

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING REASONING IN LARGE LANGUAGE MODELS VIA ENTROPY-AWARE SELF-EVOLUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have exhibited remarkable reasoning capabilities. However, when self-evolution frameworks are employed to further enhance these models, a key challenge lies in balancing correctness, which ensures reliable supervision, and exploration, which promotes diverse reasoning trajectories. To address this dilemma, we propose an **entropy-aware self-evolution framework** that integrates verifier feedback with both sequence-level and token-level entropy. Our approach incorporates two key strategies: (i) *high-entropy selection* of verified trajectories to provide informative yet reliable signals; and (ii) *entropy-aware re-thinking*, which revisits uncertain reasoning steps to uncover alternative solutions. Theoretically, we establish the connection between entropy and the expected supervised fine-tuning loss, showing that high-entropy trajectories yield stronger learning signals. Empirically, experiments across multiple reasoning benchmarks demonstrate that our framework consistently improves both reliability and exploratory capacity over strong baselines. With the assistance of the proposed framework, InternLM2.5-1.8B achieves an improvement of **8.27%** and surpasses the strong baseline by **1.82%** on the GSM8K task, as measured by *Pass@16*. Our results highlight entropy as a principled driver of self-improvement, enabling LLMs to evolve toward models that are not only more accurate but also more exploratory.

1 INTRODUCTION

Large language models (LLMs) have shown impressive reasoning capabilities across tasks such as mathematical problem solving, code generation, and scientific discovery (OpenAI, 2024; DeepSeek-AI, 2025; Zhu et al., 2025). Despite these successes, traditional training methods often rely on static datasets and may not fully exploit the models’ potential for iterative improvement. A growing trend, known as self-evolution, addresses this by generating new training trajectories and fine-tuning models iteratively on them (Wang et al., 2022; Xu et al., 2025; Zhou et al., 2025). While this approach supports scalable iterative self-improvement, it faces a fundamental dilemma: models must balance **correctness** (ensuring generated trajectories are valid and high-quality) with **exploration** (encouraging diverse and novel reasoning paths that might reveal new insights).

Existing approaches to self evolution typically lean towards one side of this trade-off. Verifier-based or reinforcement learning with verifiable rewards (RLVR) methods (Lambert et al., 2025; Shao et al., 2024) prioritize correctness by filtering out invalid trajectories and aligning models with reliable supervision. However, these methods often bias learning toward low-perplexity, deterministic reasoning paths, thereby diminishing exploration and leading to convergent behaviors (Yue et al., 2025). Conversely, exploration-driven strategies based on entropy, perplexity, or trial-and-error sampling (Wang et al., 2025b; Li et al., 2025; Deng et al., 2025) encourage diversity, but correctness is not guaranteed, producing noisy or misleading training signals. Consequently, despite significant progress, current self-evolution frameworks struggle to balance correctness and exploration effectively.

To address the correctness–exploration trade-off, we present an entropy-aware self-evolution framework. Our key insight is that verified high-entropy trajectories not only furnish reliable supervision but also, by leveraging their intrinsic uncertainty, illuminate alternative reasoning paths that warrant exploration. By exploiting entropy at both the sequence and token level, and integrating verifier

054 feedback, our framework achieves a principled balance between correctness—providing dependable
 055 learning signals—and exploration—enabling diverse and informative data generation. Specifically,
 056 the framework employs two complementary strategies: (i) **High-Entropy Selection**, which pri-
 057 oritizes trajectories with high uncertainty yet verified correctness to supply both informative and
 058 reliable training signals; and (ii) **Entropy-Aware Revisiting of Reasoning Steps**, which identifies
 059 high-uncertainty reasoning positions for truncation and regeneration, uncovering alternative solu-
 060 tions and promoting exploratory reasoning. Experiments across different models and tasks demon-
 061 strate the superiority of our proposed method, surpassing the strong baseline by **1.44%-5.52%** at
 062 average performance on four math reasoning tasks. Our contributions are as follows:

- 063 • We propose a novel high-entropy trajectory selection strategy that balances correctness and
 064 exploration, addressing a key limitation of prior low-perplexity-biased frameworks.
- 065 • We introduce an entropy-aware rethinking mechanism that revisits uncertain reasoning
 066 steps, systematically enriching solution diversity while preserving reliability.
- 067 • We provide both theoretical analysis, establishing the link between sequence-level entropy
 068 and expected supervised fine-tuning loss, and extensive empirical validation on reasoning
 069 benchmarks, demonstrating that our framework consistently improves both reliability and
 070 exploratory capacity compared to strong baselines.

072 2 RELATED WORK

073 **Self-Evolution with Data Synthesis and Selection.** Existing self-evolution approaches for LLMs
 074 have explored a variety of strategies for data synthesis and selection. Prior work on data synthe-
 075 sis for self-evolution has relied on heuristic filtering (Wang et al., 2022), confidence-based ranking
 076 (Huang et al., 2023), or similarity measures (Chen et al., 2024), while others incorporate external
 077 verifiers or interactive environments (Xu et al., 2025; Zhou et al., 2025). Although these strategies
 078 improve correctness, they often sacrifice data diversity, leading to convergent trajectories in later
 079 training stages. Recent uncertainty-aware approaches leverage entropy (Wang et al., 2025b), per-
 080 perplexity (Li et al., 2025), or exploration-driven sampling (Deng et al., 2025) to encourage diversity,
 081 but lack fine-grained utilization of trajectory entropy dynamics. In contrast, our method combines
 082 an external verifier with both trajectory-level and token-level entropy guidance, ensuring correct-
 083 ness while systematically enriching diversity and exploration, thus achieving a balanced and robust
 084 self-evolution process.

085 **Reinforcement Learning using Verifiable Rewards.** With the increasing adoption of reinforce-
 086 ment learning in LLM training, Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert
 087 et al., 2025) has emerged as a promising paradigm for enhancing reasoning in LLMs. Similar to
 088 our study, RLVR can be viewed as a self-evolution framework that integrates external verifiers. Not-
 089 ably, models such as OpenAI o1(OpenAI, 2024) and DeepSeek-R1(DeepSeek-AI, 2025) exemplify
 090 the effectiveness of this approach. In particular, DeepSeek-R1 employs the GRPO (Shao et al.,
 091 2024), which eliminates reliance on a reward model and has inspired a range of extensions such as
 092 DAPO(Yu et al., 2025) and VAPO(Yue et al., 2025). However, recent analyses indicate several lim-
 093 itations: post-RL models often exhibit reduced exploration compared to their base counterparts(Yue
 094 et al., 2025); and correct rewards may still be entangled with erroneous reasoning steps, leading to
 095 noisy training signals(Yee et al., 2024; Wan et al., 2025; Wen et al., 2025). Similar to some works
 096 on RL with an entropy perspective(Wang et al., 2025a; Cheng et al., 2025), our method leverages
 097 entropy-driven self-evolution to preserve exploration ability, operates effectively in domain-specific
 098 tasks without requiring long nature language CoTs, and employs a robust external verifier to ensure
 099 correctness, thereby avoiding reinforcement of spurious reasoning.

101 3 METHOD

102 As shown in Figure 1, We propose an entropy-aware self-evolution framework for LLMs, com-
 103 posed of three stages: (1) **Trajectory Exploration** — generating candidate reasoning trajectories to
 104 probe the task space, (2) **Trajectory Rethinking** — revisiting uncertain reasoning steps to diversify
 105 problem-solving paths, and (3) **Trajectory Selection** — curating informative trajectories to enhance
 106 both training signal and model exploration ability.

108 The central advantage of this design lies in its explicit focus on *high-entropy samples*, which are
 109 indicative of epistemic uncertainty and exploratory potential. By prioritizing such samples and
 110 leveraging verifier feedback, our framework not only improves data quality but also systematically
 111 encourages the model to explore alternative reasoning paths. The pipeline is iterated for I steps,
 112 starting with a base model π_0 at iteration $i = 0$.
 113

114 **3.1 ENTROPY MEASURES FOR MODEL TRAJECTORIES.**

115 We quantify uncertainty in model-generated trajectories using *token-level* and *sequence-level* en-
 116 tropy.
 117

118 **Local uncertainty:** We utilize the token-level entropy to capture local uncertainty and inform *high-*
 119 *entropy truncation and revisiting* during trajectory refinement. Formally, the token-level entropy at
 120 position t is defined as

$$121 \quad H_t = - \sum_{i=1}^V p_\theta(v_i | \mathbf{y}_{<t}, \mathbf{x}) \log p_\theta(v_i | \mathbf{y}_{<t}, \mathbf{x}), \quad (1)$$

124 where $p_\theta(v_i | \mathbf{y}_{<t}, \mathbf{x})$ is the model’s predictive probability for token v_i given prefix $\mathbf{y}_{<t}$ and input \mathbf{x} .
 125 A low H_t indicates that the model’s predictions are concentrated on a small set of tokens, reflecting
 126 high confidence, while high H_t reflects multiple plausible alternatives, creating branching points
 127 that can decisively influence the trajectory.

128 **Global uncertainty:** We utilize the sequence-level entropy that aggregates token-level uncertainties
 129 to measure global unpredictability of a trajectory $\mathbf{y} = (y_1, \dots, y_T)$:

$$131 \quad H_{\text{seq}}(\mathbf{y} | \mathbf{x}) = \frac{1}{T} \sum_{t=1}^T H_t. \quad (2)$$

134 Trajectories with high H_{seq} contain multiple positions with substantial uncertainty, indicating both
 135 higher exploratory potential and richer information content. Conversely, low H_{seq} trajectories corre-
 136 spond to more deterministic generations. Sequence-level entropy thus provides an effective criterion
 137 for selecting uncertainty and exploratory trajectories in supervised fine-tuning (SFT).

138 In our framework, token-level entropy identifies critical positions for trajectory refinement, while
 139 sequence-level entropy selects high-information trajectories for SFT. By leveraging both, the model
 140 benefits from trajectories that are both exploratory and informative, thereby enhancing the task-
 141 specific performance of LLMs.

142 **3.2 TRAJECTORY EXPLORATION**

144 We start by broadly exploring the solution space, allowing the model to generate candidate tra-
 145 jectories while quantifying their uncertainty. Let \mathcal{D} denote a task-specific dataset comprising
 146 instruction-answer pairs (\mathbf{x}, a) . At iteration i , the current model π_i generates K trajectories for
 147 each input \mathbf{x} : $\{\mathbf{y}_k\}_{k=1}^K \sim \pi_i(\cdot | \mathbf{x})$. For each trajectory \mathbf{y}_k , we compute its sequence-level en-
 148 tropy: $h_k = H_{\text{seq}}(\mathbf{y}_k | \mathbf{x})$. Each trajectory is then verified by an external checker (Xu et al., 2025),
 149 yielding a correctness label: $r_k = \text{validator}(\mathbf{y}_k, a)$, $r_k \in \{0, 1\}$. The final quadruple is stored as
 150 $T_k = (\mathbf{x}, \mathbf{y}_k, h_k, r_k)$. All positively verified trajectories are aggregated into the *exploration pool*:

$$151 \quad \mathcal{P}_i^+ = \{T_k \mid r_k = 1\}_{k=1}^K \cup \mathcal{P}_{i-1}^+, \quad \mathcal{P}_{-1}^+ = \emptyset. \quad (3)$$

153 This pool serves as the foundation for subsequent trajectory selection.

154 **3.3 TRAJECTORY RETHINKING**

156 Prior work (Wang et al., 2025c; Gao et al., 2025) emphasizes that medium-difficulty and uncertain
 157 samples play a crucial role in self-training. To better exploit such informative cases, we introduce
 158 *trajectory rethinking*, which revisits high-entropy reasoning steps to encourage exploration of alter-
 159 native solutions.

161 From the verified trajectories of this iteration $\{T_k \mid r_k = 1\}_{k=1}^K$, we select the positive trajectory
 162 with the highest sequence-level entropy: $\mathbf{y}^* = \arg \max_{\mathbf{y}_k \in \mathcal{P}_i^+} H_{\text{seq}}(\mathbf{y}_k | \mathbf{x})$. Let T be the length

Figure 1: **(Left)** Pipeline shows our entropy-aware self-evolution framework. **(Right)** Three stages for the framework. Three background colors in the left—blue, green, and yellow—indicate the same stages as those in the right from top to bottom. The trajectory exploration stage, highlighted in blue, illustrates how the model explores and verifies candidate trajectories, as detailed in Section 3.2; The trajectory rethinking stage, highlighted in green, illustrates how we leverage the explored correct trajectories to truncate and regenerate, as detailed in Section 3.3. The trajectory selection stage, highlighted in yellow, selects highly exploratory and informative trajectories to enhance the model’s capabilities, as detailed in Section 3.3. Through repeated iterations of this framework, we construct a set of trajectories that are both reliable and exploratory, which facilitates the enhancement of the model’s task execution and exploratory capabilities. The three stages progressively transform raw trajectories into reliable yet diverse supervision signals.

of \mathbf{y}^* . Token-level entropies H_t are used to identify uncertain positions. With hyperparameters $\alpha \in (0, 1)$ (fraction of top-entropy tokens) and $\beta \in (0, 1)$ (maximum truncation ratio), we define the candidate set:

$$\mathcal{I} = \{t \mid t \leq \lfloor \beta T \rfloor, y_t^* \in \text{Top}_\alpha(H_t)\}. \quad (4)$$

We then sample a truncation point: $\tau \sim \text{Uniform}(\mathcal{I})$, and obtain the truncated prefix: $\mathbf{y}_{\leq \tau}^* = (y_1^*, \dots, y_\tau^*)$. Conditioned on $(\mathbf{x}, \mathbf{y}_{\leq \tau}^*)$, the model generates K continuations: $\{\tilde{y}_{k, > \tau}\}_{k=1}^K \sim \pi_i(\cdot \mid \mathbf{x}, \mathbf{y}_{\leq \tau}^*)$, which are concatenated with the prefix to form *rethought trajectories*: $\{\tilde{y}_k\}_{k=1}^K = \{\mathbf{y}_{\leq \tau}^* \oplus \tilde{y}_{k, > \tau}\}_{k=1}^K$. All rethought trajectories are verified, and positives are aggregated into the *rethinking pool*:

$$\tilde{\mathcal{P}}_i^+ = \{ \tilde{T}_k = (\mathbf{x}, \tilde{y}_k, \tilde{h}_k, \tilde{r}_k) \mid \tilde{r}_k = 1 \}_{k=1}^K \cup \tilde{\mathcal{P}}_{i-1}^+, \quad \tilde{\mathcal{P}}_{-1}^+ = \emptyset. \quad (5)$$

When no positively verified samples exist, we apply the procedure to the negative trajectory with the highest sequence-level entropy, so that high-entropy trajectories, regardless of their correctness, continue to drive exploration of alternative reasoning paths.

3.4 TRAJECTORY SELECTION

During the self-evolution process, the contributions of different generated trajectories to model learning vary significantly. To maximize the utility of limited training resources, it is necessary to select trajectories that are both exploratory and information-rich from a large pool of candidates. The trajectory selection stage aims to aggregate and identify these critical trajectories to enhance the model’s learning. By emphasizing high-entropy trajectories, this selection process encourages the model to explore uncertain regions of the solution space, thereby acquiring a more comprehensive reasoning experience.

Specifically, we rank both \mathcal{P}_i^+ and $\tilde{\mathcal{P}}_i^+$ in descending order of sequence-level entropy, obtaining \mathcal{R}_i^+ and $\tilde{\mathcal{R}}_i^+$. From these, we select the top- N trajectories from the exploration pool:

$$\mathcal{T}_1 = \{(\mathbf{x}, y_n) \mid n \leq \min(N, |\mathcal{R}_i^+|), T_n \in \mathcal{R}_i^+\}. \quad (6)$$

If $|\mathcal{T}_1| < N$, we fill the remainder from the rethinking pool:

$$\mathcal{T}_2 = \{(\mathbf{x}, \tilde{y}_n) \mid n \leq \min(N - |\mathcal{T}_1|, |\tilde{\mathcal{R}}_i^+|), \tilde{T}_n \in \tilde{\mathcal{R}}_i^+\}. \quad (7)$$

216 **Supervised fine-tuning on the filtering trajectories.** We fine-tune the model π_0 on $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$
 217 using maximum likelihood estimation (MLE) also known as the cross-entropy loss \mathcal{L}_{CE} to get next-
 218 iteration model π_{i+1} ,

$$219 \quad \mathcal{L}_{CE} = - \sum_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{T}_1 \cup \mathcal{T}_2} \log p_{\theta}(\mathbf{y} \mid \mathbf{x}). \quad (8)$$

223 **3.5 ANALYSIS OF THE RELATIONSHIP BETWEEN ENTROPY AND THE EXPECTED
 224 SUPERVISED LOSS**

226 The definition of cross-entropy loss for SFT on one self-generated trajectory \mathbf{y} is

$$228 \quad \mathcal{L}_{CE}(\mathbf{y} \mid \mathbf{x}) = - \sum_{t=1}^T \log p_{\theta}(y_t \mid \mathbf{y}_{<t}, \mathbf{x}). \quad (9)$$

231 Its expectation over trajectories sampled from the model $\pi_{\theta}(\cdot \mid \mathbf{x})$ can be expressed as

$$233 \quad \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot \mid \mathbf{x})} [\mathcal{L}_{CE}(\mathbf{y} \mid \mathbf{x})] = - \sum_{t=1}^T \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot \mid \mathbf{x})} [\log p_{\theta}(y_t \mid \mathbf{y}_{<t}, \mathbf{x})] \quad (10)$$

$$236 \quad = \sum_{t=1}^T \mathbb{E}_{\mathbf{y}_{<t} \sim \pi_{\theta}(\cdot \mid \mathbf{x})} [H_t] \quad (11)$$

$$238 \quad = T \cdot \mathbb{E}_{\mathbf{y} \sim \pi_{\theta}(\cdot \mid \mathbf{x})} [H_{\text{seq}}(\mathbf{y} \mid \mathbf{x})], \quad (12)$$

240 where the second equality follows from the definition of token-level entropy and the last equality
 241 from sequence-level entropy. This relationship shows that higher-entropy trajectories induce larger
 242 expected loss, producing stronger gradients and richer learning signals. **Additionally, we discuss the
 243 theoretical analysis of entropy as an exploration-enhancing signal, beyond its role in training value,
 244 in the Appendix D.3.**

245 Overall, our method combines verifier guidance with entropy-aware trajectory selection. By ex-
 246 plicitly exploiting high-entropy samples for both exploration and augmentation, the framework not
 247 only ensures training quality but also enhances the model’s ability to explore and generalize across
 248 uncertain reasoning pathways. Through iterative self-evolution, the model progressively improves
 249 its task-specific reasoning performance.

251 **4 EXPERIMENTS**

253 **4.1 EXPERIMENTAL SETUP**

255 **Datasets.** We evaluate the proposed framework on math reasoning tasks, using a Python executor
 256 as the validator. Reasoning tasks include: GSM8K(Cobbe et al., 2021), MATH(Hendrycks et al.,
 257 2021), GSM-Hard(Gao et al., 2023), SVAMP(Patel et al., 2021), and AsDiv(Miao et al., 2020). The
 258 training split of GSM8K, along with randomly selected samples from MATH, is used to construct
 259 the dataset with 13,492 samples for self-evolution. The test splits of GSM8K, GSM-Hard, SVAMP,
 260 and AsDiv are reserved for evaluation. In order to make use of the validator, we prompt the LLM to
 261 generate reasoning path with the format of executable python code.

263 **Training Details.** We use Qwen2.5-Instruct(Yang et al., 2024; Qwen, 2024), Llama3.2(Grattafiori
 264 et al., 2024; Meta, 2024) and InternLM-2.5(Cai et al., 2024) models for evaluation. At the first
 265 iteration, we utilize few-shot prompting to instruct the model to generate training samples as a cold
 266 start. The few-shot numbers for math reasoning tasks are set to 3. At each evolution iteration, the
 267 candidate trajectory size K is set to 5. The total iteration number I is set to 10 for InternLM2.5-
 268 1.8B, 7 for Llama3.2-1B and 7 for Qwen2.5-Instruct-1.5B. The top- N for trajectory augmentation
 269 is set to 10. Otherwise, we make use of the negative trajectories the same as the baseline (Xu et al.,
 270 2025). All the self-evolution experiments are implemented on 4×RTX3090 of 24GB VRAM.

270
271

4.2 MAIN RESULTS

272
273
274
275
276
277
278
279

Table 1 summarizes the evaluation results across four mathematical reasoning benchmarks. For reference, we include a few-shot baseline, while all other evaluations are conducted under the zero-shot setting. To ensure fairness, all experiments adopt a consistent sampling strategy with top- $p = 0.95$ and temperature = 0.6. We further compare our approach with the ENVISIONS framework (Xu et al., 2025) under identical conditions and the main differences with ENVISIONS and the reason why we chose it as the baseline are discussed in the Appendix E.5. To evaluate both accuracy and exploratory capacity, we use $Pass@K$ as the primary metric, as it reflects the model’s ability to produce correct solutions under multiple sampled attempts.

280
281
282
283
284
285
286
287

Overall Performance Improvements. Our method delivers substantial improvements over the base models and consistently outperforms ENVISIONS, as shown in Tabel 1. On the held-in task GSM8K, InternLM2.5-1.8B achieves a remarkable 8.27% gain at $Pass@16$. Compared with ENVISIONS, our method yields improvements of 1.82% and 4.39% at $Pass@16$ and $Pass@128$, respectively, along with an average performance gain of 2.57% when K ranges from 16 to 256. These results indicate that our approach not only strengthens task execution accuracy relative to the base models, but also enhances exploratory capacity when compared to existing frameworks.

288
289
290
291
292
293
294
295
296
297
298

Generalization to Held-out Benchmarks. To examine generalization, we conduct evaluations on GSM-Hard, AsDiv, and SVAMP (Table 1). Consistent with the observations on GSM8K, our method achieves clear gains over the base models and surpasses ENVISIONS on GSM-Hard and AsDiv. On GSM-Hard, InternLM2.5-1.8B improves by 7.21% and delivers an additional 1.44% average gain compared with ENVISIONS. On SVAMP and AsDiv, our method outperforms the baseline by 5.52% and 5.51% in average performance, respectively. These results demonstrate the strong generalization ability of our framework across diverse reasoning benchmarks. Moreover, on SVAMP, which is a relatively simple benchmark, InternLM2.5-1.8B already matches or exceeds the performance of self-evolution variants under few-shot settings. In contrast, our method better preserves the exploratory capacity of the base models, whereas ENVISIONS exhibits a noticeable decline.

299
300
301
302
303
304

Generalization to Various Backbones. We also compare our method with ENVISIONS on Llama3.2-1B and Qwen2.5-Instruct-1.5B. As shown in Figure 2, our method consistently outperforms ENVISIONS across tasks and backbones. Significantly, as illustrated in Figure 3, the performance improvements become more pronounced at larger K , highlighting that our evolutionary strategy effectively enhances the ability of models to explore diverse solution trajectories.

305
306

Table 1: Math Reasoning results of InternLM2.5-1.8B on four tasks.

	GSM8K			GSM-Hard			SVAMP			AsDiv		
	$Pass@16$	$Pass@128$	Avg	$Pass@16$	$Pass@256$	Avg	$Pass@16$	$Pass@256$	Avg	$Pass@16$	$Pass@128$	Avg
<i>InternLM2.5-1.8B</i>												
Few-shot	63.53	84.00	73.73	52.84	74.68	60.93	84.30	95.70	89.52	76.01	84.68	80.00
ENVISIONS	69.98	80.67	75.07	59.36	71.19	64.20	79.50	88.20	83.01	72.97	78.44	75.68
Ours	71.80	85.06	77.64	60.05	75.21	65.64	83.90	95.10	88.53	77.61	85.42	81.19
Δ	+1.82	+4.39	+2.57	+0.68	+4.02	+1.44	+4.40	+6.90	+5.52	+4.64	+6.98	+5.51

314

4.3 EVOLUTION PROGRESS FOR SELF-EVOLUTION FRAMEWORKS

315
316
317
318
319
320
321
322
323

As illustrated in Figure 4(**Left**), the iterative evolution curves of the self-training frameworks with InternLM2.5-1.8B as the LLM, demonstrate the progression of performance improvement. Compared with the ENVISIONS method, our framework exhibits a more pronounced performance improvement. Notably, while the performance of ENVISIONS tends to plateau after the fourth iteration, our method not only achieves superior results but also shows continued potential for further improvement. From Figure 4 (**Right**), it can be observed that under our framework, both the mean and variance of sequence-level entropy in the training dataset increase as the number of self-evolution iterations grows, exhibiting a trend in sharp contrast to that of the ENVISIONS method.

Figure 2: Math Reasoning evaluation of the Llama3.2-1B and Qwen2.5-Instruct-1.5B on the four tasks, compared with the existing method.

Figure 3: $Pass@K$ performance of the LLMs with different self-evolution frameworks. The horizontal axis denotes K ranging from 8 to 256, and the vertical axis shows the corresponding $Pass@K$ accuracy on the benchmarks.

5 ANALYSIS

5.1 ABLATION STUDIES

Experiment Setups To disentangle the contribution of each module in our framework, we conduct ablation studies over four configurations. All settings use a maximum of $N = 10$ samples for SFT and $I = 10$ iterations for self-evolution. For a compute-matched comparison, the **Selection Only** variant sets $K = 10$, compensating for the absence of the rethink/refine stage (self-refine in ENVISIONS) so that it produces the same number of trajectories per iteration as the two-stage variants that use $K = 5$. For the **Rethink Only** variant, we uniformly sample N trajectories from the candidate pool without entropy-based selection when constructing the SFT dataset. We evaluate the variant self-evolution methods using InternLM2.5-1.8B on the 1k-sample subset of the full dataset.

Figure 4: (Left) Performance evolution of two frameworks on InternLM-2.5-1.8B model. (Right) Mean and variance of sequence-level entropy of the SFT training datas for each evolution.

Table 2: Ablation results on GSM8K using InternLM2.5-1.8B trained on a 1k-sample subset. All variants are compute-matched with respect to total generated trajectories.

Method Variant	Pass@16 (%)
Full Method (Selection + Rethinking)	53.68
Exploration + Selection Only	49.12
Exploration + Rethinking Only	50.42
ENVISIONS	50.27

Component Ablation Studies Table 2 summarizes the results on GSM8K. Both partial variants—**Selection Only** and **Rethink Only**—provide moderate improvements, demonstrating that each component independently contributes to performance. The full method, which combines exploration-driven selection with the subsequent rethinking stage, yields a substantially larger gain, achieving a Pass@16 of 53.68%. This confirms that the two components are complementary: selection biases the model toward higher-quality trajectories, while the rethinking stage further increases both the quantity and quality of these trajectories. Compared to ENVISIONS, our full framework achieves a 3.4% improvement, validating the effectiveness of our exploration and rethinking design.

Comparison Between Selection Strategies. To evaluate the effectiveness of high-entropy selection, we compare three trajectory selection strategies: (i) *High-Entropy*, which selects the top- N highest-entropy trajectories; (ii) *Low-Entropy*, which selects the top- N lowest-entropy trajectories; and (iii) *Entropy-free*, which randomly samples N trajectories from the set of correct trajectories. We evaluate these variants on the 1k-sample subset of the full dataset using InternLM2.5-1.8B, following the same experimental setup described earlier in this section. The results, summarized in Table 3, show that High-Entropy selection achieves the best performance (53.68%), random selection yields moderate performance (50.42), and Low-Entropy selection performs the worst (48.78). This contrast clearly demonstrates that high-entropy trajectories provide more diverse decision forks, enabling more effective exploration of the model’s potential and reasoning space during the self-evolution process.

Selection Strategy	Pass@16(%)
High-Entropy	53.68
Low-Entropy	48.78
Entropy-free (Random)	50.42

Table 3: Comparison of different trajectory selection strategies.

432 **5.2 HIGH-ENTROPY SELECTION ENHANCES TRAINING INFORMATION AND TRAJECTORY
433 DIVERSITY**
434

435 To further investigate the effect of our high-entropy selection strategy, we analyze the distribution of
436 similarity scores and negative log probability of the selected trajectories for the last self-evolution
437 iteration of three models.

438 The similarity score quantifies the alignment among generated trajectories, with higher values in-
439 dicating greater overlap and lower values reflecting higher diversity. Formally, given a set of n
440 trajectories (t_1, t_2, \dots, t_n) corresponding to the same problem, we obtain their embeddings $\{\mathbf{e}_i\}_{i=1}^n$
441 from a pretrained embedding model $f(\cdot)$ (Zhang et al., 2025). The similarity score is computed as
442

$$443 \text{Sim} = \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \langle f(t_i^q), f(t_j^d) \rangle$$

$$444$$

$$445$$

446 where $f(t_i^q)$ and $f(t_j^d)$ denote query-style and candidate-style embeddings of trajectory t , and $\langle \cdot, \cdot \rangle$
447 denotes the inner product. See Appendix C for more details.
448

449 As shown in the top row of Figure 5, our method produces a wider distribution of similarity scores
450 with a noticeable shift toward lower values compared to ENVISIONS, indicating that high-entropy se-
451 lection promotes greater trajectory diversity. **The trajectory examples presented in the Appendix E.5
452 across different iterations further illustrate the diversity gains introduced by our selection strategy.**

453 Meanwhile, the bottom row reveals that our approach selects trajectories with higher negative log
454 probabilities, implying that the chosen samples carry more informative signals rather than being
455 restricted to high-confidence outputs. **Our analysis of computational efficiency in the Appendix C
456 further confirms that providing richer training signals leads to improved training efficiency.** Over-
457 all, these results demonstrate that high-entropy selection enhances both the information content and
458 the diversity of the training data, which are crucial for improving the expertise and generalization
459 capability of LLMs in self-evolution frameworks.
460

474 **Figure 5: Histogram of Similarity Scores and Negative Log Probability of the trajectories selected
475 for the last self-evolution iteration. The dashed lines in the figures denote the median.**
476

478 **5.3 THE ROLE OF TRAJECTORY RETHINKING IN SELF-EVOLUTION.**
479

480 To analyze the role of the *Trajectory Rethinking* stage within our framework, we conduct an in-
481 depth investigation from three perspectives. First, we evaluate its impact on reasoning performance.
482 Specifically, we evaluate InternLM2.5-1.8B on GSM8K under a 1k-sample training budget, com-
483 paring performance with and without the *Trajectory Rethinking* stage. As shown in Figure 6 (Left),
484 incorporating Trajectory Rethink consistently boosts Pass@16 across iterations, indicating a clear
485 and stable improvement. In contrast, the variant without this stage—relying solely on *Trajectory
486 Exploration*—exhibits noticeably weaker performance.

Figure 6: **Analysis of Trajectory Rethinking in self-evolution.** (Left) Performance across iterations: Incorporating the rethinking stage consistently outperforms the variant without rethinking at every iteration. (Middle) Trajectory Counts: Rethink and explore complement each other across different base models, leading to an increase in effective training samples. (Right) High-Entropy Tokens: The frequent occurrence of truncated tokens with high entropy indicates that rethinking mitigates uncertainty and enhances trajectory diversity.

Moreover, we examine the contribution of *Trajectory Rethink* to trajectory diversity. Figure 6 (Middle) shows that this strategy accounts for more than one-third of the training trajectories generated during the evolution process, substantially enriching the diversity of the training data. This indicates that rethink contributes significantly to the breadth of explored reasoning paths.

Finally, we analyze the linguistic patterns associated with rethink. We visualize the most frequent truncated tokens with high entropy, as shown in Figure 6 (Right). Words such as “*because*”, “*since*”, and “*then*” often determine the direction of reasoning. Truncating trajectories at these critical tokens enables the model to rethink from pivotal decision forks, thereby facilitating more flexible and diverse reasoning. These analyses demonstrate that *Trajectory Rethink* is a crucial component of our self-evolution framework. It enhances the diversity of reasoning trajectories and encourages re-exploration from meaningful reasoning pivots, ultimately leading to richer and more informative training signals, particularly beneficial for challenging reasoning tasks.

6 CONCLUSION

We propose an entropy-aware self-evolution framework that enhances reasoning in large language models by strategically leveraging uncertainty to balance correctness and exploration. Integrating verifier feedback with sequence-level and token-level entropy, our method prioritizes high-entropy yet verified trajectories for training, ensuring reliable supervision while actively promoting diverse reasoning paths. Theoretical analysis shows that such trajectories yield stronger learning signals due to their higher expected loss, enabling more effective fine-tuning. Empirically, our approach achieves significant gains across multiple reasoning benchmarks. Notably, InternLM2.5-1.8B improves by **8.27%** on GSM8K at Pass@16 and surpasses the strong ENVISIONS baseline by **4.39%** at Pass@128, with consistent gains on held-out tasks like GSM-Hard, SVAMP and AsDiv. Critically, performance improvements grow with larger sampling budgets, confirming enhanced exploration without sacrificing accuracy.

Limitation Our experiments are limited to models up to 1.8B parameters due to computational constraints; scaling to larger architectures (e.g., 7B+) remains untested. The framework’s reliance on executable verifiers also restricts current applicability to math/code domains. Future work will address efficiency, entropy approximation, and extension to semantic reasoning tasks.

In summary, our entropy-aware self-evolution framework offers a principled, theoretically grounded, and empirically validated approach to enhancing both the reliability and exploratory capacity of LLMs. By treating uncertainty not as noise to be suppressed but as signal to be harnessed, we enable models to evolve into more capable, flexible, and robust reasoners.

540 REFERENCES
541

542 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
543 Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
544 Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
545 Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
546 Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
547 Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
548 Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
549 Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
550 Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
551 Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
552 Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
553 Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
554 Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
555 Xipeng Qiu, Yu Qiao, and Dahu Lin. Internlm2 technical report, 2024.

556 Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
557 converts weak language models to strong language models. In Ruslan Salakhutdinov, Zico
558 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
559 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
560 *Proceedings of Machine Learning Research*, pp. 6621–6642. PMLR, 21–27 Jul 2024. URL
561 <https://proceedings.mlr.press/v235/chen24j.html>.

562 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
563 Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for
564 llms, 2025. URL <https://arxiv.org/abs/2506.14758>.

565 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
566 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
567 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

568 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
569 2025. URL <https://arxiv.org/abs/2501.12948>.

570 Jia Deng, Jie Chen, Zhipeng Chen, Daixuan Cheng, Fei Bai, Beichen Zhang, Yinqian Min,
571 Yanzipeng Gao, Wayne Xin Zhao, and Ji-Rong Wen. From trial-and-error to improvement: A
572 systematic analysis of llm exploration mechanisms in rlvr, 2025. URL <https://arxiv.org/abs/2508.07534>.

573 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
574 and Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma
575 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
576 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings
577 of Machine Learning Research*, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL
578 <https://proceedings.mlr.press/v202/gao23f.html>.

579 Zitian Gao, Lynx Chen, Haoming Luo, Joey Zhou, and Bryan Dai. One-shot entropy minimization,
580 2025. URL <https://arxiv.org/abs/2505.20282>.

581 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
582 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
583 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
584 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
585 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
586 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
587 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
588 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
589 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
590 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

594 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 595 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 596 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 597 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 598 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 599 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 600 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 601 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 602 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 603 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 604 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 605 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 606 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 607 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 608 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 609 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 610 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 611 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 612 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 613 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 614 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 615 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 616 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 617 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 618 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 619 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 620 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 621 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 622 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 623 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 624 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 625 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 626 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 627 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 628 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 629 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 630 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 631 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 632 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 633 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 634 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 635 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 636 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 637 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 638 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 639 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 640 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi Zhang, Guna Lakshminarayanan,
 641 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 642 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 643 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 644 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 645 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 646 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 647 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 648 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 649 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 650 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madiyan Khabsa,
 651 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 652 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

648 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 649 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 650 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 651 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 652 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 653 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 654 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 655 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 656 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 657 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 658 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 659 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 660 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 661 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 662 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 663 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 664 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 665 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 666 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 667 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 668 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 669 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 670 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 671 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>.

672 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 673 maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL <https://arxiv.org/abs/1801.01290>.

674 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 675 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 676 2021.

677 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Jack Pettersson, et al. Training compute-
 678 optimal large language models. In *Advances in Neural Information Processing Systems (NeurIPS)*
 679 2022, 2022.

680 Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
 681 classification and preference learning, 2011. URL <https://arxiv.org/abs/1112.5745>.

682 Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
 683 Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
 684 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 685 cessing*, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
 686 tics. doi: 10.18653/v1/2023.emnlp-main.67. URL <https://aclanthology.org/2023.emnlp-main.67/>.

687 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 688 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 689 models. *arXiv preprint arXiv:2001.08361*, 2020.

690 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 691 vision?, 2017. URL <https://arxiv.org/abs/1703.04977>.

692 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Bra-
 693 man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
 694 lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
 695 Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
 696 jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL <https://arxiv.org/abs/2411.15124>.

702 Haochen Li, Wanjin Feng, Xin Zhou, and Zhiqi Shen. GiFT: Gibbs fine-tuning for code gener-
 703 ation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 704 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*
 705 (*Volume 1: Long Papers*), pp. 12271–12284, Vienna, Austria, July 2025. Association for Com-
 706 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.599. URL
 707 <https://aclanthology.org/2025.acl-long.599/>.

708 Meta. LLaMA 3.2 model card. <https://huggingface.co/meta-llama/Llama-3>.
 709 2–1B, 2024. Accessed: 2025-09-10.

710

711 Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
 712 english math word problem solvers. In *Proceedings of the 58th Annual Meeting of the Association*
 713 *for Computational Linguistics*, pp. 975–984, 2020.

714 OpenAI. Learning to reason with llms. <https://openai.com/index/learning-to-reason-with-llms/>, 2024. [Accessed: 2025-05-01].

715

716 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are NLP models really able to solve simple
 717 math word problems? In *Proceedings of the 2021 Conference of the North American Chapter*
 718 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–
 719 2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 720 naacl-main.168. URL <https://aclanthology.org/2021.nacl-main.168>.

721

722 Chen Qian, Dongrui Liu, Haochen Wen, Zhen Bai, Yong Liu, and Jing Shao. Demystifying reason-
 723 ing dynamics with mutual information: Thinking tokens are information peaks in llm reasoning,
 724 2025. URL <https://arxiv.org/abs/2506.02867>.

725

726 Team Qwen. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

727

728 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 729 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 730 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

731

732

733 Yue Wan, Xiaowei Jia, and Xiang Lorraine Li. Unveiling confirmation bias in chain-of-thought
 734 reasoning, 2025. URL <https://arxiv.org/abs/2506.12301>.

735

736 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 737 Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
 738 Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
 739 effective reinforcement learning for llm reasoning, 2025a. URL <https://arxiv.org/abs/2506.01939>.

740

741 Xiaoxuan Wang, Yihe Deng, Mingyu Derek Ma, and Wei Wang. Entropy-based adaptive weighting
 742 for self-training, 2025b. URL <https://arxiv.org/abs/2503.23913>.

743

744 Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
 745 He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
 746 Shen. Reinforcement learning for reasoning in large language models with one training example.
 747 *arXiv preprint arXiv:2504.20571*, 2025c.

748

749 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 750 Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
 751 2022.

752

753 Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang,
 754 Sam Bowman, He He, and Shi Feng. Language Models Learn to Mislead Hu-
 755 mans via RLHF. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu (eds.), *International Conference on Representation Learning*, volume 2025, pp. 74670–74692,
 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/b9a5a60573637f329b04d1beda4cd404-Paper-Conference.pdf.

756 Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu, Yu Qiao, and Zhiyong Wu. Interactive evolution:
 757 A neural-symbolic self-training framework for large language models. In Wanxiang Che, Joyce
 758 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd*
 759 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 760 12975–12993, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-
 761 8-89176-251-0. doi: 10.18653/v1/2025.acl-long.635. URL <https://aclanthology.org/2025.acl-long.635/>.

763 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 764 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 765 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 766 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 767 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 768 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 769 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 770 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 771 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

772 Evelyn Yee, Alice Li, Chenyu Tang, Yeon Ho Jung, Ramamohan Paturi, and Leon Bergen. Disso-
 773 ciation of faithful and unfaithful reasoning in llms, 2024. URL <https://arxiv.org/abs/2405.15092>.

775 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
 776 Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
 777 ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jimhua Zhu,
 778 Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
 779 Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 780 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
 781 <https://arxiv.org/abs/2503.14476>.

782 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 783 Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
 784 base model?, 2025. URL <https://arxiv.org/abs/2504.13837>.

785 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 786 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
 787 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
 788 2025.

789 Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
 790 language model agents, 2025. URL <https://arxiv.org/abs/2506.01716>.

792 Yao Zhu, Yunjian Zhang, Zizhe Wang, Xiu Yan, Peng Sun, and Xiangyang Ji. Patchwise cooper-
 793 ative game-based interpretability method for large vision-language models. *Transactions of the*
 794 *Association for Computational Linguistics*, 13:744–759, 2025.

795 Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
 796 entropy. 2010. URL <https://api.semanticscholar.org/CorpusID:11919065>.

798 LLM USAGE

801 We used large language models (LLMs) as auxiliary tools for writing assistance and language pol-
 802 ishing. Specifically, LLMs were employed to improve readability, grammar, and presentation of the
 803 text. All research ideas, experimental designs, and scientific contributions are entirely the work of
 804 the authors. The authors take full responsibility for the content of this paper.

805 A TRAINING DETAILS

808 The SFT training in our framework and baselines is conducted on $4 \times$ RTX3090 with a maximum
 809 length of 2,048. They are optimized and accelerated with DeepSpeed Zero3 and FlashAttention2.
 We use the AdamW optimizer with a *Linear* learning rate of 2e-5. The training epoch is set to 1.

810 **Prompt Examples.** To guide the model towards generating executable Python code, we prepend
 811 the following prompt before each input:
 812

813 Write Python code to solve the question.

814 We illustrate the few-shot prompts used in our experiments. The following shows the training-time
 815 few-shot prompt (MATH_PROMPT_FS) and the test-time prompt (MATH_PROMPT_FS_TEST). The
 816 test-time prompt only contains the first example of training-time prompt.
 817

818 **Listing 1: Few-shot prompt for training (MATH_PROMPT_FS)**

819 The following are three examples **for** reference.

820
 821 Example 1:
 822 The question **is** : Olivia has \$23. She bought five bagels **for** \$3 each.
 823 How much money does she have left?
 824 The solution code **is**:
 825 ```python
 826 **def** solution():
 827 '''Olivia has \$23. She bought five bagels for \$3 each.
 828 How much money does she have left?'''
 829 money_initial = 23
 830 bagels = 5
 831 bagel_cost = 3
 832 money_spent = bagels * bagel_cost
 833 money_left = money_initial - money_spent
 834 result = money_left
 835 **return** result
 836 ...
 837 ... (Examples 2 **and** 3 omitted **for** brevity)

837 B TEST TASKS AND BENCHMARK

838
 839 Table 4 lists the benchmark tasks used in our experiments. Below we provide more detailed descriptions
 840 of each dataset: the types of math problems included, what makes them hard or easy, and an
 841 example from each.

842 B.1 DATASET DESCRIPTIONS

- 843 • **GSM8K (Grade School Math 8K)** (Cobbe et al., 2021) This dataset contains approximately 8,500 linguistically diverse grade-school level word problems. Problems require between 2 to 8 reasoning steps and use basic arithmetic operations (addition, subtraction, multiplication, division). The problems are designed to be solvable without advanced mathematics, but test multi-step reasoning and managing intermediate fractional or decimal computations.
- 844 • **GSM-Hard** (Gao et al., 2023) A held-out or more challenging subset related to GSM8K, designed to test generalization under harder or out-of-distribution settings. It shares the same format but contains examples that are less similar to the training distribution.
- 845 • **SVAMP** (Patel et al., 2021) Consists of 1,000 math word problems constructed by applying perturbations to existing datasets (such as ASDiv), adding irrelevant information or changing problem structure to challenge robustness. Each problem typically has one unknown variable, with no more than two mathematical expressions.
- 846 • **ASDiv** (Miao et al., 2020) Contains 2,305 word problems spanning a variety of types, with greater lexical variety, more diverse wording, variable placements, and reasoning patterns. Problems vary from relatively simple to fairly complex, testing both arithmetic and reasoning about relationships.

862 B.2 EXAMPLE INSTANCES

863 To illustrate the characteristics of different datasets, we present representative examples as follows:

864 • **GSM8K**
 865 *Q*: Janet’s ducks lay 16 eggs per day. She eats 3 for breakfast and bakes with 4. She sells
 866 the remainder at the market for \$2 per egg.
 867 *A*: 18
 868 • **GSM-Hard**
 869 *Q*: A robe takes 2,287,720 bolts of blue fiber and half that much white fiber. How many
 870 bolts in total does it take?
 871 *A*: 3,431,580
 872 • **SVAMP**
 873 *Q*: There are 87 oranges and 290 bananas. If the bananas are organized into 2 groups, how
 874 big is each group of bananas?
 875 *A*: 145
 876 • **ASDiv**
 877 *Q*: Seven red apples and two green apples are in the basket. How many apples are in the
 878 basket?
 879 *A*: 9

Table 4: Benchmark tasks used in our experiments.

Domains	Task name	Is Held-out?	Test Samples	Max Length	Sources
Math Reasoning	GSM8K		1,319	2,048	Cobbe et al. (2021)
	GSM-Hard	✓	1,319	2,048	Gao et al. (2023)
	SVAMP	✓	1,000	2,048	Patel et al. (2021)
	AsDiv	✓	2,305	2,048	Miao et al. (2020)

C COMPUTATION OF SIMILARITY SCORES

To evaluate the diversity of reasoning trajectories, we define a similarity score based on trajectory embeddings.

Setup. For each problem instance with at least 10 trajectories, we align datasets by intersecting their `origin_id` sets. Each trajectory is embedded using `Qwen/Qwen3-Embedding-0.6B`, as $f(\cdot)$. Queries t^q are prefixed with a short instruction describing the task of retrieving logically equivalent trajectories, while candidate trajectories t^d are encoded directly. The instruction for retrieving query is:

```
task = 'Given a reasoning trajectory in code form, identify and retrieve
       those strictly similar in logic and structure'
return f'Instruction: {task}\nThe given trajectory: {query}'
```

This instruction guides the model to focus on logical and structural consistency rather than surface-level textual overlap

Pairwise Similarity. Let $E \in \mathbb{R}^{n \times d}$ denote the embeddings of n trajectories. We compute the cosine similarity matrix

$$S = E \cdot E^\top.$$

Self-similarities on the diagonal are masked out. The similarity score for an instance is then

$$\text{Sim}_{\text{instance}} = \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \langle e_i, e_j \rangle,$$

where $\langle e_i^q, e_j^d \rangle$ denotes cosine similarity between embeddings $e_i^q = f(t_i^q)$ and $e_j^d = f(t_j^d)$.

918 **Dataset-Level Score.** The dataset-level similarity is the mean over all valid instances:
 919

$$920 \quad 921 \quad 922 \quad \text{Sim}_{\text{dataset}} = \frac{1}{|\mathcal{D}|} \sum_{k \in \mathcal{D}} \text{Sim}_{\text{instance}}^{(k)}.$$

923 **Visualization.** We plot histograms of similarity scores across datasets and mark the median with
 924 dashed lines, enabling analysis of both central tendency and diversity, as shown in Figure 5. Lower
 925 similarity reflects richer trajectory diversity, while higher similarity indicates redundancy.
 926

927 D COMPUTATIONAL COST AND EFFICIENCY ANALYSIS

930 D.1 MEASUREMENT PROTOCOL

932 We report the full computational cost of our self-evolution framework, including generation, verifi-
 933 cation, and SFT fine-tuning. All experiments are conducted on $4 \times$ RTX3090 GPUs (24GB each) us-
 934 ing DeepSpeed ZeRO3 with FlashAttention2. Wall-clock time is measured from job start to comple-
 935 tion, including I/O and synchronization. FLOPs are estimated following common practice(Kaplan
 936 et al., 2020; Hoffmann et al., 2022):

$$937 \quad 938 \quad \text{FLOPs}_{\text{infer}} = f \times N_{\text{params}} \times N_{\text{infer-tokens}},$$

$$939 \quad 940 \quad \text{FLOPs}_{\text{train}} = g \times N_{\text{params}} \times N_{\text{train-tokens}},$$

941 where N_{params} is the model size(1.8B parameters for InternLM2.5-1.8B), f and g denote the average
 942 FLOPs-per-token multipliers for inference and training respectively. We empirically measured $f =$
 943 2 and $g = 6$ on InternLM2.5-1.8B(KV-cache enabled).

945 D.2 OVERALL COMPUTATIONAL COST

947 In our framework, the total computation mainly comes from three stages: *Trajectory Exploration*
 948 and *Trajectory Rethinking* during inference, and the subsequent SFT training after *Trajectory Selec-
 949 tion*. Based on the following equations, we compute the corresponding numbers of inference tokens
 950 $N_{\text{infer-tokens}}$:

$$951 \quad N_{\text{infer-tokens-explore}} = N_{\text{dataset}} \times I \times K \times (\bar{L}_{\text{Question}} + \bar{L}_{\text{Explore}}),$$

$$953 \quad 954 \quad N_{\text{infer-tokens-rethink}} = N_{\text{dataset}} \times I \times K \times (\bar{L}_{\text{Question}} + \bar{L}_{\text{Rethink}} - \frac{\beta}{2} \times \bar{L}_{\text{Explore}}),$$

955 where $\bar{L}_{\text{Question}}$, \bar{L}_{Explore} , and \bar{L}_{Rethink} denote the average token lengths of the question, exploration,
 956 and rethinking parts, respectively, and β is the maximum truncation ratio for rethinking.
 957

958 The total number of training tokens used in the subsequent SFT stage for each iteration is given by
 959

$$960 \quad 961 \quad N_{\text{train-tokens}} = N_{\text{selected}} \times (\bar{L}_{\text{Question}} + \bar{L}_{\text{Answer}}),$$

962 where N_{selected} denotes the number of selected trajectories per input after *Trajectory Selection*, and
 963 \bar{L}_{Answer} is the average token length of the selected answers.
 964

965 For comparison with ENVISIONS, from the perspective of our formulation, its framework can also be
 966 decomposed into three stages: *Exploration*, *Refinement*, and *Training*. Among them, the inference
 967 token count of the *Refinement* stage can be defined as

$$968 \quad 969 \quad N_{\text{infer-tokens-refine}} = N_{\text{dataset}} \times I \times K \times (\bar{L}_{\text{Question}} + \bar{L}_{\text{Refine}} + \bar{L}_{\text{Explore}}),$$

970 while the other two parts (*Exploration* and *Training*) can be analogously formulated following the
 971 equations above. The comprehensive results, including wall-clock time and other statistics, are sum-
 972 marized in 5.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 5: **Overall computational cost** of the self-evolution framework.

Stage	#GPUs	Avg seq len (L)	FLOPs ($\times 10^{15}$)	Wall-clock (h)
Ours ($I = 10, K = 5$)				
Exploration	4	130.1	475.0	
Rethinking	4	139.8	373.0	139.3
SFT	4	136.8	935.5	
Total	–	–	1783.5	
ENVISIONS ($I = 10, K = 5$)				
Exploration	4	119.9	450.7	
Refinement	4	123.7	751.9	152.0
SFT	4	122.3	856.6	
Total	–	–	2059.2	

D.3 COST–PERFORMANCE TRADE-OFF

To assess the overall efficiency of the proposed self-evolution framework, we compare its computational overhead and performance gains against the ENVISIONS baseline. As summarized in Table 5, our method requires fewer overall FLOPs (1.78×10^{18} vs. 2.06×10^{18}) and achieves a slightly shorter wall-clock time per full iteration (139.3h vs. 152.0h).

A stage-wise analysis reveals the source of this improvement. Our framework incurs higher computational cost during both the *Exploration* (475.0 vs. 450.7) and *SFT* (935.5 vs. 856.6) stages. The efficiency gain instead arises primarily from the optimized intermediate stage: the *Trajectory Rethinking* cost (373.0) is substantially lower than the *Refinement* stage of ENVISIONS (751.9). This indicates that the overall cost reduction is not uniform across stages, but is driven by the more efficient rethinking procedure that eliminates redundant refinement steps while preserving trajectory quality.

To further evaluate cost-effectiveness, we normalize performance gains by computational cost relative to the few-shot baseline. Across all datasets and Pass@K metrics (Table 1), our approach consistently improves accuracy while maintaining competitive cost. For example, on GSM8K, our method improves Pass@16 from 63.53% to 71.80%, an absolute gain of 8.27%. Given a total cost of 1.78×10^{18} FLOPs and 152.0 wall-clock hours, this corresponds to roughly **0.046% Pass@16 gain per 10^{15} FLOPs**, and **0.059% Pass@16 gain per wall-clock hour**.

Similar trends hold across remaining datasets, indicating that the proposed entropy-aware self-evolution framework achieves a more favorable cost–performance ratio than ENVISIONS. Overall, the results suggest that our design improves both computational efficiency and return on compute investment, particularly due to the substantially streamlined intermediate rethinking stage.

E THEORETICAL JUSTIFICATION FOR ENTROPY-BASED EXPLORATION

E.1 ENTROPY AS A PRACTICAL SURROGATE FOR EPISTEMIC UNCERTAINTY

While various uncertainty measures exist—such as mutual-information-based acquisition (Houlsby et al., 2011) or epistemic/aleatoric decomposition via Bayesian approximations (Kendall & Gal, 2017)—we adopt sequence-level Shannon entropy due to its computational simplicity and its direct alignment with the model’s predictive distribution. Importantly, entropy admits a closed-form linkage to the expected supervised loss, implying that high-entropy trajectories contribute proportionally stronger gradient signals during fine-tuning. Although entropy alone does not separate epistemic from aleatoric uncertainty, our pipeline mitigates this limitation through a verifier and token-level rethinking stage that retains only trajectories both correct and uncertain. This filtering suppresses irreducible noise and allows entropy to function as an effective proxy for epistemic uncertainty in practice.

1026
1027

E.2 ENTROPY AS AN EXPLORATION-ENHANCING SIGNAL

1028
1029
1030

Beyond its analytic connection to the expected supervised loss (Eq. (9)–(12)), entropy selection is theoretically grounded as a signal for exploration. We provide two complementary perspectives.

1031
1032
1033

Bayesian Active Learning In Bayesian active learning, predictive entropy $H[y | x, \mathcal{D}]$ provides an upper bound on the mutual information between the model parameters θ and the labels y (Houlsby et al., 2011):

1034
1035
1036

$$I[y; \theta | x, \mathcal{D}] = H[y | x, \mathcal{D}] - \mathbb{E}_{\theta \sim p(\theta | \mathcal{D})}[H[y | x, \theta]] \leq H[y | x, \mathcal{D}]. \quad (13)$$

High-entropy samples therefore indicate high potential information gain, effectively targeting points that reduce epistemic uncertainty.

1038

Maximum-Entropy Reinforcement Learning From a reinforcement learning perspective, maximum-entropy formulations encourage broader exploration and prevent premature convergence to overconfident modes (Ziebart, 2010; Haarnoja et al., 2018). The objective can be written as:

1042
1043
1044

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^T r(s_t, a_t) + \alpha H(\pi(\cdot | s_t)) \right], \quad (14)$$

1045
1046
1047

where $H(\pi(\cdot | s_t))$ is the policy entropy and α is a temperature parameter controlling exploration. Learning from verified high-entropy trajectories similarly encourages the model to expand its reasoning space beyond currently confident solutions.

1048
1049

E.3 INTEGRATION INTO OUR PIPELINE

1050
1051
1052
1053
1054

By combining entropy selection with a verification stage, our pipeline ensures that retained high-entropy trajectories are both informative and correct, effectively suppressing aleatoric noise while promoting structured exploration. This provides a principled justification for using entropy as a practical surrogate for epistemic uncertainty.

1055

E.4 ENTROPY, EXPECTED LOSS, AND MUTUAL INFORMATION: A FORMAL LINK

1056
1057
1058

We formalize the connection between sequence-level Shannon entropy, expected supervised loss, and mutual information as follows:

1059
1060
1061
1062

Entropy as a Surrogate for Expected Loss and Information Gain Let $p_\theta(y | x)$ be the predictive distribution of a model parameterized by θ . Then the expected supervised cross-entropy loss for a candidate sample x is

1063
1064
1065

$$\mathbb{E}_{y \sim p_\theta}[-\log p_\theta(y | x)] = H[y | x, \theta], \quad (15)$$

and the predictive entropy satisfies

1066

$$H[y | x, \mathcal{D}] = \mathbb{E}_{\theta \sim p(\theta | \mathcal{D})}[H[y | x, \theta]] + I[y; \theta | x, \mathcal{D}], \quad (16)$$

1067
1068

where $I[y; \theta | x, \mathcal{D}]$ is the mutual information between y and θ given data \mathcal{D} . Consequently, high predictive entropy $H[y | x, \mathcal{D}]$ implies both higher expected supervised loss and higher potential reduction in epistemic uncertainty.

1069
1070
1071

Proof By definition, the expected supervised cross-entropy loss for a model sample x is

$$\mathbb{E}_{y \sim p_\theta}[-\log p_\theta(y | x)] = H[y | x, \theta]. \quad (17)$$

1072

Taking the expectation over the posterior $p(\theta | \mathcal{D})$, we have

1073

$$\mathbb{E}_{\theta \sim p(\theta | \mathcal{D})}[H[y | x, \theta]]. \quad (18)$$

1074
1075
1076

The predictive entropy decomposes as

1077
1078
1079

$$H[y | x, \mathcal{D}] = I[y; \theta | x, \mathcal{D}] + \mathbb{E}_{\theta \sim p(\theta | \mathcal{D})}[H[y | x, \theta]] \quad (19)$$

which follows directly from the standard mutual information identity:

$$I[y; \theta | x, \mathcal{D}] = H[y | x, \mathcal{D}] - \mathbb{E}_\theta[H[y | x, \theta]]. \quad (20)$$

Therefore, a sample with higher predictive entropy contributes proportionally higher expected supervised loss and has higher mutual information, justifying its selection for exploration.

1080 E.5 THEORETICAL JUSTIFICATION FOR HIGH-ENTROPY TRUNCATION
10811082 In this section, we provide theoretical motivation for why truncating a trajectory at *high-entropy*
1083 *tokens* and re-sampling from these positions can effectively increase trajectory diversity and improve
1084 downstream reasoning performance.
10851086 **High-Entropy Tokens as Branching Points.** Let $p_t(\cdot)$ denote the model’s token distribution at
1087 generation step t , and let $H_t = H(p_t)$ be its Shannon entropy. We define the *local branching factor*
1088 at position t as
1089

1090
$$B_t \approx \exp(H_t). \quad (21)$$

1091 When H_t is small, $B_t \approx 1$ and the token distribution is almost deterministic, contributing little
1092 to the branching structure of the trajectory. In contrast, high-entropy positions ($H_t \gg 0$) corre-
1093 spond to *decision forks*: choices made at these tokens lead to divergent future trajectories. Under a
1094 multiplicative approximation of trajectory branching,
1095

1096
$$\#\text{Trajectories} \propto \prod_{t=1}^T B_t, \quad (22)$$

1097 so a small set of high-entropy positions dominates the combinatorial expansion of reachable rea-
1098 soning paths. Thus, re-sampling at high-entropy tokens is significantly more compute-efficient for
1099 increasing diversity than sampling uniformly across the sequence.
11001101 **Information-Theoretic View: Mutual Information Peaks.** Recent work has shown that during
1102 multi-step reasoning, some positions exhibit *mutual information peaks* with respect to the final
1103 answer. These positions—sometimes called “thinking tokens”—tend to be exactly the same high-
1104 entropy decision points where the model is most uncertain but also most informative. Formally, let A
1105 denote the final answer and let X_t be the token at step t . Information-theoretic analyses demonstrate
1106 that
1107

1108
$$I(X_t; A) \quad (23)$$

1109 often exhibits sharp peaks at the same locations where H_t is high. Perturbing or re-sampling at these
1110 positions thus explores distinct logical branches that meaningfully affect the correctness of the final
1111 answer. This observation aligns with recent studies on reasoning dynamics in LLMs(Qian et al.,
1112 2025), which empirically identify such MI peaks.
11131114 **High-Entropy Minority Tokens Drive Major Reasoning Variance.** Empirical analyses further
1115 suggest that a small fraction of tokens with the highest entropy account for the majority of reasoning
1116 variance. Specifically, the “high-entropy minority tokens” framework(Wang et al., 2025a) demon-
1117 strates that: (i) the distribution of token entropies in chain-of-thought reasoning is heavy-tailed, and
1118 (ii) the top 15–20% of tokens (ranked by entropy) correspond to the critical branching points that
1119 drive most of the performance variation in reinforcement learning or self-improvement updates. This
1120 theory directly supports our decision to truncate at high-entropy tokens and re-sample from these
1121 fork points.
11221123 **Connection to Gradient Efficiency.** From an optimization perspective, high-entropy tokens also
1124 correspond to positions with the largest variance in the model’s predictive distribution. Updating or
1125 re-sampling at these locations yields the greatest marginal benefit, whereas modifying low-entropy
1126 (near-deterministic) positions provides negligible gains. This reinforces the rationale that high-
1127 entropy truncation is a principled and compute-efficient mechanism for exploring alternative rea-
1128 soning paths.
11291130 Together, the multiplicative branching model, mutual-information analysis, and high-entropy mi-
1131 nority token theory provide a coherent justification: *high-entropy tokens serve as the key decision*
1132 *points in a reasoning trajectory*; therefore, truncating and re-sampling at these positions maximizes
1133 trajectory diversity per unit compute and improves the probability of discovering correct reasoning
paths.
1134

1134 F COMPARISON WITH ENVISIONS

1135
 1136 Both ENVISIONS and our framework leverage external validators to select positive samples based
 1137 on reliable feedback, which are then used for self-training. The key differences are as follows:

1138
 1139 **Trajectory Generation Strategy:** ENVISIONS employs a self-refine mechanism, where the model
 1140 uses previously generated trajectories as a basis to revise and regenerate them. In contrast, our
 1141 framework uses a rethinking mechanism, where the model continues generating new trajectories
 1142 from high-entropy truncations.

1143
 1144 **Positive Sample Selection:** ENVISIONS relies on a self-reward mechanism, selecting high-
 1145 confidence samples as training positives. Our framework adopts an entropy-aware selection strategy,
 1146 prioritizing high-entropy trajectories.

1147 Both frameworks follow a similar explore–refine–selection pipeline with a validator, which is why
 1148 we include ENVISIONS as a baseline in our experiments.

1149 G TRAJECTORY EXAMPLES

1150
 1151 Tables 7 and 8 present several example generation trajectories under self-evolution across multiple
 1152 iterations. From these observations, it can be seen that our method can occasionally find the correct
 1153 solution more quickly when handling moderately difficult problems. For instance, as shown in
 1154 Table 7, both methods produce identical solutions at iteration 2 for a given problem, yet our method
 1155 discovers the correct solution already by iteration 4.

1156
 1157 Moreover, after reviewing several representative samples, we observe that under our method, the
 1158 model tends to leverage more annotated reasoning steps rather than relying solely on code. Across
 1159 iterative rounds, our method also explores more diverse trajectories. In contrast, ENVISIONS tends
 1160 to converge to similar trajectories once the correct solution is found; for example, in Table 8, the
 1161 responses at iterations 8 and 10 are nearly identical.

1162 H HYPERPARAMETER ANALYSIS

1163 To investigate the effect of different hyperparameters in our framework, we conduct controlled ex-
 1164 periments using InternLM2.5-1.8B trained on a small subset of 1,000 samples and additionally pro-
 1165 vide theoretical analysis for several key hyperparameter choices.

1166 H.1 ANALYSIS OF SAMPLING TEMPERATURE ON EVALUATION

1167
 1168 To evaluate the influence of sampling temperature, we test the trained model on the GSM8K test set
 1169 using sampling temperatures ranging from 0.6 to 1.2. The results in Figure 7 show that performance
 1170 increases as temperature rises and subsequently decreases at higher temperatures, indicating that
 1171 sampling temperature indeed affects output diversity and thus impacts Pass@K accuracy. Impor-
 1172 ntantly, our method consistently outperforms ENVISIONS across wide range of tested temperatures,
 1173 suggesting that the improvements are not merely a consequence of temperature effects but stem from
 1174 the proposed self-evolution mechanism.

1186 Figure 7: Pass@ 16 accuracy on the GSM8K test set under different sampling temperatures (0.6–1.2)
 1187 for InternLM2.5-1.8B trained on a 1k-sample subset.

1188 H.2 ANALYSIS OF LOW-BUDGET PERFORMANCE AND SAMPLE EFFICIENCY
1189

1190 To evaluate whether the improvements arise solely from wider sampling at large K , rather than
1191 reflecting better sample efficiency, we further assess the model in the low-budget regime. Using
1192 InternLM2.5-1.8B trained on a subset of 1,000 samples, we report Pass@1, Pass@2, Pass@4, and
1193 Pass@8 on GSM8K. As shown in Table 6, our method consistently outperforms ENVISIONS even
1194 at small K , indicating that the gains are not restricted to large-batch exploration but also enhance
1195 single-shot and low-sample reasoning performance.

1196 Table 6: Pass@K accuracy on GSM8K for InternLM2.5-1.8B trained on a 1k-sample subset.
1197

K	1	2	4	8
Ours	29.34	33.74	41.24	46.93
ENVISIONS	26.16	30.48	38.13	44.66

1204 H.3 ANALYSIS OF TRUNCATION PARAMETERS
1205

1206 **Fraction of Top-entropy Tokens α .** The parameter α controls which high-entropy tokens are
1207 considered as candidate truncation points. Prior work (Wang et al., 2025a) shows that reasoning
1208 trajectories contain a heavy-tailed entropy distribution in which roughly the top 15–20% of tokens con-
1209 tribute most to branching and downstream performance (“high-entropy minority tokens”). Setting
1210 $\alpha = 20\%$ therefore concentrates rethinking on the key decision forks while excluding low-entropy
1211 or weakly informative positions. Based on these theoretical insights, we recommend choosing α
1212 within the range [0.15, 0.25].

1213 **Maximum Truncation Ratio β .** The parameter β determines the proportion of the original tra-
1214 jectory that is retained before applying high-entropy truncation and regeneration. If β is set too
1215 small, the truncation point will lie excessively early in the reasoning process, making it unlikely to
1216 cover the high-entropy decision forks that drive trajectory diversity. In such cases, the model can-
1217 not effectively leverage the useful intermediate reasoning already present in the original trajectory.
1218 Conversely, if β is set too large, the truncation occurs too late, leaving little room for regeneration
1219 and thereby limiting the diversity of alternative reasoning paths.

1220 Balancing these two factors, we adopt $\beta = 0.8$, which retains sufficient prefix context to pre-
1221 serve meaningful reasoning structure while still allowing regeneration to explore new branches
1222 around high-entropy positions. As a general guideline, β should be chosen to keep the truncation
1223 point within the region where high-entropy tokens typically occur; in practice, values in the range
1224 [0.7, 0.85] provide a reasonable trade-off between leveraging existing reasoning and maintaining
1225 diversity.

1227 H.4 ANALYSIS OF SELF-EVOLUTION PARAMETERS
1228

1229 For the hyperparameters: K , N , I , we followed the same setup as Xu et al. (2025) to ensure a fair
1230 comparison and did not conduct additional experiments to explore their parameter choices.

1231 For reproducibility, the sampling budget K controls the number of trajectories generated per input
1232 during exploration: too small K reduces coverage of useful reasoning paths, while too large K (e.g.,
1233 $K = 10$ or 15) can improve performance on some specific tasks but does not generalize consistently
1234 (Xu et al., 2025).

1235 The selection size N specifies how many trajectories per iteration are used for SFT: larger N in-
1236 creases training diversity, but excessively large N may introduce noise and reduce the selectivity of
1237 the dataset; thus, N should be chosen in conjunction with K .

1238 Finally, the iteration count I determines how many self-evolution cycles are performed; early it-
1239 erations produce substantial gains by correcting systematic errors, while later iterations provide
1240 incremental refinements. In our setup, the chosen I is sufficient for the full dataset to reach a stable
1241 set of training trajectories in the final iterations, with the performance gains gradually diminishing.

1242 In addition, we set the sampling temperature to 1 to capture the model’s intrinsic behavior during
 1243 trajectory generation, allowing the self-evolution process to explore diverse reasoning paths. A top- p
 1244 value of 0.95 filters out extremely low-probability tokens, improving the efficiency and correctness
 1245 of math reasoning by focusing on more plausible steps. Together, these settings ensure that sampled
 1246 trajectories are both representative and reliable for self-finetuning.
 1247

1248	Method, Iterations, Correctness	1249 Trajectories of Question: "How many even divisors does 7! have?"
1250		
1251	Ours, iter. 2, wrong	<pre>1252 def solution(): 1253 '''How many even divisors does 7! have?''' 1254 result = 0 1255 for i in range(1, 7+1): 1256 if 7**i % i == 0 and 7**i % 2 == 0: 1257 result += 2 1258 return result</pre>
1259	ENVISIONS, iter. 2, wrong	<pre>1260 def solution(): 1261 '''How many even divisors does 7! have?''' 1262 result = 0 1263 for i in range(1, 7+1): 1264 if 7**i % i == 0 and 7**i % 2 == 0: 1265 result += 2 1266 return result</pre>
1263	Ours, iter. 4, correct	<pre>1264 def solution(): 1265 '''How many even divisors does 7! have?''' 1266 import math 1267 ''' 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1''' 1268 divisors = math.factorial(7) 1269 even_divisors = 0 1270 for i in range(1, divisors + 1): 1271 if divisors % i == 0 and i % 2 == 0: 1272 even_divisors += 1 1273 return even_divisors</pre>
1272	ENVISIONS, iter. 4, wrong	<pre>1273 def solution(): 1274 '''How many even divisors does 7! have?''' 1275 import math # importing the math module 1276 result = math.factorial(7) / 2 1277 return result\n</pre>
1277	Ours, iter. 6, correct	<pre>1278 def solution(): 1279 '''Solution: How many even divisors does 7! have?''' 1280 import math 1281 divisors = [] 1282 result = math.factorial(7) 1283 for i in range(1, result+1): 1284 if result % i == 0: 1285 if i % 2 == 0: 1286 divisors.append(i) 1287 return len(divisors)</pre>
1285	ENVISIONS, iter. 6, wrong	<pre>1286 def solution(): 1287 '''How many even divisors does 7! have?''' 1288 evens_initial = 0 1289 from math import factorial, factorial 1290 for i in range(1, 7+1): 1291 divisors = factorial(i) 1292 if divisors % 2 == 0: 1293 evens_initial += 1 1294 result = evens_initial 1295 return result</pre>

Table 7: Generated trajectory examples for iteration 2, 4 and 6.

1296		
1297		
1298		
1299		
1300		
1301		
1302		
1303	Method,	Trajectories of Question:
1304	Iterations,	"How many even divisors does $7!$ have?"
1305	Correctness	
1306	Ours, iter. 8, correct	<pre>def solution(): '''How many even divisors does \$7!\$ have?''' import math # Convert factorial to a string as factorial is not # multiplicative in numbertheory. # Here we are using the formula # factorial(n) = n * (n-1) * (n-2) * ... * 2 * 1 # factorial(7) = 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 # digital product 10 hommiealpha = math.factorial(7) divisors = [] for i in range(1, hommiealpha+1): if 7 * 6 * 5 * 4 * 3 * 2 * 1 % i == 0: if i % 2 == 0: divisors.append(i) #OD return len(divisors)</pre>
1319	ENVISIONS, iter. 8, correct	<pre>def solution(): '''How many even divisors does \$7!\$ have?''' import math result = 0 for i in range(1, 10000): if math.factorial(7) % i == 0: if i % 2 == 0: result += 1 return result</pre>
1327	Ours, iter. 10, correct	<pre>def solution(): '''How many even divisors does \$7!\$ have?''' from math import factorial result = factorial(7) # import it as factorial function from math module # using module to get all the even divisors found return len([i for i in range(1, result + 1) if result % i == 0 and i % 2 == 0])</pre>
1334	ENVISIONS, iter. 10, correct	<pre>def solution(): '''How many even divisors does \$7!\$ have?''' import math even_divisors = 0 for i in range(1, 10000): if math.factorial(7) % i == 0: if i % 2 == 0: even_divisors += 1 result = even_divisors return result</pre>
1343		Table 8: Generated trajectory examples for iteration 8 and 10.
1344		
1345		
1346		
1347		
1348		
1349		