then sample a truncation point: τ ∼ Uniform(I), and obtain the truncated prefix: y⋆
≤τ =

(y⋆1 , . . . , y
⋆
τ ). Conditioned on (x,y⋆

≤τ ), the model generates K continuations: {ỹk,>τ}Kk=1 ∼ πi(· |
x,y⋆

≤τ ), which are concatenated with the prefix to form rethought trajectories: {ỹk}Kk=1 = {y⋆
≤τ ⊕

ỹk,>τ}Kk=1. All rethought trajectories are verified, and positives are aggregated into the rethinking
pool:

P̃+
i = { T̃k = (x, ỹk, h̃k, r̃k) | r̃k = 1 }Kk=1 ∪ P̃+

i−1, P̃+
−1 = ∅. (5)

When no positively verified samples exist, we apply the procedure to the negative trajectory with
the highest sequence-level entropy, so that high-entropy trajectories, regardless of their correctness,
continue to drive exploration of alternative reasoning paths.

3.4 TRAJECTORY SELECTION

During the self-evolution process, the contributions of different generated trajectories to model
learning vary significantly. To maximize the utility of limited training resources, it is necessary
to select trajectories that are both exploratory and information-rich from a large pool of candidates.
The trajectory selection stage aims to aggregate and identify these critical trajectories to enhance the
model’s learning. By emphasizing high-entropy trajectories, this selection process encourages the
model to explore uncertain regions of the solution space, thereby acquiring a more comprehensive
reasoning experience.

Specifically, we rank both P+
i and P̃+

i in descending order of sequence-level entropy, obtaining R+
i

and R̃+
i . From these, we select the top-N trajectories from the exploration pool:

T1 =
{
(x, yn)

∣∣ n ≤ min
(
N, |R+

i |
)
, Tn ∈ R+

i

}
. (6)

If |T1| < N , we fill the remainder from the rethinking pool:

T2 =
{
(x, ỹn)

∣∣∣ n ≤ min
(
N − |T1|, |R̃+

i |
)
, T̃n ∈ R̃+

i

}
. (7)
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Supervised fine-tuning on the filtering trajectories. We fine-tune the model π0 on T = T1 ∪ T2
using maximum likelihood estimation (MLE) also known as the cross-entropy loss LCE to get next-
iteration model πi+1,

LCE = −
∑

(x,y)∼T1∪T2

log pθ(y | x). (8)

3.5 ANALYSIS OF THE RELATIONSHIP BETWEEN ENTROPY AND THE EXPECTED
SUPERVISED LOSS

The defination of cross-entropy loss for SFT on one self-generated trajectory y is

LCE(y|x) = −
T∑

t=1

log pθ(yt | y<t,x). (9)

Its expectation over trajectories sampled from the model πθ(·|x) can be expressed as

Ey∼πθ(·|x)[LCE(y|x)] = −
T∑

t=1

Ey∼πθ(·|x)[log pθ(yt | y<t,x)] (10)

=

T∑
t=1

Ey<t∼πθ(·|x)[Ht] (11)

= T · Ey∼πθ(·|x)[Hseq(y | x)], (12)

where the second equality follows from the definition of token-level entropy and the last equality
from sequence-level entropy. This relationship shows that higher-entropy trajectories induce larger
expected loss, producing stronger gradients and richer learning signals. Additionally, we discuss the
theoretical analysis of entropy as an exploration-enhancing signal, beyond its role in training value,
in the Appendix D.3.

Overall, our method combines verifier guidance with entropy-aware trajectory selection. By ex-
plicitly exploiting high-entropy samples for both exploration and augmentation, the framework not
only ensures training quality but also enhances the model’s ability to explore and generalize across
uncertain reasoning pathways. Through iterative self-evolution, the model progressively improves
its task-specific reasoning performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed framework on math reasoning tasks, using a Python executor
as the validator. Reasoning tasks include: GSM8K(Cobbe et al., 2021), MATH(Hendrycks et al.,
2021), GSM-Hard(Gao et al., 2023), SVAMP(Patel et al., 2021), and AsDiv(Miao et al., 2020). The
training split of GSM8K, along with randomly selected samples from MATH, is used to construct
the dataset witn 13,492 samples for self-evolution. The test splits of GSM8K, GSM-Hard, SVAMP,
and AsDiv are reserved for evaluation. In order to make use of the validator, we prompt the LLM to
generate reasoning path with the format of executable python code.

Training Details. We use Qwen2.5-Instruct(Yang et al., 2024; Qwen, 2024), Llama3.2(Grattafiori
et al., 2024; Meta, 2024) and InternLM-2.5(Cai et al., 2024) models for evaluation. At the first
iteration, we utilize few-shot prompting to instruct the model to generate training samples as a cold
start. The few-shot numbers for math reasoning tasks are set to 3. At each evolution iteration, the
candidate trajectory size K is set to 5. The total iteration number I is set to 10 for InternLM2.5-
1.8B, 7 for Llama3.2-1B and 7 for Qwen2.5-Instruct-1.5B. The top-N for trajectory augmentation
is set to 10. Otherwise, we make use of the negative trajectories the same as the baseline (Xu et al.,
2025). All the self-evolution experiments are implemented on 4×RTX3090 of 24GB VRAM.

5
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4.2 MAIN RESULTS

Table 1 summarizes the evaluation results across four mathematical reasoning benchmarks. For
reference, we include a few-shot baseline, while all other evaluations are conducted under the zero-
shot setting. To ensure fairness, all experiments adopt a consistent sampling strategy with top-
p = 0.95 and temperature = 0.6. We further compare our approach with the ENVISIONS framework
(Xu et al., 2025) under identical conditions and the main differences with ENVISIONS and the reason
why we chose it as the baseline are discussed in the Appendix E.5 . To evaluate both accuracy and
exploratory capacity, we use Pass@K as the primary metric, as it reflects the model’s ability to
produce correct solutions under multiple sampled attempts.

Overall Performance Improvements. Our method delivers substantial improvements over the
base models and consistently outperforms ENVISIONS, as shown in Tabel 1. On the held-in task
GSM8K, InternLM2.5-1.8B achieves a remarkable 8.27% gain at Pass@16. Compared with EN-
VISIONS, our method yields improvements of 1.82% and 4.39% at Pass@16 and Pass@128, re-
spectively, along with an average performance gain of 2.57% when K ranges from 16 to 256. These
results indicate that our approach not only strengthens task execution accuracy relative to the base
models, but also enhances exploratory capacity when compared to existing frameworks.

Generalization to Held-out Benchmarks. To examine generalization, we conduct evaluations
on GSM-Hard, AsDiv, and SVAMP (Table 1). Consistent with the observations on GSM8K, our
method achieves clear gains over the base models and surpasses ENVISIONS on GSM-Hard and
AsDiv. On GSM-Hard, InternLM2.5-1.8B improves by 7.21% and delivers an additional 1.44%
average gain compared with ENVISIONS. On SVAMP and AsDiv, our method outperforms the
baseline by 5.52% and 5.51% in average performance, respectively. These results demonstrate the
strong generalization ability of our framework across diverse reasoning benchmarks. Moreover, on
SVAMP, which is a relatively simple benchmark, InternLM2.5-1.8B already matches or exceeds
the performance of self-evolution variants under few-shot settings. In contrast, our method better
preserves the exploratory capacity of the base models, whereas ENVISIONS exhibits a noticeable
decline.

Generalization to Various Backbones. We also compare our method with ENVISIONS on
Llama3.2-1B and Qwen2.5-Instruct-1.5B. As shown in Figure 2, our method consistently outper-
forms ENVISIONS across tasks and backbones. Significantly, as illustrated in Figure 3, the per-
formance improvements become more pronounced at larger K, highlighting that our evolutionary
strategy effectively enhances the ability of models to explore diverse solution trajectories.

Table 1: Math Reasoning results of InternLM2.5-1.8B on four tasks.

GSM8K GSM-Hard SVAMP AsDiv

Pass@16 Pass@128 Avg Pass@16 Pass@256 Avg Pass@16 Pass@256 Avg Pass@16 Pass@128 Avg

InternLM2.5-1.8B
Few-shot 63.53 84.00 73.73 52.84 74.68 60.93 84.30 95.70 89.52 76.01 84.68 80.00
ENVISIONS 69.98 80.67 75.07 59.36 71.19 64.20 79.50 88.20 83.01 72.97 78.44 75.68
Ours 71.80 85.06 77.64 60.05 75.21 65.64 83.90 95.10 88.53 77.61 85.42 81.19
∆ +1.82 +4.39 +2.57 +0.68 +4.02 +1.44 +4.40 +6.90 +5.52 +4.64 +6.98 +5.51

4.3 EVOLUTION PROGRESS FOR SELF-EVOLUTION FRAMEWORKS

As illustrated in Figure 4(Left), the iterative evolution curves of the self-training frameworks with
InternLM2.5-1.8B as the LLM, demonstrate the progression of performance improvement. Com-
pared with the ENVISIONS method, our framework exhibits a more pronounced performance im-
provement. Notably, while the performance of ENVISIONS tends to plateau after the fourth iteration,
our method not only achieves superior results but also shows continued potential for further im-
provement. From Figure 4 (Right), it can be observed that under our framework, both the mean and
variance of sequence-level entropy in the training dataset increase as the number of self-evolution
iterations grows, exhibiting a trend in sharp contrast to that of the ENVISIONS method.
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Figure 2: Math Reasoning evaluation of the Llama3.2-1B and Qwen2.5-Instruct-1.5B on the four
tasks, compared with the existing method.
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Figure 3: Pass@K performance of the LLMs with different self-evolution frameworks. The hori-
zontal axis denotes K ranging from 8 to 256, and the vertical axis shows the corresponding Pass@K
accuracy on the benchmarks.

5 ANALYSIS

5.1 ABLATION STUDIES

Experiment Setups To disentangle the contribution of each module in our framework, we conduct
ablation studies over four configurations. All settings use a maximum of N = 10 samples for
SFT and I = 10 iterations for self-evolution. For a compute-matched comparison, the Selection
Only variant sets K = 10, compensating for the absence of the rethink/refine stage (self-refine
in ENVISIONS) so that it produces the same number of trajectories per iteration as the two-stage
variants that use K = 5. For the Rethink Only variant, we uniformly sample N trajectories from the
candidate pool without entropy-based selection when constructing the SFT dataset. We evaluate the
variant self-evolution methods using InternLM2.5-1.8B on the 1k-sample subset of the full dataset.
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Figure 4: (Left) Performance evolution of two frameworks on InternLM-2.5-1.8B model. (Right)
Mean and variance of sequence-level entropy of the SFT training datas for each evolution.

Table 2: Ablation results on GSM8K using InternLM2.5-1.8B trained on a 1k-sample subset. All
variants are compute-matched with respect to total generated trajectories.

Method Variant Pass@16 (%)
Full Method (Selection + Rethinking) 53.68
Exploration + Selection Only 49.12
Exploration + Rethinking Only 50.42
ENVISIONS 50.27

Component Ablation Studies Table 2 summarizes the results on GSM8K. Both partial vari-
ants—Selection Only and Rethink Only—provide moderate improvements, demonstrating that
each component independently contributes to performance. The full method, which combines
exploration-driven selection with the subsequent rethinking stage, yields a substantially larger gain,
achieving a Pass@16 of 53.68%. This confirms that the two components are complementary: selec-
tion biases the model toward higher-quality trajectories, while the rethinking stage further increases
both the quantity and quality of these trajectories. Compared to ENVISIONS, our full framework
achieves a 3.4% improvement, validating the effectiveness of our exploration and rethinking design.

Comparison Between Selection Strategies. To evaluate the effectiveness of high-entropy selec-
tion, we compare three trajectory selection strategies: (i) High-Entropy, which selects the top-N
highest-entropy trajectories; (ii) Low-Entropy, which selects the top-N lowest-entropy trajectories;
and (iii) Entropy-free, which randomly samples N trajectories from the set of correct trajectories.
We evaluate these variants on the 1k-sample subset of the full dataset using InternLM2.5-1.8B, fol-
lowing the same experimental setup described earlier in this section. The results, summarized in Ta-
ble 3, show that High-Entropy selection achieves the best performance (53.68%), random selection
yields moderate performance (50.42), and Low-Entropy selection performs the worst (48.78). This
contrast clearly demonstrates that high-entropy trajectories provide more diverse decision forks,
enabling more effective exploration of the model’s potential and reasoning space during the self-
evolution process.

Selection Strategy Pass@16(%)

High-Entropy 53.68
Low-Entropy 48.78
Entropy-free (Random) 50.42

Table 3: Comparison of different trajectory selection strategies.
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5.2 HIGH-ENTROPY SELECTION ENHANCES TRAINING INFORMATION AND TRAJECTORY
DIVERSITY

To further investigate the effect of out high-entropy selection strategy, we analyze the distribution of
similarity scores and negative log probability of the selected trajectories for the last self-evolution
iteration of three models.

The similarity score quantifies the alignment among generated trajectories, with higher values in-
dicating greater overlap and lower values reflecting higher diversity. Formally, given a set of n
trajectories (t1, t2, . . . , tn) corresponding to the same problem, we obtain their embeddings {ei}ni=1
from a pretrained embedding model f(·)(Zhang et al., 2025). The similarity score is computed as

Sim =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

⟨f(tqi ), f(t
d
j )⟩

where f(tqi ) and f(tcj) denote query-style and candidate-style embeddings of trajectory t, and ⟨·, ·⟩
denotes the inner product. See Appendix C for more details.

As shown in the top row of Figure 5, our method produces a wider distribution of similarity scores
with a noticeable shift toward lower values compared to ENVISIONS, indicating that high-entropy se-
lection promotes greater trajectory diversity. The trajectory examples presented in the Appendix E.5
across different iterations further illustrate the diversity gains introduced by our selection strategy.
Meanwhile, the bottom row reveals that our approach selects trajectories with higher negative log

probabilities, implying that the chosen samples carry more informative signals rather than being
restricted to high-confidence outputs. Our analysis of computational efficiency in the Appendix C
further confirms that providing richer training signals leads to improved training efficiency. Over-
all, these results demonstrate that high-entropy selection enhances both the information content and
the diversity of the training data, which are crucial for improving the expertise and generalization
capability of LLMs in self-evolution frameworks.
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Figure 5: Histogram of Similarity Scores and Negative Log Probability of the trajectories selected
for the last self-evolution iteration. The dashed lines in the figures denote the median.

5.3 THE ROLE OF TRAJECTORY RETHINKING IN SELF-EVOLUTION.

To analyze the role of the Trajectory Rethinking stage within our framework, we conduct an in-
depth investigation from three perspectives. First, we evaluate its impact on reasoning performance.
Specifically, we evaluate InternLM2.5-1.8B on GSM8K under a 1k-sample training budget, com-
paring performance with and without the Trajectory Rethinking stage. As shown in Figure 6 (Left),
incorporating Trajectory Rethink consistently boosts Pass@16 across iterations, indicating a clear
and stable improvement. In contrast, the variant without this stage—relying solely on Trajectory
Exploration—exhibits noticeably weaker performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 3 5 7 9

Effect of Trajectory Rethinking Through Iterations

44

46

48

50

52

54

56

Pa
ss

@
16

 (%
)

w/o Trajectory Rethink
with Trajectory Rethink

InternLM2.5-1B Qwen2.5-Instruct-1.5B Llama3.2-1B

Trajectory Counts from Rethink vs Explore
0

20000

40000

60000

80000

100000

120000
Explore
Rethink

Frequent truncated tokens with high entropy

Figure 6: Analysis of Trajectory Rethinking in self-evolution. (Left) Performance across itera-
tions: Incorporating the rethinking stage consistently outperforms the variant without rethinking at
every iteration. (Middle) Trajectory Counts: Rethink and explore complement each other across
different base models, leading to an increase in effective training samples. (Right) High-Entropy
Tokens: The frequent occurrence of truncated tokens with high entropy indicates that rethinking
mitigates uncertainty and enhances trajectory diversity.

Moreover, we examine the contribution of Trajectory Rethink to trajectory diversity. Figure 6
(Middle) shows that this strategy accounts for more than one-third of the training trajectories gen-
erated during the evolution process, substantially enriching the diversity of the training data. This
indicates that rethink contributes significantly to the breadth of explored reasoning paths.

Finally, we analyze the linguistic patterns associated with rethink. We visualize the most frequent
truncated tokens with high entropy, as shown in Figure 6 (Right). Words such as “because”,
“since”, and “then” often determine the direction of reasoning. Truncating trajectories at these
critical tokens enables the model to rethink from pivotal decision forks, thereby facilitating more
flexible and diverse reasoning. These analyses demonstrate that Trajectory Rethink is a crucial
component of our self-evolution framework. It enhances the diversity of reasoning trajectories and
encourages re-exploration from meaningful reasoning pivots, ultimately leading to richer and more
informative training signals, particularly beneficial for challenging reasoning tasks.

6 CONCLUSION

We propose an entropy-aware self-evolution framework that enhances reasoning in large language
models by strategically leveraging uncertainty to balance correctness and exploration. Integrating
verifier feedback with sequence-level and token-level entropy, our method prioritizes high-entropy
yet verified trajectories for training, ensuring reliable supervision while actively promoting diverse
reasoning paths. Theoretical analysis shows that such trajectories yield stronger learning signals
due to their higher expected loss, enabling more effective fine-tuning. Empirically, our approach
achieves significant gains across multiple reasoning benchmarks. Notably, InternLM2.5-1.8B im-
proves by 8.27% on GSM8K at Pass@16 and surpasses the strong ENVISIONS baseline by 4.39% at
Pass@128 , with consistent gains on held-out tasks like GSM-Hard, SVAMP and AsDiv. Critically,
performance improvements grow with larger sampling budgets, confirming enhanced exploration
without sacrificing accuracy.

Limitation Our experiments are limited to models up to 1.8B parameters due to computational
constraints; scaling to larger architectures (e.g., 7B+) remains untested. The framework’s reliance
on executable verifiers also restricts current applicability to math/code domains. Future work will
address efficiency, entropy approximation, and extension to semantic reasoning tasks.

In summary, our entropy-aware self-evolution framework offers a principled, theoretically grounded,
and empirically validated approach to enhancing both the reliability and exploratory capacity of
LLMs. By treating uncertainty not as noise to be suppressed but as signal to be harnessed, we
enable models to evolve into more capable, flexible, and robust reasoners.
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classification and preference learning, 2011. URL https://arxiv.org/abs/1112.5745.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.67. URL https://aclanthology.org/2023.
emnlp-main.67/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision?, 2017. URL https://arxiv.org/abs/1703.04977.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1112.5745
https://aclanthology.org/2023.emnlp-main.67/
https://aclanthology.org/2023.emnlp-main.67/
https://arxiv.org/abs/1703.04977
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haochen Li, Wanjin Feng, Xin Zhou, and Zhiqi Shen. GiFT: Gibbs fine-tuning for code gener-
ation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12271–12284, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.599. URL
https://aclanthology.org/2025.acl-long.599/.

Meta. LLaMA 3.2 model card. https://huggingface.co/meta-llama/Llama-3.
2-1B, 2024. Accessed: 2025-09-10.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 975–984, 2020.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024. [Accessed: 2025-05-01].

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reason-
ing dynamics with mutual information: Thinking tokens are information peaks in llm reasoning,
2025. URL https://arxiv.org/abs/2506.02867.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Yue Wan, Xiaowei Jia, and Xiang Lorraine Li. Unveiling confirmation bias in chain-of-thought
reasoning, 2025. URL https://arxiv.org/abs/2506.12301.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025a. URL https://arxiv.org/abs/
2506.01939.

Xiaoxuan Wang, Yihe Deng, Mingyu Derek Ma, and Wei Wang. Entropy-based adaptive weighting
for self-training, 2025b. URL https://arxiv.org/abs/2503.23913.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example.
arXiv preprint arXiv:2504.20571, 2025c.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
2022.

Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang,
Sam Bowman, He He, and Shi Feng. Language Models Learn to Mislead Hu-
mans via RLHF. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), In-
ternational Conference on Representation Learning, volume 2025, pp. 74670–74692,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf.

14

https://aclanthology.org/2025.acl-long.599/
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2506.02867
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2506.12301
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2503.23913
https://proceedings.iclr.cc/paper_files/paper/2025/file/b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evolution:
A neural-symbolic self-training framework for large language models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
12975–12993, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-
8-89176-251-0. doi: 10.18653/v1/2025.acl-long.635. URL https://aclanthology.org/
2025.acl-long.635/.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Evelyn Yee, Alice Li, Chenyu Tang, Yeon Ho Jung, Ramamohan Paturi, and Leon Bergen. Disso-
ciation of faithful and unfaithful reasoning in llms, 2024. URL https://arxiv.org/abs/
2405.15092.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents, 2025. URL https://arxiv.org/abs/2506.01716.

Yao Zhu, Yunjian Zhang, Zizhe Wang, Xiu Yan, Peng Sun, and Xiangyang Ji. Patchwise cooper-
ative game-based interpretability method for large vision-language models. Transactions of the
Association for Computational Linguistics, 13:744–759, 2025.

Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010. URL https://api.semanticscholar.org/CorpusID:11919065.

LLM USAGE

We used large language models (LLMs) as auxiliary tools for writing assistance and language pol-
ishing. Specifically, LLMs were employed to improve readability, grammar, and presentation of the
text. All research ideas, experimental designs, and scientific contributions are entirely the work of
the authors. The authors take full responsibility for the content of this paper.

A TRAINING DETAILS

The SFT training in our framework and baselines is conducted on 4×RTX3090 with a maximum
length of 2,048. They are optimized and accelerated with Deepspeed Zero3 and FlashAttention2.
We use the AdamW optimizer with a Linear learning rate of 2e-5. The training epoch is set to 1.
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Prompt Examples. To guide the model towards generating executable Python code, we prepend
the following prompt before each input:

Write Python code to solve the question.

We illustrate the few-shot prompts used in our experiments. The following shows the training-time
few-shot prompt (MATH PROMPT FS) and the test-time prompt (MATH PROMPT FS TEST). The
test-time prompt only contains the first example of training-time prompt.

Listing 1: Few-shot prompt for training (MATH PROMPT FS)
The following are three examples for reference.

Example 1:
The question is : Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?
The solution code is:
```python
def solution():

'''Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?'''
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result

```
... (Examples 2 and 3 omitted for brevity)

B TEST TASKS AND BENCHMARK

Table 4 lists the benchmark tasks used in our experiments. Below we provide more detailed descrip-
tions of each dataset: the types of math problems included, what makes them hard or easy, and an
example from each.

B.1 DATASET DESCRIPTIONS

• GSM8K (Grade School Math 8K) (Cobbe et al., 2021) This dataset contains approxi-
mately 8,500 linguistically diverse grade-school level word problems. Problems require
between 2 to 8 reasoning steps and use basic arithmetic operations (addition, subtraction,
multiplication, division). The problems are designed to be solvable without advanced math-
ematics, but test multi-step reasoning and managing intermediate fractional or decimal
computations.

• GSM-Hard (Gao et al., 2023) A held-out or more challenging subset related to GSM8K,
designed to test generalization under harder or out-of-distribution settings. It shares the
same format but contains examples that are less similar to the training distribution.

• SVAMP (Patel et al., 2021) Consists of 1,000 math word problems constructed by applying
perturbations to existing datasets (such as ASDiv), adding irrelevant information or chang-
ing problem structure to challenge robustness. Each problem typically has one unknown
variable, with no more than two mathematical expressions.

• ASDiv (Miao et al., 2020) Contains 2,305 word problems spanning a variety of types, with
greater lexical variety, more diverse wording, variable placements, and reasoning patterns.
Problems vary from relatively simple to fairly complex, testing both arithmetic and reason-
ing about relationships.

B.2 EXAMPLE INSTANCES

To illustrate the characteristics of different datasets, we present representative examples as follows:
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• GSM8K
Q: Janet’s ducks lay 16 eggs per day. She eats 3 for breakfast and bakes with 4. She sells
the remainder at the market for $2 per egg.
A: 18

• GSM-Hard
Q: A robe takes 2,287,720 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?
A: 3,431,580

• SVAMP
Q: There are 87 oranges and 290 bananas. If the bananas are organized into 2 groups, how
big is each group of bananas?
A: 145

• ASDiv
Q: Seven red apples and two green apples are in the basket. How many apples are in the
basket?
A: 9

Table 4: Benchmark tasks used in our experiments.

Domains Task name Is Held-out? Test Samples Max Length Sources

Math Reasoning

GSM8K 1,319 2,048 Cobbe et al. (2021)
GSM-Hard ✓ 1,319 2,048 Gao et al. (2023)
SVAMP ✓ 1,000 2,048 Patel et al. (2021)
AsDiv ✓ 2,305 2,048 Miao et al. (2020)

C COMPUTATION OF SIMILARITY SCORES

To evaluate the diversity of reasoning trajectories, we define a similarity score based on trajectory
embeddings.

Setup. For each problem instance with at least 10 trajectories, we align datasets by intersecting
their origin id sets. Each trajectory is embedded using Qwen/Qwen3-Embedding-0.6B, as
f(·). Queries tqare prefixed with a short instruction describing the task of retrieving logically equiv-
alent trajectories, while candidate trajectories td are encoded directly. The instruction for retrieving
query is:

task = 'Given a reasoning trajectory in code form, identify and retrieve
those strictly similar in logic and structure'

return f'Instruction: {task}\nThe given trajectory: {query}'

This instruction guides the model to focus on logical and structural consistency rather than surface-
level textual overlap

Pairwise Similarity. Let E ∈ Rn×d denote the embeddings of n trajectories. We compute the
cosine similarity matrix

S = E · E⊤.

Self-similarities on the diagonal are masked out. The similarity score for an instance is then

Siminstance =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

⟨ei, ej⟩,

where ⟨eqi , edj ⟩ denotes cosine similarity between embeddings eqi = f(tqi ) and edj = f(tdj ).
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Dataset-Level Score. The dataset-level similarity is the mean over all valid instances:

Simdataset =
1

|D|
∑
k∈D

Sim(k)
instance.

Visualization. We plot histograms of similarity scores across datasets and mark the median with
dashed lines, enabling analysis of both central tendency and diversity, as shown in Figure 5. Lower
similarity reflects richer trajectory diversity, while higher similarity indicates redundancy.

D COMPUTATIONAL COST AND EFFICIENCY ANALYSIS

D.1 MEASUREMENT PROTOCOL

We report the full computational cost of our self-evolution framework, including generation, verifi-
cation, and SFT fine-tuning. All experiments are conducted on 4×RTX3090 GPUs (24GB each) us-
ing DeepSpeed ZeRO3 with FlashAttention2. Wall-clock time is measured from job start to comple-
tion, including I/O and synchronization. FLOPs are estimated following common practice(Kaplan
et al., 2020; Hoffmann et al., 2022):

FLOPsinfer = f ×Nparams ×Ninfer-tokens,

FLOPstrain = g ×Nparams ×Ntrain-tokens,

where Nparams is the model size(1.8B parameters for InternLM2.5-1.8B), f and g denote the average
FLOPs-per-token multipliers for inference and training respectively. We empirically measured f =
2 and g = 6 on InternLM2.5-1.8B(KV-cache enabled).

D.2 OVERALL COMPUTATIONAL COST

In our framework, the total computation mainly comes from three stages: Trajectory Exploration
and Trajectory Rethinking during inference, and the subsequent SFT training after Trajectory Selec-
tion. Based on the following equations, we compute the corresponding numbers of inference tokens
Ninfer-tokens:

Ninfer-tokens-explore = Ndataset × I ×K × (L̄Question + L̄Explore),

Ninfer-tokens-rethink = Ndataset × I ×K × (L̄Question + L̄Rethink −
β

2
× L̄Explore),

where L̄Question, L̄Explore, and L̄Rethink denote the average token lengths of the question, exploration,
and rethinking parts, respectively, and β is the maximum truncation ratio for rethinking.

The total number of training tokens used in the subsequent SFT stage for each iteration is given by

Ntrain-tokens = Nselected × (L̄Question + L̄Answer),

where Nselected denotes the number of selected trajectories per input after Trajectory Selection, and
L̄Answer is the average token length of the selected answers.

For comparison with ENVISIONS, from the perspective of our formulation, its framework can also be
decomposed into three stages: Exploration, Refinement, and Training. Among them, the inference
token count of the Refinement stage can be defined as

Ninfer-tokens-refine = Ndataset × I ×K × (L̄Question + L̄Refine + L̄Explore),

while the other two parts (Exploration and Training) can be analogously formulated following the
equations above.The comprehensive results, including wall-clock time and other statistics, are sum-
marized in 5.
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Table 5: Overall computational cost of the self-evolution framework.

Stage #GPUs Avg seq len (L) FLOPs (×1015) Wall-clock (h)

Ours(I = 10,K = 5)
Exploration 4 130.1 475.0

139.3Rethinking 4 139.8 373.0
SFT 4 136.8 935.5

Total – – 1783.5

ENVISIONS(I = 10,K = 5)
Exploration 4 119.9 450.7

152.0Refinement 4 123.7 751.9
SFT 4 122.3 856.6

Total – – 2059.2

D.3 COST–PERFORMANCE TRADE-OFF

To assess the overall efficiency of the proposed self-evolution framework, we compare its computa-
tional overhead and performance gains against the ENVISIONS baseline. As summarized in Table 5,
our method requires fewer overall FLOPs (1.78×1018 vs. 2.06×1018) and achieves a slightly shorter
wall-clock time per full iteration (139.3h vs. 152.0h).

A stage-wise analysis reveals the source of this improvement. Our framework incurs higher com-
putational cost during both the Exploration (475.0 vs. 450.7) and SFT (935.5 vs. 856.6) stages.
The efficiency gain instead arises primarily from the optimized intermediate stage: the Trajectory
Rethinking cost (373.0) is substantially lower than the Refinement stage of ENVISIONS (751.9). This
indicates that the overall cost reduction is not uniform across stages, but is driven by the more ef-
ficient rethinking procedure that eliminates redundant refinement steps while preserving trajectory
quality.

To further evaluate cost-effectiveness, we normalize performance gains by computational cost rel-
ative to the few-shot baseline. Across all datasets and Pass@K metrics (Table 1), our approach
consistently improves accuracy while maintaining competitive cost. For example, on GSM8K, our
method improves Pass@16 from 63.53% to 71.80%, an absolute gain of 8.27%. Given a total cost
of 1.78×1018 FLOPs and 152.0 wall-clock hours, this corresponds to roughly 0.046% Pass@16
gain per 1015 FLOPs, and 0.059% Pass@16 gain per wall-clock hour.

Similar trends hold across remaining datasets, indicating that the proposed entropy-aware self-
evolution framework achieves a more favorable cost–performance ratio than ENVISIONS. Overall,
the results suggest that our design improves both computational efficiency and return on compute
investment, particularly due to the substantially streamlined intermediate rethinking stage.

E THEORETICAL JUSTIFICATION FOR ENTROPY-BASED EXPLORATION

E.1 ENTROPY AS A PRACTICAL SURROGATE FOR EPISTEMIC UNCERTAINTY

While various uncertainty measures exist—such as mutual-information–based acquisition (Houlsby
et al., 2011) or epistemic/aleatoric decomposition via Bayesian approximations (Kendall & Gal,
2017)—we adopt sequence-level Shannon entropy due to its computational simplicity and its direct
alignment with the model’s predictive distribution. Importantly, entropy admits a closed-form link-
age to the expected supervised loss, implying that high-entropy trajectories contribute proportionally
stronger gradient signals during fine-tuning. Although entropy alone does not separate epistemic
from aleatoric uncertainty, our pipeline mitigates this limitation through a verifier and token-level
rethinking stage that retains only trajectories both correct and uncertain. This filtering suppresses
irreducible noise and allows entropy to function as an effective proxy for epistemic uncertainty in
practice.
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E.2 ENTROPY AS AN EXPLORATION-ENHANCING SIGNAL

Beyond its analytic connection to the expected supervised loss (Eq. (9)–(12)), entropy selection is
theoretically grounded as a signal for exploration. We provide two complementary perspectives.

Bayesian Active Learning In Bayesian active learning, predictive entropy H[y | x,D] provides
an upper bound on the mutual information between the model parameters θ and the labels y (Houlsby
et al., 2011):

I[y; θ | x,D] = H[y | x,D]− Eθ∼p(θ|D)

[
H[y | x, θ]

]
≤ H[y | x,D]. (13)

High-entropy samples therefore indicate high potential information gain, effectively targeting points
that reduce epistemic uncertainty.

Maximum-Entropy Reinforcement Learning From a reinforcement learning perspective,
maximum-entropy formulations encourage broader exploration and prevent premature convergence
to overconfident modes (Ziebart, 2010; Haarnoja et al., 2018). The objective can be written as:

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

r(st, at) + αH
(
π(· | st)

)]
, (14)

where H(π(· | st)) is the policy entropy and α is a temperature parameter controlling exploration.
Learning from verified high-entropy trajectories similarly encourages the model to expand its rea-
soning space beyond currently confident solutions.

E.3 INTEGRATION INTO OUR PIPELINE

By combining entropy selection with a verification stage, our pipeline ensures that retained high-
entropy trajectories are both informative and correct, effectively suppressing aleatoric noise while
promoting structured exploration. This provides a principled justification for using entropy as a
practical surrogate for epistemic uncertainty.

E.4 ENTROPY, EXPECTED LOSS, AND MUTUAL INFORMATION: A FORMAL LINK

We formalize the connection between sequence-level Shannon entropy, expected supervised loss,
and mutual information as follows:

Entropy as a Surrogate for Expected Loss and Information Gain Let pθ(y | x) be the predic-
tive distribution of a model parameterized by θ. Then the expected supervised cross-entropy loss for
a candidate sample x is

Ey∼pθ
[− log pθ(y | x)] = H[y | x, θ], (15)

and the predictive entropy satisfies
H[y | x,D] = Eθ∼p(θ|D)[H[y | x, θ]] + I[y; θ | x,D], (16)

where I[y; θ | x,D] is the mutual information between y and θ given data D. Consequently, high
predictive entropy H[y | x,D] implies both higher expected supervised loss and higher potential
reduction in epistemic uncertainty.

Proof By definition, the expected supervised cross-entropy loss for a model sample x is
Ey∼pθ

[− log pθ(y | x)] = H[y | x, θ]. (17)
Taking the expectation over the posterior p(θ | D), we have

Eθ∼p(θ|D)[H[y | x, θ]]. (18)
The predictive entropy decomposes as

H[y | x,D] = I[y; θ | x,D] + Eθ∼p(θ|D)[H[y | x, θ, ] (19)
which follows directly from the standard mutual information identity:

I[y; θ | x,D] = H[y | x,D]− Eθ[H[y | x, θ]]. (20)
Therefore, a sample with higher predictive entropy contributes proportionally higher expected su-
pervised loss and has higher mutual information, justifying its selection for exploration.
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E.5 THEORETICAL JUSTIFICATION FOR HIGH-ENTROPY TRUNCATION

In this section, we provide theoretical motivation for why truncating a trajectory at high-entropy
tokens and re-sampling from these positions can effectively increase trajectory diversity and improve
downstream reasoning performance.

High-Entropy Tokens as Branching Points. Let pt(·) denote the model’s token distribution at
generation step t, and let Ht = H(pt) be its Shannon entropy. We define the local branching factor
at position t as

Bt ≈ exp(Ht). (21)

When Ht is small, Bt ≈ 1 and the token distribution is almost deterministic, contributing little
to the branching structure of the trajectory. In contrast, high-entropy positions (Ht ≫ 0) corre-
spond to decision forks: choices made at these tokens lead to divergent future trajectories. Under a
multiplicative approximation of trajectory branching,

#Trajectories ∝
T∏

t=1

Bt, (22)

so a small set of high-entropy positions dominates the combinatorial expansion of reachable rea-
soning paths. Thus, re-sampling at high-entropy tokens is significantly more compute-efficient for
increasing diversity than sampling uniformly across the sequence.

Information-Theoretic View: Mutual Information Peaks. Recent work has shown that dur-
ing multi-step reasoning, some positions exhibit mutual information peaks with respect to the final
answer. These positions—sometimes called “thinking tokens”—tend to be exactly the same high-
entropy decision points where the model is most uncertain but also most informative. Formally, let A
denote the final answer and let Xt be the token at step t. Information-theoretic analyses demonstrate
that

I(Xt;A) (23)

often exhibits sharp peaks at the same locations where Ht is high. Perturbing or re-sampling at these
positions thus explores distinct logical branches that meaningfully affect the correctness of the final
answer. This observation aligns with recent studies on reasoning dynamics in LLMs(Qian et al.,
2025), which empirically identify such MI peaks.

High-Entropy Minority Tokens Drive Major Reasoning Variance. Empirical analyses further
suggest that a small fraction of tokens with the highest entropy account for the majority of reasoning
variance. Specifically, the “high-entropy minority tokens” framework(Wang et al., 2025a) demon-
strates that: (i) the distribution of token entropies in chain-of-thought reasoning is heavy-tailed, and
(ii) the top 15–20% of tokens (ranked by entropy) correspond to the critical branching points that
drive most of the performance variation in reinforcement learning or self-improvement updates. This
theory directly supports our decision to truncate at high-entropy tokens and re-sample from these
fork points.

Connection to Gradient Efficiency. From an optimization perspective, high-entropy tokens also
correspond to positions with the largest variance in the model’s predictive distribution. Updating or
re-sampling at these locations yields the greatest marginal benefit, whereas modifying low-entropy
(near-deterministic) positions provides negligible gains. This reinforces the rationale that high-
entropy truncation is a principled and compute-efficient mechanism for exploring alternative rea-
soning paths.

Together, the multiplicative branching model, mutual-information analysis, and high-entropy mi-
nority token theory provide a coherent justification: high-entropy tokens serve as the key decision
points in a reasoning trajectory; therefore, truncating and re-sampling at these positions maximizes
trajectory diversity per unit compute and improves the probability of discovering correct reasoning
paths.
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F COMPARISON WITH ENVISIONS

Both ENVISIONS and our framework leverage external validators to select positive samples based
on reliable feedback, which are then used for self-training. The key differences are as follows:

Trajectory Generation Strategy: ENVISIONS employs a self-refine mechanism, where the model
uses previously generated trajectories as a basis to revise and regenerate them. In contrast, our
framework uses a rethinking mechanism, where the model continues generating new trajectories
from high-entropy truncations.

Positive Sample Selection: ENVISIONS relies on a self-reward mechanism, selecting high-
confidence samples as training positives. Our framework adopts an entropy-aware selection strategy,
prioritizing high-entropy trajectories.

Both frameworks follow a similar explore–refine–selection pipeline with a validator, which is why
we include ENVISIONS as a baseline in our experiments.

G TRAJECTORY EXAMPLES

Tables 7 and 8 present several example generation trajectories under self-evolution across multiple
iterations. From these observations, it can be seen that our method can occasionally find the correct
solution more quickly when handling moderately difficult problems. For instance, as shown in
Table 7, both methods produce identical solutions at iteration 2 for a given problem, yet our method
discovers the correct solution already by iteration 4.

Moreover, after reviewing several representative samples, we observe that under our method, the
model tends to leverage more annotated reasoning steps rather than relying solely on code. Across
iterative rounds, our method also explores more diverse trajectories. In contrast, ENVISIONS tends
to converge to similar trajectories once the correct solution is found; for example, in Table 8, the
responses at iterations 8 and 10 are nearly identical.

H HYPERPARAMETER ANALYSIS

To investigate the effect of different hyperparameters in our framework, we conduct controlled ex-
periments using InternLM2.5-1.8B trained on a small subset of 1,000 samples and additionally pro-
vide theoretical analysis for several key hyperparameter choices.

H.1 ANALYSIS OF SAMPLING TEMPERATURE ON EVALUATION

To evaluate the influence of sampling temperature, we test the trained model on the GSM8K test set
using sampling temperatures ranging from 0.6 to 1.2. The results in Figure 7 show that performance
increases as temperature rises and subsequently decreases at higher temperatures, indicating that
sampling temperature indeed affects output diversity and thus impacts Pass@K accuracy. Impor-
tantly, our method consistently outperforms ENVISIONS across wide range of tested temperatures,
suggesting that the improvements are not merely a consequence of temperature effects but stem from
the proposed self-evolution mechanism.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Sampling Temperature

50.00

52.00

54.00

56.00

58.00

Pa
ss

@
16

 (%
)

Ours (Pass@16)
ENVISIONS (Pass@16)

Figure 7: Pass@16 accuracy on the GSM8K test set under different sampling temperatures (0.6–1.2)
for InternLM2.5-1.8B trained on a 1k-sample subset.
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H.2 ANALYSIS OF LOW-BUDGET PERFORMANCE AND SAMPLE EFFICIENCY

To evaluate whether the improvements arise solely from wider sampling at large K, rather than
reflecting better sample efficiency, we further assess the model in the low-budget regime. Using
InternLM2.5-1.8B trained on a subset of 1,000 samples, we report Pass@1, Pass@2, Pass@4, and
Pass@8 on GSM8K. As shown in Table 6, our method consistently outperforms ENVISIONS even
at small K, indicating that the gains are not restricted to large-batch exploration but also enhance
single-shot and low-sample reasoning performance.

Table 6: Pass@K accuracy on GSM8K for InternLM2.5-1.8B trained on a 1k-sample subset.

K 1 2 4 8
Ours 29.34 33.74 41.24 46.93

ENVISIONS 26.16 30.48 38.13 44.66

H.3 ANALYSIS OF TRUNCATION PARAMETERS

Fraction of Top-entropy Tokens α. The parameter α controls which high-entropy tokens are
considered as candidate truncation points. Prior work (Wang et al., 2025a) shows that reasoning tra-
jectories contain a heavy-tailed entropy distribution in which roughly the top 15–20% of tokens con-
tribute most to branching and downstream performance (“high-entropy minority tokens”). Setting
α = 20% therefore concentrates rethinking on the key decision forks while excluding low-entropy
or weakly informative positions. Based on these theoretical insights, we recommend choosing α
within the range [0.15, 0.25].

Maximum Truncation Ratio β. The parameter β determines the proportion of the original tra-
jectory that is retained before applying high-entropy truncation and regeneration. If β is set too
small, the truncation point will lie excessively early in the reasoning process, making it unlikely to
cover the high-entropy decision forks that drive trajectory diversity. In such cases, the model can-
not effectively leverage the useful intermediate reasoning already present in the original trajectory.
Conversely, if β is set too large, the truncation occurs too late, leaving little room for regeneration
and thereby limiting the diversity of alternative reasoning paths.

Balancing these two factors, we adopt β = 0.8, which retains sufficient prefix context to pre-
serve meaningful reasoning structure while still allowing regeneration to explore new branches
around high-entropy positions. As a general guideline, β should be chosen to keep the truncation
point within the region where high-entropy tokens typically occur; in practice, values in the range
[0.7, 0.85] provide a reasonable trade-off between leveraging existing reasoning and maintaining
diversity.

H.4 ANALYSIS OF SELF-EVOLUTION PARAMETERS

For the hyperparameters: K, N , I , we followed the same setup as Xu et al. (2025) to ensure a fair
comparison and did not conduct additional experiments to explore their parameter choices.

For reproducibility, the sampling budget K controls the number of trajectories generated per input
during exploration: too small K reduces coverage of useful reasoning paths, while too large K (e.g.,
K = 10 or 15) can improve performance on some specific tasks but does not generalize consistently
(Xu et al., 2025).

The selection size N specifies how many trajectories per iteration are used for SFT: larger N in-
creases training diversity, but excessively large N may introduce noise and reduce the selectivity of
the dataset; thus, N should be chosen in conjunction with K.

Finally, the iteration count I determines how many self-evolution cycles are performed; early it-
erations produce substantial gains by correcting systematic errors, while later iterations provide
incremental refinements. In our setup, the chosen I is sufficient for the full dataset to reach a stable
set of training trajectories in the final iterations, with the performance gains gradually diminishing.
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In addition, we set the sampling temperature to 1 to capture the model’s intrinsic behavior during
trajectory generation, allowing the self-evolution process to explore diverse reasoning paths. A top-p
value of 0.95 filters out extremely low-probability tokens, improving the efficiency and correctness
of math reasoning by focusing on more plausible steps. Together, these settings ensure that sampled
trajectories are both representative and reliable for self-finetuning.

Method,
Iterations,
Correctness

Trajectories of Question:
”How many even divisors does 7! have?”

Ours,
iter. 2,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
result = 0
for i in range(1, 7+1):

if 7**(i) % i == 0 and 7**i % i == 0:
result += 2

return result

ENVISIONS,
iter. 2,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
result = 0
for i in range(1, 7+1):

if 7**(i) % i == 0 and 7**i % i == 0:
result += 2

return result

Ours,
iter. 4,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
''' $7! = 7 * 6 * 5 * 4 * 3 * 2 * 1$'''
divisors = math.factorial(7)
even_divisors = 0
for i in range(1, divisors + 1):

if divisors % i == 0 and i % 2 == 0:
even_divisors += 1

return even_divisors

ENVISIONS,
iter. 4,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
import math # importing the math module
result = math.factorial(7) / 2
return result\n

Ours,
iter. 6,
correct

def solution():
'''Solution: How many even divisors does $7!$ have?'''
import math
divisors = []
result = math.factorial(7)
for i in range(1, result+1):

if result % i == 0:
if i % 2 == 0:

divisors.append(i)
return len(divisors)

ENVISIONS,
iter. 6,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
evens_initial = 0
from math import factorial, factorial
for i in range(1, 7+1):

divisors = factorial(i)
if divisors % 2 == 0:

evens_initial += 1
result = evens_initial
return result

Table 7: Generated trajectory examples for iteration 2, 4 and 6.
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Method,
Iterations,
Correctness

Trajectories of Question:
”How many even divisors does 7! have?”

Ours,
iter. 8,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
# Convert factorial to a string as factorial is not
# multiplicative in numbertheory.
# Here we are using the formula
# factorial(n) = n * (n-1) * (n-2) *...2 * 1
# factorial(7) = 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1
# digital product 10
hommiealpha = math.factorial(7)
divisors = []
for i in range(1, hommiealpha+ 1):

if 7 * 6 * 5 * 4 * 3 * 2 * 1 % i == 0:
if i % 2 == 0:
divisors.append(i) #OD

return len(divisors)

ENVISIONS,
iter. 8,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
result = 0
for i in range(1, 10000):

if math.factorial(7) % i == 0:
if i % 2 == 0:

result += 1
return result

Ours,
iter. 10,
correct

def solution():
'''How many even divisors does $7!$ have?'''
from math import factorial
result = factorial(7)
# import it as factorial function from math module
# using module to get all the even divisors found
return len([i for i in range(1, result + 1)

if result % i == 0 and i % 2 == 0])

ENVISIONS,
iter. 10,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
even_divisors = 0
for i in range(1, 10000):

if math.factorial(7) % i == 0:
if i % 2 == 0:
even_divisors += 1

result = even_divisors
return result

Table 8: Generated trajectory examples for iteration 8 and 10.
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