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Abstract

Fine-tuning masked language models is widely
adopted for transfer learning to downstream
tasks and can be achieved by (1) freezing gradi-
ents of the pretrained network or only updating
gradients of a newly added classification layer
or (2) performing gradient updates on all param-
eters. Gradual unfreezing trades off between
the two by gradually unfreezing gradients of
whole layers during training. We propose to
extend this to stochastic gradient masking to
regularize pretrained language models for im-
proved fine-tuning performance. We introduce
GradDrop and variants thereof, a class of gra-
dient sparsification methods that mask gradi-
ents prior to gradient descent. Unlike gradual
unfreezing which is non-sparse and determinis-
tic, GradDrop is sparse and stochastic. Experi-
ments on the multilingual XGLUE benchmark
with XLM-Ry 4 show that GradDrop outper-
forms standard fine-tuning and gradual unfreez-
ing, while being competitive against methods
that use additional translated data and inter-
mediate pretraining. Lastly, we identify cases
where largest zero-shot performance gains are
on less resourced languages.

1 Introduction

Fine-tuning pretrained transformer models for
downstream tasks has been the defacto standard
in natural language processing due to the recent
successes of large-scale masked language model-
ing (Radford et al., 2018; Devlin et al., 2019; Lam-
ple and Conneau, 2019; Conneau et al., 2020a).
This is usually achieved in one of two ways: (1)
freeze the gradients of the pretrained portion of the
network and perform stochastic gradient descent
(SGD) on a newly added task-specific layer/s or
(2) perform SGD on both the pretrained and newly
added layer/s. However, freezing all gradients of
the pretrained layers can be too restrictive, partic-
ularly when the downstream task is dissilmilar to
the task of language modeling used during pretrain-
ing (Peters et al., 2019). In contrast, unfreezing all

layers may lead to negative transfer whereby irrel-
evant features are tuned for a downstream task or
stability issues may arise when performing SGD
for a large number of parameters (Liu et al., 2020).
While gradual unfreezing (Howard and Ruder,
2018) reduces training time (i.e less gradient up-
dates) by consecutively unfreezing k layers from
top to bottom during fine-tuning, it is determinis-
tic and turns off the gradient flow in whole layers
which is a strong constraint. Gradual unfreezing
could benefit from sparse gradient dropout alterna-
tives that allow at least a subset of weights of all lay-
ers to be tuned at each epoch. Concretely, instead
of freezing gradients for whole layers, we mask
a percentage of gradients in all layers to increase
gradient flow through the whole network. Thus,
in this paper we propose gradient dropout, which
we refer to as GradDrop, for stochastically mask-
ing gradients to regularize pretrained language
fine-tuning. We find two GradDrop variants sig-
nificantly improve the fine-tuning of pretrained
models, namely GradDrop-Epoch (where weight
masks are fixed over the whole epoch) and Layer-
GradDrop ( stochastically masks out gradients of
whole layers). GradDrop and its variants are sim-
ple to implement and are easily used as a default
operation for LM fine-tuning. We provide a com-
prehensive analysis of the how masking and fine-
tuning can be used to improve cross-lingual trans-
fer to downstream tasks without any fask-specific
cross-lingual alignment or translate-train training
schemes using the XLM-Rp e (Conneau et al.,
2020b) model, given its wide adoption and success
in transfer learning to various languages.

2 Related Research

Adapters fine-tune relatively small linear layers
that are placed between pretrained frozen layers
and generally only account for a small percent-
age (e.g., 2-5%) of the overall number of param-
eters. There are variants whereby some adapters



are placed only on the output of each self-attention
block, within each self-attention block, or combin-
ing adapters that have been independently trained
for specific tasks and languages (Pfeiffer et al.,
2020b; Houlsby et al., 2019; Pfeiffer et al., 2020a).

Gradual Unfreezing. Howard and Ruder (2018)
proposed gradually turning on gradients layer by
layer for LM pretraining and fine-tuning, leading
to a reduction in training time due to a reduction
in gradient updates. Peters et al. (2019) have fur-
ther explored which tasks benefit from fine-tuning
when all gradients are active, when only the newly
added fine-tuning layer gradients are active and
when using gradual unfreezing. Their main finding
is that when the underlying LM pretraining is se-
mantically similar to the downstream task there is
less need to deactivate gradients, while the seman-
tically different tasks benefit more from activating
all gradients for fine-tuning.

Language Model Masking. While standard
LM fine-tuning remains the defacto standard in
NLP-based transfer learning, there has been other
masking-related approaches. Zhao et al. (2020)
have learned a mask over the weights instead of
fine-tuning the weights, showing that this can lead
to competitive performance for fine-tuning. In con-
trast to our work, we show that combining masking
during fine-tuning is a preferred method for the
same computational budget. Liu et al. (2021) use
the change of the gradient magnitudes of a layer
as a criterion to determine whether a layer is to be
frozen. Hence, gradients that stagnate in a layer are
most likely to be frozen during fine-tuning.

3 Proposed Methodology

In this section, we describe our main contribution,
gradient dropout and variants thereof. We begin by
first describing the self-attention blocks in trans-
formers. Assume we have a sequence of vectors
x1,...,x, where each vector x; € R? of d dimen-
sions (e.g., d = 512). We define Q € R™*? to be
a matrix representing the sequence where the i-th
row of Q corresponds to x;. The key K € R**!,
value V € R?*! and projection layer U € R?x°
parameters are defined where U ensures the out-
put dimensionality of the self-attention block is the
same as the original input Q. We can then define

the self-attention as Z = Softmax(%VTQT)QU

where QU € R™*° is matrix of new embeddings,
QKV'Q' € R"™ " is a matrix representing the
inner products in a new /-dimensional space and

Softmax (QKVTQT) is a matrix where each row
entry is positive and sums to 1. Note that scaled dot-
product is used (normalization by v/dl) to avoid
vanishing gradients of the Softmax, which may
occur when dl is large. The parameters for the j-
th attention head K/, V/ € R¥! U/ € R° for
j = 1,...,n, where n, is the number of atten-
tion heads. Then we summarize the formulation of
multi-headed self-attention as Equation 1,

; J ) .
7] = Softmax(QK (VJ)TQT)QUJ
Z = Concat(Z,...Z")

vl
Z = Feedforward(LayerNorm(Z + Q))

ey

where Z7 € R"*% and Z € R"* %" with d,, be-
ing the dimensionality of the self-attention output.

Gradient Dropout After backpropogation, we
apply a random binary mask on the gradients of
K,V and U. For simplicity, let us assume 6 :=
{K,V, U} and the gradients of # are represented
as g := VoL(fp(Q),Y), where Y € N"*¢ rep-
resents one-hot targets of dimension d. A binary
mask m is then generated from a predefined dis-
tribution (e.g., Bernoulli or Gaussian) and applied
over the gradients. The gradient update rule with
gradient dropout can then be expressed as,

0] =0 —axg Om 2)

where « is the learning rate, © performs the
Hadamard product (i.e., the element-wise product
of tensors) and [ € L is the layer index. Given that
the stochastic noise induced by SGD through ran-
dom mini-batch training regularizes DNNs, we too
expect that the random dropping of gradients will
have a similar regularization effect. When m is gen-
erated from a Bernoulli distribution, we randomly
zero the gradient with probability p, in which the
process of sampling m is formulated as:

m ~ Bernoulli(1 — p)/(1 —p) 3)

where the denominator 1 — p is the normalization
factor. Note that, different from Dropout (Srivas-
tava et al., 2014) which randomly drops the interme-
diate activations in a supervised learning network
under a single task setting, we perform the dropout
on the gradient level. We focus on binary masks for
m as it is computationally efficient to generate and
store low precision boolean tensors, in comparison
to continuous noise such as the Gaussian distribu-
tion. Lastly, when applying gradient dropout layer-
wise (Layer-GradDrop), m € {0, 1}* where [-th



Model ‘ en ar bg de el es fr hi ru SW th tr ur vi zh ‘ Avg.
Original XLM-R \ \
XLM-Rpyse Conneau et al. 846 784 789 768 759 773 754 732 715 754 725 749 711 652 66.5 745
XLM-Ryparge Conneau et al. 88.8 836 842 827 83 831 8.1 790 788 797 7186 802 758 720 717 80.1
FILTER | |
XLM-Ryyrge Fang et al. 887 772 830 825 80.8 837 82 756 791 712 774 780 717 793 782 79.2
XLM-Ryage (translate-train) | 88.6 822 852 845 845 857 842 808 818 770 802 8.1 777 826 827 82.6
FILTER 89.7 832 862 8.5 851 8.6 8.6 809 8.4 782 822 831 774 837 837 | 836
FILTER + Self-Teaching 895 836 864 856 854 866 8.7 8.1 8.7 787 817 832 79.1 839 838 | 839
Ours ‘ ‘
XLM-Rparge ‘ 8835 76.51 8201 83.13 80.12 8454 82.61 7522 78.07 71.00 7735 78.63 71.85 79.72 79.64 ‘ 79.25
+GradFreeze-TopBottom 88.83 77.83 80.76 83.25 80.73 84.46 8322 7418 7924 7205 76.10 77.59 70.52 80.03 79.44 | 79.23
+GradFreeze-BottomUp 84.95 75.15 7849 82.10 80.03 83.88 81.02 74.58 7836 72.05 7583 77.08 69.17 79.43 79.01 | 78.07
+GradDrop 90.01 78.19 82.37 83.53 80.68 84.82 83.69 76.18 7872 7273 77.03 79.04 72.69 80.68 79.23 | 79.97
+Anneal-GradDrop 88.49 76.88 82.81 8354 80.13 8507 8290 7811 78.14 71.04 76.72 7839 7247 80.17 79.28 | 79.58
+Anneal-Layer-GradDrop 90.68 78.19 8293 83.57 8096 8526 83.53 7627 79.12 7193 7743 77.59 7249 79.44 79.72 | 79.94°
+Layer-GradDrop 88.65 76.97 8199 8143 8138 83.11 8299 7645 80.30 68.53 7823 78.05 7147 7938 79.42 | 79.22
+GradDrop-Epoch 88.27 8277 83.13 8125 88.71 8530 83.25 77.07 78.67 7145 77.31 79.40 72.53 8020 79.72 | 79.94

The best performance obtained are marked in bold, while the second best results are indicated with .

Table 1: XNLI zero-shot accuracy (apart from ‘en’) for each language. Results of fine-tuned XLM-R from prior
work (Conneau et al., 2020a; Fang et al., 2020) are from the XTREME benchmark (Hu et al., 2020).

element in m corresponds to whether that layers
gradients are activated or not. When m; = 1, a one
matrix 1 of the same dimensionality as g; is applied,
and and zeros when m; = 0'. We also apply each
mask per minibatch or per epoch using a sched-
uled dropout rate, namely a linear schedule that
begins at p = 0.9, reduces by p. := p—1 — 1/T
at each epoch € until the last epoch T is reached
where p = 0. In subsequent tables, models that
have term “Anneal-" use this annealed GradDrop
schedule. We posit that the main generalization
benefits given by sparsely freezing gradients can be
explained by how it slows down the total amount
of gradient flow for each consecutive mini-batch
during fine-tuning. This is particularly important
for tasks that are more distant from the original
self-supervised pretraining objective used prior to
fine-tuning, i.e., converging too fast on a distant
task may lose the generalization benefits given by
the pretrained state.

Epoch-wise Gradient Dropout We also propose
a variant of GradDrop whereby the same dropout
mask is applied to all mini-batches for a single
epoch. The mask can be reset for successive epochs
by uniformly sampling from the aforementioned
Bernoulli distribution at the same dropout rate as
before. However, we also consider an accumulative
mask whereby we sample from the Bernoulli distri-
bution without replacement for each epoch and this
is what we use for our experiments. Figure 1 shows
the difference between the proposed GradDrop-

"Please see the supplementary material for a pseudocode
example of GradDrop used with XLM-R.

)@ 0000 | O0O00O| OO0 e
0000| |JOOOO| |6000| O8O0
00O 0000 | O0O0e| |OOO0O
00O O000| | O000| OO
00O 0000 | O0O00O| |[OoOe
000| ,|JO000O| ,|6000| 0000
O000| |OO0e| OO0
O000O| |OO00O| | O00| |eeO
€1 €2 €3 €4
Figure 1: GradDrop-Epoch-Toggle (Top) and

GradDrop-Epoch (Bottom). Grey represents frozen
gradients, blue represents active gradients where darker
blue indicates the recency of gradients turned on.

Epoch when previous epoch masks are frozen once
a new mask is applied (GradDrop-Epoch-Toggle)
and when the previous epoch masks are left un-
frozen (GradDrop-Epoch). In both cases, sam-
pling without replacement is used, unlike standard
GradDrop and like gradual unfreezing. This simi-
larity to gradual unfreezing w.r.t. sampling without
replacement aims to improve the stability during
fine-tuning as only a subset of parameters are being
updated for a whole epoch.

4 Results

Table 1 shows the previous SoTA results on XNLI,
our fine-tuned XLM-Ry 4ree, GradFreeze (i.e., grad-
ual unfreezing), GradDrop and its variants. Stan-
dard GradDrop outperforms its other variants and
all prior SoTA fine-tuning methods, including gra-
dient freezing. Our proposed methodology reports
a 0.72% increase in zero-shot accuracy for Grad-
Drop compared to standard fine-tuning.
Understanding Score. We show the average
task understanding score for our GradDrop vari-



Models ‘ Translation #Params | XNLI NC NER PAWSX POS QAM QADSM WPR MLQA Avg.
M-BERT (Liang et al., 2020) Yes 550M 663 827 782 87.2 747 66.1 64.2 73.5 60.7  72.6
FILTER+Self-Teaching Fang et al. Yes 550M 839 835 826 93.8 81.6 734 71.4 74.7 76.2  80.1
XLM-Rpyge-T (Fang et al., 2020) Yes 550M 82.6 - - - - - - - - -
Unicoder (Huang et al., 2019) No 255M 753 835 79.70 90.1 79.6 689 68.4 73.9 66.0  76.1
XLM-Ry 4rgc (Conneau et al., 2020b) No 550M 80.1 - - - - - - - -
XLM-Ryge (Fang et al., 2020) No 550M 79.2 83.2 - - - - - - - -
XLM-Ry 4rgc (Ours) No 550M 79.25 8321 80.61 89.23  80.38 69.82 71.05 7327 7021 7745
+GradFreeze-TopDown No 550M 79.23 83.65 78.64 8833 7811 71.01 71.01 72.61 7055 77.02
+GradFreeze-BottomUp No 550M 78.07 80.41 7635 8731 7332 6481 68.56 7117 69.64  74.40
+GradDrop No 550M 79.97 8341 8021 9146 81.00 71.72 71.02 7344 7129  78.17
+Anneal-GradDrop No 550M 79.58 81.87 81.87 91.18 80.72 71.46 70.71 7327  71.20 77.98
+Anneal-Layer-GradDrop No 550M 79.94 8424 8148 91.06 80.88 72.31 71.16 7425 7140 78.52
+Layer-GradDrop No 550M 79.22 83.73 81.85 9223 8142 7233 71.39 7451 7255  78.77
+GradDrop-Epoch No 550M 79.94 8373 8241 91.15 8045 7298 70.52 74.61 7201  78.641

The best performance obtained are marked in bold, while the second best results are indicated with .

Table 2: Zero-Shot Cross-Lingual Performance Per Task and Overall Average Score (Avg.).
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Figure 2: QAM Test Performance Over Train Epochs.

ants and previous baselines in Table 2. We find
that GradDrop-Epoch and Layer-GradDrop are two
methods which consistently outperform the remain-
ing GradDrop variants, standard fine-tuning and in
some cases, FILTER which uses translation data.
To our knowledge, Layer-GradDrop sets a SoTA
results on XGLUE for methods which do not use
translate-train or translation language model cross-
lingual alignment pretraining. Additionally, Layer-
GradDrop is only 1.4 understanding score points
from FILTER with their self-teaching loss.

Accuracy Fraction Increase
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Figure 3: Test Performance Increase By Language
in XNLI. Red bars indicate accuracy increases or de-
creases, while blue indicates the fractional increase of
GradDrop over standard fine-tuning.

Training Stability and Convergence. We also
analyse the stability of different GDVs, compared
to standard fine-tuning and gradual unfreezing in
Figure 2 which shows the development set accuracy
for Question Answer Matching over consecutive
training epochs. We find that both Epoch-GradDrop
and Layer-GradDrop maintains performance for
further training epochs while standard fine-tuning
decreases as the model begins to overfit. This can
be attributed to a reduction in the number of param-
eters being trained at any given epoch.

Per Language Analysis. We also inspect what
languages do GDVs improve performance the most
when compared to standard fine-tuning. We analyse
XNLI which includes well-resourced and under-
resourced languages in the evaluation set. Figure 3
shows how our best performing GDVs increase
over standard fine-tuning and which languages we
mostly attribute to the increase in average score.
We find that biggest gains are made on Swabhili
and Arabic. We conclude that GradDrop improves
performance on under-resourced languages in par-
ticular. We posit that this may be because GradDrop
forces the model to be robust to static gradients dur-
ing training on English only, reducing the effects
of overfitting to the English language.

5 Conclusion

We find that our proposed GradDrop variants out-
perform standard fine-tuning of cross-lingual pre-
trained transformers. Specifically, epochwise- and
layerwise- gradient dropout consistently outper-
form standard fine-tuning, gradual unfreezing and
other baselines. Additionally, it is competitive
against SOTA methods that use translation data and
language alignment pretraining. We also find that
gradient dropout particularly improves fine-tuning
performance for under-resourced languages.
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