
Semi-Discrete Optimal Transport: Nearly Minimax
Estimation With Stochastic Gradient Descent and

Adaptive Entropic Regularization

Ferdinand Genans∗
Sorbonne Université, CNRS, LPSM

fgenans@lpsm.paris

Antoine Godichon-Baggioni
Sorbonne Université, CNRS, LPSM

agodichon@lpsm.paris

François-Xavier Vialard
Université Gustave Eiffel, CNRS, LIGM
francois-xavier.vialard@u-pem.fr

Olivier Wintenberger
Sorbonne Université, CNRS, LPSM

wintenberger@lpsm.paris

Abstract

Optimal Transport (OT) based distances are powerful tools for machine learning
to compare probability measures and manipulate them using OT maps. In this
field, a setting of interest is semi-discrete OT, where the source measure µ is
continuous, while the target ν is discrete. Recent works have shown that the
minimax rate for the OT map is O(t−1/2) when using t i.i.d. subsamples from each
measure (two-sample setting). An open question is whether a better convergence
rate can be achieved when the full information of the discrete measure ν is known
(one-sample setting). In this work, we answer positively to this question by (i)
proving an O(t−1) lower bound rate for the OT map, using the similarity between
Laguerre cells estimation and density support estimation, and (ii) proposing a
Stochastic Gradient Descent (SGD) algorithm with adaptive entropic regularization
and averaging acceleration. To nearly achieve the desired fast rate, characteristic
of non-regular parametric problems, we design an entropic regularization scheme
decreasing with the number of samples. Another key step in our algorithm consists
of using a projection step that permits to leverage the local strong convexity of
the regularized OT problem. Our convergence analysis integrates online convex
optimization and stochastic gradient techniques, complemented by the specificities
of the OT semi-dual. Moreover, while being as computationally and memory
efficient as vanilla SGD, our algorithm achieves the unusual fast rates of our theory
in numerical experiments.

1 Introduction

Optimal transport (OT) is now a widely used tool to compare probability distributions in different
areas of data science such as machine learning [12, 25, 5], computational biology [44], imaging
[20, 6], even economics [22] or material sciences [8]. The computational and statistical efficiency of
OT solvers is the key to facilitating their use in practical applications. Therefore, both computational
methods and the statistical bottleneck in optimal transport (OT), often referred to as the curse of
dimensionality, have received significant attention over the past decade [38, 53]. Regularization such
as Entropic OT (EOT) [14] is a popular method to alleviate these two issues. It consists of adding
an entropic regularization term to the objective function. Annealing schemes on the regularization
parameter to approximate the true solution of OT by its entropic approximation are efficient, as shown
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in [31, 45, 19]. Still largely open is the theoretical understanding of these methods [48, 45], which
can shed light on the design of the annealing scheme, also called ε-scaling.

OT and its entropic regularization apply to different contexts of interest. The most general context
is when the two distributions are accessed via samples and one wants to estimate the OT distance
and the correspondence plan or map. Another context of interest in some applications is the case of
semi-discrete OT, as in [29], in which one of the two distributions is discrete and the other continuous.
This setting is slightly simpler than the general case since (i) the OT problem reduces to the estimation
of Laguerre cells and (ii) the curse of dimensionality is alleviated [41].

Related works. In many applications of OT, one or both of the measures are accessed via i.i.d.
samples. The goal then becomes to construct estimators of the OT map and/or cost. It is known that
without any assumptions on the measures, the estimation of OT quantities suffers from the curse of
dimensionality. For instance, estimating the Wasserstein distance from t samples achieves a rate of
O(t−

1
d ) for d ≥ 3. Despite the curse of dimensionality, estimating OT quantities attracts a lot of

interest. Relevant works include [21, 53, 10, 42] for the OT cost, and [16, 27, 50, 41] for the OT map.

We study here the estimation of OT quantities in the semi-discrete setting, where the continuous
distribution is accessed through sampling, similarly to [33, 41], but we assume full access to the
discrete target measure, as in [24, 4]. This setting is of interest since, as recently shown in [41], the
OT map estimation escapes the curse of dimensionality, even without assuming the map to be smooth
or continuous. Indeed, they showed that a rate of O(t−

1
2 ) is achievable in the "one-sample" and

"two-sample" settings (sampling only from the source measure or from both measures). To do so,
their work uses the EOT map estimator [47, 40] with a regularization ε ≍ t−

1
2 , as well as results on

the convergence rate of the entropic optimal potential to the Kantorovich potential in the semi-discrete
setting proved in [1, 17]. Moreover, they showed that the rate O(t−

1
2 ) is minimax for the estimation

of the OT map in the two-sample setting.

Beyond the statistical challenges, building efficient solvers for semi-discrete OT is also a considerable
challenge. Many solvers of (E)OT in this setting are based on optimizing the semi-dual, which is a
finite-dimensional convex optimization problem. In particular, efficient Newton and quasi-Newton
methods [34, 32, 29] are proposed for low dimensions, employing meshes when the source density is
known. For arbitrary dimensions, or when the source measure is only accessible via samples, [24]
propose using semi-dual EOT and Stochastic Gradient Descent (SGD) based solvers as proxies for
OT. The study of SGD and Averaged SGD (ASGD) for EOT was further investigated by [4], which
notably demonstrated that the objective function is self-concordant and benefits from enhanced strong
convexity near an optimum. Using these facts, [4] showed that a convergence rate of O(t−1) can
be achieved for the squared Euclidean distance estimation of the discrete entropic optimal potential.
However, terms in ε−1 were considered negligible in their study, thus excluding small regularization.

Contributions. Our main contribution is twofold. First, we introduce an SGD-based algorithm to
solve the semi-dual formulation of OT. This algorithm incorporates a projection step and an entropic
regularization scheme that decreases with the number of samples. While being as computationally
and memory efficient as vanilla SGD, our algorithm achieves enhanced convergence rates, thanks to
the decreasing regularization. Specifically, given t i.i.d. samples of the source measure, it achieves a
convergence rate of O(t−2b) with b ∈ (1/2, 1) for both the discrete Kantorovich potential and OT
cost estimation. We then construct an OT map estimator based on our discrete potential estimator
and the closed form of the gradient of Fenchel transforms. By studying the difference between
the Laguerre cells formed by the Kantorovich potential and our estimator, we retrieve a O(t−b)
convergence rate for the OT map, for b ∈ (1/2, 1).

Second, building upon the parallel between measure support estimation and Laguerre cell estimations,
we derive two new minimax lower bounds, characteristic of the fast rates of non-regular models: a
O(t−2) rate for the Kantorovich potential and a O(t−1) rate for the OT map (compared to O(t−1/2)
in the two-sample setting [41]). These lower bounds are nearly achieved by our estimators since
b < 1. Finally, we numerically showcase the convergence rates of our algorithm for the OT potential,
map, and cost estimators.

Notations. R∗ refers to R\{0}. We note ∥ ·∥ the Euclidean norm, and for C ⊂ Rd, DC := sup{∥x−
y∥ : x, y ∈ C} denotes its diameter. For a, b ∈ R, a ∨ b := max{a, b} and a ∧ b := min{a, b}. For
v ∈ Rd, vmin := min1≤j≤d vj . 1d and 0d denote the vectors (1, . . . , 1) and (0, . . . , 0) in Rd. λRd is
the Lebesgue measure in Rd. P(Rd) is the set of probabilities in Rd, and for ρ ∈ P(Rd), Supp(ρ) is
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its support. O(·) and o(·) are the usual approximation orders. We use f ≲ g if there exists a constant
C > 0 such that f(·) ≤ Cg(·). We write a ≍ b if both a ≲ b and b ≲ a.

2 Behind stochastic approximation for Optimal Transport

2.1 Background on (Entropic) Optimal Transport

Given a source and target probability measures µ, ν ∈ P(Rd), a cost function c : Rd × Rd → R+

and a regularization parameter ε ≥ 0, the Entropic Optimal Transport (EOT) problem is

OTε
c(µ, ν) := min

π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dπ(x, y) + ε

∫
Rd×Rd

ln

(
dπ

dµdν
(x, y)

)
dπ(x, y), (1)

where Π(µ, ν) is the set of joints probability measures on Rd × Rd with marginals µ and ν. Mild
conditions on µ, ν and the cost can be made so that this problem is well-posed, see [51]. When ε = 0,
Problem (1) recovers the Kantorovich formulation of OT. In this article, we focus on the quadratic
cost c(x, y) = 1

2∥x− y∥2, although some of our results can be extended to more general costs. Our
analysis relies on the semi-dual formulation of the convex problem (1) given by

OTε
c(µ, ν) = max

f∈C(Rd)

∫
Rd

f(x)dµ(x) +

∫
f c,ε(y)dν(y), (2)

where for all y ∈ Rd,

f c,ε(y) : =

{
minx∈Rd c(x, y)− f(x) if ε = 0,

−ε log
(∫

Rd exp
(

f(x)−c(x,y)
ε

)
dµ(x)

)
if ε > 0.

Under mild conditions on the cost or densities, a positive ε makes the semi-dual formulation ε−1-
smooth [15]. The key property of this semi-dual formulation of (E)OT is to retain more convexity
than the standard dual of (1) (see [27, 49]).

Optimal maps and Brenier’s theorem. We consider the quadratic cost, ε = 0 and µ, ν having
second-order moments. Under the additional assumption that the measure µ is absolutely continuous,
the optimal potential f∗, called Kantorovich potential, is (locally) Lipschitz and the map

Tµ,ν(x) := x−∇f∗(x) (3)

pushes forward µ onto ν (see [7]). In addition, Tµ,ν is the gradient of a convex function. This optimal
map has more importance than the OT cost in subfields of machine learning such as generative
modeling [28] or domain adaptation [13].

2.2 Semi-discrete OT

Semi-discrete (E)OT is when the source measure µ is absolutely continuous and the target measure
ν =

∑M
j=1 wjδyj

is a finite sum of M ≥ 1 Dirac masses with weights wj > 0. In this case, the
semi-dual formulation reduces to a finite-dimensional convex optimization problem on RM

min
g∈RM

Hε(g)
def.
= −

∫
Rd

gc,ε(x)dµ(x)−
M∑
j=1

gjwj , (4)

where we also write Hε(g) =
∫
Rd hε(x,g)dµ(x), and where for all x ∈ Rd, gc,ε(x) is a (vectorial)

(c, ε)-transform with respect to a vector g = (g1, . . . , gM ) ∈ RM , defined by

gc,ε(x) =

{
minj∈J1,MK

[
1
2∥x− yj∥2 − gj

]
if ε = 0,

−ε ln
(∑M

j=1 exp
(

− 1
2∥x−yj∥2+gj

ε

)
wj

)
if ε > 0.

The vector g corresponds to the value of the potential function at the points yj . For all g ∈ RM and
given X ∼ µ, an unbiased estimator of the gradient is given by

∇ghε(X,g)j = −wj + χε
j(X,g), 1 ≤ j ≤ M ,
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where for x ∈ Rd,g ∈ RM , we have

χε
j(x,g) =

exp
(

− 1
2∥x−yj∥2+gj

ε

)
wj∑M

k=1 exp
(

− 1
2∥x−yk∥2+gk

ε

)
wk

·

For ε = 0, χj(x,g) = 1Lj(g)(x) is an indicator function and we have a partition Rd =
⋃M

j=1 Lj(g),
where for all j ∈ J1,MK,

Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥2 − gj

}
.

The convex sets Lj(g) are called power or Laguerre cells and µ(Li(g)∩Lj(g)) = 0 when i ̸= j. By
the first-order optimality condition, solving semi-discrete OT amounts to finding g such that for all
j ∈ J1,MK, µ(Lj(g)) = wj . Semi-discrete OT is a case of application of Brenier’s theorem. Given
the optimal potential g∗, the OT map is Tµ,ν(x) = x−∇(g∗)c(x) = x− yj for x inside Lj(g

∗).

2.3 Solving semi-discrete (E)OT with the semi-dual formulation

Exploiting its finite-dimensional nature, optimizing the OT semi-dual H0 has become a popular
approach. Notably, Newton and quasi-Newton methods are highly effective in scenarios with
low dimensions and known source densities, utilizing meshes to approximate the source density
[34, 32, 29]. In scenarios involving arbitrary dimensions or when only sample-based access to the
source measure is available, EOT emerges as a favored strategy. Notably, to avoid working with a
discretized version of the source measure, such as with the Sinkhorn Algorithm, [24] recommend
employing stochastic optimization to solve (4). Indeed, the semi-dual EOT problem has a convex
objective of the form

Hε(g) = EX∼µ[hε(X,g)],

with X as a random variable under µ. As noted in [24], the main advantage of stochastic optimization
algorithms is that they are suited for large-scale problems, keeping in memory only the discrete
measure ν. Moreover, not relying on discretization permits an unbiased approach to solving the
semi-discrete EOT problem.

For a given fixed regularization parameter ε > 0, stochastic first-order methods are predominantly
employed to solve (4). Starting with an initial value g0 ∈ RM , these algorithms consider at each
iteration one or many samples Xt ∼ µ and rely on an update of the form

gt = gt−1 − γt∇ghε(Xt,gt−1).

At time t, the Averaged Stochastic Gradient Descent (ASGD) returns the averaged estimate gt =
1

t+1

∑t
k=0 gk, while Stochastic Gradient Descent (SGD) returns gt. ASGD, as an acceleration of

SGD, has been widely studied in the literature (see [39, 37, 3], and [4] for the specific case of EOT).

Choosing the regularization parameter ε for EOT. Approximating the EOT problem rather than
the OT one benefits from an enhanced convergence rate, especially in the discrete setting. The
introduction of the Sinkhorn Algorithm for solving the EOT problem, as highlighted by [14], has led
to a resurgence of interest in OT within the machine learning community.

The choice of the regularization parameter ε then becomes a practical and/or statistical problem:

1. In the discrete case, selecting the regularization parameter is a practical issue that aims to
strike an optimal balance between convergence speed and accuracy [14, 18]. To address this
trade-off, some heuristics, such as ε-scaling [46], which involves a decreasing regularization
scheme, are employed, although they lack strong theoretical guarantees.

2. In the semi-discrete and continuous settings, the initial statistical problem is to determine
the number of samples needed to accurately approximate the OT quantities. In this line of
work, the use of EOT to construct estimators has also been proven to be satisfactory. In this
case, studies show that regularization must decrease as the number of samples increases
[40, 41]. However, discrete solvers do not adjust to the number of drawn points, as the
solver is initiated once the points to approximate the measures have been sampled.
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3 DRAG: Decreasing Regularization Averaged Gradient

3.1 Setting

We focus here on the one-sample setting of semi-discrete OT. Specifically, we sample from the source
measure µ and leverage the full information of the discrete measure ν. Furthermore, fixing R > 0
and α ∈ (0, 1], we make the following mild assumption, already present in [17, 41].

Assumption 1. Let µ ∈ P(Rd), such that Supp(µ) ⊂ B(0, R) is convex and its density dµ is
α-Hölder with, 0 < dµ < ∞ on its support. We note Pα(B(0, R)) the set of these measures.

The target measure ν is discrete, of the form ν =
∑M

j=1 wjδyj
, with w = (w1, . . . , wM ) its

probability weights and (y1, . . . , yM ) ∈ B(0, R)M its support.

Remark that with Assumption 1, we have that wmin > 0 is lower-bounded.

3.2 DRAG: A gradient-based algorithm adaptive to both the sample size and the
regularization parameter

To accurately estimate the true OT cost and map, it is crucial to use a regularization parameter ε
that decreases as the number of drawn samples increases. However, no existing algorithm in the
OT literature simultaneously adapts to both entropic regularization and sample size. Inspired by
the decreasing regularization scheme from the discrete OT setting, such as ε-annealing [46], which
is known for accelerating the convergence of the Sinkhorn algorithm in practice, and considering
that SGD algorithms are inherently adaptive to the number of samples, we introduce the Decreasing
Regularization projected Averaged Stochastic Gradient Descent (DRAG) to solve the semi-dual (2).
Our algorithm employs a decreasing regularization sequence (εt)t and replaces the usual gradient
step in ASGD with a projected step using adaptive regularization

gt = ProjC
(
gt−1 − γt∇ghεt−1

(Xt,gt−1)
)
,

where for U ⊂ RM convex, we define the projector as ProjU (g) := argmin{∥g − g′∥,g′ ∈ U}.
This method can be interpreted as a decreasing bias SGD scheme. For such a method, employing a
projection step can be highly effective in ensuring convergence [11, 23]. In the context of EOT, it is
well established that the (c, ε)-transform enables the localization of a ∥.∥∞-ball, where a minimum
of the semi-dual problem lies when the cost is bounded [36]. Specifically, since sup{c(x, yj);x ∈
Supp(µ), j ∈ J1,MK} < 2R2 by Assumption 1, a preliminary projection set can be expressed as
C∞ := [0, 2R2]M and we know that we can search for a minimum in this set. Nonetheless, leveraging
the regularity of the cost function, we can have a projection set with a unique optimizer, as described
in the following Lemma.

Lemma 1. (Proof in Appendix B.7) Under Assumption 1, for all ε ≥ 0, there exists a unique solution
g∗
ε to (4) in Cu := {g ∈ RM ; g1 = 0 and |gj | ≤ R∥y1 − yj∥, j ∈ J1,MK}.

Algorithm 1 DRAG

Parameters: (γ1, a, b, C)
Initialize g0 ∈ C, g0 = g0, ε0 = 1.
for k = 1 to t do
γk = γ1k

−b

Xk ∼ µ
gk=ProjC

(
gk−1 −γk∇ghεk−1

(Xk,gk−1)
)

gk = 1
k+1gk + k

k+1gk−1

εk = k−a

end for
return gt

Note that the choice g1 = 0 is arbitrary. In what
follows, we refer to C = C∞ or C = Cu as our
projection set. Note that for both sets, the projec-
tion’s computational complexity is only O(M),
as it involves merely clipping each coordinate
of our vector.

Finally, in order to accelerate the convergence,
we consider the Decreasing Regularization pro-
jected Averaged stochastic Gradient descent
(DRAG) defined by

gt =
1

t+ 1
gt +

t

t+ 1
gt−1,

with g0 = g0. The pseudo-code of our algorithm is given in Algorithm 1. A main advantage of
DRAG is that it has a O(dtM) computational complexity and O(dM) spatial complexity.
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3.3 Convergence rate before averaging

As a key step to the convergence rate of DRAG, we will provide the convergence rate of the non
averaged estimate gt to g∗

εt , solving (4) with regularization εt. Note that, up to a transformation of
the form g∗

εt + a1M , where a ∈ R∗, the minimizer of the semi-dual is unique. Consequently, no
matter the set C chosen, we focus our analysis on the orthogonal complement of the subspace spanned
by 1M , denoted as Vect(1M )⊥. For simplicity, for g,g′ ∈ RM , we denote for p ∈ [1,∞]

∥g − g′∥p := ∥g − g′∥p Vect(1M )⊥ , ⟨g,g′⟩ := ⟨g,g′⟩Vect(1M )⊥ .

Our analysis is greatly influenced by the findings in Corollary 2.2 from [17], which states that for
0 ≤ ε′ ≤ ε, under Assumption 1 with µ ∈ Pα(B(0, R)), for any α′ ∈ (0, α), there exists a constant
K0, notably depending on the characteristics of ν (see [17]), such that

∥g∗
ε − g∗

ε′∥ ≤ K0ε
α′

(ε− ε′) . (5)

In addition, the convergence rates of our algorithm take advantage of the two following properties of
the entropic semi-dual. For any ε > 0, noting wmin := minj∈J1,MK wj ,

• Hε is locally strongly convex on Vect(1M )⊥ and the smallest eigenvalue of its Hessian at
g∗ε on Vect(1M )⊥ is greater than wminε

−1 ([4], Lemma A.1).

• Hε is 1
ε -self concordant ([4], Lemma A.2).

Let us emphasize that, surprisingly, the first point reveals that the strong convexity at the optimum
increases as we decrease the parameter ε. By combining these two points and benefiting from our
projection step, we derive the following lemma.

Lemma 2. (Proof in Appendix 2) For all regularization ε > 0 and for all g ∈ C, we have∥∥∇Hε(g)−∇2Hε (g
∗
ε) (g − g∗

ε)
∥∥ ≤ 4

ε
∥g − g∗

ε∥2∞. (6)

Moreover, defining Kw := 2w−1
min max{2R2, 1} and Ag,ε := 1− e−

2
ε [1∧∥g−g∗

ε∥], we have

⟨∇Hε(g),g − g∗
ε⟩ ≥

Ag,ε

Kw
∥g − g∗

ε∥2. (7)

While technical, this lemma is a key step for our convergence guarantees and thus warrants further
discussion. Note that Ag,ε/Kw can be interpreted as a form of local strong convexity coefficient
of Hε. However, if ∥g − g∗

ε∥/ε is small, the term Ag,ε tends to 0, and we would not be able to
exploit more local strong convexity. This situation is unavoidable with any fixed regularization ε,
if convergence to g∗

ε is desired. The use of a decreasing regularization scheme helps to avoid this
problem. Indeed, if the term Agt,εt remains small for any t and εt tends to 0, then ∥gt − g∗

εt∥ also
tends to 0. However, if at time t, Agt,εt is close to 1, we can exploit strong convexity. Thus, a
decreasing regularization scheme ensures good convergence behavior, regardless of Agt,εt . Building
on these essential properties, we obtain the convergence rate for the non-averaged iterates of DRAG.

Theorem 1. (Proof in Appendix B.1) Under Assumption 1 with µ ∈ Pα(B(0, R)), taking the
parameters (γ1, a, b) of DRAG such that γ1 > 0, 1 + a+ aα > 2b, a ≥ b

2 and b ∈
(
1
2 , 1
)
, we have

E
[
∥gt − g∗

εt∥2p
]
≲

1

wp
mint

bp
, t ≥ 1, p ∈ {1, 2}.

Remarkably, we achieve a convergence rate without any undesirable dependence on regularization.
Our projection step and the improvements in Lemma 2, compared to Lemma A.1 in [4], were crucial
for this achievement. In contrast, [4] derived a convergence rate of the form O(ε−ct−b) for a fixed
regularization, with c at least equal to 1. Note that having no adverse dependence on the regularization
parameter is essential for our algorithm, as it (i) employs a decreasing regularization scheme and (ii)
aims to leverage the increased strong convexity at the optimum as εt decreases. This last point will
be further discussed in the next section.
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3.4 Acceleration and quadratic convergence rate for DRAG

In convex stochastic optimization, it is known that averaging SGD iterations can lead to acceleration.
More precisely, ASGD can adapt to the possibly unknown local strong convexity of the objective
function at the optimizer [2]. As we saw previously, the strong convexity of Hε increases as the
regularization parameter ε decreases. Despite the fact that our objective function changes at each
time t, Theorem 2 (Proof in Appendix B.2) shows that DRAG fully exploits the increase in local
strong convexity.

Theorem 2. (Proof in Appendix B.2) Under the same assumptions as in Theorem 1, taking a ≥ b,

E[∥gt − g∗∥2] ≲ 1

w4
mint

2b
, t ≥ 1 .

Note that as b tends to 1, we achieve a quadratic convergence rate. We emphasize that this convergence
rate is surprising, since for a general strongly convex function, the expected convergence rate would
typically be linear. This difference comes from the fact that we face a Laguerre cells support problem.
In parametric statistics, support problems are known to often be non regular and can yield an enhanced
quadratic convergence rate (see, for instance, [52], Chapter 15). In the next theorem, we show that
our convergence rate to g∗ is nearly minimax.

Theorem 3. (Proof in Appendix B.5) Let ν ∈ P(R) be a fixed discrete measure of M points. Then,

inf
g(t)

sup
µ∈Pα(B(0,R))

E
[
∥g(t) − g∗∥2

]
≳

M

t2
,

where g∗ is the discrete optimal vector, solving the non regularized semi-dual in (4). The infimum is
taken over all vectors g(t) ∈ RM constructed using t ∈ N∗ i.i.d samples of µ.

Remark: While the dependence on wmin (or M ) may seem minor in our context since it is a constant,
we have included it in our analysis. This is pertinent, especially when applying DRAG to a discretized
version of a continuous measure, which could result in a large M . We highlight that such results,
demonstrating explicit dependence on the weights or number of points, are novel in the semi-discrete
optimal transport (OT) literature. Additionally, when the weights of the discrete measure are uniform,
our analysis achieves a convergence rate closer to O(M2t−2b) (refer to the proof of Theorem 2 for
further details). We believe that a theoretical convergence rate of O(w−2

mint
−2b) is achievable for

DRAG. Indeed, a quadratic dependence on the strong-convexity coefficient is commonly observed in
ASGD [2]. This dependence is illustrated in Figure 4.

4 Optimal Transport cost and Brenier map estimation rate with DRAG

4.1 OT and EOT cost estimation

In this part, we derive convergence rates of the (E)OT costs using DRAG.

Corollary 1. (Proof in Appendix B.3) Taking the same assumptions as Theorem 2, with 0 < ε < 1
and 0 < α′ < 1, we have the following convergence rate for the approximation of the (E)OT costs

E |Hε(g
∗
ε)−Hε(gt)| ≲ ε2α

′−1(ε− εt)
2 +

1

εt2b
, (8)

E |H0(g
∗)−H0(gt)| ≲

1

t2b
. (9)

Once again, we achieve a superior rate compared to the typical O(t−1) observed in strongly convex
and/or smooth scenarios, highlighting that semi-discrete OT deviates from conventional problems.
While one could use a regularization parameter ε > 0, such as εt, to approximate the OT cost, the best
estimation is achieved when ε = 0. In this case, using H0(gt) yields an error of the order O(t−2b), a
rate that is not achievable using (8) and ε > 0. This convergence rate is possible since H0 is smooth,
as noted in Theorem 4.1 of [30].
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4.2 Brenier map estimation

When employing entropic regularization, a popular choice involves using the estimator of the entropic
Brenier map [40]

T ε
µ,ν(g

∗
ε)(x) = x−∇(g∗

ε)
c,ε. (10)

Indeed, for ĝ ∈ RM , T ε
µ,ν(ĝ)(x) could serve as an estimator. The objective is then to find an accurate

estimator, ĝ, close to g∗
ε , and to analyze its performance based on the bias-variance decomposition

∥Tµ,ν − T ε
µ,ν(ĝ)∥2L2(µ) ≲ ∥T ε

µ,ν(ĝ)− T ε
µ,ν(g

∗
ε)∥2L2(µ) + ε,

using the fact that ∥Tµ,ν − T ε
µ,ν(g

∗
ε)∥2L2(µ) ≲ ε ([41], Theorem 3.4). However, the mapping

g 7→ T ε
µ,ν(g) is ε−1-Lipschitz, complicating the bias-variance trade-off given that εt = t−b. Instead,

we rely on the gradient computed thanks to the c-transform of the estimator gt of DRAG. In fact, for
any x ∈ Rd, if there exists j ∈ J1,MK such that x is in the interior of Lj(g

∗) ∩ Lj(gt), we have

Tµ,ν(x) = x−∇(gt)
c(x).

Indeed, no matter g, as soon as x ∈ Rd is in the interior of Lj(g), the gradient of gc is given by

∇(g)c(x) = argmax
k

{
1

2
∥x− yk∥2 − gj

}
= yj . (11)

By analyzing the differences of Laguerre cells partitions between L(gt) and L(g∗), we derive the
following theorem.
Theorem 4. (Proof in Appendix B.4) Under the same assumptions as Theorem 1, defining for all
x ∈ Rd and time t ≥ 0 T (gt)(x) = x−∇gc

t , we have for all 1 ≤ p < ∞ the convergence rate

E
[
∥Tµ,ν − Tµ,ν(gt)∥pLp(µ)

]
≲

1

tb
.

Minimax estimation. In the two-sample setting, where we subsample from both µ and ν, [41]
shows that a convergence rate of O(t−1/2) is minimax for the squared L2 error of the Brenier map
estimation. As we see in Theorem 4, this rate can be improved to O(t−1) in the one-sample setting,
as b tends to 1. In the following theorem, we prove that this rate is minimax.
Theorem 5. (Proof in Appendix B.6) Under the assumptions of Theorem 2, for any p ∈ [1,∞[,

inf
T (t)

sup
µ∈Pα(B(0,R))

E
[
∥Tµ,ν − T (t)∥pLp(µ)

]
≳

1

t
,

where the infimum is taken over all maps T (t) constructed using t ∈ N∗ iid samples of µ.

5 Numerical experiments

In this section, we numerically verify our convergence rate guarantees through various examples. For
each example, we know the theoretical OT map, cost, and discrete potential. The first two examples
are similar to those in [41]. In all figures, we fixed the parameters of DRAG to (γ1 =

√
wmin, a =

b = 0.75). While increasing b leads asymptotically to a better convergence rate, it decreases the
step size of our gradient descent. Therefore, we need to wait longer to observe the acceleration
from averaging. Our numerical investigation found that our parameter selection achieves a good
compromise between convergence rate and the time before acceleration and is robust without further
hypertuning.

Examples settings: (1) µ ∼ U([0, 1]10), Supp(ν) = {yj = ( j−1/2
J , 1

2 , ...,
1
2 ), j ∈ J1, 100K},

w = 1
1001100. (2) µ ∼ U([0, 1]10), M = 30 and y1, ..., yM randomly generated in [0, 1]10 . We then

also randomly generate g∗ ∈ R30 and approximate w with Monte Carlo (MC) , such that g∗ is the
discrete optimum potential. This setting led to wmin = 0.00103. (3) µ ∼ U([δ, 1 + δ]), δ = 0.5,
Supp(ν) =

{
k
M ; k ∈ J1,MK

}
, w = 1

M 1M ,M = 1000. While in dimension 1, this example is
interesting since it appears in the proofs of Theorem 3 and 5.
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|H0(gt)−H0(g∗)| 3

Figure 1: Cost error evolution through iterations, approximated with 107 Monte Carlo samples, for
Examples 1,2 and 3.

OT cost, map and potential convergence.

In Figures 1 and 2, we show the convergence rates of the OT cost, map, and discrete potential. As
we can see, we match our theoretical rates perfectly, except for the OT cost, where the rates are
slightly slower. This discrepancy could be due to (i) our results for the OT cost estimations being
asymptotic and (ii) our OT cost estimation already being extremely precise, with 107 MC samples
proving insufficient to achieve precision around 5 · 10−4.

100 1000 10000

Iterations

10−3

10−2

10−1

100

E
rr

or

Example 1

100 1000 10000

Iterations

10−3

10−2

10−1

100 Example 2

∝ 1/tb

∝ 1/t2b

‖gt − g∗‖2

‖gt − g∗‖2

‖Tµ,ν − T (ḡt)‖2
L2(µ)

100 1000 10000

Iterations

10−4

10−3

10−2

10−1

100 Example 3

Figure 2: Convergence rate of our discrete potential and map estimators for Examples 1,2 and 3.

(a) Target measure (b) OT map approx.

Figure 3: MK Regions and OT map approximation
with DRAG.

Visualisation of the OT map estimators with
DRAG.

We visualize our OT map estimator T (gt) =
x − ∇(gt)

c on a concrete example of Monge-
Kantorovich (MK) quantiles [9]. In this context,
having a target measure ν to investigate, the
source measure is set to be the uniform measure
on the unit Euclidean ball µ ∼ U(B(0, 1)). The
goal is then to visualize the destinations through
the OT map of points in regions B(0, (k +
1)/10) \ B(0, k/10) for k ∈ J0, 9K, which de-
fine MK quantile regions. We used M = 105

points to approximate ν, a discrete version of a
boomerang-shaped measure. Finally, we launched DRAG with t iterations. In Figure 3, we present
the estimated MK quantiles regions of ν, where each color represents a region, starting from B(0, 0.1)
in the center. In this example, taking t = 107 samples was sufficient and produced a similar result to
when more samples were used.
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Figure 4: Error evolution of DRAG for gt and
gt as M grows, for Examples 1 and 3, t = M2

iterations.

Dependence of our convergence rate as M
grows.

As discussed in Section 3.4, our theoretical anal-
ysis indicates a dependence on w4

min. In Exam-
ples 1 and 3, where similar problems arise with
increased point counts, we run our algorithm
with progressively larger M and M2 iterations.
Our theory predicts that the error of the estimator
gt should decrease linearly. However, if the de-
pendence of DRAG is indeed on w4

min, the error
of the estimator gt would remain constant or de-
crease linearly if the actual dependence is w2

min.
As illustrated in Figure 4, our theoretical bound
accurately matches the behavior of ∥gt − g∗∥2.
Moreover, the behavior of ∥gt − g∗∥2 suggests
that our theoretical bound may not be sharp, as
discussed after Theorem 2, since we observe a
linear decrease.

Further experiments.

In the appendix, we present additional experiments that, while not altering our theoretical findings,
could be highly beneficial for practitioners. Specifically, we provide evidence that mini-batching
with GPU computation and weighted averaging of the iterates gt can significantly accelerate the
algorithm. We also briefly discuss the choice of the parameters a and b and compare DRAG with
SGD and ASGD.

6 Conclusion

In EOT, a decreasing regularization parameter naturally appeals to practitioners who use annealing
schemes to speed up Sinkhorn-like algorithms. Similarly, in the statistical community, a regular-
ization that decreases with the number of points is preferred to more accurately approximate true
OT quantities. With our algorithm, DRAG, we show that these two motivations for decreasing
regularization can coexist successfully. To the best of our knowledge, this is the first algorithm in
the OT literature that adapts to both the regularization and the sample size. Additionally, we derive
two new minimax lower bounds for approximating OT quantities in the one-sample semi-discrete OT
setting and show that DRAG nearly achieves these bounds.

Our algorithm nearly achieves the minimax rate when b is close to 1. However, the closer b is to 1, the
higher the constants in the rates. In practice, the choice a = b ≈ 0.75 gives robust practical results,
as shown in Figure 7 in the appendix. An open direction is to design an improvement of our DRAG
algorithm that achieves the minimax lower bound, while not suffering from large multiplicative
constants, and remaining as computationally and memory efficient as our algorithm.

Our results can also motivate further investigation into different lines of work: (i) Studying the
convergence of the entropic discrete potential in semi-discrete OT for various costs. The key challenge
in extending our algorithm’s convergence proof is achieving results analogous to those in ([17],
Corollary 2.2) for different cost functions. Alternatively, one could design an algorithm matching our
bounds without entropic regularization, avoiding the need for such results. (ii) Developing decreasing
regularization algorithms in the continuous case to efficiently approximate OT distances and maps.
(iii) Adapting our approach to demonstrate or improve the acceleration of entropic annealing schemes
for EOT solvers in the discrete case.
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A Additional experiments

Weighted Averaging: Maintaining a better trade-off between averaged and non-averaged
iterations. Since the dependence of DRAG iterates gt on the number of points M is at least
quadratic, whereas for the non-averaged iterates gt it is only linear, when the total number of
iterations t is insufficient (i.e., t ≤ M2), gt can outperform gt as an estimator. One strategy to try to
consistently achieve the best estimator regardless of the time t is through weighted averaging [35].

Namely, we replace the averaged estimator gt =
1

t+1

∑t
k=0 gt, by

g
(ω)
t :=

1∑t
k=0 ln(k + 1)ω

t∑
k=0

ln(k + 1)ωgk,

with a parameter ω > 0. The parameter ω balances the weights assigned to the estimators gk. As
ω increases, greater importance is given to the more recent estimates, while we retrieve gt when ω
goes to 0. As for the usual averaged estimators, we can perform the weighted average online, without
having to store all the iterates, with the recursion

g
(ω)
t+1 =

(
1− ln(t+ 1)ω∑t

k=0 ln(k + 1)ω

)
g
(ω)
t +

ln(t+ 1)ω∑t
k=0 ln(k + 1)ω

gt+1.

It is important to note that g(ω)
t will have the same asymptotic convergence guarantees as gt.

In the following experiments, we operate under conditions where the number of iterations t is
insufficient for the estimator gt to outperform gt. We set M = 1000 in Examples 1 and 3, select
ω = 2 for the weighted average parameter, and fix t at 105.
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100

101

102

E
rr

or

Example 1

100 1000 10000

Iterations

10−2

10−1
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102

Example 3

∝ 1/tb ∝ 1/t2b ‖gt − g∗‖2 ‖gt − g∗‖2 ‖g(ω)
t − g∗‖2

Figure 5: Comparison between gt,gt and g
(ω)
t on Examples 1 and 3, fixing M = 1000 and ω = 2.

As illustrated in Figure 5, the estimator gt begins to converge after approximately M iterations and
remains superior to gt throughout the figure, since we are still within the regime where t ≤ M2.
However, we see that the weighted average estimator g(ω)

t consistently outperforms gt and already
surpasses gt in performance after 105 iterations in Example 1.

Mini-batch DRAG. As for Vanilla SGD, we can take advantage of GPU parallelization and replace
the gradient estimator using one sample X ∼ µ

∇ghε(X,g)

by a mini-batch estimator, using nb ≥ 1 i.i.d samples X1, ..., Xnb
samples of the source measure at

once

1

nb

nb∑
k=0

∇ghε(Xk,g). (12)

Of course, no matter the choice nb, (12) defines an unbiased estimator of ∇Hε(g).

Using a mini-batch of size nb, we suggest multiplying γ1 by
√
nb, as is usual with mini-batch SGD.

The following figure shows the acceleration due to mini-batching in Example 2, while maintaining
the same computational time when using a GPU. Indeed, each mini-batch estimator has an error an
order of magnitude lower than the non-batched ones, even with a small mini-batch size of nb = 16.
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‖ḡt − g∗‖2
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Figure 6: Comparison of the non mini-batched and mini-batched estimators on Example 2, nb = 16.

Influence of the parameter a and b. In Figure 7, we illustrate the behavior of DRAG when
changing the parameters a and b, on Example 2.
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(a) Error between the estimators gt and gt and
the optimal potential g∗ on Example 2, a ∈
{0, 6, 0.75, 0.9} and γ1 =

√
wmin, b = 0.75.
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(b) Error between the estimators gt and gt and
the optimal potential g∗ on Example 2, b ∈
{0, 6, 0.75, 0.9} and γ1 =

√
wmin, a = 0.75.

Figure 7: Evolution of the errors, when changing one of the parameters a or b.

As we can see, the choice a = b = 0.75 seems to be a good compromise on this experiments. We
also see on Figure 7b that the non-averaged estimates with the best convergence rate is when b = 0.9.
This behabiour is concordant with our theory. However, as we can see, the parameter b = 0.9 does
not yet benefits from the acceleration thanks to averaging.

DRAG compared with SGD and ASGD. We compare here the performance of our algorithm
DRAG compared to the vanilla SGD and ASGD, introduced in [24] for EOT, on Example 2. For our
comparison, since we fixed the parameters of DRAG to (

√
M, 3/4, 3/4) and ran the algorithm for

t = 105 iterations, we have εt = 10−15/4 ≃ 10−4. We thus set ε = εt to run SGD and ASGD. As we
can see in Figure 8, DRAG clearly outperforms SGD and ASGD. We note that the poor convergence
of SGD and ASGD is not surprising with a small regularization parameter, as already observed, for
instance, in [47].
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‖ḡt − g∗‖2, DRAG

‖gt − g∗‖2, SGD, γ1 =
√
M
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Figure 8: Comparison of DRAG with SGD and ASGD with a fixed regularization of εt = 10−15/4,
on Example 2.
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B Proofs of the main paper

Additionnal notations for the proofs.

For any c > 0 we define the function t 7→ Ψc(t) such that

T∑
t=1

t−c ≤ Ψc(T ) :=


1 + ln(T + 1) if c = 1,
2c−1
c−1 if c > 1,

1 + 1
1−c (T + 1)1−c if c < 1.

(13)

For a sequence (ut)t∈N, if t
2 /∈ N, u t

2
must be understood as u⌈ t

2⌉.

B.1 Proof of Theorem 1: Convergence rate of the non averaged iterates.

In all the sequel, we note

∆t = ∥gt − g∗
εt∥2.

Remark that the dependence in t is both in the estimator gt and the optimizer g∗
εt . We also recall that

we note DC := sup
g,g′∈C

∥g − g′∥ < ∞ .

We will divide the proof into two parts.

B.1.1 Part 1: proof for p = 1.

Proof. By definition of the gradient step at time t+ 1 and since g∗
εt+1

∈ C, we have

∆t+1 = ∥gt+1 − g∗
εt+1

∥2

= ∥ProjC(gt − γt+1∇ghεt(gt, Xt+1))− g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt+1

∥2.

Then, incorporating the change of optimum between time t and t+ 1, we get

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt + g∗

εt − g∗
εt+1

∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + 2

〈
gt − γt+1∇ghεt(gt, Xt+1)− g∗

εt ,g
∗
εt − g∗

εt+1

〉
+ ∥g∗

εt − g∗
εt+1

∥2.

Using Corollary 2.2 in [17], see (5), there exists K0 > 0 such that for any α′ ∈]0, α[

∥g∗
εt − g∗

εt+1
∥ ≤ K0ε

α′

t (εt − εt+1) ≤ K0t
−aα′ (

t−a − (t+ 1)−a
)
≤ aK0t

−(1+a+aα′). (14)

For clarity, we define rt := aK0t
−(1+a+aα′) and Rt := (2DC + 2γt+1 + rt)rt.

Using that for all t, gt ∈ C, and that for all x ∈ Rd,g ∈ RM , ∥∇ghεt(g, x)∥ ≤ 2, we obtain

∆t+1 ≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 + (2DC + 2γt+1)∥g∗

εt − g∗
εt+1

∥+ ∥g∗
εt − g∗

εt+1
∥2

≤ ∥gt − γt+1∇ghεt(gt, Xt+1)− g∗
εt∥2 +Rt

≤ ∥gt − g∗
εt∥2 − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ γ2

t+1∥∇ghεt(gt, Xt+1)∥2 +Rt

≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 4γ2

t+1 +Rt.

Note that, since we have 1 + a+ aα > 2b, we can also take α′ ∈]0, α[ such that 1 + a+ aα′ > 2b.
Therefore, the sequence Rt/γ

2
t is decreasing and tends to 0. For conciseness, we note

ta,α := min
{
t ≥ 1 : Rt ≤ γ2

t

}
. (15)
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For any t ≥ ta,α, we then obtain the following upper bound of ∆t+1 in terms of ∆t and the gradient
direction:

∆t+1 ≤ ∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1. (16)

Noting Ft the filtration generated by the samples X1, . . . , Xt
iid∼ µ, that is Ft = σ (X1, . . . , Xt) and

taking the conditional expectation, we have

E [∆t+1|Ft] ≤ ∆t − 2γt+1

〈
∇Hεt(gt),gt − g∗

εt

〉
+ 5γ2

t . (17)

Using Lemma 2 and denoting Agt,εt = 1− e−
2
εt
[1∧∥gt−g∗

εt
∥], one has for all t〈

∇Hεt(gt),gt − g∗
εt

〉
≥ Agt,εt

Kw

∥∥gt − g∗
εt

∥∥2
2
=: λt∆t. (18)

Then, it comes

E [∆t+1 | Ft] ≤ (1− 2λtγt+1)∆t + 5γ2
t+1. (19)

We note

λ =
wmin(1− e−2)

2max{2R2, 1} , (20)

and note that λt ≥ λ if ∥gt − g∗
εt∥∞ ≥ εt. Therefore, we have

E [∆t+1 | Ft] ≤ (1− 2λγt+1)∆t +
[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
γt+1∆t + 5γ2

t+1.

Moreover, ∥gt − g∗
εt∥∞ ≤ εt implies that ∆t ≤ Mε2t . Therefore,

E [∆t+1 | Ft] ≤ (1− 2λγt+1)∆t +
[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
γt+1Mε2t + 5γ2

t+1.

Using that (λ− λt)1∥gt−g∗
εt

∥∞ ≤ λ and taking the expectation, we obtain

E [∆t+1] ≤ (1− 2λγt+1)E[∆t] + 2λMε2tγt+1 + 5γ2
t+1.

Noting tγ := min {t, 2λγt+1 ≤ 1} and t0 := max{ta,α, tγ} , we use Proposition 1 to obtain

E [∆t] ≤ exp

(
−2λ

t∑
i=t0+1

γi

)(
D2

C +

t∑
k=t0

5γ2
k

)
+

5

2λ
γ t

2−1 +Mε2t
2−1. (21)

Applying Corollary 2, the exponential product converges exponentially to 0. Therefore, using the
value of λ defined in (20) , an asymptotic comparison gives

E[∆t] ≤
5[2R2 ∨ 1]

wmin(1− e−2)
γ t

2−1 +Mε2t
2−1 +O(γ2

t ) .

In the usual case where the discrete measure ν has uniform weights equal to 1
M , we deduce from the

relation 2a ≥ b, by the assumption of the theorem, that

E[∆t] = O (Mγt) .

B.1.2 Part 2: proof for p = 2.

Proof. Building on the proof of the case p = 1, we start by squaring equation (16). For t ≥ ta,α,
where ta,α is defined in (15), we have

∆2
t+1 ≤

(
∆t − 2γt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉
+ 5γ2

t+1

)2
≤ ∆2

t + 4γ2
t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2
+ 25γ4

t+1

− 2∆tγt+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:A

+5∆tγ
2
t+1 − 10γ3

t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉︸ ︷︷ ︸
=:B

.
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Taking the conditional expectation, recalling that λt is defined in 18, we obtain thanks to Lemma 2

E[A | Ft] ≥ 2∆2
tλtγt+1.

We also use the simple bound

E[B | Ft] ≥ 0.

These two inequalities lead to

E[∆2
t | Ft] ≤ ∆2

t (1− 2λtγt+1) + 4γ2
t+1E

[〈
∇hεt (gt, Xt+1) ,gt − g∗

εt

〉2 | Ft

]
+ 25γ4

t+1 + 5∆tγ
2
t+1.

(22)

Using that the gradient norm is bounded by two, we use Cauchy-Schwarz inequality to obtain

4γ2
t+1

〈
∇ghεt(gt, Xt+1),gt − g∗

εt

〉2 ≤ 16γ2
t+1∥gt − g∗

εt∥2 ≤ 16∆tγ
2
t+1.

Recalling the value of λ defined in (20):

λ =
wmin(1− e−2)

2max{2R2, 1} ,

we use Hölder’s inequality to obtain

21∆tγ
2
t+1 ≤

(
∆t

√
2λ

1√
2λ

21γt+1

)
γt+1

≤ γt+1∆
2
tλ+

212

4λ
γ3
t+1.

Summing up these inequalities, we obtain

E[∆2
t+1 | Ft] ≤ (1− 2λtγt+1 + λγt+1)∆

2
t +

212

4λ
γ3
t+1 + 25γ4

t+1.

Similarly to the case p = 1, we have

E[∆2
t+1 | Ft] ≤ (1− 2λγt+1 + λγt+1)∆

2
t +

[
2(λ− λt)1∥gt−g∗

εt
∥∞≤εt

]
∆2

tγt+1 +
212

4λ
γ3
t+1 + 25γ4

t+1

≤ (1− λγt+1)∆
2
t + 2λM2ε4tγt+1 +

212

4λ
γ3
t+1 + 25γ4

t+1.

Taking the expectation, we obtain

E[∆2
t+1] ≤ (1− λγt+1)E[∆2

t ] + 2λM2ε4tγt+1 +
212

4λ
γ3
t+1 + 25γ4

t+1.

Proceeding as for the case p = 1, that is, applying Proposition 1 and Corollary 2 concludes the proof.

B.2 Proof of Theorem 2: Convergence rate of DRAG

Proof. We start by a decomposition of the gradient step, already present in [26]. By abuse of notation,
we note

∇2
k := ∇2Hεk(g

∗
εk
)

and define the following differences:

pk := ProjC (gk − γk+1∇ghεk (gk, Xk+1))− (gk − γk+1∇ghεk (gk, Xk+1)) ,

ξk+1 := ∇Hεk (gk)−∇ghεk (gk, Xk+1) ,

δk := ∇Hεk (gk)−∇2
k (gk − g∗

k) .
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The term pk represents the difference between the projected and non-projected steps. Remark that
pk = 0 if gk−γk+1∇ghεk (gk, Xk+1) ∈ C. The difference of martingale ξk represents the difference
between the gradient and its unbiased version. Finally, δk represents the difference between the
gradient at gk with the linearized Hessian at the optimum.

Noting IM the identity matrix of MM (R), observe that for any k ∈ N

gk+1 − g∗
εk

= ProjC (gk − γk+1∇ghεk(gk, Xk+1))− g∗
εk

= gk − γk+1∇ghεk(gk, Xk+1)− g∗
εk

− pk

= gk − γk+1∇Hεk(gk, Xk+1)− g∗
εk

+ γk+1ξk+1 − pk

=
(
IM − γk+1∇2

k

)
(gk − g∗

k)− γk+1δk + γk+1ξk+1 + pk.

Thus, we have that

∇2
k

(
gk − g∗

εk

)
=

gk − gk+1

γk+1
− δk + ξk+1 +

pk
γk

.

Observe that there is an orthogonal matrix Uk such that ∇2
k = Uk diag (λk,1, . . . , λk,M−1, 0)U

⊤
k .

Therefore, in the following, we denote(
∇2

k

)−1
= Uk diag

(
λ−1
k,1, . . . , λ

−1
k,M−1, 0

)
U⊤
k

the inverse of ∇2
k in the space Vect(1M )⊥. Note that we have ([4], Lemma A.1, equation (A.4))

min
j∈J1,M−1K

λk,j ≥
wmin

εk
, k ≥ 0.

Taking all the equalities in Vect(1M )⊥, that is, considering all our vectors in the subspace
Vect(1M )⊥, we have

(
gt − g∗

εt

)
=

1

t+ 1

t∑
k=0

(
∇2

k

)−1 gk − gk+1

γk+1︸ ︷︷ ︸
:=L1,t

− 1

t+ 1

t∑
k=0

(
∇2

k

)−1
δk︸ ︷︷ ︸

:=L2,t

+
1

t+ 1

t∑
k=0

(
∇2

k

)−1
ξk+1︸ ︷︷ ︸

:=Mt

+
1

t+ 1

t∑
k=0

(
∇2

k

)−1 pk
γk+1︸ ︷︷ ︸

:=L3,t

+
1

t+ 1

t∑
k=0

(g∗
k − g∗

t )︸ ︷︷ ︸
=:Dt

.

Remark that the term 1
t+1Dt comes from the difference between 1

t+1

∑t
k=0 g

∗
εk

and g∗
εt .

We will now bound the convergence rate for each of the sums in our decomposition. Note that the
terms L1,t, L2,t and L3,t will be, surprisingly, the limiting terms. Indeed, in stochastic optimization,
Mt is usually the main term. Nevertheless, the presence of the inverse of the Hessian

(
∇2

k

)−1
, whose

largest eigenvalues is of order εk, decreasing with k ≥ 1, makes it negligible.

• Convergence rate for L1,t. By the definition of our gradient step, we have

1

t+ 1
L1,t =

1

t+ 1

t∑
k=0

(
∇2

k

)−1 γk+1∇ghεk(gk, xk+1)

γk+1
.

Then, using that the gradient norm is bounded by 2, we obtain

1

t+ 1

(
E
[
∥L1,t∥2

]) 1
2 ≤ 2

t+ 1

t∑
k=0

∥(∇2
k)

−1∥

≤ 2w−1
min

t+ 1
Ψa(t).
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• Convergence rate for L2,t. Using Lemma 2, for all k ≥ 0, we have

∥δk∥ =
∥∥∇Hεk(gk)−∇2Hεk

(
g∗
εk

) (
gk − g∗

εk

)∥∥ ≤ 4

εk
∥gk − g∗

εk
∥2∞.

In addition, thanks to Theorem 1, E
[
∆2

k

]
= O(w−2

minγ
2
k). That is, there is a positive constant C2

such that for all k ≥ 1, we have E
[
∆2

k

]
≤ C2w

−2
mink

−2b. Therefore,

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2 ≤ 4w−1

min

(t+ 1)

t∑
k=0

√
E
[∥∥gk − g∗

εk

∥∥4
∞

]
≤ 4w−1

min

(t+ 1)

t∑
k=0

√
E [∆2

k]

≤ 4w−2
min

√
C2

(t+ 1)
Ψb(t)

= O(w−2
mint

−b) .

Remark: When the weights are uniform, i.e., wmin = 1/M , the bound can be of the order of M
smaller since ∥.∥∞ ≤ ∥.∥ ≤

√
M − 1∥.∥∞. Therefore, the bound can be closer to

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2

= O(Mt−b).

To emphasis this, we can fix β ∈ [0, 1] such that, when w = 1
M 1M , we have

1

t+ 1

(
E
[
∥L2,t∥2

]) 1
2

= O(M1+βt−b).

• Convergence rate for L3,t. In the same way as for L1,t, we have that for any k

∥pk∥ ≤ 2γk ,

such that

1

t+ 1

(
E
[
∥L3,t∥2

]) 1
2 ≤

t∑
k=0

2∥(∇2
k)

−1∥ ≤ 2w−1
minΨa(t).

However, we can retrieve a better convergence rate for this term.

• Convergence rate for Mt. Observe that

E[∥Mt∥2] = E
[
∥Mt−1∥2 + 2

〈
(∇2

t )
−1⊤Mt−1, ξt

〉
+ ∥(∇2

t )
−1∥2∥ξt∥2

]
,

with

E
[〈
(∇2

t )
−1⊤Mt−1, ξt

〉]
= 0.

Moreover, we have ∥ξ∥ ≤ 4, such that

1

t+ 1

(
E[∥Mt∥2]

)1/2
=

4w−1
min

t+ 1

√
Ψ2a(t) ≤

√
2a

2a− 1

4w−1
min

t+ 1
.

• Convergence rate for Dt. Thanks to (5), one as for all 0 < α′ < α,

1

t+ 1
Dt ≤

K0

t+ 1

t∑
k=0

εα
′

k (εk − εt)

≤ K0

t+ 1

t∑
k=0

ε1+α′

k

≤ K0

t+ 1
Ψa+aα′(t),
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and this term is negligible since a+ α′ > b.

• Conclusion. Taking a ≥ b as in the Theorem’s assumption and summing up the inequalities, we
obtain

E
[
∥gt − g∗

εt∥2
] 1

2 ≤ O(w2
mint

−b) + o(t−b).

When w = 1
M 1M , we obtain

E
[
∥gt − g∗

εt∥2
] 1

2 ≤ O(M1+βt−b) + o(t−b).

Using (5), for any α′ < α we have

∥g∗
εt − g∗∥ ≤ K0ε

1+α′

t ≤ K0t
a+aα′

= o(t−b).

Finally, we have

E
[
∥gt − g∗∥2

] 1
2 ≤ O(w2

mint
−b) + o(t−b),

and when w = 1
M 1M ,

E
[
∥gt − g∗∥2

] 1
2 ≤ O(M1+βt−b) + o(t−b).

Remark: The main theorem considers a ≥ b to have the best convergence rate. However, note that
from the proof, we can read the result when b/2 ≤ a < b. In this case, the limiting terms are only
L1,t and L3,t.

B.3 Proof of Corollary 1: OT cost estimation

Proof. EOT cost estimation.

For any ε > 0, the function Hε is 1
ε -smooth. Therefore, for any g ∈ RM , we have

Hε(g)−Hε(g
∗
ε) ≤

1

2ε
∥g∗

ε − g∥2.

Using our estimator gt and (5), we obtain

Hε(gt)−Hε(g
∗
ε) ≤

1

ε

(
∥g∗

ε − g∗
t ∥2 + ∥gt − g∗

t ∥2
)

≲ ε2α
′−1(ε− εt)

2 +
1

εt2b
.

Remark. Using the triangular inequality and Theorem 2.3 in [17], we also have

|H0(g
∗)−Hε(gt)| ≲ ε2 + ε2α

′−1(ε− εt)
2 +

1

εt2b
.

OT cost estimation. For any vector g ∈ RM , we recall the definition of L(g) =
⋃M

j=1 Li(g) :

for all j ∈ J1,MK, Lj(g) :=

{
x ∈ Rd;gc(x) =

1

2
∥x− yj∥22 − gj

}
.

Note that L(g) defines a partition, i.e. µ (Li(g) ∩ Lj(g)) = 0 when i ̸= j, and the convex sets Lj(g)
are called power or Laguerre cells. We define the set

Kδ :=
{
g : RM → R | ∀i ∈ J1,MK, µ (Li(g)) > δ

}
.

Using Theorem 4.1 in [30], under Assumption 1, H0 is uniformly C2,α on Kδ . That is, there exists a
constant L such that H0 is L-smooth on Kδ. Note that the constant L depends on µmin, δ, R. We
refer to [30], Remark 4.1 for more details.
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By the first order condition, as soon as δ ≤ wmin, we have g∗ ∈ Kδ. Indeed, at the optimum, we
have for all i ∈ J1,MK,Li(g

∗) = wi. We fix here δ = 1
10wmin.

Thanks to the L-smoothness, for any g ∈ Kδ , we have

|H0(g)−H0(g
∗)| ≤ L

2
∥g − g∗∥2.

Note that, for any g ∈ RM and i ∈ J1,MK, the difference of measure of the Laguerre cells Li(g)
and Li(g

∗) is at most linear with respect to ∥g − g∗∥∞. We refer to Theorem 4 or Section 6.4.2 in
[43] for more details.

Therefore, there exists a constant CL such that, as soon as ∥g − g∗∥2 ≤ CL, we have that g ∈ Kδ.
This constant depends on δ, µmax, R and d as in Theorem 4. Using Theorem 2, E[∥gt − g∗∥2] =
O(t−2b). Then

E [|H0(gt)−H0(g
∗)|] = E

[
|H0(gt)−H0(g

∗)|1gt∈Kδ

]
+ E

[
|H0(gt)−H0(g

∗)|1gt /∈Kδ

]
≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1gt /∈Kδ ]

≤ L

2
E[∥gt − g∗∥2] + max

g∈C
|H0(g)−H0(g

∗)|E[1∥gt−g∗∥2>CL
]

= O(t−2b) ,

where the Markov inequality of order 1 was used on E[1∥gt−g∗∥2>CL
].

B.4 Proof of Theorem 4: OT map estimation

Proof. We will show here that a rate of convergence of gt to g∗
0 gives a convergence rate for the map

estimation. The Brenier map is equal to Tµ,ν(x) = x−∇(g∗
0)

c(x); see for instance [43], Theorem
1.17. We will thus focus on the convergence of ∇gc

t to ∇(g∗
0)

c.

For all j ∈ J1,MK, if x is the interior of Lj(g), we have
∇gc(x) = x− yj . (23)

Therefore, given g,g′ ∈ RM , if there exists a j ∈ J1,MK such that x is the interior of Lj(g)∩Lj(g
′)

we have
∇gc(x) = ∇(g′)c(x).

We will now follow arguments from [43], Section 6.4.2. Fix j, j′ ∈ J1,MK such that j ̸= j′ and x is
in the interior of Lj(g) ∩ Lj′(g

′). By definition of the c-transform, we can see that Lj(g) is defined
by M − 1 linear inequalities of the form

⟨x, yj′ − yj⟩ ≤ ag(j, j
′) := gj − gj′ +

1

2
∥yj′∥22 −

1

2
∥yj∥22 .

Similarly, interchanging the role of g, g′ and j, j′ we have

⟨x, yj − yj′⟩ ≤ ag′(j′, j) := g′j′ − g′j +
1

2
∥yj∥22 −

1

2
∥yj′∥22 .

We obtain that
Lj(g) ∩ Lj′(g

′) ⊂ {x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j
′)} .

Moreover, noting h = (h1, ..., hM ) = g − g′, we see that
|ag′(j′, j) + ag(j, j

′)| ≤ |hj′ − hj | . (24)
We have

µ
(
A :=

{
x ∈ Rd,∇gc(x) ̸= ∇(g′)c(x)

})
= µ

⋃
j<j′

Lj(g) ∩ Lj′(g
′)


≤
∑
j<j′

µ (Lj(g) ∩ Lj′(g
′))

≤
∑
j<j′

µ
(
{x ∈ Rd : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j

′)}
)
.
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Under Assumption 1 µ is a measure such that Supp(µ) ⊂ B(0, R) and it admits a density dµ
bounded by dµmax. Thus,

µ(A) ≤ dµmax

∑
j<j′

λRd({x ∈ B(0, R) : −ag′(j′, j) ≤ ⟨x, yj′ − yj⟩ ≤ ag(j, j
′)})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤
〈
x,

yj′ − yj
∥yj′ − yj∥2

〉
≤ ag(j, j

′)

∥yj′ − yj∥2

})

≤ dµmax

∑
j<j′

λRd

({
x ∈ B(0, R) : − ag′(j′, j)

∥yj′ − yj∥2
≤ x1 ≤ ag(j, j

′)

∥yj′ − yj∥2

})
,

by isotropy of the Lebesgue measure. Combining this remark with (24) yields

µ(A) ≤ dµmaxR
d−1

∑
j<j′

|hj′ − hj |
∥yj′ − yj∥2

.

Similarly

∥∥ (∇gc(·)−∇(g′)c(·)∥q ∥
p
Lp(µ) ≤

∑
j<j′

∫
Lj(g)∩Lj′ (g

′)

∥ (∇gc(·)−∇(g′)c(·)∥q dµ(x)

≤
∑
j<j′

∥yj′ − yj∥qµ (Lj(g) ∩ Lj′(g
′))

≤ dµmaxR
d−1

∑
j<j′

∥yj′ − yj∥q|hj′ − hj |
∥yj′ − yj∥2

≤ dµmaxM
(2−q)+/2qRd−12M∥h∥1 .

So, in particular, there exists C∆ > 0 independent of the location of the points yj but growing at least
linearly in M such that

∥∥ (∇gc(·)−∇(g′)c(·)∥q ∥
p
Lp(µ) ≤ C∆∥g − g′∥1 ≤ C∆

√
M∥g − g′∥.

Plugging the convergence rate of gt to g∗ concludes the proof.

B.5 Proof of Theorem 3: Minimax estimation of the discrete OT potential

Proof. Let Θ ⊆
{
θ = (θ1, ..., θM ) ∈ RM ; θ1 = 0

}
and ν be a fixed discrete measure. For each

θ ∈ Θ, consider ρθ ∈ Pα(B(0, R)) such that θ is the only vector in Θ for which the couple (θc, θ) is
solution of the dual of OT(ρθ, ν).

In our class of probabilities, the minimax estimation of the optimal transport potential θ, given t > 0
i.i.d samples of the source measure, can be written as

RΘ
M,t := inf

θ̂(t)

sup
θ∈Θ

Eρθ

[
∥θ̂(t) − θ∥2

]
,

where θ̂(t) is constructed with the t iid samples from the source measure µ. Note that

RΘ
M,t ≤ inf

g(t)
sup

µ∈Pα(B(0,R))

Eµ

[
∥g(t) − g∗∥2

]
, (25)

where the infimum is taken over all vectors g(t) constructed with the t iid samples of µ.

Let M ≥ 2 and take νM the uniform measure on the points
{

k
M ; k ∈ J1,MK

}
.

For δ ≥ 0, we note ρθδ ∼ U([δ, δ+1]). Note that since d = 1, the optimal transport map is monotone
non-decreasing (see, for instance, Chapter 2 in [43]). Thus, for all k ∈ J1,MK, we must have the
identity

Tρθδ
,ν(x) = k/M, x ∈ [δ + (k − 1)/M ; δ + k/M ].
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Using the above information, the vector θδ ∈ Θ is optimal for the semi-dual problem if and only if it
satisfies the following inequalities for all k ∈ J1,M − 1K

∀x ∈ [δ + (k − 1)1/M, δ + k/M ] : θδ,k+1 − θδ,k ≤ − 1

M
x+

(2k + 1)2

2M2
,

∀x ∈ [δ + k/M, δ + (k + 1)/M ] : θδ,k+1 − θδ,k ≥ − 1

M
x+

(2k + 1)2

2M2
.

For all k ∈ J1,M − 1K, we thus obtain that

θδ,k+1 − θδ,k =
1

2M2
− δ

1

M
.

In particular, for any δ ≥ 0, we have

∥θ0 − θδ∥22 =

M−1∑
k=1

(
kδ

1

M

)2

=
1

M2

δ2

6
[M(M − 1)(2M − 1)]

≥ 1

6
δ2(M − 1).

Taking P,Q ∈ P(Rd) with densities ρP and ρQ, we recall that the Hellinger distance is defined by

dH(P,Q) :=

(∫
Rd

(√
ρP (x)−

√
ρQ(x)

)2

dλRd(x)

) 1
2

. (26)

In particular, we have dH(ρθ0 , ρθδ) =
√
2δ. Applying Le Cam’s Lemma (see, for instance [52],

Chapter 15) with δ = 1
8t gives

RΘ
M,t ≥

1

4

(
1−

√
tdH (ρθ0 , ρθδ)

)
∥θ0 − θδ∥22 ≥ (M − 1)

3072t2
.

Using the inequality (25) concludes the the proof.

B.6 Proof of Theorem 5: Minimax estimation of the transport map

Proof. We fix the source measure ν = 1
2δ1 +

1
2δ2. For p ∈ [1,∞[, we define

Q2,t := inf
T̂ (t)

sup
µ∈Pα(B(0,R))

Eµ

[
∥∥T̂ (t) − Tµ,ν∥∥pLp(U([0,1]))

]
,

where T̂ (t) is constructed with t i.i.d samples from the source measure µ. Note that we have

inf
T̂ (t)

sup
µ∈Pα(B(0,R))

Eµ

[
∥∥T̂ (t) − Tµ,ν∥∥pLp(µ)

]
≥ Q2,t. (27)

We define the family of source measures ρδ = U([δ, 1 + δ]). Since the Brenier map is monotone
increasing on the support of the source measure, we have

Tδ(x) = 1, ∀x ∈
[
δ,
1

2
+ δ

]
,

Tδ(x) = 2, ∀x ∈
[
1

2
+ δ, 1 + δ

]
.

Fixing δ > 0, we see that
∥Tρθ0

,ν − Tρθ1
,ν∥pLp(U([0,1])) = δ.

Using Le Cam’s Lemma with δ = 1
8t , as in the proof of Theorem 3, we obtain

Q2,t ≥
1

64t
.

Using (27) concludes the proof.
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B.7 Proof of Lemma 1: Projection step

Proof. Following [36], we know that an optimal couple of functions (fε, gε) optimizing the dual
formulation of EOT with regularization ε ≥ 0 satisfies the Schrödinger equations. That is, we can
take for all y ∈ Rd, gε(y) = f c,ε

ε (y). Moreover, 1
2∥x− y∥2 is R-Lipschitz on B(0, R). Therefore,

since by Assumption 1, we have Supp(µ) ⊂ B(0, R) and Supp(ν) ⊂ B(0, R), we can exploit the
Lipschitz property of our cost function on B(0, R). Using that the (c, ε)-transform has the same
modulus of continuity as c (see Lemma 3.1 in [36]), we get, for all y, y′ ∈ Rd:

|f c,ε
ε (y)− f c,ε

ε (y′)| ≤ R∥y − y′∥.
That is, coming back to the function g, we have for all j, j′ ∈ {1, ...,M} :

|gε(yj)− gε(yj′)| ≤ R ∥yj − yj′∥ .
By writing back our dual potential as a vector, that is g∗ = (g∗1 , . . . , g

∗
M ), where for all j ∈

J1,MK, g∗j = gε(yj), we have

|g∗j − g∗j′ | ≤ R∥yj − yj′∥.

Moreover, if g∗ optimizes the semi-dual Hε, then for any β ∈ R, the vector g∗ + β1M optimizes Hε.
In particular, g∗ − gε(y1)1M , which we rename g∗, optimizes the semi-dual, with g∗1 = 0. Hence,
for all j ∈ 1, ...,M ∣∣g∗y1

− g∗yj

∣∣ = ∣∣g∗yj

∣∣ ≤ R∥y1 − yj∥.
That is, there exists an optimizer in the desired closed convex set.

Remark: Note that for other costs such as c(x, y) = ∥x − y∥ which defines the 1-Wasserstein
distance, this projection set can be more relevant. Indeed, in this case, the cost is 1-Lipschitz and the
projection set depends only on the target measure ν and no assumption of bounded cost is needed. In
this case, the practitioner could choose the index k such that gk = 0, minimizing for instance the
Euclidean diameter of the corresponding set.

B.8 Proof of Lemma 2

Proof. Since this proof heavily relies on Lemma A.2 in [4], we will begin by rewriting the essential
elements of their proof, using our notations, to derive our lemma. Note that in their proof, they study
the concave problem −Hε (which they refer to as Hε).

Fix ε > 0 and g ∈ RM . Note g∗
ε ∈ Vect(1M )⊥ such that ming∈RM Hε(g) = Hε(g

∗
ε). For any

s ∈ [0, 1], denote gs = g∗
ε + s(g − g∗

ε) and define the function

φ : s ∈ [0, 1] 7→ Hε(gs).

Following equation (A.21, [4]), we have

|φ′′′(s)| ≤ 1

ε
φ′′(s) max

1≤j≤M

∣∣gj − g∗ε,j −m (x,gs)
∣∣ , (28)

where for all x ∈ Rd and any s ∈ [0, 1], we define m(x,gs) by

m(x,gs) :=

M∑
j=1

χε
j(x,gs)(gs − g∗

ε).

Instead of using Cauchy-Schwarz inequality as in [4], we use Hölder’s inequality with the Hölder
conjugates p = 1, q = +∞ to obtain

max
1≤j≤M

∣∣gj − g∗ε,j −m (x,gs)
∣∣ ≤ 2∥g − g∗

ε∥∞. (29)

Plugging (29) in (28) gives

|φ′′′(s)| ≤ 2

ε
φ′′(s)∥g − g∗

ε∥∞. (30)
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Then, following from equation (A.23, [4]) to (A.27, [4]) with our new inequality (29) leads to∥∥∇Hε(g)−∇2Hε (g
∗
ε) (g − g∗

ε)
∥∥ ≤ 2

ε
∥g − g∗

ε∥∞ (φ(1)− φ(0)) ,

where φ(0) = Hε(g
∗
ε) and φ(1) = Hε(g). Remark that for all ε > 0, Hε is 2-Lipschitz for the ∥.∥∞

norm. That is, we have

φ(1)− φ(0) = Hε(g)−Hε(g
∗
ε) ≤ 2∥g − g∗

ε∥∞.

Therefore, we have the desired first bound in (6).

For the second bound in our proof, we still follow Lemma A.2 in [4] starting from line (A.28), with
our new value

δ =
2

ε
∥g − g∗

ε∥∞,

such that using (30), we have

φ′′′(s)

φ′′(s)
≥ −δ.

Integrating between 0 and t gives

φ′′(t) ≥ exp(−δs)φ′′(0). (31)

Using that φ′′(s) = (g − g∗
ε)

T ∇2Hε (gs) (g − g∗
ε) and that the smallest eigenvalue of ∇2Hε (g

∗
ε)

is greater than wmin/ε (Lemma A.1,[4]) implies that

φ′′(0) ≥ wmin

ε
∥g − g∗

ε∥2.

Then, using that φ′(s) = ⟨∇Hε(gs),g − g∗⟩ and integrating 31 between 0 and 1 gives

⟨∇Hε(g),g − g∗
ε⟩ ≥

wmin

ε

1

δ
(1− exp(−δ)) ∥g − g∗

ε∥2.

Using a disjunction of cases, we obtain

⟨∇Hε(g),g − g∗
ε⟩ ≥

 wmin

ε
ε
2

[
1− exp

(
−2∥g−g∗

ε∥∞
ε

)]
∥g − g∗

ε∥2∞ if ∥g − g∗
ε∥∞ ≤ 1,

wmin

∥g−g∗
ε∥∞ε

ε
2

[
1− exp

(−2
ε

)]
∥g − g∗

ε∥2∞ if ∥g − g∗
ε∥∞ ≥ 1.

Then, using the projection step, no matter if C = C∞ or C = Cu, we have

sup
x,y∈C

{∥x− y∥∞} ≤ 2R2.

We thus have ∥g − g∗
ε∥∞ ≤ 2R2, which leads to

min

{
wmin

ε

ε

2
;

wmin

∥g − g∗
ε∥∞ ε

ε

2

}
≤ wmin

[2R2 ∨ 1]

1

2
.

Finally, noticing that

exp

(−2[∥g − g∗
ε∥∞ ∧ 1]

ε

)
=

{
exp

(
−2∥g−g∗

ε∥∞
ε

)
if ∥g − g∗

ε∥∞ ≤ 1,

exp
(−2

ε

)
if ∥g − g∗

ε∥∞ ≥ 1,

we obtain the desired bound.
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C Additional and technical results

C.1 OT cost estimation with the c-transform

We can also derive a convergence rate without evaluating the regularized semi-dual nor using the
unknown fixed smoothness of H0, noticing that the vectorial c-transform is non-expansive. That is,
considering g1,g2 ∈ RM , we have ∥gc

1 − gc
2∥∞ ≤ ∥g1 − g2∥L∞(µ).

Theorem 6. Under the same assumptions as Theorem 2, we have

E∥f∗ − gc
t∥2∞ ≲

1

t2b
,

which leads to

E

∣∣∣∣∣OTc(µ, ν)−
∫

gc
tdν −

M∑
i=1

wigi

∣∣∣∣∣
2

≲
1

t2b
.

Proof. By definition of the c-transform, for all x, y ∈ Rd and all function g : Rd → R

gc(x) + gj ≤
1

2
∥x− yj∥2.

That is, for any f ∈ RM , we have

f c(x) = inf
j∈J1,MK

[
1

2
∥x− yj∥2 − fj

]
≥ gc(x) + inf

j∈J1,MK
[gj − fj ] ,

such that we obtain

gc(x)− f c(y) ≤ ∥g − f∥∞. (32)

Therefore, changing the role of f and g in (32), we get for all f ,g ∈ RM ,

sup
x∈Rd

|f c(x)− gc(x)| ≤ ∥f − g∥∞.

Since E∥gt − g∗∥2∞ ≲ 1
t2b

, we have

E
∫

|gc
t − (g∗)c|2 dµ ≲

1

t2b
,

E
∫

|gt − g∗|2 dν ≲
1

t2b
.

By developing the cost difference, we have

E
∣∣∣∣OTc(µ, ν)−

∫
gc
tdµ−

∫
gtdν

∣∣∣∣2 = E
∣∣∣∣∫ ((g∗0)

c − gct ) dµ+

∫
(g∗ − gt) dν

∣∣∣∣2
≤ 2E

∫
|gc

t − (g∗)c|2 dµ+ 2E
∫

|gt − (g∗)|2 dν

≲
1

t2b
.

C.2 Technical results

Proposition 1. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0,
satisfying the following:
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• The sequence δt follows the recursive relation:

δt+1 ≤ (1− ωγt+1) δt + νt+1γt+1, (33)

with δ0 ≥ 0 and ω > 0.

• Let γt converge to 0.

• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1}.

Then, for all t ≥ t0, we have the upper bound:

δt ≤ exp

(
−ω

t∑
i=t0+1

γi

)(
t∑

k=t0

γkνk + δt0

)
+

1

ω
ν⌈ t

2⌉−1

Proof. For all t ≥ t0, one has

δt ≤
n∏

i=t0+1

(1− ωγi) δt0︸ ︷︷ ︸
=:U1,t

+

t∑
k=t0+1

t∏
i=k+1

(1− ωγi) γkνk︸ ︷︷ ︸
=:U2,t

One can consider two cases: ⌈t/2⌉ − 1 ≤ t0 and ⌈t/2⌉ − 1 > t0.

Case where ⌈t/2⌉ − 1 ≤ t0 < t: Since νk is decreasing,

U2,t ≤ νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi) γk

=
1

ω
νt0+1

t∑
k=t0+1

t∏
i=k+1

(1− ωγi)−
t∏

i=k

(1− ωγi)

=
1

ω
νt0+1

(
1−

t∏
i=t0+1

(1− ωγi)

)

≤ 1

ω
νt0+1

Since νk is decreasing, it comes U2,t ≤ 1
ων⌈t/2⌉.

Case where ⌈t/2⌉ − 1 > t0: As in [2], for all m = t0 + 1, . . . , t, one has

U2,t ≤ exp

(
−ω

t∑
k=m+1

γk

)
m∑

k=t0+1

γkνk +
1

ω
νm

Then, taking m = ⌈t/2⌉ − 1, it comes

U2,t ≤ exp

−ω

t∑
k=⌈t/2⌉

γk

 ⌈t/2⌉−1∑
k=t0+1

γkνk +
1

ω
ν⌈t/2⌉−1

Corollary 2. Let (γt)t≥0 and (νt)t≥0 be some positive and decreasing sequences and let (δt)t≥0,
satisfying the following:

• The sequence δt follows the recursive relation:

δt+1 ≤ (1− ωγt+1) δt + νt+1γt+1, (34)

with δ0 ≥ 0 and ω > 0.

• Let γt = cγt
−α with α ∈ (0, 1).
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• Let t0 = inf {t ≥ 1 : ωγt+1 ≤ 1}.

Then, for all t ∈ N, we have the upper bound:

δt ≤ exp

(
−1

2
ωcγt

1−α

)
exp

(
1

2
ωcγ (t0 + 1)

1−α

)( t∑
k=t0

γkνk + δt0

)
+

1

ω
ν t

2−1.

Proof. With the help of an integral test for convergence, one can now bound U1,n as

U1,t ≤ exp

(
−ω

cγ
1− α

(
(t+ 1)1−α − (t0 + 1)

1−α
))

γt0νt0

≤ exp
(
−ωcγ

2

(
(t+ 1)1−α − (t0 + 1)

1−α
))

γt0νt0 .

In a same way, since

exp

−ω

t∑
k=⌈t/2⌉

γk

 ≤ exp
(
−ωcγ

2
(t+ 1)1−α

)
,

one finally has

δt ≤ exp

(
−1

2
ωcγt

1−α

)
exp

(
1

2
ωcγ (t0 + 1)

1−α

)( t∑
k=t0

γkνk + δt0

)
+

1

ω
ν t

2−1.
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The main constants in our asymptotic convergence proof are highlighted and
the limitations of our algorithm such as taking the parameter b too close to 1 is discussed in
the numerical experiments.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are always clearly stated and all the proofs are given in
appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the settings for the experiments are clearly stated and the parameters of our
algorithm are given.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the code to reproduce our experiments is provided in Python Notebooks
and attached in a zip file in the supplementary materials.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The parameters of our algorithm are given at the beginning of the Numerical
Experiments section, and the example settings are explicitly provided.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experiments are run several times, and the error plots represent the
average error across the experiments.

8. Experiments Compute Resources

31



Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: No specific computer resources are needed for our experiments, which can
be run on any modern computer. The only exception is the Mini-batch experiment in the
appendix, where a GPU is required for GPU parallelization.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and guarantee that the paper
conforms to it.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The code provided is original and is included for reproducibility under the
correct license.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The algorithms and experiments are clearly explained in the paper, and the
code to reproduce the experiments is provided in an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

32

https://neurips.cc/public/EthicsGuidelines


33


	Introduction
	Behind stochastic approximation for Optimal Transport
	Background on (Entropic) Optimal Transport 
	Semi-discrete OT
	Solving semi-discrete (E)OT with the semi-dual formulation

	DRAG: Decreasing Regularization Averaged Gradient
	Setting
	DRAG: A gradient-based algorithm adaptive to both the sample size and the regularization parameter
	Convergence rate before averaging
	Acceleration and quadratic convergence rate for DRAG

	Optimal Transport cost and Brenier map estimation rate with DRAG
	OT and EOT cost estimation
	Brenier map estimation

	Numerical experiments
	Conclusion
	 
	 Supplementary Material for “Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization”
	Additional experiments
	Proofs of the main paper
	Proof of Theorem 1: Convergence rate of the non averaged iterates.
	Part 1: proof for p = 1.
	Part 2: proof for p = 2.

	Proof of Theorem 2: Convergence rate of DRAG
	Proof of Corollary 1: OT cost estimation
	Proof of Theorem 4: OT map estimation
	Proof of Theorem 3: Minimax estimation of the discrete OT potential
	Proof of Theorem 5: Minimax estimation of the transport map
	Proof of Lemma 1: Projection step
	Proof of Lemma 2

	Additional and technical results
	OT cost estimation with the c-transform
	Technical results



