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Abstract

Global access to statistically and clinically representative patient health data holds
potential for advancing disease research, enhancing patient care, and accelerating drug
development. However, acquisition of health data such as electronic health records (EHRs)
comes with challenges characterised by high costs, time constraints, and concerns related
to patient privacy. An approach to tackling these challenges is by using synthetic data. In
this paper we introduce ScoEHR, a novel deep learning method for generating synthetic
EHRs, which combines an autoencoder with a continuous-time diffusion model. ScoEHR
is shown to outperform three baseline synthetic EHR generation frameworks (medGAN,
medWGAN, and medBGAN) on two publicly available datasets, MIMIC-III and the Yale
New Haven Health System Emergency Department dataset, based on four widely accepted
metrics of data utility. Additionally, a blind clinician evaluation was carried out to assess
the qualitative realism of the synthetic data generated by ScoEHR. In this evaluation, a
patient’s data was labeled as ‘unrealistic’ if at least one clinician found it to be unrealistic.
This evaluation showed that existing real EHR data and ScoEHR generated synthetic data
were scored as equally realistic. Our code is available at https://github.com/aanaseer/
ScoEHR.
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1. Introduction

Patient health data gathered during the provision of medical services is often stored as
electronic health records (EHRs). These records are widely used within the healthcare
industry, with over 84% of hospitals in the US and 94% of hospitals in the UK making use
of EHR systems (Li et al., 2020). EHRs contain temporal snapshots of structured data (e.g.
patient demographics, physiologic measurements, medications) and unstructured data (e.g.
medical images, discharge summaries, physician comments) (Tayefi et al., 2021), that can
be mined, analysed, and modelled to elucidate disease progression and the underpinnings
of health deterioration. Accordingly, EHRs represent a valuable source of information for
predictive and prescriptive machine-learning models that enhance patient care. Historically,
medical records have been used for predicting intensive care unit re-admissions (Rojas
et al., 2018), risk of disease (Ruan et al., 2020), disease severity (Kogan et al., 2020),
and forecasting clinical outcomes (Norgeot et al., 2019).

Despite the research opportunities presented by EHRs, sharing such records with ex-
ternal parties remains limited (Yan et al., 2022). The health insurance portability and
accountability act (HIPAA) in the United States and general data protection regulation
(GDPR) in the European Union outline stringent guidelines for handling and sharing of
such data, even in de-identified forms (Kaissis et al., 2020). In addition to the data ac-
cess problem, the inability to aggregate EHR data across practices and geographies limits
the robustness of predictive models as many medical institutions maintain local patient
demographics, standards-of-care, healthcare disparities, and local reimbursement policies
(Gianfrancesco et al., 2018). A potential way to overcome issues of EHR data access and
bias is through synthetic data generation (Hernandez et al., 2022). Synthetic healthcare
data has been generated for modalities such as medical imaging (Frid-Adar et al., 2018),
biomedical signals (Hernandez-Matamoros et al., 2020), and EHRs (Choi et al., 2017). Syn-
thetically generated patient vignettes have also been used in machine-learning applications
such as patient monitoring and early detection of health deterioration (Swaminathan et al.,
2017, 2020; Morrill et al., 2021).

Generating synthetic EHRs is not a trivial task. Records are often high-dimensional,
heterogeneous, and contain a mix of discrete and continuous values (Xu et al., 2019). Ad-
ditionally, data in continuous columns often follow a multi-modal distribution while cat-
egorical columns exhibit non-uniform distributions with significant imbalances (Xu et al.,
2019).

In this paper we limit our focus to data-driven methods for structured EHRs. The
popularity gained by generative adversarial networks (GANs) (Goodfellow et al., 2014)
in various domains, such as computer vision, has prompted progress in using GANs for
synthesising EHRs (Choi et al., 2017; Baowaly et al., 2019; Torfi and Fox, 2020; Zhang
et al., 2020). When generating EHRs it is important to ensure fairness and diversity in the
records. A limitation of GANs is their inability to synthesise diverse data representing good
mode coverage because of mode collapse (Goodfellow, 2016). Furthermore, GANs struggle
to converge to a stable solution, resulting in a difficult training process (Goodfellow, 2016).
More recently, a class of generative models referred to as diffusion models have attained
state-of-the-art results in image generation (Song et al., 2021). Diffusion models involve a
forward process by which a data distribution is perturbed gradually, followed by a reverse

2



ScoEHR: Synthetic Electronic Health Records Generation

Figure 1: A schematic diagram of ScoEHR’s architecture. Real data is transformed to a
low-dimensional space using an encoder from a pre-trained autoencoder. In the
low dimensional space, a forward stochastic differential equation (SDE) diffuses
the data. The reverse SDE is learnt and used to produce new synthetic data.
This synthetic data is transformed using the decoder from the autoencoder to
generate the final synthetic EHR data.

de-noising process to generate data (Yang et al., 2022). These models have demonstrated
the ability to synthesise high fidelity data with good mode coverage (Song et al., 2021).
Furthermore, as they do not require adversarial training unlike GANs, their training is
more stable. For these reasons, diffusion models present an ideal paradigm for synthetic
EHR generation.

In this paper, we introduce ScoEHR, a framework for synthetic EHR generation using
continuous-time diffusion models. A schematic of our architecture is shown in figure 1. We
compare ScoEHR with three baseline models medGAN (Choi et al., 2017), medWGAN,
and medBGAN (Baowaly et al., 2019) in four key performance metrics of data generation
utility including: 1) preservation of feature marginal relationships, 2) preservation of feature
correlations, 3) preservation of full feature distribution using log-clusters, and 4) synthetic
data performance in downstream predictions of patient outcomes. In addition, the realism
of ScoEHR generated data is evaluated by a group of USA board certified physicians to
show strong concordance with actual EHRs. Finally, a brief examination of the privacy
disclosure of our model is also presented. This paper demonstrates that ScoEHR is the
current state-of-the-art in generating synthetic EHRs.

Generalisable Insights about Machine Learning in the Context of Healthcare

In addition to introducing a novel state-of-the-art method for synthetic EHR generation,
this paper presents a number of generalisable insights about machine learning in the context
of healthcare. These insights encompass:
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• The framework proposed for generating synthetic EHRs is capable of generalising
across different seed datasets, accommodating data from diverse geographical regions,
diseases, and healthcare practices.

• The success of diffusion models can be harnessed for applications in healthcare.

• The effectiveness of models used to generate synthetic EHRs relies on the dataset
utilised and the specific use case.

• The combination of metrics chosen for the comparative analysis of synthetic EHRs in
this study is shown to be suitable for evaluating whether a model generates clinically
realistic patients.

The first insight emphasises the significance of having access to representative patient
data, which is critical for healthcare research and product development. ScoEHR offers
a solution to enhance access to healthcare data by generating synthetic EHR from a seed
dataset, thereby facilitating the availability of data for various research endeavours. This
approach also enables the reduction of bias in machine learning modelling efforts by generat-
ing statistically and clinically representative data from any seed data source. It is essential
to address this issue as machine learning models trained on EHRs are known to exhibit bias
towards certain patient demographics, healthcare practices, geographic-specific governance,
and socioeconomic groups (Gianfrancesco et al., 2018; Momenzadeh et al., 2022; Juhn et al.,
2022; Thompson et al., 2021). By using ScoEHR to generate representative data from mul-
tiple sources, the sharing of a more inclusive dataset is promoted, contributing to a fairer
and more comprehensive representation of patient populations in healthcare research.

Diffusion models are a powerful class of generative models. They have shown to outper-
form models such as GANs in domains such as computer vision, natural language processing,
and computational chemistry (Yang et al., 2022). The second insight accounts for the fact
that this paper is amongst the first to demonstrate the effectiveness of diffusion models in
generating EHRs.

The third insight is drawn from this work’s comparative analysis of ScoEHR with
medGAN, medWGAN, and medBGAN. When considering the aggregate metrics in the
comparative analysis, ScoEHR is the best performing model, though there are use cases
where a medGAN variant would be preferable. Furthermore, even if considering a single
use case, the general ranking of the models is dataset dependent. As such, this study sug-
gests that clinicians should not ovelry rely on a single modelling paradigm when trying to
generate patient data for research.

Finally, evaluation of synthetic EHRs is challenging as it is difficult to measure whether
a change to a patient makes them clinically unrealistic without expert human input. It
is therefore important to, where possible, evaluate generated healthcare data using clin-
ician evaluation, which is often overlooked. The strong performance of ScoEHR in the
comparative analysis along with the clinician evaluation provides evidence that the chosen
combination of metrics are suitable for evaluating synthetic EHRs. Therefore, this study
does yield a robust combination of performance metrics that could be a benchmark for
evaluation of future modelling efforts.
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2. Related Work

Many methods have been used for generating synthetic EHRs, including domain knowledge
(Buczak et al., 2010), Bayesian networks (Rankin et al., 2020), and summary statistics
(McLachlan et al., 2016). In this section we provide an overview of deep generative modelling
for EHR generation, as it is most closely related to our approach.

One of the earliest studies in this regard is medGAN (Choi et al., 2017), in which
Choi et al. (2017) make use of a pre-trained autoencoder and a GAN to generate synthetic
binary and count data. In their framework, they first train an autoencoder to learn a
low-dimensional continuous embedding of high-dimensional discrete features in an EHR
dataset. They do so to overcome the limitations in using discrete data with GANs. They
then train a GAN in the low-dimensional space using Jensen-Shannon divergence as their
objective function. The generated data is projected back onto the high-dimensional space
using the decoder component of the pre-trained autoencoder. Choi et al. (2017) makes
use of mini-batch averaging to address the issue of mode collapse. Additionally, they use
batch normalisation (Ioffe and Szegedy, 2015) and shortcut connections (He et al., 2016) to
improve learning efficiency.

By taking advantage of improvements proposed to the traditional GAN architecture,
Baowaly et al. (2019) introduced medWGAN and medBGAN. Both medWGAN and med-
BGAN closely follow the medGAN architecture; the key difference being replacement of
GAN with a Wassertein GAN with gradient penalty (WGAN-GP) (Gulrajani et al., 2017)
and a boundary-seeking GAN (Hjelm et al., 2018) respectively. By doing so, they generated
more realistic synthetic EHRs compared to medGAN. In the work by Choi et al. (2017)
and Baowaly et al. (2019), all neural networks are feed-forward multi-layer perceptrons.
Building on this, Torfi and Fox (2020) developed corGAN using a convolutional GAN and
autoencoder. They used such networks to capture the correlation between neighbouring
features.

Our work is similar in architecture to these models given that we make use of an au-
toencoder and a generative model (continuous-time diffusion model) in the framework. In
addition to supporting both binary and count data, our model also handles continuous
values.

Further modifications to the medGAN architecture found in literature include removing
the autoencoder component by Zhang et al. (2020). In their EMR-WGAN, a traditional
GAN along with Wassertein divergence is used with normalisations to address the issue of
exploding gradients. Similar efforts have been made in generating other forms of EHRs such
as time-series data (Zhang et al., 2021) and those making use of differential privacy (Jordon
et al., 2018b), which is beyond the scope of this paper. For further reading on the use of
GANs in EHRs generation, we refer the reader to (Ghosheh et al., 2022) and (Hernandez
et al., 2022).

3. Background

3.1. Autoencoders

Autoencoders (Rumelhart et al., 1985) are a type of neural network architecture used to
learn a latent representation of its input. It consists of an encoder, E(· ;ϕ) : Rn 7→ Rm
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parametrised by learnable parameters ϕ and a decoder D(· ; θ) : Rm 7→ Rn parametrised by
learnable parameters θ, with m < n. The encoder maps the input x to the low-dimensional
representation, while the decoder maps from the low-dimensional representation to the data
space, reconstructing the input data.

3.2. Continuous-time Diffusion Models

Continuous-time diffusion models are generalisations to past work in diffusion models (Ho
et al., 2020; Song and Ermon, 2019) through the use of stochastic differential equations
(SDEs) (Song et al., 2021). Such models have a forward diffusion process, a score-matching
stage, and a reverse diffusion process for sample generation.

Notation Let p : Rn → R>0 represent a data distribution. Let t denote time. Let D
represent a dataset with independent and identically distributed (i.i.d) samples x ∈ Rn.
Let p0 represent the data distribution of D at t = 0. Let wt ∈ Rn represent standard
Brownian motion at t.

Data perturbation In continuous-time diffusion models (Song et al., 2021), perturbation
of data is performed through a forward diffusion process from t = 0 to t = T , with an Itô
SDE,

dxt = f(xt, t)dt+ g(t)dwt, (1)

along with initial data sample drawn from p0 (i.e. x0 ∼ p0). Here f(· , t) : Rn 7→ Rn

and g(·) : R 7→ R represent the drift and diffusion coefficients of xt respectively. The data
distribution during transition from xs to xt is given by the transition kernel pst(xt|xs)
where 0 ≤ s < t ≤ T . For an affine drift coefficient, the transition kernel is always
Gaussian (Särkkä and Solin, 2019). Additionally, choosing a specific drift and diffusion
coefficient ensures that at t = T the perturbed data distribution approximates a fixed prior
distribution pT , such as a Gaussian (Song et al., 2021).

Sample generation Anderson (1982) derived the reverse-time SDE for equation (1),

dxt = [f(xt, t)− g(t)2∇xt log p(xt)]dt+ g(t)dw̄, (2)

where ∇xt log p(xt) is the score of the data distribution at t and w̄ is the reverse-time
Browninan motion. In the reverse-time direction, the solution trajectories of equations (1)
and (2) have the same marginal probability densities (Song et al., 2021). As a result, solving
equation (2) from t = T to t = 0 with initial condition xT ∼ pT allows for sample generation.
To generate samples, equation (2) can be solved using general-purpose numerical SDE
solvers, predictor-corrector samplers, or by solving the probability flow ordinary differential
equation (ODE) (Song et al., 2021).

Score matching To solve equation (2), the score at each time step is required. To obtain
the scores we can perform score matching (Hyvärinen and Dayan, 2005). This can be
achieved by training a time-dependent score-network s(xt, t;Θ) parameterised by learnable
parameters Θ to estimate the scores (i.e. s(xt, t;Θ) ≈ ∇xt log p(xt)). The explicit score-
matching training objective is given by (Hyvärinen and Dayan, 2005),

LESM ≜ Ep(xt)

[
1

2
∥s(xt, t;Θ)−∇xt log p(xt)∥22

]
. (3)
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It is not possible to directly train using equation (3), as it explicitly contains the intractable
score function, ∇xt log p(xt). However, up to a constant of integration, the explicit score-
matching objective is equivalent to the de-noising score-matching objective,

1

2
EtEp(xt|x0)p(x0)

[
λ(t)∥s(xt, t;Θ)−∇xt log p(xt|x0)∥22

]
, (4)

where λ(t) : [0, T ] 7→ R>0 is a positive weighting function. As will be discussed in 4.2,
for a particular choice of forward diffusion process, ∇xt log p(xt|x0) can be written down
explicitly, allowing score-networks to be trained.

4. Method: ScoEHR

4.1. Notation

Let D = {xi}Ni=1 represent an EHR dataset where xi ∈ Rn denotes a record for a patient.
Let DTr ∈ RP×n and DTs ∈ RQ×n represent the disjoint training and test datasets, where
D = DTr∪DTs andQ+P = N . Let each record comprise C continuous values andD discrete
binary values, such that each record is given by xi = {ci,di} = {c1,i, ..., cnc,i, d1,i, ..., d1,nd

},
where cj,i and dj,i denote continuous and discrete values respectively and nc + nd = n. A

dataset with synthetic records is denoted by D̂ = {x̂i}Ni=1 = {ĉi, d̂i}.

4.2. ScoEHR framework

The ScoEHR framework comprises an encoder, continuous-time diffusion model, and de-
coder as shown in figure 1. The encoder and decoder are components from a pre-trained
autoencoder.

Autoencoder Given that each record in D comprises both continuous and discrete fea-
tures, before perturbing the data using the diffusion model, we learn a low-dimensional
representation of the high-dimensional features in DTr. Similar to Choi et al. (2017), we do
so to ensure that our generative model is able to learn the distribution of discrete values in
DTr. The encoder E and decoder D are single layer perceptrons. The loss function during
training is

L = LBCE + LMSE , (5)

where
LBCE = −ci log(D(E(ci))) + (1− ci) log(1−D(E(ci))), (6)

and
LMSE = ∥di −D(E(di))∥22. (7)

Diffusion model After obtaining a low-dimensional continuous representation of our
dataset we perturb the data over a time interval t ∈ [0, T ] using the variance preserving
(VP) SDE (Song et al., 2021). The drift and diffusion coefficients of the VP SDE are

f(xt, t) ≜ −1

2
β(t)xt and g(t) ≜

√
β(t) (8)

respectively. Here β(t) : R 7→ R represents a time-dependent linear noise schedule

β(t) ≜ βmin + t(βmax − βmin), (9)
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where βmin, βmax ∈ R. Since our drift coefficient is affine, we can obtain a Gaussian tran-
sition kernel given by

p0t(xt|x0) = N
(
xt;x0e

− 1
2
ξ(t)ds, I(1− e−ξ(t))

)
, (10)

where

ξ(t) =

∫ t

0
β(s)ds. (11)

As we have an explicit transition kernel, the denoising score-matching objective given in
equation (4) can be used to train our score-network.

Sample generation To generate samples we numerically solve the reverse-time SDE
using the Euler-Maruyama numerical scheme.

4.3. Evaluation metrics

Evaluation of synthetic data is a challenging task as there is no universally established metric
to compare against (Hernandez et al., 2022). Therefore, we evaluate the utility of the data
synthesised using a combination of quantitative and qualitative metrics. In addition, we
also investigate the privacy of our synthetic data through an adversarial attack.

4.4. Data utility evaluation

In our quantitative evaluation of utility, we seek to check four areas: (i) whether the marginal
distributions in real data are captured by the synthetic data, (ii) the correlations in both
real and synthetic datasets are similar, (iii) the full similarity of both datasets in terms of
marginals and correlations, and (iv) the utility of the synthetic data for use in downstream
machine learning tasks.

Dimension-wise distribution To evaluate the extent to which marginal relationships
in real data are captured by the synthetic data we use a dimensional distribution metric.
For binary data, this is evaluated using the sum of the absolute difference in dimension-wise
mean for binary data, denoted by DWM (Yan et al., 2022). This is defined mathematically
as

DWM =

N∑
i=1

∣∣∣∣ 1nd

nd∑
j=1

dj,i − d̂j,i

∣∣∣∣. (12)

In order to extend this to continuous variables for the ED EHR dataset, we use the sum
of the dimension-wise 1−Wasserstein distance (Villani, 2008), denoted DEM, between the
continuous variables

DEM =
N∑
i=1

1

nc

nc∑
j=1

|cj,i − ĉj,i|. (13)

The score reported as the dimensional distribution is

DWM+DEM

N
. (14)

A lower dimensional distribution indicates that the real and synthetic data have similar
marginal relationships.
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Pairwise correlation difference In an EHR dataset, feature-wise correlations are clin-
ically significant. Therefore, to verify whether the synthetic data has the same correlations
as real data we make use of pairwise correlation difference (PCD). To compute PCD we
obtain the Pearson correlation matrices Corr(·) for the real and synthetic data, after which
we compute the Frobennius norm of their difference,

PCD = ∥Corr(D)− Corr(D̂)∥F . (15)

The closer PCD is to zero, the better the inter-dimensional relationships are captured by
the synthetic data.

Log-cluster The log-cluster metric, denoted U , attempts to capture the similarity of the
entirety of the real and synthetic data distributions (Woo et al., 2009; Goncalves et al.,
2020). This is done with unsupervised clustering to evaluate the similarity of the latent
structure of real and synthetic datasets (Ghosheh et al., 2022; Goncalves et al., 2020). First,
the real and synthetic datasets are concatenated and k-means clustering is performed with
G clusters. Then, the log-cluster metric is given by

U = log

 1

G

G∑
j=1

[
nR
j

nj
− c

]2
 , (16)

where nj denotes the number of samples in j-th cluster, nR
j the number of samples from the

real dataset in the j−th cluster, and c = nR/(nR+nS) in which nS is the number of samples
in the synthetic dataset. A lower log-cluster score indicates more similarity between the
synthetic and real data.

Synthetic ranking agreement We are often interested in using synthetic data for a
downstream machine learning task. Therefore, it is important to understand whether we
can use synthetic data in place of real data for such tasks. In order to evaluate this,
Jordon et al. (2018b) proposed the synthetic ranking agreement (SRA). SRA is viewed as
an empirical probability of a comparison made using synthetic data being the same as the
results obtained when using real data (Jordon et al., 2018b). To compute SRA, we use two
settings, A and B. In setting A, we train and test L machine learning models using real
data and obtain their area under the receiver operating characteristic curve (AUROC). We
denote the set of these AUROC values by {Ai}Li=1. Similarly, in setting B, we obtain the
AUROC values after training and testing the models using synthetic data, denoted {Bi}Li=1.
The SRA is then computed using

SRA =
1

L(L− 1)

L∑
j=1

∑
k ̸=j

I ((Aj −Ak)(Bj −Bk) > 0) , (17)

where I denotes the indicator function. A higher SRA indicates that the synthetic and real
data behave similarly in downstream machine learning tasks.

4.5. Privacy disclosure

Membership inference attack We use a membership inference attack (Shokri et al.,
2017) to infer whether a particular patient record was used during the training of the
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Table 1: Statistics for pre-processed MIMIC-III and ED EHR datasets.

Dataset Continuous Features Binary features No. of Records

MIMIC-III 0 1,071 46,520
ED EHR 63 562 232,592

synthetic data generation framework. Consider the scenario where a certain subset of
features from a synthetic dataset is shared (e.g. synthetic dataset without disease labels).
If an adversary is aware that the model used to generate a synthetic dataset comprised of
people with a certain characteristic, then determining that a particular person’s record was
used during model training would allow the adversary to infer that that person has the given
characteristic. This leads to a privacy issue. To carry out the attack, a random sample
of k records from DTr and DTs are obtained (Choi et al., 2017). The cosine similarity for
each sample from the synthetic dataset D̂ is computed. A match is identified if the cosine
similarity for any of the records is above a threshold we set (Choi et al., 2017). In this
situation, there are four outcomes for the adversary: correctly predicting that a record is in
DTr (true positive) or correctly predicting it is not in DTr (true negative), and incorrectly
predicting that a record is in DTr (false positive) or incorrectly predicting that a record is
not in DTr (false negative) (Choi et al., 2017). Using these results we compute the precision
and sensitivity of the attack.

4.6. Clinician evaluation

Blinded clinician evaluation In image generation tasks, qualitative evaluation is per-
formed by visual inspection of images to evaluate the realism or similarity of the generated
images (Zhu et al., 2017). In a similar manner, we perform a qualitative evaluation of our
synthetic EHRs with the help of clinicians. We selected a random set of K patients from
both the training set and synthetic data, with chief complaints relevant to each clinician’s
speciality. The clinicians are provided with a randomly mixed set of real and synthetic
data, and asked to label each patient as either realistic or not realistic.

5. Experiments

5.1. Datasets and data handling

We make use of two publicly available datasets: MIMIC-III clinical database (Johnson et al.,
2016; Goldberger et al., 2000) and emergency department (ED) visits data used by Hong
et al. (2018), which we refer to as ED EHR.

MIMIC-III MIMIC-III consists of 61,298 identified patient records for patients admitted
in critical care units at the Beth Israel Deaconess Medical Centre in the United States from
2001 to 2012. It includes data on patient vitals, laboratory readings, diagnostic codes, imag-
ing data, notes from healthcare providers and other clinically relevant recordings (Johnson
et al., 2016).
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ED EHR The ED data consists of deidentified records of 560,486 adult patient visits to
three EDs within the Yale New Haven Health system between March 2014 and July 2017
(Hong et al., 2018). We select a subset of patient features from these, which include demo-
graphics, hospital usage statistics, chief complaint, past medical history, and medications.

Data pre- and post-processing is discussed in Appendix C.

5.2. Experimental setup

Autoencoder All of our models use the medGAN autoencoder, which consists of single
layer feed-forward neural networks for the encoder and decoder (Choi et al., 2017). The ac-
tivation functions are tanh and sigmoid for the encoder and decoder respectively. Following
Baowaly et al. (2019), the GAN-based models use an encoded dimension of 128. ScoEHR
uses an encoded dimension of 144, chosen to be similar to that used by the GAN-based
models, but such that it meets the constraints of our chosen UNet architecture. We train
the autoencoder using Adam optimisation algorithm with a learning rate of 0.001, β1 = 0.9
and β2 = 0.999.

Diffusion Model In the following experiments, the parameters for the time-dependent
linear noise schedule β(t) in (8) were taken as βmin = 0.1 and βmax = 20. These are the
values used by Song et al. (2021). The VP SDE is run from t = 0 to t = 1.

Score-network The time-dependent score-network is a UNet with self-attention. A small
hyperparameter optimisation was performed to find the UNet architecture. The final archi-
tecture for MIMIC-III was two down-sampling layers with two residual blocks per layer and
the best for ED EHR was three down-sampling layers and three residual blocks per layer.
The network is trained using Adam, with an adaptive learning rate

lr = 0.001

(
1.0− max(0, epoch− 20)

190

)
, (18)

and β1 = 0.9 and β2 = 0.999. During sample generation, the Euler-Maruyama solver is run
with a time step of 10−3.

5.3. Baseline models

We consider three baseline models in this paper, medGAN, medWGAN, and medBGAN
(Baowaly et al., 2019). Each of these methods is based on a different GAN, specifically the
original GAN (Goodfellow et al., 2014), a Wasserstein-GAN with gradient penalty (WGAN)
(Arjovsky et al., 2017), and a boundary-seeking GAN (BGAN) (Hjelm et al., 2018).

All three GAN-based models have the same architecture and hyperparameters, which
are taken from Baowaly et al. (2019). The generator and discriminator are multi-layer
perceptrons (MLPs), where the generator has one hidden layer of width 128, and the dis-
criminator has two hidden layers of width 256 and 128. The generator and discriminator
are trained using the Adam optimisation algorithm with a learning rate of 0.001, β1 = 0.9
and β2 = 0.999.
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Table 2: Utility metrics measured with data generated using MIMIC-III dataset for all
models. The best results are indicated in bold.

Model Log-cluster SRA PCD Dimensional distribution

medGAN −2.9± 0.1 0.83± 0.02 120± 8 0.0019± 0.0001
medBGAN −3.2± 0.1 0.86± 0.03 146± 6 0.0016± 0.0001
medWGAN −5.4± 0.2 0.81± 0.03 22.1± 0.4 0.0025± 0.0001
ScoEHR −6.0± 0.1 0.87± 0.02 21.8± 0.3 0.0029± 0.0001

Table 3: Utility metrics measured with data generated using ED EHR dataset for all models.
The best results are indicated in bold.

Model Log-cluster SRA PCD Dimensional distribution

medGAN −3.7± 0.3 0.81± 0.02 24.1± 0.2 0.012± 0.001
medBGAN −2.5± 0.2 0.85± 0.03 20.7± 0.5 0.014± 0.001
medWGAN −6.1± 0.4 0.83± 0.04 15.2± 0.3 0.0088± 0.0001
ScoEHR −7.8± 0.5 0.86± 0.03 33.6± 0.2 0.0037± 0.0001

5.4. Metric Evaluation

Utility metrics In order to evaluate the trained models, each model is used to generate
5 sets of 10, 000 patients. Each of these sets is then evaluated on dimension-wise distribu-
tion, pairwise correlation difference, log-cluster, and synthetic ranking agreement using a
randomly chosen subset of 10, 000 from the real data. The mean and standard deviation of
the metric evaluations over the 5 sets are reported for each model.

Clinician evaluation A total of 200 records containing 100 synthetic patients generated
using ScoEHR and 100 real patients from ED EHR are shared with three clinicians board
certified in internal medicine within the United States. Each clinician is also provided a set
of instructions on how to evaluate the records. Additionally, the clinicians are told that the
records may consist of either all real or all synthetic data.

Privacy disclosure Membership inference is carried out to investigate whether ScoEHR
results in privacy disclosure. Two sets of experiments are performed. In the first, the
number of patients known to the adversary is varied for a fixed synthetic dataset of size
50, 000. In the second experiment, we investigate the impact of increasing the size of the
synthetic dataset for a fixed set of 1, 000 patients known to the adversary. We perform each
experiment using four threshold values five times and report the results.
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6. Results and Discussion

6.1. Utility metrics

The results for the utility metrics are reported in tables 2 and 3 for MIMIC-III and ED
EHR data respectively.

Across both datasets and all models, ScoEHR performs the best with respect to log-
cluster, obtaining an average of −6.0 for MIMIC-III and −7.8 for ED EHR. We note that
the worst performance for log-cluster when using MIMIC-III is obtained with medGAN. In
the case of ED EHR data, the worst performer is medBGAN.

It is observed that PCD is generally consistent across both datasets and all models,
except when medGAN and medBGAN are used in synthesising MIMIC-III data, where
they perform significantly worse. With regard to PCD, medWGAN performs the best
on ED EHR while ScoEHR performs the worst. On MIMIC-III, the worst performer is
medGAN and best is ScoEHR.

Regarding dimensional distribution, except for ScoEHR No Auto, all the models perform
well. For MIMIC-III, the best performer is medBGAN, while ScoEHR performs the worst,
Whilst for ED EHR, the worst performer is medWGAN and best is ScoEHR. We visualise
the dimension-wise probabilities for the categorical columns for both datasets in Appendix
B.

We observe that across all models and datasets, SRA is over 0.80, indicating that all
models generate data suitable for downstream machine learning tasks. For both datasets,
the best score is obtained on ScoEHR while medWGAN and medGAN perform the worst
on MIMIC-III and ED EHR data respectively.

6.2. Clinician evaluation

We applied three different methods of aggregation to the clinician evaluations. Firstly, a
patient was labelled as unrealistic if at least one clinician labelled them as unrealistic. Here,
81% of the real patients were labelled as real and 81% of the synthetic patients were labelled
as real. In the second method, a patient was labelled as realistic if at least one clinician
labelled them as realistic. Here, 100% of both the real and synthetic patients were labelled
as real. The final method labelled a patient using the label given by the majority of the
clinicians. Here, 93% of the real patients were labelled as real and 95% of the synthetic
patients were labelled as real.

6.3. Privacy

In the membership inference attack, the proportion of correct decisions made by the ad-
versary is quantified by precision. A value greater than 0.5 indicates a risk of privacy
disclosure. While sensitivity is an indicator of the proportion of records correctly identified
by the adversary on records the adversary has prior knowledge of being used to train the
synthetic data generation model. Given that Choi et al. (2017) carried out a similar anal-
ysis on medGAN, we carry out this attack only on ScoEHR. The results of the attack are
illustrated in figure 2.

In the case whereby the number of patients known to the adversary is increased, regard-
less of the threshold value used, we observe that the precision remains at 0.5 with increase
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Figure 2: Precision and recall curves for membership inference attack performed on syn-
thetic data generated using ScoEHR. The shaded region indicates standard de-
viation computed after three adversarial attacks. (a)-(d) results obtained on the
MIMIC-III dataset. (e)-(h) results obtained on the ED EHR dataset.

in number of patients known to the adversary with some variability with fewer number of
records (figure 2(a) and 2(e)). Regardless of the number of patients known to the adversary,
the sensitivity for a given threshold remains constant. It is observed that with increasing
threshold values, the sensitivity decreases.

Similarly, despite increasing the number of synthetic patients available to the adversary,
precision remains close to 0.5 for both datasets, except when ED EHR dataset is used with a
threshold of 0.9. In this case, sensitivity is not as high for fewer records, however increasing
synthetic patients to 6000, for a given threshold, it remains constant.

6.4. Discussion

Of the four metrics considered, ScoEHR attains the best performance on three of the metrics
on both the MIMIC-III dataset and the ED EHR dataset. Specifically, on MIMIC-III,
ScoEHR achieves the best performance on log-cluster, SRA, and PCD, while for ED EHR,
ScoEHR achieves the best performance on log-cluster, SRA and dimensional distribution.
However, it is worth noting that on the metric where ScoEHR does not achieve the highest
performance, specifically dimensional distribution for MIMIC-III and PCD for ED EHR,
ScoEHR performs the worst of the models evaluated.

ScoEHR consistently achieving the best score on log-cluster metric demonstrates the
ScoEHR framework’s ability to capture joint distribution of all features in real data. The
results on ED EHR demonstrate that this can be true, even when PCD is high. This is
primarily because PCD evaluates the data generation frameworks ability to capture feature
level correlations. Additionally, our results on capturing joint distribution are corroborated
by the clinician evaluation in which parity is achieved between clinician evaluation with
respect to the realism between real and synthetic data in the most conservative case.

The fact that ScoEHR performs the best on SRA indicates that the synthetic data
generated using ScoEHR has the highest utility for downstream machine learning tasks.
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However, it is important to note that SRA cannot be used in isolation, as a model could
potentially perform well even if the joint distributions are not captured (Jordon et al.,
2018a).

With regards to privacy disclosure, the adversary is unable to infer membership of
a patient to ScoEHR’s training set, irrespective of the number of patients known to the
adversary or the size of the synthetic dataset. This is demonstrated by precision being at
0.5 (unless very few patients are known) regardless of variable sensitivity measurements for
a given threshold. This demonstrates that the adversary is unable to make anything more
than a random guess. Additionally, as remarked by Goncalves et al. (2020), it is difficult
for an adversary to ascertain the optimal threshold value to use without access to two sets
of patient records, one which was used to train the model and one which was not.

ScoEHR’s capability to generate synthetic EHRs using diverse seed data from different
geographies, practice modalities, and demographics presents an opportunity to improve
the robustness and performance of multiple models and forecasts in healthcare. These
improvements extend to areas such as disease progression, hospital utilisation, staffing needs,
and the management of radiology, surgery, laboratory, equipment, as well as the evolving
healthcare costs.

7. Limitations

Despite ScoEHR’s ability to generate high fidelity structured EHRs, we did not consider
both unstructured and temporal EHR data. However, often in healthcare settings EHR
data is found in this manner. We believe extending ScoEHR framework to support such
data is an important next step. In addition, even though we are able to demonstrate low
risk of membership inference empirically, our model can be improved to incorporate a more
rigorous privacy guarantee through differential privacy (Dwork, 2006).

8. Conclusion

In this study, we develop and validate a novel deep learning method, ScoEHR, for gen-
erating synthetic EHRs that combines an autoencoder with a continuous time diffusion
model. Comparison of ScoEHR to state-of-the-art EHR generation models, medGAN,
medWGAN, and medBGAN, demonstrates the superior performance of ScoEHR on two
datasets, MIMIC-III and Yale New Haven Health System Emergency Department, based
on four metrics of data generation utility: 1) preservation of feature marginal relationships,
2) preservation of feature correlations, 3) preservation of full feature distribution, and 4)
synthetic data performance in downstream modelling. Expert clinical opinion in a blinded
experiment further showed that ScoEHR generated data and real EHR data were scored as
equally realistic. Finally, a privacy study showed that ScoEHR showed low risk of privacy
disclosure that could give a potential attacker knowledge of the identity of any real seed
data used during generation.

The methods used in this study can be generalised for synthetic record generation in
a variety of fields and applications. Moreover, this work has important implications in
accelerated testing of medical software, hardware, disease modelling and research, global
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inequities in data access, problems with EHR, data bias, and the economics of healthcare
delivery.

Code and data availability

The code is available at https://github.com/aanaseer/ScoEHR. All of the datasets used
in our experiments are publicly available.
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Appendix A. Autoencoder Ablation Study

In order to evaluate the effectiveness of the autoencoder in ScoEHR, an ablation study is
performed, where ScoEHR is trained on the Hong dataset without the autoencoder. As
the dimension of the Hong dataset does not meet the requirements of our chosen UNet
architecture, the data is zero-padded to have dimension 784.

As can be seen in table 4, removing the autoencoder is severely detrimental to log-
cluster and dimensional distribution. Furthermore, we were unable to calculate SRA using
the data generated without an autoencoder, as all of the data had positive labels. How-
ever, the pairwise correlation difference improves when the autoencoder is removed. This
demonstrates the importance of analysing synthetic data generation models using various
metrics, as if you were to just consider PCD, removing the autoencoder would seem to be
a benefit, when it is actually very detrimental.

Table 4: Utility metrics measured with data generated using ED EHR dataset for ScoEHR
and ScoEHR No Autoencoder.

Model Log-cluster SRA PCD Dimensional distribution

ScoEHR No Auto −1.4± 0.1 − 22.8± 0.1 5.0± 0.1
ScoEHR −7.8± 0.5 0.86± 0.03 33.6± 0.2 0.0037± 0.0001

Appendix B. Dimension-wise Probabilities

Figure 3: Dimension-wise probabilities for the binary columns in both datasets. Top row
(a)-(d) are plots generated using MIMIC-III data. Each point corresponds to one
of the features in the dataset. Bottom row (a)-(d) are plots generated using ED
EHR data. Each point corresponds to one of the binary features in the dataset.
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Appendix C. Data Processing

Data pre-processing For the MIMIC-III dataset, we pre-process the data in the same
way as Choi et al. (2017), after extracting ICD-9 codes generalised up to the first three
digits, longitudinal records for patients are aggregated as a binary dataset. For the ED
EHR, we one-hot encode all the categorical features, use a cyclical encoding with sin and
cosine transformation for date and day, and perform a min-max scaling on the continuous
and count features.

Data post-processing After generating data, data corresponding to those in binary
columns are rounded up to one if the value generated is greater than or equal to 0.5, and
zero otherwise. We also reverse the sin and cosine time-encoding and min-max scaling for
the continuous features.
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