
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING REASONING IN LARGE LANGUAGE MOD-
ELS VIA ENTROPY-AWARE SELF-EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have exhibited remarkable reasoning capabilities.
However, when self-evolution frameworks are employed to further enhance these
models, a key challenge lies in balancing correctness, which ensures reliable su-
pervision, and exploration, which promotes diverse reasoning trajectories. To ad-
dress this dilemma, we propose an entropy-aware self-evolution framework that
integrates verifier feedback with both sequence-level and token-level entropy. Our
approach incorporates two key strategies: (i) high-entropy selection of verified
trajectories to provide informative yet reliable signals; and (ii) entropy-aware re-
thinking, which revisits uncertain reasoning steps to uncover alternative solutions.
Theoretically, we establish the connection between entropy and the expected su-
pervised fine-tuning loss, showing that high-entropy trajectories yield stronger
learning signals. Empirically, experiments across multiple reasoning benchmarks
demonstrate that our framework consistently improves both reliability and ex-
ploratory capacity over strong baselines. With the assistance of the proposed
framework, InternLM2.5-1.8B achieves an improvement of 8.27% and surpasses
the strong baseline by 1.82% on the GSM8K task, as measured by Pass@16.
Our results highlight entropy as a principled driver of self-improvement, enabling
LLMs to evolve toward models that are not only more accurate but also more
exploratory.

1 INTRODUCTION

Large language models (LLMs) have shown impressive reasoning capabilities across tasks such as
mathematical problem solving, code generation, and scientific discovery (OpenAI, 2024; DeepSeek-
AI, 2025; Zhu et al., 2025). Despite these successes, traditional training methods often rely on
static datasets and may not fully exploit the models’ potential for iterative improvement. A growing
trend, known as self-evolution, addresses this by generating new training trajectories and fine-tuning
models iteratively on them (Wang et al., 2022; Xu et al., 2025; Zhou et al., 2025). While this
approach supports scalable iterative self-improvement, it faces a fundamental dilemma: models must
balance correctness (ensuring generated trajectories are valid and high-quality) with exploration
(encouraging diverse and novel reasoning paths that might reveal new insights).

Existing approaches to self evolution typically lean towards one side of this trade-off. Verifier-
based or reinforcement learning with verifiable rewards (RLVR) methods (Lambert et al., 2025;
Shao et al., 2024) prioritize correctness by filtering out invalid trajectories and aligning models with
reliable supervision. However, these methods often bias learning toward low-perplexity, determinis-
tic reasoning paths, thereby diminishing exploration and leading to convergent behaviors (Yue et al.,
2025). Conversely, exploration-driven strategies based on entropy, perplexity, or trial-and-error sam-
pling (Wang et al., 2025b; Li et al., 2025; Deng et al., 2025) encourage diversity, but correctness is
not guaranteed, producing noisy or misleading training signals. Consequently, despite significant
progress, current self-evolution frameworks struggle to balance correctness and exploration effec-
tively.

To address the correctness–exploration trade-off, we present an entropy-aware self-evolution frame-
work. Our key insight is that verified high-entropy trajectories not only furnish reliable supervision
but also, by leveraging their intrinsic uncertainty, illuminate alternative reasoning paths that warrant
exploration. By exploiting entropy at both the sequence and token level, and integrating verifier

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

feedback, our framework achieves a principled balance between correctness—providing dependable
learning signals—and exploration—enabling diverse and informative data generation. Specifically,
the framework employs two complementary strategies: (i) High-Entropy Selection, which pri-
oritizes trajectories with high uncertainty yet verified correctness to supply both informative and
reliable training signals; and (ii) Entropy-Aware Revisiting of Reasoning Steps, which identifies
high-uncertainty reasoning positions for truncation and regeneration, uncovering alternative solu-
tions and promoting exploratory reasoning. Experiments across different models and tasks demon-
strate the superiority of our proposed method, surpassing the strong baseline by 1.44%-5.52% at
average performance on four math reasoning tasks. Our contributions are as follows:

• We propose a novel high-entropy trajectory selection strategy that balances correctness and
exploration, addressing a key limitation of prior low-perplexity–biased frameworks.

• We introduce an entropy-aware rethinking mechanism that revisits uncertain reasoning
steps, systematically enriching solution diversity while preserving reliability.

• We provide both theoretical analysis, establishing the link between sequence-level entropy
and expected supervised fine-tuning loss, and extensive empirical validation on reasoning
benchmarks, demonstrating that our framework consistently improves both reliability and
exploratory capacity compared to strong baselines.

2 RELATED WORK

Self-Evolution with Data Synthesis and Selection. Existing self-evolution approaches for LLMs
have explored a variety of strategies for data synthesis and selection. Prior work on data synthe-
sis for self-evolution has relied on heuristic filtering (Wang et al., 2022), confidence-based ranking
(Huang et al., 2023), or similarity measures (Chen et al., 2024), while others incorporate external
verifiers or interactive environments (Xu et al., 2025; Zhou et al., 2025). Although these strategies
improve correctness, they often sacrifice data diversity, leading to convergent trajectories in later
training stages. Recent uncertainty-aware approaches leverage entropy (Wang et al., 2025b), per-
plexity (Li et al., 2025), or exploration-driven sampling (Deng et al., 2025) to encourage diversity,
but lack fine-grained utilization of trajectory entropy dynamics. In contrast, our method combines
an external verifier with both trajectory-level and token-level entropy guidance, ensuring correct-
ness while systematically enriching diversity and exploration, thus achieving a balanced and robust
self-evolution process.

Reinforcement Learning using Verifiable Rewards. With the increasing adoption of reinforce-
ment learning in LLM training, Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
et al., 2025) has emerged as a promising paradigm for enhancing reasoning in LLMs. Similar to
our study, RLVR can be viewed as a self-evolution framework that integrates external verifiers. No-
tably, models such as OpenAI o1(OpenAI, 2024) and DeepSeek-R1(DeepSeek-AI, 2025) exemplify
the effectiveness of this approach. In particular, DeepSeek-R1 employs the GRPO (Shao et al.,
2024), which eliminates reliance on a reward model and has inspired a range of extensions such as
DAPO(Yu et al., 2025) and VAPO(Yue et al., 2025). However, recent analyses indicate several lim-
itations: post-RL models often exhibit reduced exploration compared to their base counterparts(Yue
et al., 2025); and correct rewards may still be entangled with erroneous reasoning steps, leading to
noisy training signals(Yee et al., 2024; Wan et al., 2025; Wen et al., 2025). Similar to some works
on RL with an entropy perspective(Wang et al., 2025a; Cheng et al., 2025), our method leverages
entropy-driven self-evolution to preserve exploration ability, operates effectively in domain-specific
tasks without requiring long nature language CoTs, and employs a robust external verifier to ensure
correctness, thereby avoiding reinforcement of spurious reasoning.

3 METHOD

As shown in Figure 1, We propose an entropy-aware self-evolution framework for LLMs, com-
posed of three stages: (1) Trajectory Exploration — generating candidate reasoning trajectories to
probe the task space, (2) Trajectory Rethinking — revisiting uncertain reasoning steps to diversify
problem-solving paths, and (3) Trajectory Selection — curating informative trajectories to enhance
both training signal and model exploration ability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The central advantage of this design lies in its explicit focus on high-entropy samples, which are
indicative of epistemic uncertainty and exploratory potential. By prioritizing such samples and
leveraging verifier feedback, our framework not only improves data quality but also systematically
encourages the model to explore alternative reasoning paths. The pipeline is iterated for I steps,
starting with a base model π0 at iteration i = 0.

3.1 ENTROPY MEASURES FOR MODEL TRAJECTORIES.

We quantify uncertainty in model-generated trajectories using token-level and sequence-level en-
tropy.

Local uncertainty: We utilize the token-level entropy to capture local uncertainty and inform high-
entropy truncation and revisiting during trajectory refinement. Formally, the token-level entropy at
position t is defined as

Ht = −
V∑
i=1

pθ(vi|y<t,x) log pθ(vi|y<t,x), (1)

where pθ(vi|y<t,x) is the model’s predictive probability for token vi given prefix y<t and input x.
A low Ht indicates that the model’s predictions are concentrated on a small set of tokens, reflecting
high confidence, while high Ht reflects multiple plausible alternatives, creating branching points
that can decisively influence the trajectory.

Global uncertainty: We utilize the sequence-level entropy that aggregates token-level uncertainties
to measure global unpredictability of a trajectory y = (y1, . . . , yT):

Hseq(y | x) = 1

T

T∑
t=1

Ht. (2)

Trajectories with high Hseq contain multiple positions with substantial uncertainty, indicating both
higher exploratory potential and richer information content. Conversely, low Hseq trajectories corre-
spond to more deterministic generations. Sequence-level entropy thus provides an effective criterion
for selecting uncertainty and exploratory trajectories in supervised fine-tuning (SFT).

In out framework, token-level entropy identifies critical positions for trajectory refinement, while
sequence-level entropy selects high-information trajectories for SFT. By leveraging both, the model
benefits from trajectories that are both exploratory and informative, thereby enhancing the task-
specific performance of LLMs.

3.2 TRAJECTORY EXPLORATION

We start by broadly exploring the solution space, allowing the model to generate candidate tra-
jectories while quantifying their uncertainty. Let D denote a task-specific dataset comprising
instruction-answer pairs (x, a). At iteration i, the current model πi generates K trajectories for
each input x: {yk}Kk=1 ∼ πi(· | x). For each trajectory yk, we compute its sequence-level en-
tropy: hk = Hseq(yk | x). Each trajectory is then verified by an external checker (Xu et al., 2025),
yielding a correctness label: rk = validator(yk, a), rk ∈ {0, 1}. The final quadruple is stored as
Tk = (x,yk, hk, rk). All positively verified trajectories are aggregated into the exploration pool:

P+
i = {Tk | rk = 1 }Kk=1 ∪ P+

i−1, P+
−1 = ∅. (3)

This pool serves as the foundation for subsequent trajectory selection.

3.3 TRAJECTORY RETHINKING

Prior work (Wang et al., 2025c; Gao et al., 2025) emphasizes that medium-difficulty and uncertain
samples play a crucial role in self-training. To better exploit such informative cases, we introduce
trajectory rethinking, which revisits high-entropy reasoning steps to encourage exploration of alter-
native solutions.

From the verified trajectories of this iteration {Tk | rk = 1 }Kk=1, we select the positive trajectory
with the highest sequence-level entropy: y⋆ = argmaxyk∈P+

i
Hseq(yk | x). Let T be the length

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

📝🤔✔

📝😎✔

📝🤔✔

…
…

📝😎❌
truncate by 𝛼, 𝛽

…

…

📝😎✔

… …

… …

sorted by ℎ:
Filtering

& Train

…

𝑥
Large Language Model

Validator

𝑦⋆ ො𝑦𝑘 𝑘=1
𝐾𝑦𝑘 𝑘=1

𝐾

ℎ𝑘 𝑘=1
𝐾

𝑟𝑘 𝑘=1
𝐾

Exploration

Pool

෠ℎ𝑘 𝑘=1

𝐾

Ƹ𝑟𝑘 𝑘=1
𝐾

Validator

Rethinking

Pool

Filter
Train

📝😎❌

📝🤔✔

📝😎✔ 📝🤔✔ 📝🤔✔

📝🤔✔ 📝🤔✔

Figure 1: (Left) Pipeline shows our entropy-aware self-evolution framework. (Right) Three stages
for the framework. Three background colors in the left—blue, green, and yellow—indicate the same
stages as those in the right from top to bottom.The trajectory exploration stage, highlighted in blue,
illustrates how the model explores and verifies candidate trajectories, as detailed in Section 3.2;The
trajectory rethinking stage, highlighted in green, illustrates how we leverage the explored correct tra-
jectories to truncate and regenerate, as detailed in Section 3.3.The trajectory selection stage, high-
lighted in yellow, selects highly exploratory and informative trajectories to enhance the model’s
capabilities, as detailed in Section 3.3. Through repeated iterations of this framework, we construct
a set of trajectories that are both reliable and exploratory, which facilitates the enhancement of the
model’s task execution and exploratory capabilities.The three stages progressively transform raw
trajectories into reliable yet diverse supervision signals.

of y⋆. Token-level entropies Ht are used to identify uncertain positions. With hyperparameters
α ∈ (0, 1) (fraction of top-entropy tokens) and β ∈ (0, 1) (maximum truncation ratio), we define
the candidate set:

I = {t | t ≤ ⌊βT ⌋, y⋆t ∈ Topα(Ht)} . (4)

We then sample a truncation point: τ ∼ Uniform(I), and obtain the truncated prefix: y⋆
≤τ =

(y⋆1 , . . . , y
⋆
τ). Conditioned on (x,y⋆

≤τ), the model generates K continuations: {ỹk,>τ}Kk=1 ∼ πi(· |
x,y⋆

≤τ), which are concatenated with the prefix to form rethought trajectories: {ỹk}Kk=1 = {y⋆
≤τ ⊕

ỹk,>τ}Kk=1. All rethought trajectories are verified, and positives are aggregated into the rethinking
pool:

P̃+
i = { T̃k = (x, ỹk, h̃k, r̃k) | r̃k = 1 }Kk=1 ∪ P̃+

i−1, P̃+
−1 = ∅. (5)

When no positively verified samples exist, we apply the procedure to the negative trajectory with
the highest sequence-level entropy, so that high-entropy trajectories, regardless of their correctness,
continue to drive exploration of alternative reasoning paths.

3.4 TRAJECTORY SELECTION

During the self-evolution process, the contributions of different generated trajectories to model
learning vary significantly. To maximize the utility of limited training resources, it is necessary
to select trajectories that are both exploratory and information-rich from a large pool of candidates.
The trajectory selection stage aims to aggregate and identify these critical trajectories to enhance the
model’s learning. By emphasizing high-entropy trajectories, this selection process encourages the
model to explore uncertain regions of the solution space, thereby acquiring a more comprehensive
reasoning experience.

Specifically, we rank both P+
i and P̃+

i in descending order of sequence-level entropy, obtaining R+
i

and R̃+
i . From these, we select the top-N trajectories from the exploration pool:

T1 =
{
(x, yn)

∣∣ n ≤ min
(
N, |R+

i |
)
, Tn ∈ R+

i

}
. (6)

If |T1| < N , we fill the remainder from the rethinking pool:

T2 =
{
(x, ỹn)

∣∣∣ n ≤ min
(
N − |T1|, |R̃+

i |
)
, T̃n ∈ R̃+

i

}
. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Supervised fine-tuning on the filtering trajectories. We fine-tune the model π0 on T = T1 ∪ T2
using maximum likelihood estimation (MLE) also known as the cross-entropy loss LCE to get next-
iteration model πi+1,

LCE = −
∑

(x,y)∼T1∪T2

log pθ(y | x). (8)

3.5 ANALYSIS OF THE RELATIONSHIP BETWEEN ENTROPY AND THE EXPECTED
SUPERVISED LOSS

The defination of cross-entropy loss for SFT on one self-generated trajectory y is

LCE(y|x) = −
T∑

t=1

log pθ(yt | y<t,x). (9)

Its expectation over trajectories sampled from the model πθ(·|x) can be expressed as

Ey∼πθ(·|x)[LCE(y|x)] = −
T∑

t=1

Ey∼πθ(·|x)[log pθ(yt | y<t,x)] (10)

=

T∑
t=1

Ey<t∼πθ(·|x)[Ht] (11)

= T · Ey∼πθ(·|x)[Hseq(y | x)], (12)

where the second equality follows from the definition of token-level entropy and the last equality
from sequence-level entropy. This relationship shows that higher-entropy trajectories induce larger
expected loss, producing stronger gradients and richer learning signals. Additionally, we discuss the
theoretical analysis of entropy as an exploration-enhancing signal, beyond its role in training value,
in the Appendix D.3.

Overall, our method combines verifier guidance with entropy-aware trajectory selection. By ex-
plicitly exploiting high-entropy samples for both exploration and augmentation, the framework not
only ensures training quality but also enhances the model’s ability to explore and generalize across
uncertain reasoning pathways. Through iterative self-evolution, the model progressively improves
its task-specific reasoning performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed framework on math reasoning tasks, using a Python executor
as the validator. Reasoning tasks include: GSM8K(Cobbe et al., 2021), MATH(Hendrycks et al.,
2021), GSM-Hard(Gao et al., 2023), SVAMP(Patel et al., 2021), and AsDiv(Miao et al., 2020). The
training split of GSM8K, along with randomly selected samples from MATH, is used to construct
the dataset witn 13,492 samples for self-evolution. The test splits of GSM8K, GSM-Hard, SVAMP,
and AsDiv are reserved for evaluation. In order to make use of the validator, we prompt the LLM to
generate reasoning path with the format of executable python code.

Training Details. We use Qwen2.5-Instruct(Yang et al., 2024; Qwen, 2024), Llama3.2(Grattafiori
et al., 2024; Meta, 2024) and InternLM-2.5(Cai et al., 2024) models for evaluation. At the first
iteration, we utilize few-shot prompting to instruct the model to generate training samples as a cold
start. The few-shot numbers for math reasoning tasks are set to 3. At each evolution iteration, the
candidate trajectory size K is set to 5. The total iteration number I is set to 10 for InternLM2.5-
1.8B, 7 for Llama3.2-1B and 7 for Qwen2.5-Instruct-1.5B. The top-N for trajectory augmentation
is set to 10. Otherwise, we make use of the negative trajectories the same as the baseline (Xu et al.,
2025). All the self-evolution experiments are implemented on 4×RTX3090 of 24GB VRAM.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

Table 1 summarizes the evaluation results across four mathematical reasoning benchmarks. For
reference, we include a few-shot baseline, while all other evaluations are conducted under the zero-
shot setting. To ensure fairness, all experiments adopt a consistent sampling strategy with top-
p = 0.95 and temperature = 0.6. We further compare our approach with the ENVISIONS framework
(Xu et al., 2025) under identical conditions and the main differences with ENVISIONS and the reason
why we chose it as the baseline are discussed in the Appendix E.5 . To evaluate both accuracy and
exploratory capacity, we use Pass@K as the primary metric, as it reflects the model’s ability to
produce correct solutions under multiple sampled attempts.

Overall Performance Improvements. Our method delivers substantial improvements over the
base models and consistently outperforms ENVISIONS, as shown in Tabel 1. On the held-in task
GSM8K, InternLM2.5-1.8B achieves a remarkable 8.27% gain at Pass@16. Compared with EN-
VISIONS, our method yields improvements of 1.82% and 4.39% at Pass@16 and Pass@128, re-
spectively, along with an average performance gain of 2.57% when K ranges from 16 to 256. These
results indicate that our approach not only strengthens task execution accuracy relative to the base
models, but also enhances exploratory capacity when compared to existing frameworks.

Generalization to Held-out Benchmarks. To examine generalization, we conduct evaluations
on GSM-Hard, AsDiv, and SVAMP (Table 1). Consistent with the observations on GSM8K, our
method achieves clear gains over the base models and surpasses ENVISIONS on GSM-Hard and
AsDiv. On GSM-Hard, InternLM2.5-1.8B improves by 7.21% and delivers an additional 1.44%
average gain compared with ENVISIONS. On SVAMP and AsDiv, our method outperforms the
baseline by 5.52% and 5.51% in average performance, respectively. These results demonstrate the
strong generalization ability of our framework across diverse reasoning benchmarks. Moreover, on
SVAMP, which is a relatively simple benchmark, InternLM2.5-1.8B already matches or exceeds
the performance of self-evolution variants under few-shot settings. In contrast, our method better
preserves the exploratory capacity of the base models, whereas ENVISIONS exhibits a noticeable
decline.

Generalization to Various Backbones. We also compare our method with ENVISIONS on
Llama3.2-1B and Qwen2.5-Instruct-1.5B. As shown in Figure 2, our method consistently outper-
forms ENVISIONS across tasks and backbones. Significantly, as illustrated in Figure 3, the per-
formance improvements become more pronounced at larger K, highlighting that our evolutionary
strategy effectively enhances the ability of models to explore diverse solution trajectories.

Table 1: Math Reasoning results of InternLM2.5-1.8B on four tasks.

GSM8K GSM-Hard SVAMP AsDiv

Pass@16 Pass@128 Avg Pass@16 Pass@256 Avg Pass@16 Pass@256 Avg Pass@16 Pass@128 Avg

InternLM2.5-1.8B
Few-shot 63.53 84.00 73.73 52.84 74.68 60.93 84.30 95.70 89.52 76.01 84.68 80.00
ENVISIONS 69.98 80.67 75.07 59.36 71.19 64.20 79.50 88.20 83.01 72.97 78.44 75.68
Ours 71.80 85.06 77.64 60.05 75.21 65.64 83.90 95.10 88.53 77.61 85.42 81.19
∆ +1.82 +4.39 +2.57 +0.68 +4.02 +1.44 +4.40 +6.90 +5.52 +4.64 +6.98 +5.51

4.3 EVOLUTION PROGRESS FOR SELF-EVOLUTION FRAMEWORKS

As illustrated in Figure 4(Left), the iterative evolution curves of the self-training frameworks with
InternLM2.5-1.8B as the LLM, demonstrate the progression of performance improvement. Com-
pared with the ENVISIONS method, our framework exhibits a more pronounced performance im-
provement. Notably, while the performance of ENVISIONS tends to plateau after the fourth iteration,
our method not only achieves superior results but also shows continued potential for further im-
provement. From Figure 4 (Right), it can be observed that under our framework, both the mean and
variance of sequence-level entropy in the training dataset increase as the number of self-evolution
iterations grows, exhibiting a trend in sharp contrast to that of the ENVISIONS method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Pass@16 Pass@256 Avg

55

60

65

70

75

80

Pe
rf

or
m

an
ce

 (%
) o

f L
la

m
a3

.2
-1

B

59.7

61.9

76.0

79.0

66.0

67.9

GSM8K

Pass@16 Pass@256 Avg

45

50

55

60

65

70

48.1

51.0

63.5

67.0

54.0

57.0

GSM-Hard

Pass@16 Pass@256 Avg

70

75

80

85

90

95

74.7

76.5

88.1

91.4

80.5

82.5

SVAMP

Pass@16 Pass@256 Avg

65

70

75

80

67.0

68.9

75.4

79.3

70.3

72.7

AsDiv

Pass@16 Pass@256 Avg

80

85

90

95

100

Pe
rf

or
m

an
ce

 (%
) o

f Q
w

en
2.

5-
In

st
ru

ct
-1

.5
B

86.9

90.7

93.6

96.4

89.7

92.7

Pass@16 Pass@256 Avg

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

75.4

78.5

81.7

84.8

77.9

80.4

Pass@16 Pass@256 Avg

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

89.2

91.1

93.1

96.0

90.6

93.2

Pass@16 Pass@256 Avg
75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

83.1

87.0 87.4

91.4

84.8

88.7

ENVISIONS Ours

Figure 2: Math Reasoning evaluation of the Llama3.2-1B and Qwen2.5-Instruct-1.5B on the four
tasks, compared with the existing method.

816 32 64 128 256

55

60

65

70

75

80

Ll
am

a3
.2
-1
B

GSM-8k

Ours
ENVISIONS

816 32 64 128 256

45

50

55

60

65

GSM-hard

816 32 64 128 256
70

75

80

85

90

SVAMP

816 32 64 128 256

66

68

70

72

74

76

78

80
ASDiv

816 32 64 128 256

65

70

75

80

85

In
te
rn
LM

2.
5-
1.
8B

816 32 64 128 256

55

60

65

70

75

816 32 64 128 256
75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

816 32 64 128 256

70.0

72.5

75.0

77.5

80.0

82.5

85.0

816 32 64 128 256

86

88

90

92

94

96

Q
w
en

2.
5-
In
st
ru
ct
-1
.5
B

816 32 64 128 256

74

76

78

80

82

84

816 32 64 128 256

88

90

92

94

96

816 32 64 128 256

82

84

86

88

90

Figure 3: Pass@K performance of the LLMs with different self-evolution frameworks. The hori-
zontal axis denotes K ranging from 8 to 256, and the vertical axis shows the corresponding Pass@K
accuracy on the benchmarks.

5 ANALYSIS

5.1 ABLATION STUDIES

Experiment Setups To disentangle the contribution of each module in our framework, we conduct
ablation studies over four configurations. All settings use a maximum of N = 10 samples for
SFT and I = 10 iterations for self-evolution. For a compute-matched comparison, the Selection
Only variant sets K = 10, compensating for the absence of the rethink/refine stage (self-refine
in ENVISIONS) so that it produces the same number of trajectories per iteration as the two-stage
variants that use K = 5. For the Rethink Only variant, we uniformly sample N trajectories from the
candidate pool without entropy-based selection when constructing the SFT dataset. We evaluate the
variant self-evolution methods using InternLM2.5-1.8B on the 1k-sample subset of the full dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9
Self-Evolution Iterations

66.00

67.00

68.00

69.00

70.00

71.00

72.00

Pe
rf

or
m

an
ce

 P
as

s@
16

 (%
)

ours
envisions

1 2 3 4 5 6 7 8 9
Self-Evolution Iterations

0.10

0.20

0.30

0.40

0.50

M
ea

n
of

 s
eq

ue
nc

e-
le

ve
l e

nt
ro

py

Ours(mean)
ENVISIONS(mean)
Ours(var)
ENVISIONS(var)

Figure 4: (Left) Performance evolution of two frameworks on InternLM-2.5-1.8B model. (Right)
Mean and variance of sequence-level entropy of the SFT training datas for each evolution.

Table 2: Ablation results on GSM8K using InternLM2.5-1.8B trained on a 1k-sample subset. All
variants are compute-matched with respect to total generated trajectories.

Method Variant Pass@16 (%)
Full Method (Selection + Rethinking) 53.68
Exploration + Selection Only 49.12
Exploration + Rethinking Only 50.42
ENVISIONS 50.27

Component Ablation Studies Table 2 summarizes the results on GSM8K. Both partial vari-
ants—Selection Only and Rethink Only—provide moderate improvements, demonstrating that
each component independently contributes to performance. The full method, which combines
exploration-driven selection with the subsequent rethinking stage, yields a substantially larger gain,
achieving a Pass@16 of 53.68%. This confirms that the two components are complementary: selec-
tion biases the model toward higher-quality trajectories, while the rethinking stage further increases
both the quantity and quality of these trajectories. Compared to ENVISIONS, our full framework
achieves a 3.4% improvement, validating the effectiveness of our exploration and rethinking design.

Comparison Between Selection Strategies. To evaluate the effectiveness of high-entropy selec-
tion, we compare three trajectory selection strategies: (i) High-Entropy, which selects the top-N
highest-entropy trajectories; (ii) Low-Entropy, which selects the top-N lowest-entropy trajectories;
and (iii) Entropy-free, which randomly samples N trajectories from the set of correct trajectories.
We evaluate these variants on the 1k-sample subset of the full dataset using InternLM2.5-1.8B, fol-
lowing the same experimental setup described earlier in this section. The results, summarized in Ta-
ble 3, show that High-Entropy selection achieves the best performance (53.68%), random selection
yields moderate performance (50.42), and Low-Entropy selection performs the worst (48.78). This
contrast clearly demonstrates that high-entropy trajectories provide more diverse decision forks,
enabling more effective exploration of the model’s potential and reasoning space during the self-
evolution process.

Selection Strategy Pass@16(%)

High-Entropy 53.68
Low-Entropy 48.78
Entropy-free (Random) 50.42

Table 3: Comparison of different trajectory selection strategies.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 HIGH-ENTROPY SELECTION ENHANCES TRAINING INFORMATION AND TRAJECTORY
DIVERSITY

To further investigate the effect of out high-entropy selection strategy, we analyze the distribution of
similarity scores and negative log probability of the selected trajectories for the last self-evolution
iteration of three models.

The similarity score quantifies the alignment among generated trajectories, with higher values in-
dicating greater overlap and lower values reflecting higher diversity. Formally, given a set of n
trajectories (t1, t2, . . . , tn) corresponding to the same problem, we obtain their embeddings {ei}ni=1
from a pretrained embedding model f(·)(Zhang et al., 2025). The similarity score is computed as

Sim =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

⟨f(tqi), f(t
d
j)⟩

where f(tqi) and f(tcj) denote query-style and candidate-style embeddings of trajectory t, and ⟨·, ·⟩
denotes the inner product. See Appendix C for more details.

As shown in the top row of Figure 5, our method produces a wider distribution of similarity scores
with a noticeable shift toward lower values compared to ENVISIONS, indicating that high-entropy se-
lection promotes greater trajectory diversity. The trajectory examples presented in the Appendix E.5
across different iterations further illustrate the diversity gains introduced by our selection strategy.
Meanwhile, the bottom row reveals that our approach selects trajectories with higher negative log

probabilities, implying that the chosen samples carry more informative signals rather than being
restricted to high-confidence outputs. Our analysis of computational efficiency in the Appendix C
further confirms that providing richer training signals leads to improved training efficiency. Over-
all, these results demonstrate that high-entropy selection enhances both the information content and
the diversity of the training data, which are crucial for improving the expertise and generalization
capability of LLMs in self-evolution frameworks.

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

Similarity Scores
0

200

400

600

800

1000

Fr
eq

ue
nc

y

Llama3.2-1B
ENVISIONS
Ours

0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950

Similarity Scores
0

500

1000

1500

2000

2500

InternLM2.5-1.8B

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

Similarity Scores
0

50

100

150

200

250

Qwen2.5-Instruct-1.5B

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Negative Log Probability
0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

ENVISIONS
Ours

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Negative Log Probability
0

5000

10000

15000

20000

25000

30000

35000

40000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Negative Log Probability
0

10000

20000

30000

40000

50000

60000

Figure 5: Histogram of Similarity Scores and Negative Log Probability of the trajectories selected
for the last self-evolution iteration. The dashed lines in the figures denote the median.

5.3 THE ROLE OF TRAJECTORY RETHINKING IN SELF-EVOLUTION.

To analyze the role of the Trajectory Rethinking stage within our framework, we conduct an in-
depth investigation from three perspectives. First, we evaluate its impact on reasoning performance.
Specifically, we evaluate InternLM2.5-1.8B on GSM8K under a 1k-sample training budget, com-
paring performance with and without the Trajectory Rethinking stage. As shown in Figure 6 (Left),
incorporating Trajectory Rethink consistently boosts Pass@16 across iterations, indicating a clear
and stable improvement. In contrast, the variant without this stage—relying solely on Trajectory
Exploration—exhibits noticeably weaker performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

1 3 5 7 9

Effect of Trajectory Rethinking Through Iterations

44

46

48

50

52

54

56

Pa
ss

@
16

 (%
)

w/o Trajectory Rethink
with Trajectory Rethink

InternLM2.5-1B Qwen2.5-Instruct-1.5B Llama3.2-1B

Trajectory Counts from Rethink vs Explore
0

20000

40000

60000

80000

100000

120000
Explore
Rethink

Frequent truncated tokens with high entropy

Figure 6: Analysis of Trajectory Rethinking in self-evolution. (Left) Performance across itera-
tions: Incorporating the rethinking stage consistently outperforms the variant without rethinking at
every iteration. (Middle) Trajectory Counts: Rethink and explore complement each other across
different base models, leading to an increase in effective training samples. (Right) High-Entropy
Tokens: The frequent occurrence of truncated tokens with high entropy indicates that rethinking
mitigates uncertainty and enhances trajectory diversity.

Moreover, we examine the contribution of Trajectory Rethink to trajectory diversity. Figure 6
(Middle) shows that this strategy accounts for more than one-third of the training trajectories gen-
erated during the evolution process, substantially enriching the diversity of the training data. This
indicates that rethink contributes significantly to the breadth of explored reasoning paths.

Finally, we analyze the linguistic patterns associated with rethink. We visualize the most frequent
truncated tokens with high entropy, as shown in Figure 6 (Right). Words such as “because”,
“since”, and “then” often determine the direction of reasoning. Truncating trajectories at these
critical tokens enables the model to rethink from pivotal decision forks, thereby facilitating more
flexible and diverse reasoning. These analyses demonstrate that Trajectory Rethink is a crucial
component of our self-evolution framework. It enhances the diversity of reasoning trajectories and
encourages re-exploration from meaningful reasoning pivots, ultimately leading to richer and more
informative training signals, particularly beneficial for challenging reasoning tasks.

6 CONCLUSION

We propose an entropy-aware self-evolution framework that enhances reasoning in large language
models by strategically leveraging uncertainty to balance correctness and exploration. Integrating
verifier feedback with sequence-level and token-level entropy, our method prioritizes high-entropy
yet verified trajectories for training, ensuring reliable supervision while actively promoting diverse
reasoning paths. Theoretical analysis shows that such trajectories yield stronger learning signals
due to their higher expected loss, enabling more effective fine-tuning. Empirically, our approach
achieves significant gains across multiple reasoning benchmarks. Notably, InternLM2.5-1.8B im-
proves by 8.27% on GSM8K at Pass@16 and surpasses the strong ENVISIONS baseline by 4.39% at
Pass@128 , with consistent gains on held-out tasks like GSM-Hard, SVAMP and AsDiv. Critically,
performance improvements grow with larger sampling budgets, confirming enhanced exploration
without sacrificing accuracy.

Limitation Our experiments are limited to models up to 1.8B parameters due to computational
constraints; scaling to larger architectures (e.g., 7B+) remains untested. The framework’s reliance
on executable verifiers also restricts current applicability to math/code domains. Future work will
address efficiency, entropy approximation, and extension to semantic reasoning tasks.

In summary, our entropy-aware self-evolution framework offers a principled, theoretically grounded,
and empirically validated approach to enhancing both the reliability and exploratory capacity of
LLMs. By treating uncertainty not as noise to be suppressed but as signal to be harnessed, we
enable models to evolve into more capable, flexible, and robust reasoners.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 6621–6642. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/chen24j.html.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for
llms, 2025. URL https://arxiv.org/abs/2506.14758.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Jia Deng, Jie Chen, Zhipeng Chen, Daixuan Cheng, Fei Bai, Beichen Zhang, Yinqian Min,
Yanzipeng Gao, Wayne Xin Zhao, and Ji-Rong Wen. From trial-and-error to improvement: A
systematic analysis of llm exploration mechanisms in rlvr, 2025. URL https://arxiv.org/
abs/2508.07534.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/gao23f.html.

Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimization,
2025. URL https://arxiv.org/abs/2505.20282.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

11

https://proceedings.mlr.press/v235/chen24j.html
https://arxiv.org/abs/2506.14758
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2508.07534
https://arxiv.org/abs/2508.07534
https://proceedings.mlr.press/v202/gao23f.html
https://arxiv.org/abs/2505.20282

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Jack Pettersson, et al. Training compute-
optimal large language models. In Advances in Neural Information Processing Systems (NeurIPS)
2022, 2022.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning, 2011. URL https://arxiv.org/abs/1112.5745.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.67. URL https://aclanthology.org/2023.
emnlp-main.67/.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision?, 2017. URL https://arxiv.org/abs/1703.04977.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1112.5745
https://aclanthology.org/2023.emnlp-main.67/
https://aclanthology.org/2023.emnlp-main.67/
https://arxiv.org/abs/1703.04977
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haochen Li, Wanjin Feng, Xin Zhou, and Zhiqi Shen. GiFT: Gibbs fine-tuning for code gener-
ation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12271–12284, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.599. URL
https://aclanthology.org/2025.acl-long.599/.

Meta. LLaMA 3.2 model card. https://huggingface.co/meta-llama/Llama-3.
2-1B, 2024. Accessed: 2025-09-10.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 975–984, 2020.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, 2024. [Accessed: 2025-05-01].

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 2080–
2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.

Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reason-
ing dynamics with mutual information: Thinking tokens are information peaks in llm reasoning,
2025. URL https://arxiv.org/abs/2506.02867.

Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Yue Wan, Xiaowei Jia, and Xiang Lorraine Li. Unveiling confirmation bias in chain-of-thought
reasoning, 2025. URL https://arxiv.org/abs/2506.12301.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025a. URL https://arxiv.org/abs/
2506.01939.

Xiaoxuan Wang, Yihe Deng, Mingyu Derek Ma, and Wei Wang. Entropy-based adaptive weighting
for self-training, 2025b. URL https://arxiv.org/abs/2503.23913.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example.
arXiv preprint arXiv:2504.20571, 2025c.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
2022.

Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang,
Sam Bowman, He He, and Shi Feng. Language Models Learn to Mislead Hu-
mans via RLHF. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), In-
ternational Conference on Representation Learning, volume 2025, pp. 74670–74692,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf.

14

https://aclanthology.org/2025.acl-long.599/
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://aclanthology.org/2021.naacl-main.168
https://arxiv.org/abs/2506.02867
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2506.12301
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2503.23913
https://proceedings.iclr.cc/paper_files/paper/2025/file/b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evolution:
A neural-symbolic self-training framework for large language models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
12975–12993, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-
8-89176-251-0. doi: 10.18653/v1/2025.acl-long.635. URL https://aclanthology.org/
2025.acl-long.635/.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Evelyn Yee, Alice Li, Chenyu Tang, Yeon Ho Jung, Ramamohan Paturi, and Leon Bergen. Disso-
ciation of faithful and unfaithful reasoning in llms, 2024. URL https://arxiv.org/abs/
2405.15092.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents, 2025. URL https://arxiv.org/abs/2506.01716.

Yao Zhu, Yunjian Zhang, Zizhe Wang, Xiu Yan, Peng Sun, and Xiangyang Ji. Patchwise cooper-
ative game-based interpretability method for large vision-language models. Transactions of the
Association for Computational Linguistics, 13:744–759, 2025.

Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010. URL https://api.semanticscholar.org/CorpusID:11919065.

LLM USAGE

We used large language models (LLMs) as auxiliary tools for writing assistance and language pol-
ishing. Specifically, LLMs were employed to improve readability, grammar, and presentation of the
text. All research ideas, experimental designs, and scientific contributions are entirely the work of
the authors. The authors take full responsibility for the content of this paper.

A TRAINING DETAILS

The SFT training in our framework and baselines is conducted on 4×RTX3090 with a maximum
length of 2,048. They are optimized and accelerated with Deepspeed Zero3 and FlashAttention2.
We use the AdamW optimizer with a Linear learning rate of 2e-5. The training epoch is set to 1.

15

https://aclanthology.org/2025.acl-long.635/
https://aclanthology.org/2025.acl-long.635/
https://arxiv.org/abs/2405.15092
https://arxiv.org/abs/2405.15092
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2506.01716
https://api.semanticscholar.org/CorpusID:11919065

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Prompt Examples. To guide the model towards generating executable Python code, we prepend
the following prompt before each input:

Write Python code to solve the question.

We illustrate the few-shot prompts used in our experiments. The following shows the training-time
few-shot prompt (MATH PROMPT FS) and the test-time prompt (MATH PROMPT FS TEST). The
test-time prompt only contains the first example of training-time prompt.

Listing 1: Few-shot prompt for training (MATH PROMPT FS)
The following are three examples for reference.

Example 1:
The question is : Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?
The solution code is:
```python
def solution():

'''Olivia has $23. She bought five bagels for $3 each.
How much money does she have left?'''
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result

```
... (Examples 2 and 3 omitted for brevity)

B TEST TASKS AND BENCHMARK

Table 4 lists the benchmark tasks used in our experiments. Below we provide more detailed descrip-
tions of each dataset: the types of math problems included, what makes them hard or easy, and an
example from each.

B.1 DATASET DESCRIPTIONS

• GSM8K (Grade School Math 8K) (Cobbe et al., 2021) This dataset contains approxi-
mately 8,500 linguistically diverse grade-school level word problems. Problems require
between 2 to 8 reasoning steps and use basic arithmetic operations (addition, subtraction,
multiplication, division). The problems are designed to be solvable without advanced math-
ematics, but test multi-step reasoning and managing intermediate fractional or decimal
computations.

• GSM-Hard (Gao et al., 2023) A held-out or more challenging subset related to GSM8K,
designed to test generalization under harder or out-of-distribution settings. It shares the
same format but contains examples that are less similar to the training distribution.

• SVAMP (Patel et al., 2021) Consists of 1,000 math word problems constructed by applying
perturbations to existing datasets (such as ASDiv), adding irrelevant information or chang-
ing problem structure to challenge robustness. Each problem typically has one unknown
variable, with no more than two mathematical expressions.

• ASDiv (Miao et al., 2020) Contains 2,305 word problems spanning a variety of types, with
greater lexical variety, more diverse wording, variable placements, and reasoning patterns.
Problems vary from relatively simple to fairly complex, testing both arithmetic and reason-
ing about relationships.

B.2 EXAMPLE INSTANCES

To illustrate the characteristics of different datasets, we present representative examples as follows:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• GSM8K
Q: Janet’s ducks lay 16 eggs per day. She eats 3 for breakfast and bakes with 4. She sells
the remainder at the market for $2 per egg.
A: 18

• GSM-Hard
Q: A robe takes 2,287,720 bolts of blue fiber and half that much white fiber. How many
bolts in total does it take?
A: 3,431,580

• SVAMP
Q: There are 87 oranges and 290 bananas. If the bananas are organized into 2 groups, how
big is each group of bananas?
A: 145

• ASDiv
Q: Seven red apples and two green apples are in the basket. How many apples are in the
basket?
A: 9

Table 4: Benchmark tasks used in our experiments.

Domains Task name Is Held-out? Test Samples Max Length Sources

Math Reasoning

GSM8K 1,319 2,048 Cobbe et al. (2021)
GSM-Hard ✓ 1,319 2,048 Gao et al. (2023)
SVAMP ✓ 1,000 2,048 Patel et al. (2021)
AsDiv ✓ 2,305 2,048 Miao et al. (2020)

C COMPUTATION OF SIMILARITY SCORES

To evaluate the diversity of reasoning trajectories, we define a similarity score based on trajectory
embeddings.

Setup. For each problem instance with at least 10 trajectories, we align datasets by intersecting
their origin id sets. Each trajectory is embedded using Qwen/Qwen3-Embedding-0.6B, as
f(·). Queries tqare prefixed with a short instruction describing the task of retrieving logically equiv-
alent trajectories, while candidate trajectories td are encoded directly. The instruction for retrieving
query is:

task = 'Given a reasoning trajectory in code form, identify and retrieve
those strictly similar in logic and structure'

return f'Instruction: {task}\nThe given trajectory: {query}'

This instruction guides the model to focus on logical and structural consistency rather than surface-
level textual overlap

Pairwise Similarity. Let E ∈ Rn×d denote the embeddings of n trajectories. We compute the
cosine similarity matrix

S = E · E⊤.

Self-similarities on the diagonal are masked out. The similarity score for an instance is then

Siminstance =
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

⟨ei, ej⟩,

where ⟨eqi , edj ⟩ denotes cosine similarity between embeddings eqi = f(tqi) and edj = f(tdj).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Dataset-Level Score. The dataset-level similarity is the mean over all valid instances:

Simdataset =
1

|D|
∑
k∈D

Sim(k)
instance.

Visualization. We plot histograms of similarity scores across datasets and mark the median with
dashed lines, enabling analysis of both central tendency and diversity, as shown in Figure 5. Lower
similarity reflects richer trajectory diversity, while higher similarity indicates redundancy.

D COMPUTATIONAL COST AND EFFICIENCY ANALYSIS

D.1 MEASUREMENT PROTOCOL

We report the full computational cost of our self-evolution framework, including generation, verifi-
cation, and SFT fine-tuning. All experiments are conducted on 4×RTX3090 GPUs (24GB each) us-
ing DeepSpeed ZeRO3 with FlashAttention2. Wall-clock time is measured from job start to comple-
tion, including I/O and synchronization. FLOPs are estimated following common practice(Kaplan
et al., 2020; Hoffmann et al., 2022):

FLOPsinfer = f ×Nparams ×Ninfer-tokens,

FLOPstrain = g ×Nparams ×Ntrain-tokens,

where Nparams is the model size(1.8B parameters for InternLM2.5-1.8B), f and g denote the average
FLOPs-per-token multipliers for inference and training respectively. We empirically measured f =
2 and g = 6 on InternLM2.5-1.8B(KV-cache enabled).

D.2 OVERALL COMPUTATIONAL COST

In our framework, the total computation mainly comes from three stages: Trajectory Exploration
and Trajectory Rethinking during inference, and the subsequent SFT training after Trajectory Selec-
tion. Based on the following equations, we compute the corresponding numbers of inference tokens
Ninfer-tokens:

Ninfer-tokens-explore = Ndataset × I ×K × (L̄Question + L̄Explore),

Ninfer-tokens-rethink = Ndataset × I ×K × (L̄Question + L̄Rethink −
β

2
× L̄Explore),

where L̄Question, L̄Explore, and L̄Rethink denote the average token lengths of the question, exploration,
and rethinking parts, respectively, and β is the maximum truncation ratio for rethinking.

The total number of training tokens used in the subsequent SFT stage for each iteration is given by

Ntrain-tokens = Nselected × (L̄Question + L̄Answer),

where Nselected denotes the number of selected trajectories per input after Trajectory Selection, and
L̄Answer is the average token length of the selected answers.

For comparison with ENVISIONS, from the perspective of our formulation, its framework can also be
decomposed into three stages: Exploration, Refinement, and Training. Among them, the inference
token count of the Refinement stage can be defined as

Ninfer-tokens-refine = Ndataset × I ×K × (L̄Question + L̄Refine + L̄Explore),

while the other two parts (Exploration and Training) can be analogously formulated following the
equations above.The comprehensive results, including wall-clock time and other statistics, are sum-
marized in 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Overall computational cost of the self-evolution framework.

Stage #GPUs Avg seq len (L) FLOPs (×1015) Wall-clock (h)

Ours(I = 10,K = 5)
Exploration 4 130.1 475.0

139.3Rethinking 4 139.8 373.0
SFT 4 136.8 935.5

Total – – 1783.5

ENVISIONS(I = 10,K = 5)
Exploration 4 119.9 450.7

152.0Refinement 4 123.7 751.9
SFT 4 122.3 856.6

Total – – 2059.2

D.3 COST–PERFORMANCE TRADE-OFF

To assess the overall efficiency of the proposed self-evolution framework, we compare its computa-
tional overhead and performance gains against the ENVISIONS baseline. As summarized in Table 5,
our method requires fewer overall FLOPs (1.78×1018 vs. 2.06×1018) and achieves a slightly shorter
wall-clock time per full iteration (139.3h vs. 152.0h).

A stage-wise analysis reveals the source of this improvement. Our framework incurs higher com-
putational cost during both the Exploration (475.0 vs. 450.7) and SFT (935.5 vs. 856.6) stages.
The efficiency gain instead arises primarily from the optimized intermediate stage: the Trajectory
Rethinking cost (373.0) is substantially lower than the Refinement stage of ENVISIONS (751.9). This
indicates that the overall cost reduction is not uniform across stages, but is driven by the more ef-
ficient rethinking procedure that eliminates redundant refinement steps while preserving trajectory
quality.

To further evaluate cost-effectiveness, we normalize performance gains by computational cost rel-
ative to the few-shot baseline. Across all datasets and Pass@K metrics (Table 1), our approach
consistently improves accuracy while maintaining competitive cost. For example, on GSM8K, our
method improves Pass@16 from 63.53% to 71.80%, an absolute gain of 8.27%. Given a total cost
of 1.78×1018 FLOPs and 152.0 wall-clock hours, this corresponds to roughly 0.046% Pass@16
gain per 1015 FLOPs, and 0.059% Pass@16 gain per wall-clock hour.

Similar trends hold across remaining datasets, indicating that the proposed entropy-aware self-
evolution framework achieves a more favorable cost–performance ratio than ENVISIONS. Overall,
the results suggest that our design improves both computational efficiency and return on compute
investment, particularly due to the substantially streamlined intermediate rethinking stage.

E THEORETICAL JUSTIFICATION FOR ENTROPY-BASED EXPLORATION

E.1 ENTROPY AS A PRACTICAL SURROGATE FOR EPISTEMIC UNCERTAINTY

While various uncertainty measures exist—such as mutual-information–based acquisition (Houlsby
et al., 2011) or epistemic/aleatoric decomposition via Bayesian approximations (Kendall & Gal,
2017)—we adopt sequence-level Shannon entropy due to its computational simplicity and its direct
alignment with the model’s predictive distribution. Importantly, entropy admits a closed-form link-
age to the expected supervised loss, implying that high-entropy trajectories contribute proportionally
stronger gradient signals during fine-tuning. Although entropy alone does not separate epistemic
from aleatoric uncertainty, our pipeline mitigates this limitation through a verifier and token-level
rethinking stage that retains only trajectories both correct and uncertain. This filtering suppresses
irreducible noise and allows entropy to function as an effective proxy for epistemic uncertainty in
practice.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.2 ENTROPY AS AN EXPLORATION-ENHANCING SIGNAL

Beyond its analytic connection to the expected supervised loss (Eq. (9)–(12)), entropy selection is
theoretically grounded as a signal for exploration. We provide two complementary perspectives.

Bayesian Active Learning In Bayesian active learning, predictive entropy H[y | x,D] provides
an upper bound on the mutual information between the model parameters θ and the labels y (Houlsby
et al., 2011):

I[y; θ | x,D] = H[y | x,D]− Eθ∼p(θ|D)

[
H[y | x, θ]

]
≤ H[y | x,D]. (13)

High-entropy samples therefore indicate high potential information gain, effectively targeting points
that reduce epistemic uncertainty.

Maximum-Entropy Reinforcement Learning From a reinforcement learning perspective,
maximum-entropy formulations encourage broader exploration and prevent premature convergence
to overconfident modes (Ziebart, 2010; Haarnoja et al., 2018). The objective can be written as:

π∗ = argmax
π

Eτ∼π

[
T∑

t=0

r(st, at) + αH
(
π(· | st)

)]
, (14)

where H(π(· | st)) is the policy entropy and α is a temperature parameter controlling exploration.
Learning from verified high-entropy trajectories similarly encourages the model to expand its rea-
soning space beyond currently confident solutions.

E.3 INTEGRATION INTO OUR PIPELINE

By combining entropy selection with a verification stage, our pipeline ensures that retained high-
entropy trajectories are both informative and correct, effectively suppressing aleatoric noise while
promoting structured exploration. This provides a principled justification for using entropy as a
practical surrogate for epistemic uncertainty.

E.4 ENTROPY, EXPECTED LOSS, AND MUTUAL INFORMATION: A FORMAL LINK

We formalize the connection between sequence-level Shannon entropy, expected supervised loss,
and mutual information as follows:

Entropy as a Surrogate for Expected Loss and Information Gain Let pθ(y | x) be the predic-
tive distribution of a model parameterized by θ. Then the expected supervised cross-entropy loss for
a candidate sample x is

Ey∼pθ
[− log pθ(y | x)] = H[y | x, θ], (15)

and the predictive entropy satisfies
H[y | x,D] = Eθ∼p(θ|D)[H[y | x, θ]] + I[y; θ | x,D], (16)

where I[y; θ | x,D] is the mutual information between y and θ given data D. Consequently, high
predictive entropy H[y | x,D] implies both higher expected supervised loss and higher potential
reduction in epistemic uncertainty.

Proof By definition, the expected supervised cross-entropy loss for a model sample x is
Ey∼pθ

[− log pθ(y | x)] = H[y | x, θ]. (17)
Taking the expectation over the posterior p(θ | D), we have

Eθ∼p(θ|D)[H[y | x, θ]]. (18)
The predictive entropy decomposes as

H[y | x,D] = I[y; θ | x,D] + Eθ∼p(θ|D)[H[y | x, θ,] (19)
which follows directly from the standard mutual information identity:

I[y; θ | x,D] = H[y | x,D]− Eθ[H[y | x, θ]]. (20)
Therefore, a sample with higher predictive entropy contributes proportionally higher expected su-
pervised loss and has higher mutual information, justifying its selection for exploration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.5 THEORETICAL JUSTIFICATION FOR HIGH-ENTROPY TRUNCATION

In this section, we provide theoretical motivation for why truncating a trajectory at high-entropy
tokens and re-sampling from these positions can effectively increase trajectory diversity and improve
downstream reasoning performance.

High-Entropy Tokens as Branching Points. Let pt(·) denote the model’s token distribution at
generation step t, and let Ht = H(pt) be its Shannon entropy. We define the local branching factor
at position t as

Bt ≈ exp(Ht). (21)

When Ht is small, Bt ≈ 1 and the token distribution is almost deterministic, contributing little
to the branching structure of the trajectory. In contrast, high-entropy positions (Ht ≫ 0) corre-
spond to decision forks: choices made at these tokens lead to divergent future trajectories. Under a
multiplicative approximation of trajectory branching,

#Trajectories ∝
T∏

t=1

Bt, (22)

so a small set of high-entropy positions dominates the combinatorial expansion of reachable rea-
soning paths. Thus, re-sampling at high-entropy tokens is significantly more compute-efficient for
increasing diversity than sampling uniformly across the sequence.

Information-Theoretic View: Mutual Information Peaks. Recent work has shown that dur-
ing multi-step reasoning, some positions exhibit mutual information peaks with respect to the final
answer. These positions—sometimes called “thinking tokens”—tend to be exactly the same high-
entropy decision points where the model is most uncertain but also most informative. Formally, let A
denote the final answer and let Xt be the token at step t. Information-theoretic analyses demonstrate
that

I(Xt;A) (23)

often exhibits sharp peaks at the same locations where Ht is high. Perturbing or re-sampling at these
positions thus explores distinct logical branches that meaningfully affect the correctness of the final
answer. This observation aligns with recent studies on reasoning dynamics in LLMs(Qian et al.,
2025), which empirically identify such MI peaks.

High-Entropy Minority Tokens Drive Major Reasoning Variance. Empirical analyses further
suggest that a small fraction of tokens with the highest entropy account for the majority of reasoning
variance. Specifically, the “high-entropy minority tokens” framework(Wang et al., 2025a) demon-
strates that: (i) the distribution of token entropies in chain-of-thought reasoning is heavy-tailed, and
(ii) the top 15–20% of tokens (ranked by entropy) correspond to the critical branching points that
drive most of the performance variation in reinforcement learning or self-improvement updates. This
theory directly supports our decision to truncate at high-entropy tokens and re-sample from these
fork points.

Connection to Gradient Efficiency. From an optimization perspective, high-entropy tokens also
correspond to positions with the largest variance in the model’s predictive distribution. Updating or
re-sampling at these locations yields the greatest marginal benefit, whereas modifying low-entropy
(near-deterministic) positions provides negligible gains. This reinforces the rationale that high-
entropy truncation is a principled and compute-efficient mechanism for exploring alternative rea-
soning paths.

Together, the multiplicative branching model, mutual-information analysis, and high-entropy mi-
nority token theory provide a coherent justification: high-entropy tokens serve as the key decision
points in a reasoning trajectory; therefore, truncating and re-sampling at these positions maximizes
trajectory diversity per unit compute and improves the probability of discovering correct reasoning
paths.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F COMPARISON WITH ENVISIONS

Both ENVISIONS and our framework leverage external validators to select positive samples based
on reliable feedback, which are then used for self-training. The key differences are as follows:

Trajectory Generation Strategy: ENVISIONS employs a self-refine mechanism, where the model
uses previously generated trajectories as a basis to revise and regenerate them. In contrast, our
framework uses a rethinking mechanism, where the model continues generating new trajectories
from high-entropy truncations.

Positive Sample Selection: ENVISIONS relies on a self-reward mechanism, selecting high-
confidence samples as training positives. Our framework adopts an entropy-aware selection strategy,
prioritizing high-entropy trajectories.

Both frameworks follow a similar explore–refine–selection pipeline with a validator, which is why
we include ENVISIONS as a baseline in our experiments.

G TRAJECTORY EXAMPLES

Tables 7 and 8 present several example generation trajectories under self-evolution across multiple
iterations. From these observations, it can be seen that our method can occasionally find the correct
solution more quickly when handling moderately difficult problems. For instance, as shown in
Table 7, both methods produce identical solutions at iteration 2 for a given problem, yet our method
discovers the correct solution already by iteration 4.

Moreover, after reviewing several representative samples, we observe that under our method, the
model tends to leverage more annotated reasoning steps rather than relying solely on code. Across
iterative rounds, our method also explores more diverse trajectories. In contrast, ENVISIONS tends
to converge to similar trajectories once the correct solution is found; for example, in Table 8, the
responses at iterations 8 and 10 are nearly identical.

H HYPERPARAMETER ANALYSIS

To investigate the effect of different hyperparameters in our framework, we conduct controlled ex-
periments using InternLM2.5-1.8B trained on a small subset of 1,000 samples and additionally pro-
vide theoretical analysis for several key hyperparameter choices.

H.1 ANALYSIS OF SAMPLING TEMPERATURE ON EVALUATION

To evaluate the influence of sampling temperature, we test the trained model on the GSM8K test set
using sampling temperatures ranging from 0.6 to 1.2. The results in Figure 7 show that performance
increases as temperature rises and subsequently decreases at higher temperatures, indicating that
sampling temperature indeed affects output diversity and thus impacts Pass@K accuracy. Impor-
tantly, our method consistently outperforms ENVISIONS across wide range of tested temperatures,
suggesting that the improvements are not merely a consequence of temperature effects but stem from
the proposed self-evolution mechanism.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Sampling Temperature

50.00

52.00

54.00

56.00

58.00

Pa
ss

@
16

 (%
)

Ours (Pass@16)
ENVISIONS (Pass@16)

Figure 7: Pass@16 accuracy on the GSM8K test set under different sampling temperatures (0.6–1.2)
for InternLM2.5-1.8B trained on a 1k-sample subset.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H.2 ANALYSIS OF LOW-BUDGET PERFORMANCE AND SAMPLE EFFICIENCY

To evaluate whether the improvements arise solely from wider sampling at large K, rather than
reflecting better sample efficiency, we further assess the model in the low-budget regime. Using
InternLM2.5-1.8B trained on a subset of 1,000 samples, we report Pass@1, Pass@2, Pass@4, and
Pass@8 on GSM8K. As shown in Table 6, our method consistently outperforms ENVISIONS even
at small K, indicating that the gains are not restricted to large-batch exploration but also enhance
single-shot and low-sample reasoning performance.

Table 6: Pass@K accuracy on GSM8K for InternLM2.5-1.8B trained on a 1k-sample subset.

K 1 2 4 8
Ours 29.34 33.74 41.24 46.93

ENVISIONS 26.16 30.48 38.13 44.66

H.3 ANALYSIS OF TRUNCATION PARAMETERS

Fraction of Top-entropy Tokens α. The parameter α controls which high-entropy tokens are
considered as candidate truncation points. Prior work (Wang et al., 2025a) shows that reasoning tra-
jectories contain a heavy-tailed entropy distribution in which roughly the top 15–20% of tokens con-
tribute most to branching and downstream performance (“high-entropy minority tokens”). Setting
α = 20% therefore concentrates rethinking on the key decision forks while excluding low-entropy
or weakly informative positions. Based on these theoretical insights, we recommend choosing α
within the range [0.15, 0.25].

Maximum Truncation Ratio β. The parameter β determines the proportion of the original tra-
jectory that is retained before applying high-entropy truncation and regeneration. If β is set too
small, the truncation point will lie excessively early in the reasoning process, making it unlikely to
cover the high-entropy decision forks that drive trajectory diversity. In such cases, the model can-
not effectively leverage the useful intermediate reasoning already present in the original trajectory.
Conversely, if β is set too large, the truncation occurs too late, leaving little room for regeneration
and thereby limiting the diversity of alternative reasoning paths.

Balancing these two factors, we adopt β = 0.8, which retains sufficient prefix context to pre-
serve meaningful reasoning structure while still allowing regeneration to explore new branches
around high-entropy positions. As a general guideline, β should be chosen to keep the truncation
point within the region where high-entropy tokens typically occur; in practice, values in the range
[0.7, 0.85] provide a reasonable trade-off between leveraging existing reasoning and maintaining
diversity.

H.4 ANALYSIS OF SELF-EVOLUTION PARAMETERS

For the hyperparameters: K, N , I , we followed the same setup as Xu et al. (2025) to ensure a fair
comparison and did not conduct additional experiments to explore their parameter choices.

For reproducibility, the sampling budget K controls the number of trajectories generated per input
during exploration: too small K reduces coverage of useful reasoning paths, while too large K (e.g.,
K = 10 or 15) can improve performance on some specific tasks but does not generalize consistently
(Xu et al., 2025).

The selection size N specifies how many trajectories per iteration are used for SFT: larger N in-
creases training diversity, but excessively large N may introduce noise and reduce the selectivity of
the dataset; thus, N should be chosen in conjunction with K.

Finally, the iteration count I determines how many self-evolution cycles are performed; early it-
erations produce substantial gains by correcting systematic errors, while later iterations provide
incremental refinements. In our setup, the chosen I is sufficient for the full dataset to reach a stable
set of training trajectories in the final iterations, with the performance gains gradually diminishing.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

In addition, we set the sampling temperature to 1 to capture the model’s intrinsic behavior during
trajectory generation, allowing the self-evolution process to explore diverse reasoning paths. A top-p
value of 0.95 filters out extremely low-probability tokens, improving the efficiency and correctness
of math reasoning by focusing on more plausible steps. Together, these settings ensure that sampled
trajectories are both representative and reliable for self-finetuning.

Method,
Iterations,
Correctness

Trajectories of Question:
”How many even divisors does 7! have?”

Ours,
iter. 2,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
result = 0
for i in range(1, 7+1):

if 7**(i) % i == 0 and 7**i % i == 0:
result += 2

return result

ENVISIONS,
iter. 2,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
result = 0
for i in range(1, 7+1):

if 7**(i) % i == 0 and 7**i % i == 0:
result += 2

return result

Ours,
iter. 4,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
''' $7! = 7 * 6 * 5 * 4 * 3 * 2 * 1$'''
divisors = math.factorial(7)
even_divisors = 0
for i in range(1, divisors + 1):

if divisors % i == 0 and i % 2 == 0:
even_divisors += 1

return even_divisors

ENVISIONS,
iter. 4,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
import math # importing the math module
result = math.factorial(7) / 2
return result\n

Ours,
iter. 6,
correct

def solution():
'''Solution: How many even divisors does $7!$ have?'''
import math
divisors = []
result = math.factorial(7)
for i in range(1, result+1):

if result % i == 0:
if i % 2 == 0:

divisors.append(i)
return len(divisors)

ENVISIONS,
iter. 6,
wrong

def solution():
'''How many even divisors does $7!$ have?'''
evens_initial = 0
from math import factorial, factorial
for i in range(1, 7+1):

divisors = factorial(i)
if divisors % 2 == 0:

evens_initial += 1
result = evens_initial
return result

Table 7: Generated trajectory examples for iteration 2, 4 and 6.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Method,
Iterations,
Correctness

Trajectories of Question:
”How many even divisors does 7! have?”

Ours,
iter. 8,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
Convert factorial to a string as factorial is not
multiplicative in numbertheory.
Here we are using the formula
factorial(n) = n * (n-1) * (n-2) *...2 * 1
factorial(7) = 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1
digital product 10
hommiealpha = math.factorial(7)
divisors = []
for i in range(1, hommiealpha+ 1):

if 7 * 6 * 5 * 4 * 3 * 2 * 1 % i == 0:
if i % 2 == 0:
divisors.append(i) #OD

return len(divisors)

ENVISIONS,
iter. 8,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
result = 0
for i in range(1, 10000):

if math.factorial(7) % i == 0:
if i % 2 == 0:

result += 1
return result

Ours,
iter. 10,
correct

def solution():
'''How many even divisors does $7!$ have?'''
from math import factorial
result = factorial(7)
import it as factorial function from math module
using module to get all the even divisors found
return len([i for i in range(1, result + 1)

if result % i == 0 and i % 2 == 0])

ENVISIONS,
iter. 10,
correct

def solution():
'''How many even divisors does $7!$ have?'''
import math
even_divisors = 0
for i in range(1, 10000):

if math.factorial(7) % i == 0:
if i % 2 == 0:
even_divisors += 1

result = even_divisors
return result

Table 8: Generated trajectory examples for iteration 8 and 10.

25

	Introduction
	Related Work
	Method
	Entropy Measures for Model Trajectories.
	Trajectory Exploration
	Trajectory Rethinking
	Trajectory Selection
	Analysis of the Relationship Between Entropy and the Expected Supervised Loss

	Experiments
	Experimental Setup
	Main Results
	Evolution Progress for Self-Evolution Frameworks

	Analysis
	Ablation Studies
	High-Entropy Selection Enhances Training Information and Trajectory Diversity
	The role of Trajectory Rethinking in self-evolution.

	Conclusion
	Training Details
	Test Tasks and Benchmark
	Dataset Descriptions
	Example Instances

	Computation of Similarity Scores
	Computational Cost and Efficiency Analysis
	Measurement Protocol
	Overall Computational Cost
	Cost–Performance Trade-off

	Theoretical Justification for Entropy-Based Exploration
	Entropy as a Practical Surrogate for Epistemic Uncertainty
	Entropy as an exploration-enhancing signal
	Integration into Our Pipeline
	Entropy, Expected Loss, and Mutual Information: A Formal Link
	Theoretical Justification for High-Entropy Truncation

	Comparison with ENVISIONS
	Trajectory Examples
	Hyperparameter Analysis
	Analysis of Sampling Temperature on Evaluation
	Analysis of Low-Budget Performance and Sample Efficiency
	Analysis of Truncation Parameters
	Analysis of Self-Evolution Parameters

