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Abstract
Fine-tuning masked language models is widely001
adopted for transfer learning to downstream002
tasks and can be achieved by (1) freezing gradi-003
ents of the pretrained network or only updating004
gradients of a newly added classification layer005
or (2) performing gradient updates on all param-006
eters. Gradual unfreezing trades off between007
the two by gradually unfreezing gradients of008
whole layers during training. We propose to009
extend this to stochastic gradient masking to010
regularize pretrained language models for im-011
proved fine-tuning performance. We introduce012
GradDrop and variants thereof, a class of gra-013
dient sparsification methods that mask gradi-014
ents prior to gradient descent. Unlike gradual015
unfreezing which is non-sparse and determinis-016
tic, GradDrop is sparse and stochastic. Experi-017
ments on the multilingual XGLUE benchmark018
with XLM-RLarge show that GradDrop outper-019
forms standard fine-tuning and gradual unfreez-020
ing, while being competitive against methods021
that use additional translated data and inter-022
mediate pretraining. Lastly, we identify cases023
where largest zero-shot performance gains are024
on less resourced languages.025

1 Introduction026

Fine-tuning pretrained transformer models for027

downstream tasks has been the defacto standard028

in natural language processing due to the recent029

successes of large-scale masked language model-030

ing (Radford et al., 2018; Devlin et al., 2019; Lam-031

ple and Conneau, 2019; Conneau et al., 2020a).032

This is usually achieved in one of two ways: (1)033

freeze the gradients of the pretrained portion of the034

network and perform stochastic gradient descent035

(SGD) on a newly added task-specific layer/s or036

(2) perform SGD on both the pretrained and newly037

added layer/s. However, freezing all gradients of038

the pretrained layers can be too restrictive, partic-039

ularly when the downstream task is dissilmilar to040

the task of language modeling used during pretrain-041

ing (Peters et al., 2019). In contrast, unfreezing all042

layers may lead to negative transfer whereby irrel- 043

evant features are tuned for a downstream task or 044

stability issues may arise when performing SGD 045

for a large number of parameters (Liu et al., 2020). 046

While gradual unfreezing (Howard and Ruder, 047

2018) reduces training time (i.e less gradient up- 048

dates) by consecutively unfreezing k layers from 049

top to bottom during fine-tuning, it is determinis- 050

tic and turns off the gradient flow in whole layers 051

which is a strong constraint. Gradual unfreezing 052

could benefit from sparse gradient dropout alterna- 053

tives that allow at least a subset of weights of all lay- 054

ers to be tuned at each epoch. Concretely, instead 055

of freezing gradients for whole layers, we mask 056

a percentage of gradients in all layers to increase 057

gradient flow through the whole network. Thus, 058

in this paper we propose gradient dropout, which 059

we refer to as GradDrop, for stochastically mask- 060

ing gradients to regularize pretrained language 061

fine-tuning. We find two GradDrop variants sig- 062

nificantly improve the fine-tuning of pretrained 063

models, namely GradDrop-Epoch (where weight 064

masks are fixed over the whole epoch) and Layer- 065

GradDrop ( stochastically masks out gradients of 066

whole layers). GradDrop and its variants are sim- 067

ple to implement and are easily used as a default 068

operation for LM fine-tuning. We provide a com- 069

prehensive analysis of the how masking and fine- 070

tuning can be used to improve cross-lingual trans- 071

fer to downstream tasks without any task-specific 072

cross-lingual alignment or translate-train training 073

schemes using the XLM-RLarge (Conneau et al., 074

2020b) model, given its wide adoption and success 075

in transfer learning to various languages. 076

2 Related Research 077

Adapters fine-tune relatively small linear layers 078

that are placed between pretrained frozen layers 079

and generally only account for a small percent- 080

age (e.g., 2-5%) of the overall number of param- 081

eters. There are variants whereby some adapters 082
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are placed only on the output of each self-attention083

block, within each self-attention block, or combin-084

ing adapters that have been independently trained085

for specific tasks and languages (Pfeiffer et al.,086

2020b; Houlsby et al., 2019; Pfeiffer et al., 2020a).087

Gradual Unfreezing. Howard and Ruder (2018)088

proposed gradually turning on gradients layer by089

layer for LM pretraining and fine-tuning, leading090

to a reduction in training time due to a reduction091

in gradient updates. Peters et al. (2019) have fur-092

ther explored which tasks benefit from fine-tuning093

when all gradients are active, when only the newly094

added fine-tuning layer gradients are active and095

when using gradual unfreezing. Their main finding096

is that when the underlying LM pretraining is se-097

mantically similar to the downstream task there is098

less need to deactivate gradients, while the seman-099

tically different tasks benefit more from activating100

all gradients for fine-tuning.101

Language Model Masking. While standard102

LM fine-tuning remains the defacto standard in103

NLP-based transfer learning, there has been other104

masking-related approaches. Zhao et al. (2020)105

have learned a mask over the weights instead of106

fine-tuning the weights, showing that this can lead107

to competitive performance for fine-tuning. In con-108

trast to our work, we show that combining masking109

during fine-tuning is a preferred method for the110

same computational budget. Liu et al. (2021) use111

the change of the gradient magnitudes of a layer112

as a criterion to determine whether a layer is to be113

frozen. Hence, gradients that stagnate in a layer are114

most likely to be frozen during fine-tuning.115

3 Proposed Methodology116

In this section, we describe our main contribution,117

gradient dropout and variants thereof. We begin by118

first describing the self-attention blocks in trans-119

formers. Assume we have a sequence of vectors120

x1, . . . ,xn where each vector xi ∈ Rd of d dimen-121

sions (e.g., d = 512). We define Q ∈ Rn×d to be122

a matrix representing the sequence where the i-th123

row of Q corresponds to xi. The key K ∈ Rd×l,124

value V ∈ Rd×l and projection layer U ∈ Rd×o125

parameters are defined where U ensures the out-126

put dimensionality of the self-attention block is the127

same as the original input Q. We can then define128

the self-attention as Z = Softmax( QK√
dl

V⊤Q⊤)QU129

where QU ∈ Rn×o is matrix of new embeddings,130

QKV⊤Q⊤ ∈ Rn×n is a matrix representing the131

inner products in a new l-dimensional space and132

Softmax
(
QKV⊤Q⊤) is a matrix where each row 133

entry is positive and sums to 1. Note that scaled dot- 134

product is used (normalization by
√
dl) to avoid 135

vanishing gradients of the Softmax, which may 136

occur when dl is large. The parameters for the j- 137

th attention head Kj ,Vj ∈ Rd×l, Uj ∈ Ro for 138

j = 1, . . . , na where na is the number of atten- 139

tion heads. Then we summarize the formulation of 140

multi-headed self-attention as Equation 1, 141

Zj = Softmax
(QKj

√
dl

(Vj)⊤QT
)
QUj

Z̃ = Concat(Z1, . . .Zn
a)

Z = Feedforward(LayerNorm(Z̃ + Q))

(1) 142

where Zj ∈ Rn×da and Z̃ ∈ Rn×dana , with da be- 143

ing the dimensionality of the self-attention output. 144

Gradient Dropout After backpropogation, we 145

apply a random binary mask on the gradients of 146

K,V and U. For simplicity, let us assume θ := 147

{K,V,U} and the gradients of θ are represented 148

as g := ∇θLs(fθ(Q),Y), where Y ∈ Nn×d rep- 149

resents one-hot targets of dimension d. A binary 150

mask m is then generated from a predefined dis- 151

tribution (e.g., Bernoulli or Gaussian) and applied 152

over the gradients. The gradient update rule with 153

gradient dropout can then be expressed as, 154

θ′l = θl − α ∗ gl ⊙ ml (2) 155

where α is the learning rate, ⊙ performs the 156

Hadamard product (i.e., the element-wise product 157

of tensors) and l ∈ L is the layer index. Given that 158

the stochastic noise induced by SGD through ran- 159

dom mini-batch training regularizes DNNs, we too 160

expect that the random dropping of gradients will 161

have a similar regularization effect. When m is gen- 162

erated from a Bernoulli distribution, we randomly 163

zero the gradient with probability p, in which the 164

process of sampling m is formulated as: 165

m ∼ Bernoulli(1− p)/(1− p) (3) 166

where the denominator 1− p is the normalization 167

factor. Note that, different from Dropout (Srivas- 168

tava et al., 2014) which randomly drops the interme- 169

diate activations in a supervised learning network 170

under a single task setting, we perform the dropout 171

on the gradient level. We focus on binary masks for 172

m as it is computationally efficient to generate and 173

store low precision boolean tensors, in comparison 174

to continuous noise such as the Gaussian distribu- 175

tion. Lastly, when applying gradient dropout layer- 176

wise (Layer-GradDrop), m ∈ {0, 1}L where l-th 177
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.

Original XLM-R

XLM-RBase Conneau et al. 84.6 78.4 78.9 76.8 75.9 77.3 75.4 73.2 71.5 75.4 72.5 74.9 71.1 65.2 66.5 74.5
XLM-RLarge Conneau et al. 88.8 83.6 84.2 82.7 82.3 83.1 80.1 79.0 78.8 79.7 78.6 80.2 75.8 72.0 71.7 80.1

FILTER

XLM-RLarge Fang et al. 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
XLM-RLarge (translate-train) 88.6 82.2 85.2 84.5 84.5 85.7 84.2 80.8 81.8 77.0 80.2 82.1 77.7 82.6 82.7 82.6

FILTER 89.7 83.2 86.2 85.5 85.1 86.6 85.6 80.9 83.4 78.2 82.2 83.1 77.4 83.7 83.7 83.6
FILTER + Self-Teaching 89.5 83.6 86.4 85.6 85.4 86.6 85.7 81.1 83.7 78.7 81.7 83.2 79.1 83.9 83.8 83.9

Ours

XLM-RLarge 88.35 76.51 82.01 83.13 80.12 84.54 82.61 75.22 78.07 71.00 77.35 78.63 71.85 79.72 79.64 79.25

+GradFreeze-TopBottom 88.83 77.83 80.76 83.25 80.73 84.46 83.22 74.18 79.24 72.05 76.10 77.59 70.52 80.03 79.44 79.23
+GradFreeze-BottomUp 84.95 75.15 78.49 82.10 80.03 83.88 81.02 74.58 78.36 72.05 75.83 77.08 69.17 79.43 79.01 78.07

+GradDrop 90.01 78.19 82.37 83.53 80.68 84.82 83.69 76.18 78.72 72.73 77.03 79.04 72.69 80.68 79.23 79.97
+Anneal-GradDrop 88.49 76.88 82.81 83.54 80.13 85.07 82.90 78.11 78.14 71.04 76.72 78.39 72.47 80.17 79.28 79.58
+Anneal-Layer-GradDrop 90.68 78.19 82.93 83.57 80.96 85.26 83.53 76.27 79.12 71.93 77.43 77.59 72.49 79.44 79.72 79.94†

+Layer-GradDrop 88.65 76.97 81.99 81.43 81.38 83.11 82.99 76.45 80.30 68.53 78.23 78.05 71.47 79.38 79.42 79.22
+GradDrop-Epoch 88.27 82.77 83.13 81.25 88.71 85.30 83.25 77.07 78.67 71.45 77.31 79.40 72.53 80.20 79.72 79.94†

The best performance obtained are marked in bold, while the second best results are indicated with †.

Table 1: XNLI zero-shot accuracy (apart from ‘en’) for each language. Results of fine-tuned XLM-R from prior
work (Conneau et al., 2020a; Fang et al., 2020) are from the XTREME benchmark (Hu et al., 2020).

element in m corresponds to whether that layers178

gradients are activated or not. When ml = 1, a one179

matrix 1 of the same dimensionality as gl is applied,180

and and zeros when ml = 01. We also apply each181

mask per minibatch or per epoch using a sched-182

uled dropout rate, namely a linear schedule that183

begins at p = 0.9, reduces by pϵ := pϵ−1 − 1/T184

at each epoch ϵ until the last epoch T is reached185

where p = 0. In subsequent tables, models that186

have term “Anneal-” use this annealed GradDrop187

schedule. We posit that the main generalization188

benefits given by sparsely freezing gradients can be189

explained by how it slows down the total amount190

of gradient flow for each consecutive mini-batch191

during fine-tuning. This is particularly important192

for tasks that are more distant from the original193

self-supervised pretraining objective used prior to194

fine-tuning, i.e., converging too fast on a distant195

task may lose the generalization benefits given by196

the pretrained state.197

Epoch-wise Gradient Dropout We also propose198

a variant of GradDrop whereby the same dropout199

mask is applied to all mini-batches for a single200

epoch. The mask can be reset for successive epochs201

by uniformly sampling from the aforementioned202

Bernoulli distribution at the same dropout rate as203

before. However, we also consider an accumulative204

mask whereby we sample from the Bernoulli distri-205

bution without replacement for each epoch and this206

is what we use for our experiments. Figure 1 shows207

the difference between the proposed GradDrop-208

1Please see the supplementary material for a pseudocode
example of GradDrop used with XLM-R.

Figure 1: GradDrop-Epoch-Toggle (Top) and
GradDrop-Epoch (Bottom). Grey represents frozen
gradients, blue represents active gradients where darker
blue indicates the recency of gradients turned on.

Epoch when previous epoch masks are frozen once 209

a new mask is applied (GradDrop-Epoch-Toggle) 210

and when the previous epoch masks are left un- 211

frozen (GradDrop-Epoch). In both cases, sam- 212

pling without replacement is used, unlike standard 213

GradDrop and like gradual unfreezing. This simi- 214

larity to gradual unfreezing w.r.t. sampling without 215

replacement aims to improve the stability during 216

fine-tuning as only a subset of parameters are being 217

updated for a whole epoch. 218

4 Results 219

Table 1 shows the previous SoTA results on XNLI, 220

our fine-tuned XLM-RLarge, GradFreeze (i.e., grad- 221

ual unfreezing), GradDrop and its variants. Stan- 222

dard GradDrop outperforms its other variants and 223

all prior SoTA fine-tuning methods, including gra- 224

dient freezing. Our proposed methodology reports 225

a 0.72% increase in zero-shot accuracy for Grad- 226

Drop compared to standard fine-tuning. 227

Understanding Score. We show the average 228

task understanding score for our GradDrop vari- 229
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Models Translation #Params XNLI NC NER PAWSX POS QAM QADSM WPR MLQA Avg.

M-BERT (Liang et al., 2020) Yes 550M 66.3 82.7 78.2 87.2 74.7 66.1 64.2 73.5 60.7 72.6
FILTER+Self-Teaching Fang et al. Yes 550M 83.9 83.5 82.6 93.8 81.6 73.4 71.4 74.7 76.2 80.1
XLM-RLarge-T (Fang et al., 2020) Yes 550M 82.6 - - - - - - - - -

Unicoder (Huang et al., 2019) No 255M 75.3 83.5 79.70 90.1 79.6 68.9 68.4 73.9 66.0 76.1
XLM-RLarge (Conneau et al., 2020b) No 550M 80.1 - - - - - - - -
XLM-RLarge (Fang et al., 2020) No 550M 79.2 83.2 - - - - - - - -
XLM-RLarge (Ours) No 550M 79.25 83.21 80.61 89.23 80.38 69.82 71.05 73.27 70.21 77.45

+GradFreeze-TopDown No 550M 79.23 83.65 78.64 88.33 78.11 71.01 71.01 72.61 70.55 77.02
+GradFreeze-BottomUp No 550M 78.07 80.41 76.35 87.31 73.32 64.81 68.56 71.17 69.64 74.40

+GradDrop No 550M 79.97 83.41 80.21 91.46 81.00 71.72 71.02 73.44 71.29 78.17
+Anneal-GradDrop No 550M 79.58 81.87 81.87 91.18 80.72 71.46 70.71 73.27 71.20 77.98
+Anneal-Layer-GradDrop No 550M 79.94 84.24 81.48 91.06 80.88 72.31 71.16 74.25 71.40 78.52
+Layer-GradDrop No 550M 79.22 83.73 81.85 92.23 81.42 72.33 71.39 74.51 72.55 78.77
+GradDrop-Epoch No 550M 79.94 83.73 82.41 91.15 80.45 72.98 70.52 74.61 72.01 78.64†

The best performance obtained are marked in bold, while the second best results are indicated with †.

Table 2: Zero-Shot Cross-Lingual Performance Per Task and Overall Average Score (Avg.).

Figure 2: QAM Test Performance Over Train Epochs.

ants and previous baselines in Table 2. We find230

that GradDrop-Epoch and Layer-GradDrop are two231

methods which consistently outperform the remain-232

ing GradDrop variants, standard fine-tuning and in233

some cases, FILTER which uses translation data.234

To our knowledge, Layer-GradDrop sets a SoTA235

results on XGLUE for methods which do not use236

translate-train or translation language model cross-237

lingual alignment pretraining. Additionally, Layer-238

GradDrop is only 1.4 understanding score points239

from FILTER with their self-teaching loss.

Figure 3: Test Performance Increase By Language
in XNLI. Red bars indicate accuracy increases or de-
creases, while blue indicates the fractional increase of
GradDrop over standard fine-tuning.

Training Stability and Convergence. We also 240

analyse the stability of different GDVs, compared 241

to standard fine-tuning and gradual unfreezing in 242

Figure 2 which shows the development set accuracy 243

for Question Answer Matching over consecutive 244

training epochs. We find that both Epoch-GradDrop 245

and Layer-GradDrop maintains performance for 246

further training epochs while standard fine-tuning 247

decreases as the model begins to overfit. This can 248

be attributed to a reduction in the number of param- 249

eters being trained at any given epoch. 250

Per Language Analysis. We also inspect what 251

languages do GDVs improve performance the most 252

when compared to standard fine-tuning. We analyse 253

XNLI which includes well-resourced and under- 254

resourced languages in the evaluation set. Figure 3 255

shows how our best performing GDVs increase 256

over standard fine-tuning and which languages we 257

mostly attribute to the increase in average score. 258

We find that biggest gains are made on Swahili 259

and Arabic. We conclude that GradDrop improves 260

performance on under-resourced languages in par- 261

ticular. We posit that this may be because GradDrop 262

forces the model to be robust to static gradients dur- 263

ing training on English only, reducing the effects 264

of overfitting to the English language. 265

5 Conclusion 266

We find that our proposed GradDrop variants out- 267

perform standard fine-tuning of cross-lingual pre- 268

trained transformers. Specifically, epochwise- and 269

layerwise- gradient dropout consistently outper- 270

form standard fine-tuning, gradual unfreezing and 271

other baselines. Additionally, it is competitive 272

against SoTA methods that use translation data and 273

language alignment pretraining. We also find that 274

gradient dropout particularly improves fine-tuning 275

performance for under-resourced languages. 276
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