Under review as a conference paper at ICLR 2026

ECHO: WHERE MULTILINGUAL SENTENCE EMBEDDINGS
SPEAK THE SAME LANGUAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-lingual sentence encoders create unified embedding representations of sentences
across languages. However, achieving both strong downstream performance and cross-
lingual alignment remains a fundamental challenge. Early models relied on contrastive
learning, yet were unable to leverage hard negatives to unlock the full benefits of the
contrastive paradigm. These contrastive approaches were surpassed by non-contrastive
approaches leveraging token-level decoders. This is in contrast with recent generic em-
bedding models that achieve strong results by combining contrastive objectives, large lan-
guage models (LLMs) initialization, and hard negatives usage. We introduce ECHO, a
novel cross-lingual sentence encoder that bridges this gap by integrating pretrained LLMs
in an Encoder-Decoder architecture with contrastive training and hard negatives. Our bot-
tleneck Encoder-Decoder design forces the model to capture essential semantic informa-
tion in a shared vector space while preserving fine-grained nuances. ECHO achieves half
the error rate of the previous state-of-the-art encoders in cross-lingual similarity search
across 200 languages, while showcasing unprecedented cross-lingual transfer on down-
stream tasks.

1 INTRODUCTION

The development of multilingual models has long been a central focus in the field of Natural Language Pro-
cessing, spanning applications from traditional Machine Translation (NLLB Team et al.| [2022) to the recent
surge in multilingual large language models (Workshop et al., [2022; Ustiin et al.| 2024; Team et al.| 2025).
A persistent challenge in this domain is the scarcity of training data for many languages. This has moti-
vated research into cross-lingual representation learning (Devlin et al., [2019; |(Conneau et al., 2019; Janeiro
et al., 20254} |Alastruey et al.| [2025) that can generalize across languages and transfer the performance of
resource-rich languages into lower resourced ones.

Among cross-lingual representations, cross-lingual sentence embeddings enable a vast array of applications,
that would otherwise not be possible. From expanding multilingual coverage of language modeling, even
while training on monolingual data, as shown in the LCM (LCM team et al., [2024), to large-scale cross-
lingual similarity search for mining (Schwenk et al., [2021) that led to significant improvements in machine
translation systems (NLLB Team et al., 2022). Aligned multilingual sentence embeddings demonstrate
strong cross-lingual properties. They have recently been applied to a wider range of multilingual tasks,
including classification (Costa-jussa et al., [2024) and translation quality estimation (Chen et al.|, [2023a;
Dale & Costa-jussa, 2024). In general, since their representations are aligned across languages, they unlock
multilingual zero-shot downstream performance for tasks without the need of data in all languages.

Early cross-lingual sentence encoders relied on contrastive signals (Feng et al.| [2022; [Yang et al.| 2019)
but failed to effectively leverage hard negatives. Recent alternatives such as SONAR (Duquenne et al.,
2023)) and MEXMA (Janeiro et al.l [2025b)), outperformed them by using translation reconstruction on top

Under review as a conference paper at ICLR 2026

STAGE 1: Seq2Seq Pretraining STAGE 2: Contrastive Finetuning STAGE 3: Contrastive Continued Finetuning with Hard Negatives

NLL Loss NLL Loss
GILLeeS Contrastive Loss Contrastive Loss

—(xN) g g xN E g ()
g g E E \" Pooling Layer \\ \" Pooling Layer \' Pooling Layer \ \' Pooling Layer)

XM xM xM

xM xM

QW \ ,7@5,7/ . -
Y —— - N ()
é Translation Data ‘ é\ Filtered Translation Data |

Figure 1: The ECHO method, divided into its 3 training stages. Stage 1 is Seq2Seq training with the
translation objective. Stage 2 is contrastive alignment with translation. Stage 3 is contrastive with hard
negatives.

of multilingual encoders. However, this approach diverges from the design principles of modern general-
purpose embeddings, which typically combine contrastive losses with hard negatives (Wang et al., |2024b).
Meanwhile, the success of Large Language Models (LLMs) has motivated a new paradigm of adapting them
as encoders (BehnamGhader et al.,|2024; |Wang et al., [2024a; [Zhang et al.,|2025b) to take advantage of their
extensive pre-training knowledge. While these approaches achieve impressive monolingual performance,
they largely overlook cross-lingual transfer and alignment objectives. We present a novel training recipe that,
for the first time, combines a translation loss from a decoder and a contrastive signal with hard negatives,
to learn a language-agnostic sentence embedding space. Through a comprehensive analysis of learning
objectives, we demonstrate the critical importance of each of these components alongside LLM initialization.

We present ECHO, a new state-of-the-art cross-lingual sentence embedding model that bridges the gap
between strong performance and optimal cross-lingual alignment, along with a comprehensive analysis of
the key components, including model architecture, data, and training objectives, that contribute to optimal
cross-lingual properties in sentence embedding spaces.

Our main contributions are as follows:

* We adapt an English-centric LLM as both a largely multilingual encoder with bidirectional self-
attention and a decoder for sequence-to-sequence modeling within a framework of sentence em-
bedding learning.

* We couple a translation objective with a contrastive objective for alignment in a bottleneck encoder-
decoder framework, where the encoder compresses multilingual input into a shared representation
space.

* We enhance contrastive learning via online negatives removal, margin regularization, and a novel
split softmax approach that separately optimizes hard negatives and in-batch negatives.

* We present ECHO, a new state-of-the-art embedding model covering 200 languages that achieves
superior performance in multilingual alignment and cross-lingual transfer, as demonstrated through

comprehensive evaluation on downstream tasks.

* We conduct extensive ablation studies to analyze the contribution of each component.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The field of multilingual sentence embeddings has grown rapidly, driven by benchmarks like MTEB (Muen-
nighoff et al., [2023)), xsim/xsim++ (Artetxe & Schwenkl, [2019; (Chen et al., [2023b), and MIRACL (Zhang
et al., 2023).

MULTILINGUAL ALIGNMENT Multilingual aligned embedding models map vector representations
across languages into shared spaces. Training on translation data typically enables semantic alignment
via contrastive objectives using encoders only (Feng et al., [2022; [Yang et al, 2019; Miao et al.| [2024) or
non-contrastive objectives with decoder signals (Janeiro et al.,[2025b; [Duquenne et al.| [2023)). In ECHO, we
combine both decoder and contrastive losses.

CONTRASTIVE LEARNING While contrastive learning dominates sentence embedding training (Gao
et al., |2021), hard negatives remain underexplored in multilingual alignment, with LaBSE (Feng et al.|
2022) reporting negative results. General purpose models (Wang et al.,|2024b; |Sturua et al., 2024)) have suc-
cessfully used mined and synthetic negatives. With ECHO we unlock contrastive objectives with synthetic
hard negatives for better multilingual alignment.

CODE AND MATH Recent general purpose models (Wang et al.,[2024b; Nussbaum & Duderstadt, [2025))
and code-specific embeddings (Zhang et al.| |2024; |Suresh et al.| | 2025} |Liu et al., 2024)) incorporate code and
math data. Most code embedding systems use docstring-implementation pairs (Husain et al.| [2019} [Zhang
et al.| [2024; Suresh et al.| [2025)), focusing on function-level rather than sentence-level representations.

3 DATA PROCESSING

TRANSLATION DATA NLLB (NLLB Team et al.|[2022) has become the standard source of paired transla-
tion data for learning multilingual sentence embeddings (Duquenne et al., 2023 [Wang et al., | 2024b; Janeiro
et al., 2025b)), offering coverage of up to 200 languages and more than 40 billion paired examples. We use
both human-labeled, mined and back-translated data from NLLB to train ECHO. To further broaden our
coverage for lower resourced languages and word-level representations, we incorporate word-level dictio-
nary data from PanLex (Kamholz et al.| 2014) and add more than 3K language pairs directions of word
translations. Our final natural language translation data is constructed by sampling from the original NLLB
data, supplemented with dictionary-based pairs. Statistics for each split are presented in Appendix Table
As this data is inherently paired, it can be directly leveraged in our experimental setup. However, it does
not naturally include per-sample negatives, a limitation we address through synthetic data generation in
subsequent stages.

CODE AND MATH DATA Although our primary focus is on sentence-level, modality-agnostic represen-
tations, we treat code and mathematical expressions as semantic units that can be mapped into this shared
embedding space. In this framework, programming languages like JavaScript or Go are considered alongside
natural languages such as Catalan or Portuguese. To construct translation data including both programming
and natural languages, we develop a comprehensive pipeline that addresses the limitations of traditional
docstring-based approaches. We focus on sentence-level code snippets and mathematical expressions whose
semantics can be described in a single natural language sentence. Our approach involves: (1) syntax-aware
segmentation of code from 7 programming languages using Abstract Syntax Trees, (2) extraction of La-
TeX mathematical expressions from scientific corpora, (3) generation of natural language descriptions using
LLaMA3.3 70B Instruct, and (4) creation of multilingual versions through back-translation. Quality is en-
sured through consistency filtering of the synthetic data. For complete technical details, implementation
procedures, and filtering methods, please refer to Appendix

Under review as a conference paper at ICLR 2026

DATA FILTERING As detailed in Sectiond] we train ECHO in multiple stages. While the first stage uses
a large amount of data, later contrastive and hard-negative training stages require fewer steps and less data.
We therefore reduce data volume using quality estimation signals. For natural language data, we apply
BLASER 2.0 (Dale & Costa-jussa, |2024) filtering, while for code and math data, we subsample. We focus
on X-to-English directions as they are the most populated and facilitate hard negative generation. For each
language direction, we select the top 1 million pairs from human-labeled NLLB data, supplementing with
highest-scoring mined and backtranslated pairs when needed to reach the 1 million threshold. Data statistics
are reported in Appendix Table

HARD NEGATIVES GENERATION We leverage both in-batch and hard negatives for contrastive train-
ing. Based on the intuition behind |Chen et al.| (2023b)), the ideal hard-negative for a translation pair is an
approximate paraphrase of the original translation but with a subtle or traditionally hard to encode semantic
modifier. We synthetically generate these hard negatives using LLaMA3.3 70B Instruct. For more details

see Appendix

4 MODEL

In this section, we describe our model and method for training the ECHO embedding space. The whole
training procedure is depicted in Figure|l] and is comprised of three different parts.

4.1 ARCHITECTURE, INITIALIZATION AND TOKENIZER

We use a bottleneck encoder-decoder architecture based on the transformer architecture (Vaswani et al.|
2017), following the SONAR approach (Duquenne et al.l 2023). We repurpose the architecture from
LLaMA3 (Grattafiori et al., 2024) for our transformer architecture and use an embedding representation
of 1024 dimensions. Inspired by previous work (BehnamGhader et al.| 2024; Zhang et al., 2025a), we
initialize both the encoder weights and the decoder weights with LLaMA3 (Grattafiori et al., [2024). We
replace the causal self-attention in the encoder by bi-directional self-attention (BehnamGhader et al., 2024).
We add cross-attention blocks in the ECHO decoder to attend to encoder outputs. The cross-attention weight
matrices are randomly initialized.

Initializing our model with LLaMA3 weights constrains us to use LLaMA3 tokenizer. To increase its multi-
lingual coverage, we extended the LLaMA3 vocabulary from 128k to 256k tokens for better fertility across
our 200 target languages. Details about the tokenizer vocabulary extension are given in Appendix [D} We
initialize the embeddings for the new tokens by tokenizing them with the original tokenizer and averaging
resulting token embeddings to create the new token embedding (Gee et al.,[2022; Moroni et al.|[2025).

4.2 SEQ2SEQ PRETRAINING

Before learning the embedding space itself, we introduce a sequence-to-sequence (Seq2Seq) pretraining
stage, to warm-up our encoder-decoder model on translation tasks (stage 1 in Figure [T). In this stage,
encoder outputs are not pooled before being passed to the decoder. The model is trained with a translation
objective - source sentences are fed to our model as encoder inputs, and we optimize cross-entropy loss
between decoder outputs and target sentences. We jointly optimize all translation tasks — natural language,
code and math — during this Seq2Seq pretraining stage, with more than 5 thousand translation directions.

To enable effective multilingual and multitask processing, we employ natural text prompting for both
encoder and decoder inputs. Source sentences are prefixed with language identifiers using the for-
mat “[language name]:”. Target sentences incorporate task specification, output language informa-
tion, and data provenance (human-labeled translations, automatically extracted translations, or back-

Under review as a conference paper at ICLR 2026

translations), following INLLB Team et al.| (2022). Specifically, we use the prompts such as This
is a possible translation in [language name] : for translation tasks and This is a
possible natural language explanation in English: for code and math explanation
tasks. We provide the full list of prompts in Appendix Table[I7]

4.3 CONTRASTIVE FINETUNING

Contrastive finetuning is stage 2 in Figure [T} In this stage, we initialize the encoder and decoder with
the weights obtained in the Seq2Seq stage. Then, we align the pooled source and anchor representations
outputted by the encoder. The anchor is the translation fed to the encoder. This is done through a Siamese
network trained with a contrastive loss. Additionally, alongside the contrastive loss, we train our model on
translation tasks with a cross-entropy loss between decoder outputs and target sentences, following SONAR
(Duquenne et al.,[2023)). Contrarily to previous Seq2Seq training stage, the decoder only attends to the source
pooled encoder representation instead of cross-attention on full encoder outputs. We perform CLS pooling
with a new token prepended to each input to the encoder to create our fixed-size sentence representation.

Our contrastive objective, Equation (1)), uses a modified InfoNCE loss (Chen et al.l 2020). We add a margin
to the similarity scores of source-positive pairs, following LaBSE (Feng et al.| [2022), to make translations
more distinct from non-translations in the resulting embedding space. The contrastive loss is defined as:

N e®(xiyi)—m

1
‘Ccontrastive = a7 (1)
N ; ed(@iyi)—m | Zne&, (@i yn)
where ¢(x;,y;) denotes the scaled cosine similarity between a source sentence x; and a target sentence
Yi» O(x4,y;) = cos(x;,y;) * T, with 7 being a logit scaling hyperparameter, and m is an additive margin
hyperparameter applied to the source-positive pairs.

Negative examples are drawn from in-batch samples, but we filter them to ensure that no false negatives are
used, following GISTEmbed (Solatoriol [2024)). Specifically, the set of negatives \S; for each source x; is

defined as:

where 7 is the hyperparameter for the radius of negatives removal and 7;/7; are guide embeddings given
by SONAR (Duquenne et al.,2023)). This filtering step removes any negative whose similarity to the source
exceeds that of the positive pair, ensuring that the model does not learn from negatives that are more similar
to the source than the true translation.

The training loss is then the combination of the contrastive and the decoder loss:

L=a- Econtrastive + 6 : ACtranslation (3)
where « and (3 are hyper-parameters that control the weight of each loss term.

4.4 CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES

To further improve the model’s ability to distinguish between close translations, we perform an additional
contrastive step using hard negatives (stage 3 in Figure [T). The hard negative generation is described in
Section [3] Initial experiments showed that, contrary to in-batch negatives, contrastive learning with non-
zero additive margin was not effective with hard negatives. In order to simultaneously optimize contrastive
learning involving hard and in-batch negatives, we introduce an additional separate contrastive loss to handle
hard negatives. This enables us to weight the contribution of in-batch contrastive loss and hard-negative
contrastive loss without margin. The resulting loss is then defined as:
N

1
Lecontrastive-hn = (]- - ’Y) * Leontrastive — v N Zl ed(
i=

e®(xi,yi)

Ti,Yi) 4 Zh'GSHN e®(xishj)
J 7

“

Under review as a conference paper at ICLR 2026

where SHN is the list of hard negatives for source z;, and - is the objective contribution weighting hyperpa-
rameter. Our overall loss is now £ = « - Leontrastive.hn + B * Liranslation-

4.5 DECODER FINETUNING

SONAR is composed of an encoder and a decoder. The availability of the decoder, despite not being a
pre-requisite for an embedding model, enables to efficiently decode sentence embeddings into natural text
in several languages. This was proven useful in some new research directions like Language Modeling in
sentence embedding spaces (LCM team et al., [2024) where predicted embeddings are decoded into text.
ECHO also leverages a decoder during training, as explained in previous sections. To enhance the decoder
performance for downstream use, we continue its learning on top of ECHO obtained after Section We
initialize both encoder and decoder weights from that training stage but freeze the encoder parameters. We
then use the same loss and data setup as in Section 4.2

4.6 EXPERIMENTAL CONFIGURATION

SEQ2SEQ We train our model for 100k steps in this stage, with 8192 tokens per GPU trained across 16
nodes of 8 GPUs each. The encoder and decoder are initialized from LLaMA3.2 1B size, trained with fsdp1
and mixed precision on fp16, with a maximum gradient norm of 1. We use the AdamW optimizer with betas
0.9 and 0.98. Our learning rate is set to 4e-4, with 2k warmup steps and Myle learning rate scheduler.

CONTRASTIVE FINETUNING Unless specified, the parameters are the same as the Seq2Seq configuration
described above. For contrastive tuning we change the learning rate to 3e-4, max number of tokens per GPU
to 6k, and set the contrastive loss weight, «, to 0.05, with the translation loss weight, 3, being 1. We define
our radius for false negatives removal, 7, to 0.5, our margin, m to 0.3 and our scale 7 to 100. Our model is
trained for 10k steps.

CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES We take 5 hard negatives per
source sentence, and change the max number of tokens to 1.2k (6k/5). The learning rate is changed to
le-5, with 15k steps. v, the weight between the in-batch and the hard negative objectives, is defined as 0.8.

DECODER FINETUNING We use same training setup as the Seq2Seq training stage except for learning
rate which is set to 1e-3 and number of warmup steps which is lowered to 200.

5 RESULTS

In this section, we present results obtained with ECHO on cross-lingual similarity search, downstream clas-
sification and pair classification tasks, as well as cross-lingual transfer quantification.

5.1 MULTILINGUAL ALIGNMENT - BITEXT MINING

To evaluate cross-lingual alignment, we perform similarity search on FLORES translations (NLLB Team:
et al.,[2022), comparing source sentence embeddings to candidate translation pools. We report error rates as
xsim (mining non-English sentences against English translations) and xsim++ (Chen et al., |2023b)), which
adds English hard negatives.

Table] presents results for ECHO and competitive baselines on both commonly supported languages
and all FLORES languages for fair comparison. ECHO achieves state-of-the-art performance, with
significant improvements in xsim and xsim++ (7.15% absolute improvement over 200 languages), indicating

Under review as a conference paper at ICLR 2026

| common languages | all languages
model | xsim | | xsim++ | xsim | | xsim++ |
MEXMA | 0.08 7.80 1591 35.78

LaBSE 2.39 23.35 18.61 48.69
mESyee 0.62 23.87 9.31 39.32
SONAR 0.17 9.88 1.37 15.27
ECHO 0.07 3.90 0.99 8.12

Table 1: xsim/xsim++ results for all models on FLORES devtest, as X-eng cross-lingual similarity search.

better semantic alignment and robustness to hard negatives through improved handling of lexical and seman-
tic nuances. We report complete breakdowns of xsim/xsim++ evaluation across languages in Appendix [F

We further evaluate on GMMLU (Singh et al., 2024)), MMLU translated to 42 languages, by pairing ques-
tions in any language to their English equivalent and XLCoST (Zhu et al., [2022)), to our knowledge the only
snippet-level Code2Code benchmark.

Table [2] shows ECHO outperforms all systems on GMMLU except MEXMA on common languages, but
leads across all 42 languages. Notably, ECHO surpasses specialized code-embedding models like CodeSage
Zhang et al.[(2024) and CodeRankEmbed (Suresh et al.,2025)) on XLCoST, excelling at code representation
even for unseen programming languages like C#.

5.2 DOWNSTREAM TASKS

To assess the quality and generalization of our embeddings we evaluate them on several multilingual classi-
fication and pair classification benchmarks under MTEB (Muennighoff et al., 2023)), see Table E] for full list.
Results are reported in Table 3]

CLASSIFICATION The reported metric for classification is accuracy. Under this setup, linear classifiers
are trained on top of each model’s embeddings on a held-out portion of the data, and evaluated on the rest.
Each classifier is trained and evaluated per language in this section. Our reported numbers are first averaged
over all languages in each benchmark and then over all benchmarks to create a single score. Table [3] shows
how ECHO far outperforms all other models in classification tasks, highlighting the good content in each
individual vector, and as we will explore in future sections, their interoperability across languages.

GMMLU GMMLU

Model C C++ C# Java Javascript PHP Python All
(all) (common)

MEXMA 6.97 1.26 18.87 2453 2222 22091 20.98 16.14 24.06 21.39
LaBSE 3.43 2.95 19.84 2735 2431 2492 24.20 22.07 2625 24.13
SONAR 3.18 2.96 22.03 2939 2834 2940 26.01 2223 30.82 26.89
ECHO 2.02 1.70 15.60 20.02 19.17 18.99 17.28 13.00 18.57 17.52
MESjaee | 531 3.27 | 1636 2242 2048 20.39 18.45 13.53 20.14 18.82
CodeSage-large-v2 - - 19.41 23.02 21.17 2147 18.19 1550 2042 19.89
CodeRankEmbed - - 16.71 2148 19.85 20.47 17.36 1340 19.67 1842

Table 2: Results for GMMLU question mining (left) for all 42 languages and those covered by the baselines
(common) and XLCOST (right). xsim ({) reported for all models.

Under review as a conference paper at ICLR 2026

Model | Average | Classification | Pair Classification
MEXMA | 65.895 68.690 63.100
LaBSE 65.205 65.770 64.640
SONAR 64.325 67.910 60.740
ECHO 67.720 72.200 63.240
General-purpose models

mESge | 70570 | 68260 | 72.880

Table 3: Classification and Pair Classification results from sentence-level MTEB tasks.

PAIR CLASSIFICATION For Pair Classification we report on average precision based on the cosine sim-
ilarity between pairs. In this case we see how ECHO still outperforms multilingual embedding models in
its category, with the exception of LaBSE, while it lags behind the topline comparison of mE5jyee Which
was trained as a general-purpose embedding model. It is important to highlight that all our baselines along
with ECHO are trained solely on parallel data, i.e. no task specific data is involved and the cosine distance
between sentences reflects just that aspect.

5.3 CROSS LINGUAL TRANSFER

We evaluate alignment across languages in the lens of classification. Namely, we train a classifier to classify
French sentences from the SIB200Classification task in MTEB and apply it, in a zero-shot fashion, to the
other 199 languages in SIB. We report Cross-lingual transfer (CLT) ratio in Table[] which corresponds to the
ratio of classification accuracy for language L with classification accuracy on French. This table highlights
the strong cross-lingual transfer with ECHO representations across 200 languages, exceeding 97% average
CLT ratio over 200 languages, and over 99% over the most common 80 languages.

5.4 DECODING CAPABILITIES

Decoding sentence embeddings into natural text can help quantify the text compression ability of the embed-
ding model across languages. The decoding results remain nonetheless dependent on the decoder training
and capacity, in addition to the sentence embedding representations themselves. Moreover, models that pre-
dict sentence embeddings, like Large Concept Models (LCM team et al.,|2024), rely on the ability of good
text decoders to produce text in many languages. Therefore, we report translation results, as measured by
spBLEU (Post, 2018)) (with flores200 tokenizer) and chrF++ (Popovié, |2017), on FLORES devtest based

SIB200 CLT ratio
all | common

LaBSE | 80.58% | 91.99%
MEXMA | 78.38% | 95.56%
MESpyee | 84.76% | 95.47%
SONAR | 92.34% | 96.22%
ECHO 97.15% | 99.26%

model

Table 4: Cross-lingual transfer (CLT) on SIB200Classification: Models trained on French, evaluated zero-
shot on 199 languages (all) and 80 baseline-supported languages (common), reporting average relative per-
formance to French.

Under review as a conference paper at ICLR 2026

| XtoEnglish | EnglishtoX
model | spBLEU | chrF++ | spBLEU | chrF++
SONAR 32.62 54.79 20.29 42.71
ECHO 33.27 55.02 21.17 43.63

Table 5: Average translation performance of SONAR and ECHO on FLORES devtest set for X to English
and English to X directions, as measured by spBLEU and chrF++ metrics. Source sentences are embedded
into the sentence embedding space before being decoded into the target language with their decoder.

on ECHO model and compare them with SONAR translation results (SONAR being the only multilingual
sentence embedding space coming with a decoder) in Table[5] ECHO shows significantly better translation
performance compared to SONAR on this decoding task.

6 ANALYSIS AND ABLATIONS

ECHO'’s design choices are validated through ablation studies showing significant improvements at each
stage. Adding the Decoder loss to the contrastive learning stage in reduces xsim++ error
by 45% (from 16.23 to 8.95), demonstrating that token-level language modeling signals capture semantic
nuance beyond surface features. Replacing MSE with contrastive loss improves xsim++ by 29% (from 12.54
to 8.95), as contrastive learning creates more structured embedding spaces by explicitly separating negatives,
a key difference with previous approaches such as SONAR. Using separate losses for in-batch and hard
negatives (split softmax in improves xsim by 19% compared to a single softmax approach,
preventing convergence issues while better balancing negative types. Finally, initializing contrastive learning
from our Seq2Seq-adapted model rather than directly from LLaMA reduces xsim error by 36% and xsim++
by 25%, showing the multilingual adaptation stage provides a better foundation. Additionally, we show that
we can have smaller models with minimal performance degradation.

For additional ablations and complete experimental details, see

7 CONCLUSION

In this work, we introduced a state-of-the-art cross-lingual sentence encoder, ECHO. We got closer to the
stated goal of creating a language-agnostic space in which sentences with same semantic meaning share
vector representations, regardless of the language. Compared to previous efforts, ECHO shines in its mul-
tilingual alignment where the error rates are halved. This enables downstream tasks, especially for lower
resource languages where all previous models lacked behind. At the same time ECHO outperforms all com-
parable baselines in downstream evaluations, closing the gap with general-purpose embedding models such
as mESj,ee that fail in their cross-lingual transfer and alignment. Moreover, task-specific modules trained
on the rich space ECHO provides, require only training in a single language and seamlessly transfer to the
others. We are excited about the new uses such an embedding space will create.

Our works proposes a new training paradigm for text embedding representation learning, where decoders
should be coupled with a contrastive loss objective for improved performance. With an extensive set of
ablations, we pave the way of new training recipes on top of Large Language Models to transform them into
embedding Encoders. Most current efforts focused on expanding attention, pooling a representation for the
text, and training it on a contrastive signal; an effective yet unexciting recipe. The addition of a Decoder
is key to capture fine-grained features within the embeddings. While we focused on training sentence-level

Under review as a conference paper at ICLR 2026

language-agnostic embeddings using translation data, we believe future work should exploit our framework
for general-purpose embeddings.

10

Under review as a conference paper at ICLR 2026

REFERENCES

David Ifeoluwa Adelani, Hannah Liu, Xiaoyu Shen, Nikita Vassilyev, Jesujoba O. Alabi, Yanke Mao, Hao-
nan Gao, and Annie En-Shiun Lee. Sib-200: A simple, inclusive, and big evaluation dataset for topic clas-
sification in 200+ languages and dialects, 2024. URL https://arxiv.org/abs/2309.07445,

Belen Alastruey, Jodo Maria Janeiro, Alexandre Allauzen, Maha Elbayad, Loic Barrault, and Marta R.
Costa-jussa. Interference matrix: Quantifying cross-lingual interference in transformer encoders, 2025.
URLhttps://arxiv.org/abs/2508.02256.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Blazquez, Guilherme Penedo, Lewis Tun-
stall, Andrés Marafioti, Hynek Kydlicek, Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua Lochner,
Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When
smol goes big — data-centric training of a small language model, 2025. URL https://arxiv.org/
abs/2502.02737.

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot cross-lingual
transfer and beyond. Transactions of the Association for Computational Linguistics, 7:597-610, Novem-
ber 2019. ISSN 2307-387X. doi: 10.1162/tacl.a_00288. URL http://dx.doi.org/10.1162/
tacl a 00288.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961, 2024.

Mingda Chen, Paul-Ambroise Duquenne, Pierre Andrews, Justine Kao, Alexandre Mourachko, Holger
Schwenk, and Marta R. Costa-jussa. BLASER: A text-free speech-to-speech translation evaluation metric.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9064-9079, Toronto,
Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.504.
URL https://aclanthology.org/2023.acl-1long.504/.

Mingda Chen, Kevin Heffernan, Onur Celebi, Alexandre Mourachko, and Holger Schwenk. xSIM++:
An improved proxy to bitext mining performance for low-resource languages. In Anna Rogers, Jor-
dan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers), pp. 101-109, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.10. URL https:
//aclanthology.orqg/2023.acl-short.10/.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In International conference on machine learning, pp. 1597—
1607. PmLR, 2020.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco

Guzman, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

11

https://arxiv.org/abs/2309.07445
https://arxiv.org/abs/2508.02256
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
http://dx.doi.org/10.1162/tacl_a_00288
http://dx.doi.org/10.1162/tacl_a_00288
https://aclanthology.org/2023.acl-long.504/
https://aclanthology.org/2023.acl-short.10/
https://aclanthology.org/2023.acl-short.10/

Under review as a conference paper at ICLR 2026

Marta R Costa-jussa, Mariano Coria Meglioli, Pierre Andrews, David Dale, Prangthip Hansanti, Elahe
Kalbassi, Alex Mourachko, Christophe Ropers, and Carleigh Wood. Mutox: Universal multilingual audio-
based toxicity dataset and zero-shot detector. arXiv preprint arXiv:2401.05060, 2024.

David Dale and Marta R. Costa-jussa. BLASER 2.0: a metric for evaluation and quality estimation of mas-
sively multilingual speech and text translation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 16075-16085, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.943. URL https://aclanthology.org/2024.findings—emnlp.943/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.
04805.

Paul-Ambroise Duquenne, Holger Schwenk, and Benoit Sagot. Sonar: sentence-level multimodal and
language-agnostic representations. arXiv preprint arXiv:2308.11466, 2023.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic BERT
sentence embedding. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 878-891, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.acl-long.62. URL https://aclanthology.org/2022.acl-long.62/|

Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron Nash,
Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist, Misha Britan, Wouter
Leeuwis, Gokhan Tur, and Prem Natarajan. Massive: A 1m-example multilingual natural language un-
derstanding dataset with 51 typologically-diverse languages, 2022.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embed-
dings. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6894—
6910, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https://aclanthology.org/2021.
emnlp-main.552/.

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini, and Paolo Torroni. Fast vocabulary transfer for language
model compression. In Yunyao Li and Angeliki Lazaridou (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing: Industry Track, pp. 409—416, Abu Dhabi, UAE,
December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-industry.41.
URLhttps://aclanthology.orqg/2022.emnlp—industry.41/\

Linyuan Gong, Alvin Cheung, Mostafa Elhoushi, and Sida Wang. Structure-aware fill-in-the-middle pre-
training for code. 05 2025. doi: 10.48550/arXiv.2506.00204.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hamel Husain, Hongqiu Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Codesearchnet

challenge: Evaluating the state of semantic code search. ArXiv, abs/1909.09436, 2019. URL https:
//api.semanticscholar.org/CorpusID:202712680.

12

https://aclanthology.org/2024.findings-emnlp.943/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2022.acl-long.62/
https://aclanthology.org/2021.emnlp-main.552/
https://aclanthology.org/2021.emnlp-main.552/
https://aclanthology.org/2022.emnlp-industry.41/
https://api.semanticscholar.org/CorpusID:202712680
https://api.semanticscholar.org/CorpusID:202712680

Under review as a conference paper at ICLR 2026

Jodo Maria Janeiro, Belen Alastruey, Francisco Massa, Maha Elbayad, Benjamin Piwowarski, Patrick Galli-
nari, and Loic Barrault. Mixture of languages: Improved multilingual encoders through language group-
ing. In Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Pro-
ceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pp. 29695—
29710, Suzhou, China, November 2025a. Association for Computational Linguistics. ISBN 979-8-89176-
332-6. doi: 10.18653/v1/2025.emnlp-main.1509. URL https://aclanthology.org/2025.
emnlp-main.1509/.

Jodo Maria Janeiro, Benjamin Piwowarski, Patrick Gallinari, and Loic Barrault. MEXMA: Token-level
objectives improve sentence representations. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 23960-23995, Vienna, Austria, July 2025b. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1168. URL
https://aclanthology.org/2025.acl-1long.1168/l

David Kambholz, Jonathan Pool, and Susan Colowick. PanLex: Building a resource for panlingual lexi-
cal translation. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC’14), pp. 3145-3150,
Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA). URL https:
//aclanthology.org/L14-1023/.

LCM team, Loic Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alas-
truey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussa, David Dale, Hady El-
sahar, Kevin Heffernan, Jodo Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sanchez, Robin San
Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger Schwenk. Large concept models: Language
modeling in a sentence representation space, 2024. URL https://arxiv.org/abs/2412.08821}

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. MTOP: A
comprehensive multilingual task-oriented semantic parsing benchmark. In Paola Merlo, Jorg Tiedemann,
and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp. 2950-2962, Online, April 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.257. URL https://aclanthology.
org/2021.eacl-main.257/.

Ye Liu, Rui Meng, Shafiq Jot, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Codexem-
bed: A generalist embedding model family for multiligual and multi-task code retrieval. arXiv preprint
arXiv:2411.12644,2024.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Zhongtao Miao, Qiyu Wu, Kaiyan Zhao, Zilong Wu, and Yoshimasa Tsuruoka. Enhancing cross-
lingual sentence embedding for low-resource languages with word alignment. In Kevin Duh, He-
lena Gomez, and Steven Bethard (eds.), Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 3225-3236, Mexico City, Mexico, June 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-naacl.204. URL https://aclanthology.org/2024.
findings-naacl.204/.

Luca Moroni, Giovanni Puccetti, Pere-Lluis Huguet Cabot, Andrei Stefan Bejgu, Alessio Miaschi, Edoardo
Barba, Felice Dell’Orletta, Andrea Esuli, and Roberto Navigli. Optimizing LLMs for Italian: Reducing
token fertility and enhancing efficiency through vocabulary adaptation. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 6646—6660,

13

https://aclanthology.org/2025.emnlp-main.1509/
https://aclanthology.org/2025.emnlp-main.1509/
https://aclanthology.org/2025.acl-long.1168/
https://aclanthology.org/L14-1023/
https://aclanthology.org/L14-1023/
https://arxiv.org/abs/2412.08821
https://aclanthology.org/2021.eacl-main.257/
https://aclanthology.org/2021.eacl-main.257/
https://arxiv.org/abs/1802.03426
https://aclanthology.org/2024.findings-naacl.204/
https://aclanthology.org/2024.findings-naacl.204/

Under review as a conference paper at ICLR 2026

Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-
195-7. doi: 10.18653/v1/2025.findings-naacl.371. URL https://aclanthology.org/2025.
findings—-naacl.371/.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embedding
benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics, pp. 2014-2037, Dubrovnik,
Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.148.
URLhttps://aclanthology.org/2023.eacl-main.148/.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Kenneth Heafield, Kevin
Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John
Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre An-
drews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami,
Francisco Guzman, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger
Schwenk, and Jeff Wang. No language left behind: Scaling human-centered machine translation, 2022.

Zach Nussbaum and Brandon Duderstadt. Training sparse mixture of experts text embedding models, 2025.
URL https://arxiv.org/abs/2502.07972.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Motoko Kubota, and Danushka Bollegala. I wish I would
have loved this one, but I didn’t — a multilingual dataset for counterfactual detection in product review.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7092-7108, Online
and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.568. URL https://aclanthology.org/2021.emnlp-main.
568/l

Maja Popovié. chrF++: words helping character n-grams. In Ondfej Bojar, Christian Buck, Rajen Chatterjee,
Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, and Julia Kreutzer (eds.), Proceedings of the Second Conference on Machine Translation, pp.
612-618, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.
18653/v1/W17-4770. URL https://aclanthology.org/W17-4770/.

Matt Post. A call for clarity in reporting BLEU scores. In Ondfej Bojar, Rajen Chatterjee, Christian Fe-
dermann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco
Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine Translation: Re-
search Papers, pp. 186-191, Brussels, Belgium, October 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/W18-6319. URL |https://aclanthology.org/W18-6319/.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand Joulin, and Angela Fan. CC-
Matrix: Mining billions of high-quality parallel sentences on the web. In Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 6490-6500, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.507. URL https://aclanthology.org/2021.acl-1long.507/|

Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David 1. Adelani, Jian Gang Ngui, Daniel
Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Raymond Ng,
Shayne Longpre, Wei-Yin Ko, Madeline Smith, Antoine Bosselut, Alice Oh, Andre F. T. Martins, Leshem
Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza Ermis, and Sara Hooker. Global

14

https://aclanthology.org/2025.findings-naacl.371/
https://aclanthology.org/2025.findings-naacl.371/
https://aclanthology.org/2023.eacl-main.148/
https://arxiv.org/abs/2502.07972
https://aclanthology.org/2021.emnlp-main.568/
https://aclanthology.org/2021.emnlp-main.568/
https://aclanthology.org/W17-4770/
https://aclanthology.org/W18-6319/
https://aclanthology.org/2021.acl-long.507/

Under review as a conference paper at ICLR 2026

mmlu: Understanding and addressing cultural and linguistic biases in multilingual evaluation, 2024. URL
https://arxiv.org/abs/2412.03304.

Aivin V. Solatorio. Gistembed: Guided in-sample selection of training negatives for text embedding fine-
tuning, 2024. URL https://arxiv.org/abs/2402.16829.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Giinther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-v3:
Multilingual embeddings with task lora, 2024. URL https://arxiv.org/abs/2409.10173,

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt, and
Heng Ji. Cornstack: High-quality contrastive data for better code retrieval and reranking. In The Thir-
teenth International Conference on Learning Representations, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Ankit Kumar Upadhyay and Harsit Kumar Upadhya. Xnli 2.0: Improving xnli dataset and performance
on cross lingual understanding (xlu). In 2023 IEEE 8th International Conference for Convergence in
Technology (I12CT), pp. 1-6. IEEE, 2023.

Ahmet Ustiin, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An instruction finetuned open-
access multilingual language model. arXiv preprint arXiv:2402.07827, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 11897-11916, Bangkok, Thailand, August 2024a. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.acl-long.642. URL https://aclanthology.org/
2024.acl-1long.642/\l

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilingual e5
text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024b.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, Frangois Yvon, et al. Bloom: A 176b-parameter
open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, Mandy Guo, Qinlan Shen, Daniel Cer, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. Improving multilingual sentence embedding using bi-directional
dual encoder with additive margin softmax. arXiv preprint arXiv:1902.08564, 2019.

Biao Zhang, Fedor Moiseev, Joshua Ainslie, Paul Suganthan, Min Ma, Surya Bhupatiraju, Fede Lebron,

Orhan Firat, Armand Joulin, and Zhe Dong. Encoder-decoder gemma: Improving the quality-efficiency
trade-off via adaptation. arXiv preprint arXiv:2504.06225, 2025a.

15

https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2409.10173
https://aclanthology.org/2024.acl-long.642/
https://aclanthology.org/2024.acl-long.642/

Under review as a conference paper at ICLR 2026

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma,
and Bing Xiang. CODE REPRESENTATION LEARNING AT SCALE. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
vizRRjumpXl

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xiaoguang
Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A multilingual retrieval dataset covering
18 diverse languages. Transactions of the Association for Computational Linguistics, 11:1114-1131,
2023. doi: 10.1162/tacl_a_00595. URL https://aclanthology.org/2023.tacl-1.63/.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding
and reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025b.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K. Reddy.
Xlcost: A benchmark dataset for cross-lingual code intelligence, 2022. URL https://arxiv.org/
abs/2206.08474.

16

https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX
https://aclanthology.org/2023.tacl-1.63/
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474

Under review as a conference paper at ICLR 2026

A DATA PROCESSING

A.1 CODE AND MATH TRANSLATION DATA GENERATION
A.1.1 CODE SNIPPET SEGMENTATION

To construct sentence-level code snippets suitable for embeddings, it is essential to define what constitutes a
“sentence” in the context of programming languages. Unlike natural language, where sentences are typically
delimited by punctuation, code structure is governed by syntax and semantics, making naive approaches,
such as splitting at line breaks, insufficient and potentially misaligned with real-world coding practices.

To address this, we adopt a syntax-aware segmentation strategy similar to |(Gong et al.| (2025)), leveraging
Abstract Syntax Trees (ASTs) to identify meaningful breakpoints within code. This approach allows us to
segment code in a way that respects its logical and syntactic boundaries, rather than relying on superficial
heuristics. For our experiments, we use code from seven programming languages (Python, Java, JavaScript,
Go, C, C++, and Ruby) sourced from publicly licensed GitHub repositories.

Our segmentation process begins by parsing source code into an AST using the Tree-sitter library{ﬂ We then
traverse the tree in reverse Breadth-First Search (BFS) order, starting from the leaf nodes and progressing
bottom-up. For each node, if it is a leaf with non-empty text and has not yet been visited, we initiate a
snippet. We classify the snippet as either ”code” or “text” based on the node type (e.g., comments and
strings are labeled as “’text”).

To form coherent and contextually meaningful snippets, we recursively expand each snippet upward by
merging the parent statement or declaration and its unvisited children, provided that the combined size does
not exceed a maximum threshold of 100 non-whitespace characters. This ensures that each snippet remains
concise and suitable for sentence-level representation. The process continues until all nodes have been
visited, resulting in a comprehensive set of segmented code snippets.

The full segmentation procedure is detailed in Algorithm [I] which outlines the AST traversal, snippet for-
mation, classification, and postprocessing steps. This method enables us to extract sentence-level code
snippets that are both syntactically coherent and semantically meaningful, facilitating their integration into
our modality-agnostic embedding space.

A.1.2 MATH EXPRESSIONS GATHERING

To build a high-quality dataset of mathematical expressions, we extract LaTeX math content from large-
scale scientific corpora such as FineMath |Allal et al.| (2025) and arXiv. Our extraction process is designed
to capture both inline and display math, reflecting the diversity of mathematical notation found in scientific
writing. The expressions used can be found in Table [2| We use a comprehensive set of regular expressions
to identify a wide range of LaTeX math environments. To ensure the quality and relevance of the extracted
expressions, we apply the following filters:

» Expressions between 20 and 150 characters.
* Expressions where more than 90% of non-whitespace characters are alphabetic are discarded, ex-

cept for in-line math.

The resulting dataset consists of unique LaTeX mathematical expressions, both in isolation and within their
natural language in-line context, providing a rich resource for training and evaluating modality-agnostic
sentence-level embeddings.

"nttps://github.com/tree-sitter/tree-sitter

17

https://github.com/tree-sitter/tree-sitter

Under review as a conference paper at ICLR 2026

Algorithm 1 Code Segmentation via Abstract Syntax Tree Traversal

Require: Source code, language parser, segmentation parameters (max size, depth, etc.)
Ensure: List of code segments (character ranges, types)
1: Parse source code — syntax tree (using https://github.com/tree-sitter/
tree—sitter)
2: Initialize empty list of snippets, visited node set
3: for each tree level (BFS order), processed in reverse order (bottom-up) do
4: for each node at this level do

5 if node is a leaf, has non-empty text, and is not visited then
6: snippet «— {node}
7: Classify snippet type:
8: if node type is comment or string then
9: snippet_type < “text”
10: else
11: snippet_type <— “code”
12: end if
13: while expansion upward is allowed (size and depth constraints not exceeded) do
14: if parent node is a statement/declaration and adding it (and its children) keeps snippet
size within allowed maximum then
15: snippet <— snippet U parent node U eligible siblings
16: Update snippet_type if parent changes classification
17: else
18: break
19: end if
20: end while
21: Mark included nodes as visited
22: Add (snippet, snippet_type) to output list
23: end if
24: end for
25: end for

26: Postprocess:

27: Merge adjacent snippets if their combined size is below the threshold and they are contiguous
28: Adjust segment boundaries to snap to whitespace or newlines as configured

29: for each snippet do

30: Compute snippet’s character range in source code

31: end for

32: return list of snippet ranges, snippet types

18

https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter

Under review as a conference paper at ICLR 2026

Pattern Description

S(.x?)$ Inline math (e.g., $a"2 + b"2 = c¢"29)
$S(.*x?)SS Display math with double dollar signs
AN Cex2) N\] Display math with \ [... \]
\\begin{equation} (.*?)\\end{equation} Equation environment
\\begin{align} (.x?)\\end{align} Align environment
\\begin{align«*} (.*?)\\end{align«*} Align* environment
\\begin{multline} (.*?)\\end{multline} Multline environment
\\begin{multlinex*} (.*?)\\end{multline*} | Multline* environment
\\begin{gather} (.*?)\\end{gather} Gather environment
\\begin{gatherx} (.*?)\\end{gatherx} Gather* environment
\\begin{eqgnarray} (.*?) \\end{egnarray} Eqnarray environment
\\begin{egnarrayx} (.x?)\\end{egnarray+} | Eqnarray* environment
(?<=[.12])\s+ Sentence splitting after ., !, or ?
(?2<INS)NS[TSI+\S(2!\9) Short inline LaTeX expressions

Figure 2: Summary of regular expressions used for extracting LaTeX math expressions and splitting sen-
tences.

A.1.3 NATURAL LANGUAGE DESCRIPTION GENERATION

We leverage Llama-3.3-70B-Instruct to generate natural language descriptions for both code snippets and
mathematical expressions. The model’s extensive training on code and mathematical content enables ef-
fective paraphrasing of technical content into clear English descriptions. Importantly, this task involves
paraphrasing existing content rather than generating new information. The prompts used for this generation
process are shown in Figure 3]

A.1.4 MULTILINGUAL BACK-TRANSLATION

To expand coverage of mixed-modality data, particularly sentences with inline expressions, we generate
back-translations using Llama-3.3-70B-Instruct. We translate English descriptions and mixed-mode sen-
tences into seven target languages: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. This
process creates a comprehensive multilingual dataset that enhances the diversity and utility of our training
data while maintaining semantic consistency across languages.

A.1.5 CONSISTENCY FILTERING

To validate the quality of our synthetic code-to-text pairs, we implement a consistency check using the
CodeRankEmbed embedding model (Suresh et al., [2025). This process verifies that generated English de-
scriptions accurately capture the semantics of their corresponding code snippets.

For each generated English description, we use it as a query to retrieve the most semantically similar code
snippet from a pool of 100,000 candidates within the same programming language. If our synthetic data
generation is effective, the English description should retrieve its original corresponding code snippet as the
top match.

We find that in 99% of cases, the English description successfully retrieves its original code snippet as the
top-1 match. This high retrieval accuracy indicates strong semantic alignment between code snippets and
their generated natural language descriptions, demonstrating the reliability and fidelity of our synthetic data
generation approach.

19

Under review as a conference paper at ICLR 2026

Math Text Translation

System prompt:
You are a helpful translation assistant. You respond only with the
translation, without additional comments, context, or explanation.

User prompt:

Translate the following text from English into {target,lang}. Don’t
produce any other output outside of the translation.

{example}

-~
|\

Code Snippet Translation

Translate the following {programming;language} snippet to a single
sentence, ensuring that all elements and operations in the code are
included. The sentence should convey the semantic meaning of the
code, effectively translating it into a clear and concise lexical
explanation without making any assumptions or inferences beyond what
is explicitly stated in the code. Describe only and exactly its
explicit elements and operations, without any additional context or
explanation. Use a single, direct sentence that includes all elements
and operations in the code, avoiding introductory words or additional
context. Please provide only the sentence and nothing else:
{example}

~
o

Math Formula Translation

Describe the following mathematical text in a single sentence. The
sentence should convey the semantic meaning of the mathematical
notation, effectively translating the mathematical notation into

a clear and concise lexical explanation. Please provide only the
sentence and nothing else.
{example}

-
_

Figure 3: Three prompt templates for translation, code snippet semantic description, and mathematical
notation explanation.

A.2 HARD NEGATIVES GENERATION

For hard negatives generation we follow two strategies:

Natural Language For natural language (i.e. no code or math) translation, we generate hard negatives
using Llama 3.3 70B Instruct. We follow an approach inspired by xsim++ negatives |Chen et al.| (2023b)),
where they crafted hard-to-distinguish negative examples for translation pairs. We use the prompt described
in Figure [4|and generate up to 5 hard negatives per sample.

20

Under review as a conference paper at ICLR 2026

Code and math Here we follow a more straightforward approach and mine hard negatives using the ECHO
checkpoint trained in Section [.3| before hard negatives are introduced. We mine the top 5 negatives over a
pool of 200k candidates for each sample. An example is provided in Figure[5}

Hard Negatives Generation

You are a text transformation specialist. Generate ONLY valid xsim++ transformations using these
EXCLUSIVE methods: 1. CAUSALITY ALTERATION:

* Add/remove negations (“did not”, “was not”)
» Replace adjectives with antonyms (“good” — “bad’)
* Change modal verbs (“may” — “will”)
2. ENTITY REPLACEMENT:
» Swap proper nouns (people, locations, organizations)
* Replace pronouns (he — she, they — we)
3. NUMBER ALTERATION:
* Change quantities (5 — 12)
* Modity dates/times (2023 — 2019)
* Alter percentages (/5% — 22%)

Follow these patterns from training examples:

{few-shot examples}

Now transform THIS SPECIFIC INPUT SENTENCE using the above patterns. Output ONLY a Python
list of 1-5 modified sentences in this exact format:

[
"Transformed sentence 1",
"Transformed sentence 2",

]
Key requirements:
1. Create 1-5 unique modified sentences
. Maximize difference from original text
. Mix transformation types where possible
. Maintain grammatical correctness
Do NOT generate paraphrases, or synonyms
NEVER output empty strings
Output ONLY a Python list of strings

N s e

8. No explanations, headers, or additional text

Input sentence to transform: {example}

Figure 4: Prompt for generating xsim++ transformations with clear instructions and structure.

A.3 LANGUAGES BREAKDOWN

lists all the languages supported by ECHO and common for all other models.

21

Under review as a conference paper at ICLR 2026

Code/Math Hard Negatives Example

Python: temp = pd.read_csv(item, header = None, dtype = float)

English: The pandas library is used to read a csv file specified by the item variable into a temporary variable
named temp with the header set to None and the data type set to float.
Hard Negatives:

1. The code reads data into a variable named df using the pandas function read_csv.

2. The variable temp_mean is assigned the result of pandas’ read_csv function applied to the string
conversion of config’s attribute.

3. The pandas library is used to read a csv file named “data.csv” located in the *’/data” directory into a
variable named df using the read_csv function.

4. The pandas library, referred to as pd, reads a comma-separated values file named ’data/
time_series_19-covid-Confirmed.csv’ into a variable named df using the read_csv
function.

5. The pandas library, referred to as pd, reads a comma-separated values file named ’ tmdb-movies.
csv’ into a dataframe variable named df using the read_csv function.

Figure 5: Example of code/math hard negatives generation.

A.4 DATA STATISTICS

We present the statistics of our training data for both pre-training and fine-tuning stages in

B DOWNSTREAM TASKS

In Table[8] we have all MTEB tasks we use to evaluate the several models considered.

C ABLATIONS AND ANALYSIS

ECHO includes several novel design choices supported by strong downstream performance. In this section
we provide ablations for such choices in an incremental fashion, that lead to our final model reported in
Section[5] All ablations experiments are trained for 5k steps only.

C.1 TRAINING OBJECTIVES

ECHO follows a multi-stage training strategy described in Section 4} Some of these steps such as de-
coding loss for sentence embedding learning (Duquenne et al., 2023, LLM re-purposing as an Encoder-
Decoder (Zhang et al., 2025a), and contrastive learning have been explored in isolation in prior work, but
ECHO is the first system to train an embedding model with such training strategies in a unified framework.
Here, we analyze the contribution of each component to the final performance.

As shown in Table each training stage yields significant improvements. After Seq2Seq pre-training,
the representations are not yet optimized for sentence-level tasks, and mean-pooling over all tokens results
in suboptimal performance. Nevertheless, we will later show the impact of this step as a foundation for
subsequent contrastive training.

22

Under review as a conference paper at ICLR 2026

Languages

ace_Arab
afr_Latn
apc_Arab
asm_Beng
azj _Latn
bem_Latn
bod_Tibt
ceb_Latn
cym_Latn
dzo_Tibt
eus_Latn
fon_Latn
gla_Latn
hat_Latn
hrv_Latn
ind_Latn
kab_Latn
kas_Deva
khk_Cyrl
kmb_Latn
kor_Hang
lit_Latn
lug_Latn
mai_Deva
mlt_Latn
nld_Latn
nus_Latn
pan_Guru
pol_Latn
run_Latn
scn_Latn
smo_Latn
spa_Latn
swe_Latn
taq_Tfng
tha_Thai
tuk_Latn
uig_Arab
vec_Latn
ydd_Hebr
zsm_Latn

ace_Latn
ajp-Arab
arb_Arab
ast_Latn
bak_Cyrl
ben_Beng
bos_Latn
ces_Latn
dan_Latn
ell_Grek
ewe_Latn
fra_Latn
gle_Latn
hau_Latn
hun_Latn
isl_Latn
kac_Latn
kat_Geor
khm_Khmr
kmr_Latn
lao_Laoo
Imo_Latn
luo_Latn
mal_Mlym
mni_Beng
nno_Latn
nya_Latn
pap_Latn
por_Latn
rus_Cyrl
shn_Mymr
sna_Latn
srd_Latn
swh_Latn
tat_Cyrl
tir_Ethi
tum_Latn
ukr_Cyrl
vie_Latn
yor_Latn
zul_Latn

acm_Arab
aka_Latn
ars_Arab
awa_Deva
bam_Latn
bho_Deva
bug_Latn
cjk_Latn
deu_Latn
eng_Latn
fao_Latn
fur_Latn
glg Latn
heb_Hebr
hye_Armn
ita_Latn
kam_Latn
kaz_Cyrl
kik Latn
knc_Arab
lij_Latn
Itg_Latn
lus_Latn
mar_Deva
mos_Latn
nob_Latn
oci_Latn
pbt_Arab
prs_Arab
sag_Latn
sin_Sinh
snd_Arab
srp_Cyrl
szl_Latn
tel_Telu
tpi_Latn
tur_Latn
umb_Latn
war_Latn
yue_Hant

acq-Arab
als_Latn
ary_Arab
ayr_Latn
ban_Latn
bjn_Arab
bul_Cyrl
ckb_Arab
dik_Latn
epo_Latn
fij_Latn
fuv_Latn
grn_Latn
hin_Deva
ibo_Latn
jav_Latn
kan_Knda
kbp_Latn
kin_Latn
knc_Latn
lim_Latn
Itz_Latn
lvs_Latn
min_Latn
mri_Latn
npi_Deva
ory_Orya
pes_Arab
quy_Latn
san_Deva
slk_Latn
som_Latn
ssw_Latn
tam_Taml
tgk_Cyrl
tsn_Latn
twi_Latn
urd_Arab
wol_Latn
zho_Hans

aeb_Arab
amh_Ethi
arz_Arab
azb_Arab
bel_Cyrl
bjn_Latn
cat_Latn
crh_Latn
dyu_Latn
est_Latn
fin_Latn
gaz_Latn
guj_Gujr
hne_Deva
ilo_Latn
jpn_Jpan
kas_Arab
kea_Latn
kir_Cyrl
kon_Latn
lin_Latn
lua_Latn
mag_Deva
mkd_Cyrl
mya_Mymr
nso_Latn
pag-Latn
plt_Latn
ron_Latn
sat_Beng
slv_Latn
sot_Latn
sun_Latn
taq_Latn
tgl_Latn
tso_Latn
tzm_Tfng
uzn_Latn
xho_Latn
zho_Hant

Table 6: Complete list of languages covered by our model. Languages shown in bold are supported by all
models in our comparison. Our model covers 202 languages total, with 81 languages supported across all

compared models.

A key distinction between ECHO and other embedding models built on modern LLMs is the inclusion of
a Decoder component. While contrastive learning alone achieves a modest xsim score, it falls short on

23

Under review as a conference paper at ICLR 2026

\ Seq2Seq \ Contrastive
Dataset | pairs dirs source target | pairs dirs source target
BT Math 13.0M 14 8 8 - - - -
Dictionary 189M 33K 110 110 - - - -
Code/Math — Eng | 1.02B 9 9 1] 9.0M 9 9 1
Eng — Code 941M 8 1 8 - - - -
Eng — Math 8.0M 1 1 1 - - - -
NLLB Mined 1.21B 1.6K 187 187 | 243M 140 140 1
NLLB mmt_bt 90IM 258 132 128 | 107TM 119 119 1
NLLB smt_bt 215M 76 39 39| 32M 37 37 1
NLLB Primary 398M 1.3K 202 202 | 51.6M 196 196 1

Table 7: Training Data Statistics for Seq2Seq and Contrastive Learning Approaches. Each dataset shows:
pairs (number of translation pairs), dirs (number of translation directions, i.e., language X to Y), source
(number of source languages), and farget (number of target languages).

task | dataset
MassivelntentClassification (FitzGerald et al., 2022)
MassiveScenarioClassification (FitzGerald et al.| [2022)
. . MTOPDomainClassification (L1 et al.,[2021)
Classification

MTOPIntentClassification (Li et al., 2021)
AmazonCounterfactualClassification (O’Neill et al.,[2021)
SIB200Classification (Adelani et al., 2024)

XNLI (Conneau et al., 2018)
XNLIV2 (Upadhyay & Upadhyal, 2023)

Pair Classification

Table 8: List of MTEB tasks we use to evaluate the models.

Model | xsim | xsim++
LLaMA initialization | 94.57 99.89 Model ‘ xsim ‘ XSim++
Seq2Seq pre-training | 7.74 | 51.55 Decoder + MSE losses 092 | 12.54
Contrastive Loss 0.71 16.23 Decoder + Contrastive 1 0.65 8.95
+ Decoder Loss 065 | 895 ccoder + -ontrashve fosses | - :
+ Hard negatives | 0.76 7.06 (b) Cross-lingual alignment objectives ablation.

(a) Full method ablation.

Table 9: Training objectives ablations: Ablations on training objectives to learn a massively multilingual
sentence embedding space on the cross-lingual similarity search task of FLORES200 dev set, as measured
by xsim and xsim++.

xsim++. The addition of the cross-entropy loss from the Decoder, with its token-level language modeling
signal, delivers the largest gains, highlighting its role in capturing semantic nuance beyond surface-level
features. The introduction of hard negatives further reduces xsim++ scores.

24

Under review as a conference paper at ICLR 2026

| xsim | xsim++

Margin 0 0.74 9.49
03 | 065 | 895 T | imer
05| 072 | 945

Logit scale 1 | 1.88 | 11.90 In-batch negatives only

100 | 0.65 2,05 One softmax | 0.65 | 8.95
150 | 0.66 9.07 In-batch + hard negatives

Gathering negatives no | 0.74 9.44 (S);l?tssoof;tr?naa); 822 ;8(6)
yes | 0.65 8.95 : ’
False negative removal no 0.69 973 (b) Ablation on the use of hard negatives in con-

yes | 0.65 8.95 trastive learning.

(a) Contrastive Learning hyper-parameters ablations

Table 10: Contrastive Learning ablations: Effect of hyper-parameters and modeling options in Contrastive
Learning on cross-lingual similarity search on FLORES200 dev set.

SONAR (Duquenne et al.,[2023) successfully leveraged a Decoder to build sentence representations. How-
ever, their approach combined a Mean Squared Error (MSE) objective between source and target embeddings
with the translation objective. In Table[9b] we show that replacing the MSE objective with a contrastive loss,
as described in Section [4.3] leads to a substantial improvement. This result suggests that the contrastive
signal encourages a more structured embedding space by explicitly pushing apart negatives, which benefits
xsim++ and, as we discuss later, helps prevent embedding space collapse.

C.2 CONTRASTIVE SIGNALS

Training embedding models with Contrastive Learning requires careful choices of hyper-parameters. We
analyze the effect of these options on the cross-lingual similarity search results in Table[T0]

The additive margin in the softmax improves separation between positive translations and negatives. A
value of m = 0.3 was empirically found as best for this hyper-parameter, boosting performance compared
to models trained without margin. We also explore the logit scale on cosine similarity, 7, and find 100 to be
the best and crucial for proper contrastive learning.

The choices of negative examples is also key. By default we use all other sentences from the batch as neg-
atives, commonly referred to as in-batch negatives. We analyze the effect of different choices of negative
examples in Table[I0} First in sub-table (a), we gather negative sentence examples from other GPUs, signifi-
cantly increasing the number of negatives, by a factor of number of GPUs, which in our case was 128. Such
approach indeed helps reaching lower cross-lingual similarity search error rates. The increasing number of
negative examples comes also at the price of higher probability of considering false negative sentences in
the loss. We ablate the use of false negative removal heuristic presented in Section [4.3] and validate the
usefulness of such approach.

Finally, in sub-table (b), we extend the in-batch negatives with the hard negatives presented in Section {.4]
either using a single contrastive learning task (one softmax) for both in-batch and hard negatives, or two
contrastive learning tasks (split softmax). The first interesting finding is that training a model using hard
negatives with a non-zero margin does not converge correctly. Therefore, we do not use any margin in the
“one softmax” setup. This leads us to use m = 0.3 for in-batch negatives and m = 0 for hard negatives in
the “split softmax” setup. We notice that hard negatives significantly lower xsim++ error rates. However,

25

Under review as a conference paper at ICLR 2026

not separating the hard negatives from in-batch negatives in two different contrastive loss terms affects
xsim performance. This highlights the benefits of having two contrastive learning losses, one for in-batch
negatives and another for hard negatives, to better balance the two in the final loss.

C.3 MODEL INITIALIZATION

In order to understand the benefits of initializing from LLaMA, we ablate starting the seq2seq stage both
from LLaMA, and from random initialization. This analysis is present in Table [TTh. It is possible to see
that initializing from LLaMA brings large improvements over random initialization in both spBLEU and
chrF++, despite officially only supporting 8 languages, performing this extension to 200 languages is still
easier than training from scratch.

To understand the advantage of doing a first seq2seq step to adapt LLaMA to many languages and give it
the ability to encode and decode, we initialize our contrastive step from LLaMA, Seq2Seq and also random.
Those results are available in Table[TTp, where it is possible to see the very large improvements in xsim and
xsim++ obtained from starting from the seq2seq model instead of from LLaMA.

C.4 DATA MIXES

Table [12| presents an ablation study evaluating the impact of various data processing steps on model per-
formance, as measured by the xsim and xsim++ metrics. Starting with the baseline NLLB data, we incre-
mentally apply different data modifications: filtering, addition of code/math content, and removal of false
negatives. For each configuration, we report the resulting xsim and xsim++ scores. Both filtering and the
addition of code and math seem to bring small beneficial changes, but a large improvement is seen in false
negative removal, suggesting that even more aggressive filtering in the data could lead to further improve-
ments.

C.5 POOLING

It is a common debate whether to use mean pooling or CLS pooling, with SONAR (Duquenne et al., |[2023))
reporting better result with mean pooling, while MEXMA (Janeiro et al.,[2025b) reported better results with
CLS pooling. Intuitively, CLS pooling should work better, since it has the freedom to attend differently to
each tokens. In Table 13| we experiment with both pooling methods and find that our model performs best
with CLS pooling.

Initialization ‘ spBLEU ‘ chrF++ Initialization ‘ Xsim ‘ Xstm++

Random 1722 36.55 Random 1n1t 13.35 71.30
LLaMA 2357 971 LLaMA init. 1.02 11.98
: : Seq2Seq init. | 0.65 8.95

(a) Ablation on model initialization for the Seq2Seq

stage (b) Ablation on model initialization for Contrastive

Learning stage.

Table 11: Model initialization ablations: Effect of model weight initialization for sequence-to-sequence
stage as well as for contrastive learning stage on respectively decoding performance (spBLEU and chrF++)
and cross-lingual similariy search (xsim and xsim++) on FLORES200 dev set.

26

Under review as a conference paper at ICLR 2026

Data | xsim | xsim++
NLLB data 0.74 10.03
+ filtering 0.71 9.62
+ code/math 0.70 9.50
+ false negatives removal | 0.65 8.95

Table 12: Ablations on data Ablation on the datamix used for contrastive finetuning on cross-lingual simi-
lariy search on FLORES200 dev set.

C.6 SMALLER SCALE MODELS

To make our models more accessible to practitioners with varying computational constraints, we investigate
the performance of smaller-scale variants of ECHO. A key design goal is ensuring these smaller models
serve as drop-in replacements across all scales, enabling practitioners to seamlessly switch between model
sizes while maintaining compatibility with downstream components.

Model Pruning Strategy. We create smaller models through structured pruning of the original 1.5B pa-
rameter model. Our pruning approach encompasses multiple architectural dimensions: (1) reducing inner
model dimensionality (from 2048 to 1024-1792), (2) decreasing the number of encoder layers (from 16 to
8-14), (3) adjusting attention heads proportionally, and (4) scaling the feed-forward network dimensions ac-
cordingly. For layer selection, we employ a strategic sampling approach that preserves both the first and last
layers while uniformly sampling intermediate layers, maintaining representational capacity across network
depth.

Knowledge Distillation. Rather than training smaller models from scratch, we leverage knowledge distil-
lation to ensure all model variants produce representations in the same aligned embedding space. We use
the full 1.5B parameter ECHO model as the teacher and train smaller student models using Mean Squared
Error (MSE) loss on the output embeddings. This approach offers a critical advantage: any task-specific de-
coder or classifier trained on representations from one model size can be directly applied to representations
from any other size, as all models produce semantically aligned embeddings in the same 1024-dimensional
space. This design enables practitioners to optimize their compute-performance trade-off dynamically. A
user might develop and evaluate with the large model, then deploy a smaller variant for production infer-
ence, or vice versa, training efficiently on a smaller model and scaling up for final deployment, all while
maintaining full compatibility with existing task-specific components.

In Table [T4] we demonstrate that even our smallest model (Tiny, 385M parameters) retains approximately
76% of the full model’s performance on cross-lingual similarity search, as measured by relative xsim++
scores. The Medium (1.1B) and Small (806M) models show even stronger performance, achieving over
85% of the full model’s capability while offering substantial computational savings. Importantly, all mod-
els maintain strong cross-lingual alignment across all 200 supported languages, with minimal performance
degradation on the 80 languages common across baseline models.

Model | xsim | xsim++
0.68 ‘ 9.25

Mean

CLS | 0.64 8.77

Table 13: Ablation on different pooling strategies, evaluated on FLORES200 dev set.

27

Under review as a conference paper at ICLR 2026

Model | Size | xsim (all) | xsim++ (all) | xsim (common) | xsim++ (common)
ECHO (Large) | 1.5B 0.99 8.12 0.07 3.9
Medium 1.1B 1.18 8.78 0.07 421
Small 806M 1.23 9.01 0.08 423
Tiny 385M 1.61 11.71 0.09 5.13

Table 14: Results of smaller models in xsim, and xsim++. "Common” refers to the 80 languages aforemen-
tioned, and all” to all 200 languages covered by our model.

model | std | mean

MEXMA | 0.0312 | -0.0011
mESjyee | 0.0312 | -0.0008
LaBSE 0.0358 | 0.0049
SONAR | 0.0074 | 0.0000
ECHO 0.0356 | -0.0006

Table 15: Standard deviation (std) and mean of embedding features for different models when encoding
FLORES200 dev set on all common languages.

C.7 MODEL REPRESENTATION COLLAPSE

An often overlooked aspect of learned representations is how much of the embedding space they actually
utilize, that is, whether their representations are collapsed within the space. |Duquenne et al. (2023) have
already highlighted this issue, which is especially pronounced when training with MSE regression signals,
as models may exploit collapse to minimize the loss. This issue is crucial in the deployment of embeddings
in current production systems that leverage mixed precision to reduce the memory footprint, as collapse can
largely affect performance at lower precision. In Table T3] we see how ECHO successfully avoids collapse
compared to other models like SONAR, with a healthy standard deviation on its features, similar to widely
used models such as mE5y;ge.

C.8 EMBEDDING DIMENSION INFORMATIVENESS

Singular Value Decomposition (SVD) provides a principled approach to analyze the intrinsic dimensionality
and information distribution in embeddings. By examining the decay pattern of singular values, we can
assess how different models utilize their feature space and identify potential dimensional collapse, where
models concentrate information in fewer dimensions than their nominal embedding size.

Figure [6] plots the SVD of our baselines on the FLORES dev set. From it, it can be inferred that ECHO
showcases a stable decay pattern reaching up to 800 dimensions, while other models decay earlier, with the
sole exception of SONAR.

C.9 ANALYZING EXAMPLES TO UNDERSTAND WHERE MODELS FAIL

In this section, we perform some qualitative analysis of the errors of ECHO, and other models. By inspection,
ECHO’s mistakes look to be related to unit conversion, matching with the sentence where the actual number
matches, i.e. matching ”15 cm” to ”’15 inches” instead of "6 inches”. This is likely due to our hard negatives,
which focused on matching the actual numbers, but lead to errors when the translation transforms the units.

28

Under review as a conference paper at ICLR 2026

Singular values

102 4

10! 4

10° 4

(I) 2(‘)() 4(‘]O 660 860 10‘00
Figure 6: Singular values of embeddings from different models.

Meanwhile we see SONAR and MEXMA make mistakes related to both values and semantics (may/will,
white/black), such as the examples provided below. Examples are provided in Table[16]

D TOKENIZER TRAINING

To extend the tokenizer vocabulary, we implemented a byte-pair encoding “continued training” algorithm
by sequentially merging the most frequently occurring consecutive pairs of tokens within a word. The word
frequencies were computed with a balanced sample from the parallel training data in all our languages and
from the FineWeb2 dataset of web documents (in equal proportions). As weights for balancing, we used the
total number of characters in the texts, and we applied unimax sampling over the languages, squashing the
proportions of the first 126 languages to uniform and upsampling the rest at most x100 (on top of this, we
manually increased the weights for some languages with underrepresented scripts, such as Greek or Korean,
to adjust the resulting tokenizer fertilities). For some languages, the bottleneck of tokenization fertility has
been not in the vocabulary itself but in the pre-tokenization word splitting regular expression, so we extended
it with additional Unicode ranges and with a pattern for matching diacritic marks within a word. As a result
of these operations, the extended tokenizer achieved the average fertility of 44 tokens per sentence over the
200 languages in the FLORES dataset, as opposed to 79 tokens in the original Llama3 tokenizerﬂ

E PROMPTS

Table Table[T7]shows the prompts we used when tokenizing the input for both the Encoder and the Decoder,
as explained in Section[f.2]

F FULL RESULTS

We present a breakdown of the cross-lingual similarity search results for our 200 focus languages in[Table 18]

and[lable 19|

2With the most pronounced differences for the Asian languages with unique scripts, such as shn_Mymr, sat_0Olck,
and dzo_Tibt, where the fertility has decreased by more than 6 times.

29

Under review as a conference paper at ICLR 2026

System

Source Sentence

Desired Retrieved

Actual Retrieved

ECHO

ECHO

O Corpo de Engenheiros dos
EUA estimou que 15 cm de
chuva podem romper os diques
anteriormente danificados.

Os limites de velocidade anun-
ciados sao visivelmente mais
baixos do que nas secoes ante-
riores e subsequentes - comu-
mente 55-65 km/h - e a estrita
obediencia a eles e ainda mais
importante do que o contrario.

The U.S. Corps of Engineers
estimated that 6 inches of rain-
fall could breach the previously
damaged levees.

Posted speed limits are notice-
ably lower than in previous and
subsequent sections commonly
35-40 mph (56-64 km/h) and
strict obedience to them is even
more important than otherwise.

The U.S. Corps of Engineers
estimated that 15 inches of rain-
fall could breach the previously
damaged levees.

Posted speed limits are notice-
ably lower than in previous and
subsequent sections commonly
35-90 mph (56-64 km/h) and
strict obedience to them is even
more important than otherwise.

MEXMA

MEXMA

O Corpo de Engenheiros dos
EUA estimou que 15 cm de
chuva podem romper os diques
anteriormente danificados.
Reportagens televisivas divul-
gam a fumaca esbranquicada
saindo da planta.

The U.S. Corps of Engineers
estimated that 6 inches of rain-
fall could breach the previously
damaged levees.

Television reports show white
smoke coming from the plant.

The U.S. Corps of Engineers
estimated that 15 inches of rain-
fall could breach the previously
damaged levees.

Television reports show black
smoke coming from the plant.

SONAR

SONAR

No periodo de um ano, uma
pessoa infectada pode infectar
entre 10 e 15 contatos proxi-
mos.

Aconteceu novamente no
mesmo mes em Mashhad, outro
aviao comercial entrou em uma
pista e atingiu uma parede,
matando dezessete pessoas.

In one year’s time, an infected
person may infect 10 to 15 close
contacts.

The same month saw another
airliner overrun a runway at
Mashhad and strike a wall,
killing seventeen.

In one year’s time, an infected
person will infect 10 to 15 close
contacts.

The same month did not saw
another airliner overrun a run-
way at Mashhad and strike a
wall, killing seventeen.

Table 16: Comparison of three systems (ECHO, MEXMA, SONAR) on two examples each. For each
example, the table shows the original source sentence (in Portuguese) and the desired retrieved English

sentence, the actual retrieved English sentence.

30

Under review as a conference paper at ICLR 2026

Source

Prompt Template

Encoder

Source/Anchor

"<CLS><s> [LANGUAGE] :<SEP> [INPUT SENTENCE]
</s>"

Decoder

NLLB Primary
NLLB Mined
NLLB *_bt
Eng — Code
Eng — Math

Code/Math — Eng

"<s> This is a possible translation in
[LANGUAGE] : <SEP> [INPUT SENTENCE] </s>"

"<s> This is a possible mined translation in
[LANGUAGE] : <SEP> [INPUT SENTENCE] </s>"

"<s> This is a possible back-translation in
[LANGUAGE] : <SEP> [INPUT SENTENCE] </s>"

"<s> This is a corresponding code snippet in
[LANGUAGE] : <SEP> [INPUT SENTENCE] </s>"

"<s> This is a corresponding math formula:<SEP>
[INPUT SENTENCE] </s>"

"<s> This is a possible natural language
explanation in [LANGUAGE] :<SEP> [INPUT
SENTENCE] </s>"

Table 17: Prompt Templates for Encoder and Decoder Components. The encoder uses classification prompts
to identify language and content, while the decoder uses descriptive prompts tailored to different data sources
and translation types. Placeholders [LANGUAGE] and [INPUT SENTENCE] are replaced with actual

values during training.

31

(43

Lang SONAR|LaBSE{MEXMA |ECHO| mES ||Lang SONAR |LaBSE [MEXMA [ECHO| mES ||Lang SONAR |LaBSE [MEXMA [ECHO | mES ||Lang SONAR|LaBSE{MEXMA |ECHO| mES
ace_Arab | 6.23 |[96.44 | 5791 [8.60 [77.77||ace_Latn 030 [3261 | 8.60 [0.10 [8.70 [[acm_Arab [0.10 | 0.30 0.00 [0.00 [0.10 ||acq-Arab 0.00 | 0.10 0.00 | 0.00 |0.10
aeb_Arab | 040 | 4.94 0.20 | 0.20 | 0.99 ||afr_Latn 0.00 | 0.00 0.00 | 0.00 |0.00 ||ajp-Arab 0.10 | 049 0.00 | 0.00 |0.20 ||aka_Latn 0.30 | 53.46 | 44.86 | 0.10 | 7.21
als_Latn 0.00 | 0.00 0.00 | 0.00 | 0.00 ||amh_Ethi | 0.00 | 0.00 0.00 | 0.00 |0.40 ||apc_Arab | 0.10 | 1.09 0.00 | 0.00 |0.10 ||arb-Arab 0.00 | 0.00 0.00 | 0.00 |0.00
ars_Arab 0.10 0.00 0.00 0.00 | 0.10 ||ary-Arab 099 | 13.14 0.99 0.89 | 2.77 ||arz_Arab 0.20 0.69 0.10 0.00 | 0.40 |[asm_Beng 0.10 1.78 0.00 0.00 | 0.69
ast_Latn 0.00 0.20 0.00 0.00 | 0.00 ||awa_Deva | 0.99 1.09 0.89 0.89 | 0.99 ||ayr_Latn 385 | 7213 | 54.25 1.68 [43.97||azb_Arab 296 |44.37 1.68 0.69 [11.36
azjLatn 0.30 0.30 0.20 0.20 | 0.20 ||bak-Cyrl 0.00 | 4190 | 11.36 | 0.00 | 1.68 ||bam_Latn 4.05 | 65.61 | 52.37 2.17 |14.62||ban_Latn 0.40 8.40 1.09 0.30 |2.57
bel _Cyrl 0.49 0.00 0.00 0.00 | 0.20 ||bem-Latn | 0.00 |44.07 | 36.66 | 0.10 |14.23||ben_Beng 0.00 0.00 0.00 0.00 | 0.10 ||bho_Deva 0.20 2.57 0.30 0.00 | 0.79
bjn_Arab | 4.84 | 9536 | 69.96 | 6.23 |82.41||bjn_Latn 0.10 8.60 0.30 0.10 | 1.68 ||bod_Tibt 128 | 14.13 | 88.93 0.49 |92.19(|bos_Latn 0.00 0.00 0.00 0.00 | 0.00
bug_Latn [0.79 | 40.61 13.14 | 0.49 [12.65||bul_Cyrl 0.10 0.00 0.00 0.00 | 0.10 ||cat_Latn 0.00 0.00 0.00 0.00 | 0.00 ||ceb_Latn 0.00 0.00 6.82 0.00 |0.10
ces_Latn 0.00 0.00 0.00 0.00 | 0.00 ||cjk-Latn 12.55 | 6245 | 42.69 | 7.02 [43.97||ckb_Arab 0.10 | 88.83 0.10 0.00 | 3.26 ||crh-Latn 0.10 2.67 0.10 0.00 | 0.30
cym.Latn | 0.00 0.00 0.00 0.00 | 0.49 ||dan_Latn 0.00 0.00 0.00 0.00 | 0.00 ||deu_Latn 0.00 0.00 0.00 0.00 | 0.00 ||dik-Latn 11.26 | 62.25 | 46.15 8.89 |46.34
dyu_Latn | 21.34 | 74.51 | 53.36 | 13.54 [50.30||dzo_Tibt 1.19 | 67.19 | 9941 0.49 |99.51|ell_Grek 0.00 0.00 0.00 0.00 | 0.00 ||epo_Latn 0.00 0.00 0.00 0.00 | 0.10
est_Latn 0.00 0.00 0.00 0.00 | 0.10 ||eus_Latn 0.00 0.10 0.00 0.00 | 0.00 [|ewe_Latn 1.19 | 64.53 | 53.16 | 0.89 [16.21||fao_Latn 0.10 0.49 0.00 0.00 |2.47
fij_Latn 049 | 60.77 | 52.27 0.30 [13.24||fin_Latn 0.30 0.10 0.10 0.10 | 0.10 | |fon_Latn 5.83 |70.16 | 57.41 4.64 |19.66||fra_Latn 0.00 0.00 0.00 0.00 | 0.00
fur_Latn 0.00 | 12.06 0.20 0.00 | 0.89 ||fuv_Latn 10.97 | 65.02 | 43.38 | 4.55 |36.86||gaz_Latn 020 | 81.72 | 47.92 | 0.10 |12.15(|gla_Latn 0.10 0.20 0.10 0.10 | 4.25
gle_Latn 0.00 0.00 0.00 0.00 | 1.19 ||glg-Latn 0.00 0.00 0.00 0.00 | 0.00 |[grn_Latn 0.30 |47.92 | 27.37 0.40 |10.87||guj-Gujr 0.00 0.00 0.00 0.00 | 0.00
hatLatn | 0.59 | 0.59 | 13.83 | 0.59 | 1.28 ||hau_Latn | 0.40 | 0.30 0.30 | 0.30 |2.67 ||heb_Hebr | 0.00 | 0.00 0.00 | 0.00 |0.00 ||hin_Deva 0.10 | 0.00 0.00 | 0.00 |0.00
hne_Deva| 040 | 1.78 0.40 | 0.40 [0.69 ||hrv_Latn 0.00 | 0.00 0.00 | 0.00 |0.00 ||hun_Latn 0.10 | 0.00 0.00 | 0.00 |0.00 ||hye_Armn | 0.00 | 0.00 0.00 | 0.00 |0.00
ibo_Latn | 0.10 | 1.09 | 4881 | 0.00 | 4.45 ||ilo_Latn 0.00 |30.24 | 1630 | 0.00 | 1.68 ||ind_Latn 0.00 | 0.00 0.00 | 0.00 |0.30 ||isl-Latn 0.20 | 0.10 0.10 | 0.10 | 0.10
ita_Latn 0.10 | 0.00 0.00 | 0.00 | 0.00 ||jav_Latn 0.00 | 0.00 0.00 | 0.00 |0.00 ||jpnJpan 0.20 | 0.00 0.10 | 0.00 |0.00 ||kab_Latn 0.10 | 82.41| 67.19 | 0.00 [37.35
kac_Latn 1.78 6798 | 51.09 | 0.10 |41.40||kam_Latn | 3.36 | 54.45| 38.74 2.17 [29.25||kan_Knda | 0.00 0.00 0.00 0.00 | 0.30 | |kas_Arab 020 | 34.88 3.06 0.20 | 4.84
kas_Deva | 1.88 |56.72 | 1591 0.59 [16.60||kat-Geor 0.40 0.00 0.00 0.00 | 0.10 | |kaz_Cyrl 0.30 0.20 0.20 0.20 | 0.30 | |kbp_Latn 494 | 6779 | 5534 | 435 (39.33
kea_Latn | 0.00 | 14.82 1.09 0.00 | 0.79 ||khk_Cyrl 0.30 0.00 0.10 0.00 | 0.59 [(khm_Khmr| 0.00 237 0.00 0.69 | 0.79 | |kik-Latn 0.89 | 5237 | 43.18 0.59 | 6.72
kin_Latn 0.30 0.30 49.51 0.20 | 2.87 ||kir_Cyrl 0.30 0.10 0.00 0.00 | 0.59 ||kmb_Latn 0.89 | 61.66 | 48.02 1.28 [36.76||kmr_Latn 0.20 0.30 3.66 0.00 |2.17
knc_Arab | 63.74 | 96.74 | 80.14 |50.89 |79.55||knc_Latn 7.81 | 6522 | 4239 | 0.99 |45.45| kon_Latn 040 | 5247 | 4042 | 0.20 |9.29 ||kor-Hang 0.10 0.00 0.00 0.00 |0.20
lao_Laoo [0.00 3.46 0.00 0.00 | 0.79 ||lij-Latn 0.10 | 10.57 0.59 0.10 | 1.38 ||lim_Latn 0.20 9.09 0.30 0.00 | 3.56 ||lin_Latn 0.20 | 50.69 | 40.71 0.20 | 3.85
lit_Latn 0.49 0.40 0.49 0.40 | 0.40 ||lmo_Latn | 0.30 | 16.40 0.69 0.00 | 2.77 ||ltg_Latn 0.10 | 2520 | 12.65 0.10 | 5.34 ||ltz_Latn 0.00 0.00 4.55 0.00 |0.89
lua_Latn 1.28 | 50.49 | 38.04 | 0.49 [16.80||lug-Latn 0.20 | 45.65| 41.90 | 0.30 | 9.78 ||luo_Latn 0.00 | 64.43 | 49.70 | 0.10 |23.91||lus_Latn 1.48 | 5247 | 3636 | 049 [15.81
Ivs_Latn 0.20 0.00 0.00 0.00 | 0.00 ||mag_-Deva| 0.10 0.30 0.00 0.10 | 0.00 ||mai_Deva 0.00 0.20 0.10 0.00 | 0.10 [|mal Mlym | 0.10 0.10 0.10 0.10 | 0.10
mar_Deva| 0.00 0.00 0.00 0.00 | 0.10 ||min_Latn 0.10 | 12.85 0.89 0.10 | 1.98 ||mkd_Cyrl 0.00 0.00 0.00 0.00 | 0.00 ||milt_Latn 0.00 0.00 15.71 0.00 |0.79
mni_Beng| 0.00 |90.02 | 72.13 0.30 [46.84||mos_Latn | 10.67 | 70.36 | 51.19 | 5.73 |45.16||mri_Latn 0.10 247 57.91 0.00 [11.56||mya_Mymr| 0.69 0.30 0.20 0.20 | 0.69
nld_Latn 0.40 0.00 0.00 0.00 | 0.00 ||nno_Latn 0.10 0.10 0.10 0.10 | 0.10 | |nob_Latn 0.20 0.10 0.10 0.10 | 0.10 | |npi_Deva 0.59 0.30 0.30 0.30 | 0.40
nso_Latn [0.10 7.02 44.66 | 0.10 |2.96 ||nus_Latn 227 | 7945 | 64.92 1.98 [49.41||nya_Latn 0.10 0.79 37.55 0.20 | 3.85 [|oci-Latn 0.00 0.49 0.10 0.00 | 0.10
ory_Orya | 0.20 | 0.00 0.00 | 0.00 |0.10 ||pag-Latn | 0.89 |30.43 | 17.39 | 0.30 |4.35||pan_Guru | 0.00 | 0.00 0.00 | 0.00 |0.10 ||pap_Latn 0.00 | 11.26 | 1.09 0.00 | 0.30
pbt_Arab | 0.10 1.09 0.10 0.00 | 0.49 ||pes_Arab 0.20 0.00 0.00 0.00 | 0.00 | |plt_Latn 0.00 0.49 1532 | 0.00 | 1.19 ||pol.Latn 0.00 0.00 0.00 0.00 | 0.20
por_Latn | 0.00 | 0.00 0.00 | 0.00 | 0.59 ||prs_Arab | 0.10 | 0.00 0.00 | 0.00 |0.00 ||quy_Latn 395 | 67.39 | 4249 | 3.16 [30.83|ron_Latn 0.00 | 0.00 0.00 | 0.00 |0.00
runLatn | 0.20 | 2.87 | 4832 | 0.10 | 3.85 ||rus_Cyrl 020 | 0.00 0.00 0.00 | 0.00 |[sag_Latn 3.16 | 6097 | 43.28 1.78 |33.89| [san_Deva 0.69 |19.17 | 0.40 0.40 | 2.08
scnLatn | 030 | 8.30 1.09 0.00 | 1.68 ||shn_.Mymr| 049 | 71.54 | 53.06 | 0.00 [42.19||sin_Sinh 0.30 | 0.00 0.00 | 0.10 |0.20 ||slk_Latn 0.10 | 0.00 0.00 | 0.00 |0.00
slv_Latn 0.10 0.00 0.00 0.00 | 0.10 ||smo_Latn | 0.10 1.38 49.41 0.10 | 4.55 ||sna_Latn 0.20 237 43.18 0.20 | 3.16 | [snd-Arab 0.00 0.00 0.00 0.00 |0.49
som_Latn [0.10 1.09 0.10 0.10 | 4.64 ||sot_Latn 0.00 0.59 46.94 | 0.00 | 1.78 ||spa_Latn 0.10 0.10 0.10 0.10 | 0.10 |[srd_Latn 0.00 9.09 0.49 0.00 | 0.79
srp-Cyrl 0.00 0.00 0.00 0.00 | 0.00 ||ssw_Latn 0.49 | 16.70 6.32 0.30 | 6.52 |[sun_Latn 0.10 0.20 0.10 0.10 | 0.30 ||swe_Latn 0.00 0.00 0.00 0.00 | 0.00
swh_Latn [0.00 0.00 0.00 0.00 | 0.69 ||szl_Latn 0.69 4.94 0.79 0.69 | 0.79 ||tam_Taml 0.00 0.00 0.00 0.00 | 0.10 ||taq-Latn 2233 | 66.80 | 48.81 |16.90|48.42
taq-Tfng | 21.34 | 95.55 | 86.07 |25.79 |87.55||tat_Cyrl 0.00 0.00 5.83 0.00 | 0.59 ||tel-Telu 0.20 0.00 0.00 0.00 | 0.00 ||tgk-Cyrl 0.20 0.30 49.01 0.20 | 1.48
tgl Latn 0.00 0.00 0.30 0.00 | 0.10 ||tha_-Thai 0.10 6.62 0.10 0.10 | 0.40 | |tir_Ethi 040 | 7727 | 16.70 | 0.00 | 6.32 ||tpi-Latn 0.00 |46.84 | 17.39 0.00 |3.36
tsn_Latn 1.09 8.50 51.58 1.09 | 4.25 ||tso-Latn 049 | 5534 | 43.08 | 0.40 |5.14 ||tuk Latn 0.10 0.69 5.04 0.00 {19.47||tum_Latn 0.79 |24.21 | 4140 | 0.20 | 6.13
tur_Latn 0.00 0.00 0.00 0.00 | 0.00 ||twi-Latn 0.40 | 49.60 | 4249 | 0.10 | 8.00 [|tzm-Tfng 0.79 | 9555 | 89.43 0.99 |90.42(|uig-Arab 0.40 0.20 0.10 0.10 | 2.47
ukr_Cyrl 0.00 0.00 0.00 0.00 | 0.00 ||{umb_Latn | 543 | 64.82 | 46.34 | 4.64 |38.04||urd_Arab 0.20 0.10 0.10 0.10 | 0.40 ||uzn_Latn 0.10 0.10 0.10 0.10 | 0.20
vec_Latn [0.00 4.15 0.10 0.00 | 0.59 ||vie_Latn 0.00 0.00 0.00 0.00 | 0.10 ||war_Latn 0.00 0.49 6.52 0.00 | 0.20 ||wol_Latn 0.99 | 54.84 | 42.09 1.09 (17.19
xho_Latn [0.10 0.99 0.10 0.10 | 1.98 ||ydd_Hebr | 0.00 0.89 0.20 0.00 | 2.87 ||yor_Latn 0.20 | 13.14 | 51.88 0.00 |11.76||yue_Hant 0.20 0.10 0.00 0.00 | 0.00
zho_Hans [0.00 0.00 0.10 0.00 | 0.00 ||zho_Hant | 0.30 0.40 0.10 0.00 | 0.20 ||zsm_Latn 0.00 0.00 0.00 0.00 | 0.10 [|zul_Latn 0.10 0.20 0.30 0.10 | 1.38

Table 18: xsim results for all models in all languages, x-eng in FLORES200 devtest set.

9707 JTIDI e Joded 90UQIQJUOD B SB MITASI JOPU()

€¢

Lang SONAR|LaBSE|MEXMA |ECHO| mES | |Lang SONAR [LaBSE|MEXMA|ECHO| mES5 | |Lang SONAR [LaBSE|MEXMA |ECHO| mES5 | [Lang SONAR |LaBSE|MEXMA [ECHO| mES
ace_Arab | 55.34 [100.00| 92.09 [36.76 [98.91[[ace_Latn | 16.30 [8221 | 49.41 [8.10 [48.22[acm_Arab | 11.17 [52.67 [9.39 | 5.83 [27.37|[acq-Arab 830 [46.54| 820 [10.87]23.02
aeb_Arab | 11.76 | 66.60 | 13.64 | 6.72 |31.72||afr_Latn 5.14 | 9.49 4.64 1.19 [13.34||ajp-Arab 7.61 |54.15| 9.19 | 524 |23.81||aka_Latn 19.47 19239 | 85.18 |10.77 |42.79
als_Latn 5.14 | 1097 | 939 1.78 |18.48||amh_Ethi | 8.60 |28.85| 6.23 3.36 |43.48||apc_Arab | 9.58 | 58.00 | 12.65 | 5.14 |28.46||arb_Arab 6.82 | 3587 | 6.72 2.37 |19.27
ars_Arab | 13.93 | 39.72 | 12.65 8.50 |23.52||ary-Arab | 14.03 | 77.08 | 22.23 |12.45 [39.03||arz-Arab 10.87 | 58.99 | 11.46 | 4.84 |24.51||asm_Beng | 14.92 | 62.15| 11.17 | 6.42 |41.50
ast_Latn 9.68 | 38.04| 14.13 | 6.82 |19.86||awa_Deva | 11.07 | 2698 | 12.06 | 3.75 |27.67||ayr_Latn 3478 [97.43 | 83.10 | 19.27|85.77||azb_Arab 42.59 | 94.76 | 32.61 |21.25(65.32
azj Latn 14.03 | 17.98 | 10.77 | 6.13 [29.45||bak_Cyrl 11.46 [91.90 | 51.09 | 3.56 |40.71||bam Latn | 30.14 | 9526 | 85.67 | 17.09 |61.56||ban_Latn 13.04 | 60.38 | 29.15 | 6.13 [36.26
bel Cyrl | 17.19 | 26.88 | 11.36 | 5.53 [24.90||bem_Latn | 14.82 | 87.35 | 73.02 | 6.92 |54.05||ben-Beng | 10.77 | 19.76 6.92 5.34 |26.09|[bhoDeva | 12.45 | 4595 | 2045 | 4.94 |36.86
bjn_Arab | 42.69 |100.00| 95.06 |31.13[98.62||bjn_Latn 11.76 | 58.30 | 20.06 | 4.94 |33.20|bod_Tibt 2599 |82.51 | 97.23 |17.89(99.21||bos.Latn 5.93 9.29 3.56 1.19 [11.66
bug_Latn | 24.11 | 85.57 | 52.27 | 12.25|56.62||bul_Cyrl 7.81 9.88 4.74 2.08 |9.68 ||cat_Latn 484 | 1294 3.95 1.88 | 8.10 [|ceb_Latn 929 | 16.60 | 4842 | 3.16 (26.19
ces_Latn 7.02 | 1532 5.04 1.98 | 9.88 ||cjk-Latn 63.04 | 95.65 | 83.50 |31.72|86.17||ckb-Arab 10.97 | 99.31 | 11.36 | 4.64 |53.75||crh_-Latn 9.19 |50.59 | 21.64 | 3.95 [37.94
cymLatn| 5.34 | 12.94 3.85 0.99 |31.03||dan_Latn 4.84 721 3.75 1.09 |9.78 ||deu_Latn 4.84 7.61 4.64 1.58 | 7.41 ||dik-Latn 46.94 | 94.66 | 79.05 |34.19|79.74
dyu_Latn | 65.51 | 97.83 | 83.79 |41.21 |86.66(|dzo_Tibt 2431 [9842 | 99.80 | 15.71|99.90||ell_Grek 9.19 | 18.77 7.41 2.87 |13.14||epo_Latn 4.55 8.79 4.15 1.38 [18.77
est_Latn 6.82 | 11.56 4.05 2.08 [12.45||eus_Latn 9.88 | 14.13 7.11 2.96 [20.45||ewe_Latn | 22.63 | 96.34 | 83.40 | 13.83|59.98||fao_Latn 11.36 | 38.14 | 22.33 | 4.05 [39.82
fij_Latn 16.01 | 94.66 | 84.39 | 8.30 [53.95||fin_Latn 751 15.32 7.02 3.36 [11.96||fon_Latn 35.08 | 96.05 | 87.15 |26.38 [62.85||fra_Latn 4.84 9.19 4.64 1.78 | 7.81
fur_Latn 583 | 71.05 | 25.59 | 4.45 (34.09||fuv_Latn | 49.51 | 96.15 | 81.62 |27.57 |76.38||gaz_Latn 16.30 | 98.72 | 83.10 | 8.70 |60.47||gla_Latn 13.74 | 27.67 | 10.57 | 3.66 [48.22
gle_Latn 8.70 | 17.49 8.70 3.26 [39.03||glg-Latn 6.13 771 4.55 2.37 [11.96||grn_Latn 18.87 [91.50 | 68.08 | 9.58 |55.83||guj-Gujr 8.50 | 15.02 6.62 3.06 [31.72
hat_Latn 8.79 | 2628 | 62.85 | 4.55 |39.92||hauLatn | 11.26 |28.16 | 11.36 | 5.14 |37.94||heb_Hebr 543 | 17.00 6.52 2.77 |18.68| |hin_Deva 7.51 10.87 5.24 2.57 [17.00
hne_Deva| 9.58 |39.92| 16.21 4.15 |31.52||hrv_Latn 7.02 9.88 4.64 2.96 [13.24||hun_Latn 7.02 | 13.34 6.32 277 |11.07||hye.Armn | 6.32 | 11.86 6.92 2.67 [32.51
ibo_Latn | 12.06 | 4595 | 79.84 | 6.52 |43.28||ilo_Latn 10.18 | 82.81 | 5593 | 4.64 |35.28]|ind_Latn 6.23 | 8.00 4.74 | 277 |14.92|isl_Latn 850 | 1443 | 6.72 3.46 (19.86
ita_Latn 6.72 | 12.15| 4.64 | 2.27 |8.30 ||jav_Latn 10.77 | 19.07 | 17.81 3.85 |23.91||jpnJpan 13.44 | 20.85 | 8.30 3.46 |14.53||kab_Latn 2223 | 98.81 | 93.08 |17.00 [86.46
kac_Latn | 27.27 | 97.33 | 8538 |17.59|82.71||kam_Latn | 34.98 | 9298 | 74.90 |22.92|72.73||kan_Knda | 11.17 | 20.16 8.60 4.45 |29.55||kas_Arab 16.90 | 90.61 | 45.45 | 9.88 |52.17
kas_Deva | 34.98 | 94.37 | 62.65 |22.92|71.44||kat-Geor | 12.94 | 24.11 8.89 4.74 |32.51| |kaz_Cyrl 10.77 | 13.83 7.41 3.95 [29.55||kbp-Latn 29.15 | 95.65 | 89.53 | 18.18|83.50
keaLatn | 20.65 | 75.89 | 32.61 4.35 |33.50||khk_Cyrl | 13.34 | 24.01 | 17.29 | 5.83 |38.54||khm_Khmr| 11.86 | 24.11 8.00 8.70 [45.45||kik-Latn 22.83 1 92.09 | 78.75 |11.07|48.02
kin_Latn 9.49 |29.64 | 82.41 4.35 |36.36||kir_Cyrl 13.83 | 27.96 | 11.46 | 6.42 |33.10(kmb_Latn | 27.77 | 95.16 | 80.53 |20.65|78.36| kmr_Latn 15.32 | 36.46 | 35.57 | 7.61 [45.65
knc_Arab | 89.82 |100.00| 95.55 |77.57|97.33||knc_Latn | 47.04 | 96.25 | 76.38 | 19.96 |80.14| kon_Latn 17.69 | 93.58 | 76.78 | 10.57 |50.20| kor-Hang 10.57 | 21.64 7.41 3.95 [17.98
lao_Laoo | 9.39 | 23.42 6.03 3.16 [40.32||lij-Latn 8.79 | 6838 | 24.60 | 3.66 [30.73||lim Latn 12.35 | 61.46 | 2530 | 5.14 |47.23||lin_Latn 10.18 | 91.21 | 76.68 | 5.53 [41.70
lit_Latn 10.18 | 1443 | 17.09 | 4.25 [15.12||Imo_Latn | 17.59 | 75.40 | 30.34 | 8.79 |37.75||ltg-Latn 9.09 | 83.10 | 55.14 | 5.63 |52.47||ltz_Latn 840 |[2095| 39.72 | 3.06 |35.18
lua_Latn | 32.51 | 91.60 | 75.40 | 16.50[59.78||lug-Latn 19.86 | 89.62 | 78.46 | 13.04 |56.32||luo_Latn 12.65 | 95.75 | 83.30 | 7.31 |65.81||lus_Latn 24.41 | 91.60 | 70.95 |12.25|56.82
Ivs_Latn 771 9.98 11.26 | 2.37 [14.13||mag_Deva| 8.70 | 3251 | 16.60 | 4.25 |28.66||/mai_Deva | 10.38 |38.83 | 17.79 | 2.37 |31.82||mal Mlym | 10.57 | 25.69 8.50 4.74 126.38
mar_Deva| 9.29 | 18.87 6.42 3.66 [26.19||min_Latn | 949 | 64.53 | 23.52 | 3.85 |36.46||mkd_Cyrl 6.62 9.98 5.14 2.27 |11.86||mlt_Latn 5.04 8.89 60.08 1.68 [27.77
mni_Beng| 19.07 | 99.80 | 95.36 | 12.65|91.50||mos_Latn | 41.60 | 96.64 | 83.30 |26.38 |86.07||mri_Latn 13.54 | 46.94 | 84.29 | 8.79 |57.11||myaMymr| 17.69 | 41.70 | 12.06 | 6.42 |47.43
nld_Latn | 10.87 | 12.55 7.11 3.56 | 9.78 ||nno_Latn | 14.03 | 11.56 6.72 3.06 [12.85||nob_Latn 11.76 | 10.18 5.73 2.67 | 8.79 ||npi-Deva 11.36 | 14.33 553 3.16 [29.74
nso_Latn | 9.88 | 59.98 | 7599 | 4.64 [36.26||nus_Latn | 29.15 | 98.62 | 92.79 |20.06 |87.85||nya_Latn 1334 | 43.58 | 71.64 | 7.91 |36.17||oci_Latn 553 | 3646 | 15.51 2.96 [24.41
ory Orya | 9.78 | 18.18 | 10.77 | 2.67 |28.75||pag-Latn | 16.01 | 86.36 | 60.77 | 9.19 |45.06|pan_Guru 9.58 | 21.54| 11.46 | 3.06 |31.03||pap_Latn 7.11 | 6749 | 29.84 1.28 [23.81
pbt_Arab | 13.04 | 52.08 | 19.57 | 5.43 |38.34||pes-Arab 8.70 | 11.86 6.42 2.77 [16.60||plt_Latn 721 | 3113 | 62.25 3.06 [32.11||pol_Latn 8.70 | 12.35 6.03 3.16 | 9.19
porLatn | 543 | 8.20 5.04 1.68 |17.59||prs_Arab | 7.71 | 14.92 | 7.21 2.96 |21.94||quy_Latn | 28.85 | 96.15 | 80.43 | 17.29 |77.08||ron_Latn 583 | 7.02 3.46 1.68 | 7.41
runLatn | 11.07 | 51.38 | 80.43 | 4.84 [42.98||rus_Cyrl 652 | 1028 | 6.13 2.57 19.88 ||sag-Latn 39.23 [95.75 | 80.04 |26.09|76.98|[san_Deva 19.96 | 80.14 | 19.86 | 8.40 |45.55
scnLatn | 1225 | 62.85 | 3330 | 6.42 |41.11|[shn.Mymr| 18.97 | 96.44 | 76.58 | 10.18 |83.60||sin_Sinh 9.09 |[18.18 | 6.13 4.25 [34.78||slk_Latn 8.10 | 9.88 5.53 2.67 |12.55
slv_Latn 791 12.75 5.34 2.27 [13.14||smo_Latn | 11.96 | 41.50 | 83.40 | 5.53 |44.57||sna_Latn 11.76 | 49.11 | 77.27 | 4.05 |40.91|[snd-Arab 11.17 | 43.87 8.10 4.74 145.85
som.Latn| 12.15 | 41.70 | 13.04 | 8.70 [45.06||sot_-Latn 791 | 43.18 | 79.64 | 4.35 |34.98||spa_Latn 8.00 | 14.92 543 2.67 |9.98 ||srd_Latn 10.47 | 66.70 | 26.78 | 6.13 [33.79
srp_Cyrl 543 |10.38 3.66 1.38 [10.08||ssw_Latn | 12.06 | 74.21 | 47.92 | 6.62 |45.55||sun_Latn 10.87 | 18.18 8.10 3.85 [29.64||swe_Latn 5.83 8.30 4.84 1.28 | 8.99
swhLatn| 7.11 | 16.80 771 2.77 |28.75||szl_Latn 6.72 | 57.61 | 18.68 | 3.56 |32.51||tam.Taml | 14.23 | 18.68 9.29 4.05 |31.92]|taq-Latn 57.61 | 96.05 | 79.84 |39.43(86.17
taq-Tfng | 62.35 |100.00| 96.64 |53.46 [98.02||tat_Cyrl 791 | 23.62 | 43.18 | 3.46 |38.34||tel_Telu 12.06 | 16.01 8.40 3.85 [26.38||tgk-Cyrl 840 |2381| 8291 3.66 [45.26
tgl_Latn 6.62 | 1275 | 2549 | 2.67 (22.43||tha_Thai 8.30 |39.43 6.23 3.06 [14.33||tir_Ethi 14.82 | 98.52 | 64.62 | 7.11 |58.00(|tpi_-Latn 13.64 | 9447 | 61.56 | 7.91 |42.98
tsn_Latn 13.54 | 61.07 | 82.71 6.03 [40.91||tso_Latn 13.14 | 91.80 | 74.80 | 5.34 |40.91||tuk-Latn 9.49 | 40.51 | 42.59 | 3.85 [76.98||tum_Latn 18.28 | 78.06 | 73.12 | 9.68 [44.07
tur_Latn 6.23 | 10.67 5.04 2.37 |12.55||twi-Latn 18.28 | 91.60 | 85.47 | 9.68 |45.75||tzm Tfng | 26.88 [100.00| 97.33 | 18.08 |98.72||uig-Arab 13.83 | 28.56 | 11.07 | 6.82 |54.25
ukr_Cyrl 791 11.96 6.42 3.16 [10.08||umb_Latn | 36.56 | 95.06 | 77.57 |26.98 |77.47||urd_Arab 9.88 | 17.79 6.82 4.15 |30.43||uzn_Latn 8.50 | 16.60 | 16.01 3.66 (30.34
vecLatn | 7.81 | 53.46| 14.03 | 2.67 |28.66(|vie_Latn 563 | 11.56 5.53 2.27 [12.06||war_Latn 7.11 | 3251 | 47.04 | 2.87 |24.60||wol_Latn 28.56 | 93.87 | 77.77 | 16.90 |66.60
xho_Latn | 10.18 | 41.01 12.94 | 4.74 (34.68||ydd_Hebr | 8.60 | 52.67 | 31.62 | 3.36 |57.61||yor_Latn 2273 [71.25 | 84.49 | 16.80 |58.79||yue_Hant 10.67 | 58.70 8.30 3.95 [17.59
zho_Hans | 9.98 | 50.69 7.41 3.06 |14.43||zho_Hant | 14.23 | 58.30 9.78 4.15 |17.89||zsm_Latn 5.93 7.11 4.55 2.08 |12.25]|zul_Latn 8.70 |33.10 | 21.64 | 4.05 |34.49

Table 19: xsim++ results for all models in all languages, x-eng in FLORES200 devtest set.

9707 JTIDI e Joded 90UQIQJUOD B SB MITASI JOPU()

Under review as a conference paper at ICLR 2026

G EMBEDDING VISUALIZATION

So far, quantitative results have showcased the efficacy of ECHO as an embedding space. Although visual-
ization approaches such as UMAP |[Mclnnes et al.| (2020) may lead to misinterpretations of the embedding
spaces, they can provide visual support to our cross-lingual alignment results. To illustrate this, we fit
a UMAP projection on the FLORES devset and plot one randomly sampled English sentence alongside its
translations, with the hard negatives from Chen et al.|(2023b). To ensure fairness, we only plot the languages
common to our baselines. As visualized in ECHO is the only model for which hard negatives are
not within the cluster defined around the English sentence.

For a broader perspective, [Figure §|displays 500 sentences from the devset, excluding hard negatives. Across
models, clusters consistently form around the same sentence in different languages, with MEXMA, LaBSE,
and ECHO exhibiting fewer outliers. However, when hard negatives are introduced (see [Figure 7)), most
models fail to separate them from the target cluster. This visualization highlights the trade-off between
xsim and xsim++ performance discussed in ECHQO’s contrastive training enables it to push hard
negatives away (improving xsim++, as per [Figure 7)), without compromising its cross-lingual alignment

xsim, as per|Fig 8)).
p

(a) LaBSE (b) SONAR (c) MEXMA

UMAP Visualization - mES-large (with negatives) UMAP Visualization - ECHO (with negatives)

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

(d) mESlarge (e) ECHO
Figure 7: UMAP visualization of the sentence “During his time with the team, he scored 403 goals in 468

appearances.” from FLORES devset along closest hard negatives, shown as red crosses. Lines connect the
translations to their English counterpart.

34

Under review as a conference paper at ICLR 2026

(c) MEXMA

(a) LaBSE

UMAP Visualization - mES-large UMAP Visualization - ECHO

10

UMAP Dimension 2
UMAP Dimension 2

3 o s E)
UMAP Dimension 1

(d) mESjare (e) ECHO

H)
UMAP Dimension 1

Figure 8: UMAP visualization of the whole space defined by the FLORES devset for 20 languages with
different scripts.

35

	Introduction
	Related Work
	Data Processing
	Model
	Architecture, initialization and tokenizer
	Seq2Seq pretraining
	Contrastive finetuning
	Contrastive continued-finetuning with hard negatives
	Decoder finetuning
	Experimental Configuration

	Results
	Multilingual alignment - bitext mining
	Downstream tasks
	Cross Lingual Transfer
	Decoding capabilities

	Analysis and Ablations
	Conclusion
	Data Processing
	Code and Math Translation data generation
	Code Snippet Segmentation
	Math expressions gathering
	Natural Language Description Generation
	Multilingual Back-translation
	Consistency Filtering

	Hard negatives generation
	Languages breakdown
	Data Statistics

	Downstream tasks
	Ablations and analysis
	Training Objectives
	Contrastive Signals
	Model Initialization
	Data Mixes
	Pooling
	Smaller Scale Models
	Model Representation Collapse
	Embedding Dimension Informativeness
	 Analyzing examples to understand where models fail

	Tokenizer training
	Prompts
	Full Results
	Embedding visualization

