
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

ECHO: WHERE MULTILINGUAL SENTENCE EMBEDDINGS
SPEAK THE SAME LANGUAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Cross-lingual sentence encoders create unified embedding representations of sentences
across languages. However, achieving both strong downstream performance and cross-
lingual alignment remains a fundamental challenge. Early models relied on contrastive
learning, yet were unable to leverage hard negatives to unlock the full benefits of the
contrastive paradigm. These contrastive approaches were surpassed by non-contrastive
approaches leveraging token-level decoders. This is in contrast with recent generic em-
bedding models that achieve strong results by combining contrastive objectives, large lan-
guage models (LLMs) initialization, and hard negatives usage. We introduce ECHO, a
novel cross-lingual sentence encoder that bridges this gap by integrating pretrained LLMs
in an Encoder-Decoder architecture with contrastive training and hard negatives. Our bot-
tleneck Encoder-Decoder design forces the model to capture essential semantic informa-
tion in a shared vector space while preserving fine-grained nuances. ECHO achieves half
the error rate of the previous state-of-the-art encoders in cross-lingual similarity search
across 200 languages, while showcasing unprecedented cross-lingual transfer on down-
stream tasks.

1 INTRODUCTION

The development of multilingual models has long been a central focus in the field of Natural Language Pro-
cessing, spanning applications from traditional Machine Translation (NLLB Team et al., 2022) to the recent
surge in multilingual large language models (Workshop et al., 2022; Üstün et al., 2024; Team et al., 2025).
A persistent challenge in this domain is the scarcity of training data for many languages. This has moti-
vated research into cross-lingual representation learning (Devlin et al., 2019; Conneau et al., 2019; Janeiro
et al., 2025a; Alastruey et al., 2025) that can generalize across languages and transfer the performance of
resource-rich languages into lower resourced ones.

Among cross-lingual representations, cross-lingual sentence embeddings enable a vast array of applications,
that would otherwise not be possible. From expanding multilingual coverage of language modeling, even
while training on monolingual data, as shown in the LCM (LCM team et al., 2024), to large-scale cross-
lingual similarity search for mining (Schwenk et al., 2021) that led to significant improvements in machine
translation systems (NLLB Team et al., 2022). Aligned multilingual sentence embeddings demonstrate
strong cross-lingual properties. They have recently been applied to a wider range of multilingual tasks,
including classification (Costa-jussà et al., 2024) and translation quality estimation (Chen et al., 2023a;
Dale & Costa-jussà, 2024). In general, since their representations are aligned across languages, they unlock
multilingual zero-shot downstream performance for tasks without the need of data in all languages.

Early cross-lingual sentence encoders relied on contrastive signals (Feng et al., 2022; Yang et al., 2019)
but failed to effectively leverage hard negatives. Recent alternatives such as SONAR (Duquenne et al.,
2023) and MEXMA (Janeiro et al., 2025b), outperformed them by using translation reconstruction on top

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

STAGE 1: Seq2Seq Pretraining STAGE 2: Contrastive Finetuning

Pooling LayerPooling Layer

Contrastive Loss

Translation Data Filtered Translation Data

STAGE 3: Contrastive Continued Finetuning with Hard Negatives

Pooling LayerPooling Layer

Contrastive Loss

Filtered Translation Data

xN xN xN

xM xM xM xM xM

Hard Negatives

NLL Loss NLL Loss NLL Loss

Figure 1: The ECHO method, divided into its 3 training stages. Stage 1 is Seq2Seq training with the
translation objective. Stage 2 is contrastive alignment with translation. Stage 3 is contrastive with hard
negatives.

of multilingual encoders. However, this approach diverges from the design principles of modern general-
purpose embeddings, which typically combine contrastive losses with hard negatives (Wang et al., 2024b).
Meanwhile, the success of Large Language Models (LLMs) has motivated a new paradigm of adapting them
as encoders (BehnamGhader et al., 2024; Wang et al., 2024a; Zhang et al., 2025b) to take advantage of their
extensive pre-training knowledge. While these approaches achieve impressive monolingual performance,
they largely overlook cross-lingual transfer and alignment objectives. We present a novel training recipe that,
for the first time, combines a translation loss from a decoder and a contrastive signal with hard negatives,
to learn a language-agnostic sentence embedding space. Through a comprehensive analysis of learning
objectives, we demonstrate the critical importance of each of these components alongside LLM initialization.

We present ECHO, a new state-of-the-art cross-lingual sentence embedding model that bridges the gap
between strong performance and optimal cross-lingual alignment, along with a comprehensive analysis of
the key components, including model architecture, data, and training objectives, that contribute to optimal
cross-lingual properties in sentence embedding spaces.

Our main contributions are as follows:

• We adapt an English-centric LLM as both a largely multilingual encoder with bidirectional self-
attention and a decoder for sequence-to-sequence modeling within a framework of sentence em-
bedding learning.

• We couple a translation objective with a contrastive objective for alignment in a bottleneck encoder-
decoder framework, where the encoder compresses multilingual input into a shared representation
space.

• We enhance contrastive learning via online negatives removal, margin regularization, and a novel
split softmax approach that separately optimizes hard negatives and in-batch negatives.

• We present ECHO, a new state-of-the-art embedding model covering 200 languages that achieves
superior performance in multilingual alignment and cross-lingual transfer, as demonstrated through
comprehensive evaluation on downstream tasks.

• We conduct extensive ablation studies to analyze the contribution of each component.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

2 RELATED WORK

The field of multilingual sentence embeddings has grown rapidly, driven by benchmarks like MTEB (Muen-
nighoff et al., 2023), xsim/xsim++ (Artetxe & Schwenk, 2019; Chen et al., 2023b), and MIRACL (Zhang
et al., 2023).

MULTILINGUAL ALIGNMENT Multilingual aligned embedding models map vector representations
across languages into shared spaces. Training on translation data typically enables semantic alignment
via contrastive objectives using encoders only (Feng et al., 2022; Yang et al., 2019; Miao et al., 2024) or
non-contrastive objectives with decoder signals (Janeiro et al., 2025b; Duquenne et al., 2023). In ECHO, we
combine both decoder and contrastive losses.

CONTRASTIVE LEARNING While contrastive learning dominates sentence embedding training (Gao
et al., 2021), hard negatives remain underexplored in multilingual alignment, with LaBSE (Feng et al.,
2022) reporting negative results. General purpose models (Wang et al., 2024b; Sturua et al., 2024) have suc-
cessfully used mined and synthetic negatives. With ECHO we unlock contrastive objectives with synthetic
hard negatives for better multilingual alignment.

CODE AND MATH Recent general purpose models (Wang et al., 2024b; Nussbaum & Duderstadt, 2025)
and code-specific embeddings (Zhang et al., 2024; Suresh et al., 2025; Liu et al., 2024) incorporate code and
math data. Most code embedding systems use docstring-implementation pairs (Husain et al., 2019; Zhang
et al., 2024; Suresh et al., 2025), focusing on function-level rather than sentence-level representations.

3 DATA PROCESSING

TRANSLATION DATA NLLB (NLLB Team et al., 2022) has become the standard source of paired transla-
tion data for learning multilingual sentence embeddings (Duquenne et al., 2023; Wang et al., 2024b; Janeiro
et al., 2025b), offering coverage of up to 200 languages and more than 40 billion paired examples. We use
both human-labeled, mined and back-translated data from NLLB to train ECHO. To further broaden our
coverage for lower resourced languages and word-level representations, we incorporate word-level dictio-
nary data from PanLex (Kamholz et al., 2014) and add more than 3K language pairs directions of word
translations. Our final natural language translation data is constructed by sampling from the original NLLB
data, supplemented with dictionary-based pairs. Statistics for each split are presented in Appendix Table 7.
As this data is inherently paired, it can be directly leveraged in our experimental setup. However, it does
not naturally include per-sample negatives, a limitation we address through synthetic data generation in
subsequent stages.

CODE AND MATH DATA Although our primary focus is on sentence-level, modality-agnostic represen-
tations, we treat code and mathematical expressions as semantic units that can be mapped into this shared
embedding space. In this framework, programming languages like JavaScript or Go are considered alongside
natural languages such as Catalan or Portuguese. To construct translation data including both programming
and natural languages, we develop a comprehensive pipeline that addresses the limitations of traditional
docstring-based approaches. We focus on sentence-level code snippets and mathematical expressions whose
semantics can be described in a single natural language sentence. Our approach involves: (1) syntax-aware
segmentation of code from 7 programming languages using Abstract Syntax Trees, (2) extraction of La-
TeX mathematical expressions from scientific corpora, (3) generation of natural language descriptions using
LLaMA3.3 70B Instruct, and (4) creation of multilingual versions through back-translation. Quality is en-
sured through consistency filtering of the synthetic data. For complete technical details, implementation
procedures, and filtering methods, please refer to Appendix A.1.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

DATA FILTERING As detailed in Section 4, we train ECHO in multiple stages. While the first stage uses
a large amount of data, later contrastive and hard-negative training stages require fewer steps and less data.
We therefore reduce data volume using quality estimation signals. For natural language data, we apply
BLASER 2.0 (Dale & Costa-jussà, 2024) filtering, while for code and math data, we subsample. We focus
on X-to-English directions as they are the most populated and facilitate hard negative generation. For each
language direction, we select the top 1 million pairs from human-labeled NLLB data, supplementing with
highest-scoring mined and backtranslated pairs when needed to reach the 1 million threshold. Data statistics
are reported in Appendix Table 7.

HARD NEGATIVES GENERATION We leverage both in-batch and hard negatives for contrastive train-
ing. Based on the intuition behind Chen et al. (2023b), the ideal hard-negative for a translation pair is an
approximate paraphrase of the original translation but with a subtle or traditionally hard to encode semantic
modifier. We synthetically generate these hard negatives using LLaMA3.3 70B Instruct. For more details
see Appendix A.2.

4 MODEL

In this section, we describe our model and method for training the ECHO embedding space. The whole
training procedure is depicted in Figure 1, and is comprised of three different parts.

4.1 ARCHITECTURE, INITIALIZATION AND TOKENIZER

We use a bottleneck encoder-decoder architecture based on the transformer architecture (Vaswani et al.,
2017), following the SONAR approach (Duquenne et al., 2023). We repurpose the architecture from
LLaMA3 (Grattafiori et al., 2024) for our transformer architecture and use an embedding representation
of 1024 dimensions. Inspired by previous work (BehnamGhader et al., 2024; Zhang et al., 2025a), we
initialize both the encoder weights and the decoder weights with LLaMA3 (Grattafiori et al., 2024). We
replace the causal self-attention in the encoder by bi-directional self-attention (BehnamGhader et al., 2024).
We add cross-attention blocks in the ECHO decoder to attend to encoder outputs. The cross-attention weight
matrices are randomly initialized.

Initializing our model with LLaMA3 weights constrains us to use LLaMA3 tokenizer. To increase its multi-
lingual coverage, we extended the LLaMA3 vocabulary from 128k to 256k tokens for better fertility across
our 200 target languages. Details about the tokenizer vocabulary extension are given in Appendix D. We
initialize the embeddings for the new tokens by tokenizing them with the original tokenizer and averaging
resulting token embeddings to create the new token embedding (Gee et al., 2022; Moroni et al., 2025).

4.2 SEQ2SEQ PRETRAINING

Before learning the embedding space itself, we introduce a sequence-to-sequence (Seq2Seq) pretraining
stage, to warm-up our encoder-decoder model on translation tasks (stage 1 in Figure 1). In this stage,
encoder outputs are not pooled before being passed to the decoder. The model is trained with a translation
objective - source sentences are fed to our model as encoder inputs, and we optimize cross-entropy loss
between decoder outputs and target sentences. We jointly optimize all translation tasks – natural language,
code and math – during this Seq2Seq pretraining stage, with more than 5 thousand translation directions.

To enable effective multilingual and multitask processing, we employ natural text prompting for both
encoder and decoder inputs. Source sentences are prefixed with language identifiers using the for-
mat “[language name]:”. Target sentences incorporate task specification, output language informa-
tion, and data provenance (human-labeled translations, automatically extracted translations, or back-

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

translations), following NLLB Team et al. (2022). Specifically, we use the prompts such as This
is a possible translation in [language name]: for translation tasks and This is a
possible natural language explanation in English: for code and math explanation
tasks. We provide the full list of prompts in Appendix Table 17.

4.3 CONTRASTIVE FINETUNING

Contrastive finetuning is stage 2 in Figure 1. In this stage, we initialize the encoder and decoder with
the weights obtained in the Seq2Seq stage. Then, we align the pooled source and anchor representations
outputted by the encoder. The anchor is the translation fed to the encoder. This is done through a Siamese
network trained with a contrastive loss. Additionally, alongside the contrastive loss, we train our model on
translation tasks with a cross-entropy loss between decoder outputs and target sentences, following SONAR
(Duquenne et al., 2023). Contrarily to previous Seq2Seq training stage, the decoder only attends to the source
pooled encoder representation instead of cross-attention on full encoder outputs. We perform CLS pooling
with a new token prepended to each input to the encoder to create our fixed-size sentence representation.

Our contrastive objective, Equation (1), uses a modified InfoNCE loss (Chen et al., 2020). We add a margin
to the similarity scores of source-positive pairs, following LaBSE (Feng et al., 2022), to make translations
more distinct from non-translations in the resulting embedding space. The contrastive loss is defined as:

Lcontrastive = −
1

N

N∑
i=1

eϕ(xi,yi)−m

eϕ(xi,yi)−m +
∑

n∈Si
eϕ(xi,yn)

(1)

where ϕ(xi, yi) denotes the scaled cosine similarity between a source sentence xi and a target sentence
yi, ϕ(xi, yi) = cos(xi, yi) ∗ τ , with τ being a logit scaling hyperparameter, and m is an additive margin
hyperparameter applied to the source-positive pairs.

Negative examples are drawn from in-batch samples, but we filter them to ensure that no false negatives are
used, following GISTEmbed (Solatorio, 2024). Specifically, the set of negatives Si for each source xi is
defined as:

Si = { j ∈ {1, . . . , N} | ϕ(xi, yj) < r · ϕ(xi, yi) } (2)
where r is the hyperparameter for the radius of negatives removal and xi/yj are guide embeddings given
by SONAR (Duquenne et al., 2023). This filtering step removes any negative whose similarity to the source
exceeds that of the positive pair, ensuring that the model does not learn from negatives that are more similar
to the source than the true translation.

The training loss is then the combination of the contrastive and the decoder loss:
L = α · Lcontrastive + β · Ltranslation (3)

where α and β are hyper-parameters that control the weight of each loss term.

4.4 CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES

To further improve the model’s ability to distinguish between close translations, we perform an additional
contrastive step using hard negatives (stage 3 in Figure 1). The hard negative generation is described in
Section 3. Initial experiments showed that, contrary to in-batch negatives, contrastive learning with non-
zero additive margin was not effective with hard negatives. In order to simultaneously optimize contrastive
learning involving hard and in-batch negatives, we introduce an additional separate contrastive loss to handle
hard negatives. This enables us to weight the contribution of in-batch contrastive loss and hard-negative
contrastive loss without margin. The resulting loss is then defined as:

Lcontrastive hn = (1− γ) · Lcontrastive − γ · 1
N

N∑
i=1

eϕ(xi,yi)

eϕ(xi,yi) +
∑

hj∈SHN
i

eϕ(xi,hj)
(4)

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

where SHN
i is the list of hard negatives for source xi, and γ is the objective contribution weighting hyperpa-

rameter. Our overall loss is now L = α · Lcontrastive hn + β · Ltranslation.

4.5 DECODER FINETUNING

SONAR is composed of an encoder and a decoder. The availability of the decoder, despite not being a
pre-requisite for an embedding model, enables to efficiently decode sentence embeddings into natural text
in several languages. This was proven useful in some new research directions like Language Modeling in
sentence embedding spaces (LCM team et al., 2024) where predicted embeddings are decoded into text.
ECHO also leverages a decoder during training, as explained in previous sections. To enhance the decoder
performance for downstream use, we continue its learning on top of ECHO obtained after Section 4.4. We
initialize both encoder and decoder weights from that training stage but freeze the encoder parameters. We
then use the same loss and data setup as in Section 4.2.

4.6 EXPERIMENTAL CONFIGURATION

SEQ2SEQ We train our model for 100k steps in this stage, with 8192 tokens per GPU trained across 16
nodes of 8 GPUs each. The encoder and decoder are initialized from LLaMA3.2 1B size, trained with fsdp1
and mixed precision on fp16, with a maximum gradient norm of 1. We use the AdamW optimizer with betas
0.9 and 0.98. Our learning rate is set to 4e-4, with 2k warmup steps and Myle learning rate scheduler.

CONTRASTIVE FINETUNING Unless specified, the parameters are the same as the Seq2Seq configuration
described above. For contrastive tuning we change the learning rate to 3e-4, max number of tokens per GPU
to 6k, and set the contrastive loss weight, α, to 0.05, with the translation loss weight, β, being 1. We define
our radius for false negatives removal, r, to 0.5, our margin, m to 0.3 and our scale τ to 100. Our model is
trained for 10k steps.

CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES We take 5 hard negatives per
source sentence, and change the max number of tokens to 1.2k (6k/5). The learning rate is changed to
1e-5, with 15k steps. γ, the weight between the in-batch and the hard negative objectives, is defined as 0.8.

DECODER FINETUNING We use same training setup as the Seq2Seq training stage except for learning
rate which is set to 1e-3 and number of warmup steps which is lowered to 200.

5 RESULTS

In this section, we present results obtained with ECHO on cross-lingual similarity search, downstream clas-
sification and pair classification tasks, as well as cross-lingual transfer quantification.

5.1 MULTILINGUAL ALIGNMENT - BITEXT MINING

To evaluate cross-lingual alignment, we perform similarity search on FLORES translations (NLLB Team
et al., 2022), comparing source sentence embeddings to candidate translation pools. We report error rates as
xsim (mining non-English sentences against English translations) and xsim++ (Chen et al., 2023b), which
adds English hard negatives.

Table 1 presents results for ECHO and competitive baselines on both commonly supported languages (Ta-
ble 6) and all FLORES languages for fair comparison. ECHO achieves state-of-the-art performance, with
significant improvements in xsim and xsim++ (7.15% absolute improvement over 200 languages), indicating

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

common languages all languages

model xsim ↓ xsim++ ↓ xsim ↓ xsim++ ↓

MEXMA 0.08 7.80 15.91 35.78
LaBSE 2.39 23.35 18.61 48.69
mE5large 0.62 23.87 9.31 39.32
SONAR 0.17 9.88 1.37 15.27
ECHO 0.07 3.90 0.99 8.12

Table 1: xsim/xsim++ results for all models on FLORES devtest, as X-eng cross-lingual similarity search.

better semantic alignment and robustness to hard negatives through improved handling of lexical and seman-
tic nuances. We report complete breakdowns of xsim/xsim++ evaluation across languages in Appendix F.

We further evaluate on GMMLU (Singh et al., 2024), MMLU translated to 42 languages, by pairing ques-
tions in any language to their English equivalent and XLCoST (Zhu et al., 2022), to our knowledge the only
snippet-level Code2Code benchmark.

Table 2 shows ECHO outperforms all systems on GMMLU except MEXMA on common languages, but
leads across all 42 languages. Notably, ECHO surpasses specialized code-embedding models like CodeSage
Zhang et al. (2024) and CodeRankEmbed (Suresh et al., 2025) on XLCoST, excelling at code representation
even for unseen programming languages like C#.

5.2 DOWNSTREAM TASKS

To assess the quality and generalization of our embeddings we evaluate them on several multilingual classi-
fication and pair classification benchmarks under MTEB (Muennighoff et al., 2023), see Table 8 for full list.
Results are reported in Table 3.

CLASSIFICATION The reported metric for classification is accuracy. Under this setup, linear classifiers
are trained on top of each model’s embeddings on a held-out portion of the data, and evaluated on the rest.
Each classifier is trained and evaluated per language in this section. Our reported numbers are first averaged
over all languages in each benchmark and then over all benchmarks to create a single score. Table 3 shows
how ECHO far outperforms all other models in classification tasks, highlighting the good content in each
individual vector, and as we will explore in future sections, their interoperability across languages.

Model GMMLU
(all)

GMMLU
(common) C C++ C# Java Javascript PHP Python All

MEXMA 6.97 1.26 18.87 24.53 22.22 22.91 20.98 16.14 24.06 21.39
LaBSE 3.43 2.95 19.84 27.35 24.31 24.92 24.20 22.07 26.25 24.13
SONAR 3.18 2.96 22.03 29.39 28.34 29.40 26.01 22.23 30.82 26.89
ECHO 2.02 1.70 15.60 20.02 19.17 18.99 17.28 13.00 18.57 17.52
mE5large 5.31 3.27 16.36 22.42 20.48 20.39 18.45 13.53 20.14 18.82

CodeSage-large-v2 – – 19.41 23.02 21.17 21.47 18.19 15.50 20.42 19.89
CodeRankEmbed – – 16.71 21.48 19.85 20.47 17.36 13.40 19.67 18.42

Table 2: Results for GMMLU question mining (left) for all 42 languages and those covered by the baselines
(common) and XLCOST (right). xsim (↓) reported for all models.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Model Average Classification Pair Classification

MEXMA 65.895 68.690 63.100
LaBSE 65.205 65.770 64.640
SONAR 64.325 67.910 60.740
ECHO 67.720 72.200 63.240

General-purpose models
mE5large 70.570 68.260 72.880

Table 3: Classification and Pair Classification results from sentence-level MTEB tasks.

PAIR CLASSIFICATION For Pair Classification we report on average precision based on the cosine sim-
ilarity between pairs. In this case we see how ECHO still outperforms multilingual embedding models in
its category, with the exception of LaBSE, while it lags behind the topline comparison of mE5large which
was trained as a general-purpose embedding model. It is important to highlight that all our baselines along
with ECHO are trained solely on parallel data, i.e. no task specific data is involved and the cosine distance
between sentences reflects just that aspect.

5.3 CROSS LINGUAL TRANSFER

We evaluate alignment across languages in the lens of classification. Namely, we train a classifier to classify
French sentences from the SIB200Classification task in MTEB and apply it, in a zero-shot fashion, to the
other 199 languages in SIB. We report Cross-lingual transfer (CLT) ratio in Table 4, which corresponds to the
ratio of classification accuracy for language L with classification accuracy on French. This table highlights
the strong cross-lingual transfer with ECHO representations across 200 languages, exceeding 97% average
CLT ratio over 200 languages, and over 99% over the most common 80 languages.

5.4 DECODING CAPABILITIES

Decoding sentence embeddings into natural text can help quantify the text compression ability of the embed-
ding model across languages. The decoding results remain nonetheless dependent on the decoder training
and capacity, in addition to the sentence embedding representations themselves. Moreover, models that pre-
dict sentence embeddings, like Large Concept Models (LCM team et al., 2024), rely on the ability of good
text decoders to produce text in many languages. Therefore, we report translation results, as measured by
spBLEU (Post, 2018) (with flores200 tokenizer) and chrF++ (Popović, 2017), on FLORES devtest based

model SIB200 CLT ratio
all common

LaBSE 80.58% 91.99%
MEXMA 78.38% 95.56%
mE5large 84.76% 95.47%
SONAR 92.34% 96.22%
ECHO 97.15% 99.26%

Table 4: Cross-lingual transfer (CLT) on SIB200Classification: Models trained on French, evaluated zero-
shot on 199 languages (all) and 80 baseline-supported languages (common), reporting average relative per-
formance to French.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

X to English English to X

model spBLEU chrF++ spBLEU chrF++

SONAR 32.62 54.79 20.29 42.71
ECHO 33.27 55.02 21.17 43.63

Table 5: Average translation performance of SONAR and ECHO on FLORES devtest set for X to English
and English to X directions, as measured by spBLEU and chrF++ metrics. Source sentences are embedded
into the sentence embedding space before being decoded into the target language with their decoder.

on ECHO model and compare them with SONAR translation results (SONAR being the only multilingual
sentence embedding space coming with a decoder) in Table 5. ECHO shows significantly better translation
performance compared to SONAR on this decoding task.

6 ANALYSIS AND ABLATIONS

ECHO’s design choices are validated through ablation studies showing significant improvements at each
stage. Adding the Decoder loss to the contrastive learning stage in subsection 4.3 reduces xsim++ error
by 45% (from 16.23 to 8.95), demonstrating that token-level language modeling signals capture semantic
nuance beyond surface features. Replacing MSE with contrastive loss improves xsim++ by 29% (from 12.54
to 8.95), as contrastive learning creates more structured embedding spaces by explicitly separating negatives,
a key difference with previous approaches such as SONAR. Using separate losses for in-batch and hard
negatives (split softmax in subsection 4.4) improves xsim by 19% compared to a single softmax approach,
preventing convergence issues while better balancing negative types. Finally, initializing contrastive learning
from our Seq2Seq-adapted model rather than directly from LLaMA reduces xsim error by 36% and xsim++
by 25%, showing the multilingual adaptation stage provides a better foundation. Additionally, we show that
we can have smaller models with minimal performance degradation.

For additional ablations and complete experimental details, see Appendix C.

7 CONCLUSION

In this work, we introduced a state-of-the-art cross-lingual sentence encoder, ECHO. We got closer to the
stated goal of creating a language-agnostic space in which sentences with same semantic meaning share
vector representations, regardless of the language. Compared to previous efforts, ECHO shines in its mul-
tilingual alignment where the error rates are halved. This enables downstream tasks, especially for lower
resource languages where all previous models lacked behind. At the same time ECHO outperforms all com-
parable baselines in downstream evaluations, closing the gap with general-purpose embedding models such
as mE5large that fail in their cross-lingual transfer and alignment. Moreover, task-specific modules trained
on the rich space ECHO provides, require only training in a single language and seamlessly transfer to the
others. We are excited about the new uses such an embedding space will create.

Our works proposes a new training paradigm for text embedding representation learning, where decoders
should be coupled with a contrastive loss objective for improved performance. With an extensive set of
ablations, we pave the way of new training recipes on top of Large Language Models to transform them into
embedding Encoders. Most current efforts focused on expanding attention, pooling a representation for the
text, and training it on a contrastive signal; an effective yet unexciting recipe. The addition of a Decoder
is key to capture fine-grained features within the embeddings. While we focused on training sentence-level

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

language-agnostic embeddings using translation data, we believe future work should exploit our framework
for general-purpose embeddings.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

David Ifeoluwa Adelani, Hannah Liu, Xiaoyu Shen, Nikita Vassilyev, Jesujoba O. Alabi, Yanke Mao, Hao-
nan Gao, and Annie En-Shiun Lee. Sib-200: A simple, inclusive, and big evaluation dataset for topic clas-
sification in 200+ languages and dialects, 2024. URL https://arxiv.org/abs/2309.07445.

Belen Alastruey, João Maria Janeiro, Alexandre Allauzen, Maha Elbayad, Loı̈c Barrault, and Marta R.
Costa-jussà. Interference matrix: Quantifying cross-lingual interference in transformer encoders, 2025.
URL https://arxiv.org/abs/2508.02256.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo, Lewis Tun-
stall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav, Joshua Lochner,
Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When
smol goes big – data-centric training of a small language model, 2025. URL https://arxiv.org/
abs/2502.02737.

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot cross-lingual
transfer and beyond. Transactions of the Association for Computational Linguistics, 7:597–610, Novem-
ber 2019. ISSN 2307-387X. doi: 10.1162/tacl a 00288. URL http://dx.doi.org/10.1162/
tacl_a_00288.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961, 2024.

Mingda Chen, Paul-Ambroise Duquenne, Pierre Andrews, Justine Kao, Alexandre Mourachko, Holger
Schwenk, and Marta R. Costa-jussà. BLASER: A text-free speech-to-speech translation evaluation metric.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9064–9079, Toronto,
Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.504.
URL https://aclanthology.org/2023.acl-long.504/.

Mingda Chen, Kevin Heffernan, Onur Çelebi, Alexandre Mourachko, and Holger Schwenk. xSIM++:
An improved proxy to bitext mining performance for low-resource languages. In Anna Rogers, Jor-
dan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers), pp. 101–109, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.10. URL https:
//aclanthology.org/2023.acl-short.10/.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. In International conference on machine learning, pp. 1597–
1607. PmLR, 2020.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual
representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

11

https://arxiv.org/abs/2309.07445
https://arxiv.org/abs/2508.02256
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
http://dx.doi.org/10.1162/tacl_a_00288
http://dx.doi.org/10.1162/tacl_a_00288
https://aclanthology.org/2023.acl-long.504/
https://aclanthology.org/2023.acl-short.10/
https://aclanthology.org/2023.acl-short.10/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Marta R Costa-jussà, Mariano Coria Meglioli, Pierre Andrews, David Dale, Prangthip Hansanti, Elahe
Kalbassi, Alex Mourachko, Christophe Ropers, and Carleigh Wood. Mutox: Universal multilingual audio-
based toxicity dataset and zero-shot detector. arXiv preprint arXiv:2401.05060, 2024.

David Dale and Marta R. Costa-jussà. BLASER 2.0: a metric for evaluation and quality estimation of mas-
sively multilingual speech and text translation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 16075–16085, Mi-
ami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.943. URL https://aclanthology.org/2024.findings-emnlp.943/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding, 2019. URL https://arxiv.org/abs/1810.
04805.

Paul-Ambroise Duquenne, Holger Schwenk, and Benoı̂t Sagot. Sonar: sentence-level multimodal and
language-agnostic representations. arXiv preprint arXiv:2308.11466, 2023.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic BERT
sentence embedding. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 878–891, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.acl-long.62. URL https://aclanthology.org/2022.acl-long.62/.

Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron Nash,
Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist, Misha Britan, Wouter
Leeuwis, Gokhan Tur, and Prem Natarajan. Massive: A 1m-example multilingual natural language un-
derstanding dataset with 51 typologically-diverse languages, 2022.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embed-
dings. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6894–
6910, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https://aclanthology.org/2021.
emnlp-main.552/.

Leonidas Gee, Andrea Zugarini, Leonardo Rigutini, and Paolo Torroni. Fast vocabulary transfer for language
model compression. In Yunyao Li and Angeliki Lazaridou (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing: Industry Track, pp. 409–416, Abu Dhabi, UAE,
December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-industry.41.
URL https://aclanthology.org/2022.emnlp-industry.41/.

Linyuan Gong, Alvin Cheung, Mostafa Elhoushi, and Sida Wang. Structure-aware fill-in-the-middle pre-
training for code. 05 2025. doi: 10.48550/arXiv.2506.00204.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hamel Husain, Hongqiu Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Codesearchnet
challenge: Evaluating the state of semantic code search. ArXiv, abs/1909.09436, 2019. URL https:
//api.semanticscholar.org/CorpusID:202712680.

12

https://aclanthology.org/2024.findings-emnlp.943/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2022.acl-long.62/
https://aclanthology.org/2021.emnlp-main.552/
https://aclanthology.org/2021.emnlp-main.552/
https://aclanthology.org/2022.emnlp-industry.41/
https://api.semanticscholar.org/CorpusID:202712680
https://api.semanticscholar.org/CorpusID:202712680

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

João Maria Janeiro, Belen Alastruey, Francisco Massa, Maha Elbayad, Benjamin Piwowarski, Patrick Galli-
nari, and Loic Barrault. Mixture of languages: Improved multilingual encoders through language group-
ing. In Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), Pro-
ceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pp. 29695–
29710, Suzhou, China, November 2025a. Association for Computational Linguistics. ISBN 979-8-89176-
332-6. doi: 10.18653/v1/2025.emnlp-main.1509. URL https://aclanthology.org/2025.
emnlp-main.1509/.

João Maria Janeiro, Benjamin Piwowarski, Patrick Gallinari, and Loic Barrault. MEXMA: Token-level
objectives improve sentence representations. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 23960–23995, Vienna, Austria, July 2025b. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1168. URL
https://aclanthology.org/2025.acl-long.1168/.

David Kamholz, Jonathan Pool, and Susan Colowick. PanLex: Building a resource for panlingual lexi-
cal translation. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the
Ninth International Conference on Language Resources and Evaluation (LREC’14), pp. 3145–3150,
Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA). URL https:
//aclanthology.org/L14-1023/.

LCM team, Loı̈c Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alas-
truey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussà, David Dale, Hady El-
sahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San
Roman, Alexandre Mourachko, Safiyyah Saleem, and Holger Schwenk. Large concept models: Language
modeling in a sentence representation space, 2024. URL https://arxiv.org/abs/2412.08821.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad. MTOP: A
comprehensive multilingual task-oriented semantic parsing benchmark. In Paola Merlo, Jorg Tiedemann,
and Reut Tsarfaty (eds.), Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp. 2950–2962, Online, April 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.257. URL https://aclanthology.
org/2021.eacl-main.257/.

Ye Liu, Rui Meng, Shafiq Jot, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Codexem-
bed: A generalist embedding model family for multiligual and multi-task code retrieval. arXiv preprint
arXiv:2411.12644, 2024.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Zhongtao Miao, Qiyu Wu, Kaiyan Zhao, Zilong Wu, and Yoshimasa Tsuruoka. Enhancing cross-
lingual sentence embedding for low-resource languages with word alignment. In Kevin Duh, He-
lena Gomez, and Steven Bethard (eds.), Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 3225–3236, Mexico City, Mexico, June 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-naacl.204. URL https://aclanthology.org/2024.
findings-naacl.204/.

Luca Moroni, Giovanni Puccetti, Pere-Lluı́s Huguet Cabot, Andrei Stefan Bejgu, Alessio Miaschi, Edoardo
Barba, Felice Dell’Orletta, Andrea Esuli, and Roberto Navigli. Optimizing LLMs for Italian: Reducing
token fertility and enhancing efficiency through vocabulary adaptation. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Findings of the Association for Computational Linguistics: NAACL 2025, pp. 6646–6660,

13

https://aclanthology.org/2025.emnlp-main.1509/
https://aclanthology.org/2025.emnlp-main.1509/
https://aclanthology.org/2025.acl-long.1168/
https://aclanthology.org/L14-1023/
https://aclanthology.org/L14-1023/
https://arxiv.org/abs/2412.08821
https://aclanthology.org/2021.eacl-main.257/
https://aclanthology.org/2021.eacl-main.257/
https://arxiv.org/abs/1802.03426
https://aclanthology.org/2024.findings-naacl.204/
https://aclanthology.org/2024.findings-naacl.204/

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-
195-7. doi: 10.18653/v1/2025.findings-naacl.371. URL https://aclanthology.org/2025.
findings-naacl.371/.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embedding
benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th Conference
of the European Chapter of the Association for Computational Linguistics, pp. 2014–2037, Dubrovnik,
Croatia, May 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.148.
URL https://aclanthology.org/2023.eacl-main.148/.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin
Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John
Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre An-
drews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami,
Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger
Schwenk, and Jeff Wang. No language left behind: Scaling human-centered machine translation, 2022.

Zach Nussbaum and Brandon Duderstadt. Training sparse mixture of experts text embedding models, 2025.
URL https://arxiv.org/abs/2502.07972.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Motoko Kubota, and Danushka Bollegala. I wish I would
have loved this one, but I didn’t – a multilingual dataset for counterfactual detection in product review.
In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7092–7108, Online
and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.568. URL https://aclanthology.org/2021.emnlp-main.
568/.

Maja Popović. chrF++: words helping character n-grams. In Ondřej Bojar, Christian Buck, Rajen Chatterjee,
Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, and Julia Kreutzer (eds.), Proceedings of the Second Conference on Machine Translation, pp.
612–618, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.
18653/v1/W17-4770. URL https://aclanthology.org/W17-4770/.

Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian Fe-
dermann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco
Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine Translation: Re-
search Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for Computational Linguis-
tics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.org/W18-6319/.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand Joulin, and Angela Fan. CC-
Matrix: Mining billions of high-quality parallel sentences on the web. In Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 6490–6500, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.507. URL https://aclanthology.org/2021.acl-long.507/.

Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I. Adelani, Jian Gang Ngui, Daniel
Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, Raymond Ng,
Shayne Longpre, Wei-Yin Ko, Madeline Smith, Antoine Bosselut, Alice Oh, Andre F. T. Martins, Leshem
Choshen, Daphne Ippolito, Enzo Ferrante, Marzieh Fadaee, Beyza Ermis, and Sara Hooker. Global

14

https://aclanthology.org/2025.findings-naacl.371/
https://aclanthology.org/2025.findings-naacl.371/
https://aclanthology.org/2023.eacl-main.148/
https://arxiv.org/abs/2502.07972
https://aclanthology.org/2021.emnlp-main.568/
https://aclanthology.org/2021.emnlp-main.568/
https://aclanthology.org/W17-4770/
https://aclanthology.org/W18-6319/
https://aclanthology.org/2021.acl-long.507/

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

mmlu: Understanding and addressing cultural and linguistic biases in multilingual evaluation, 2024. URL
https://arxiv.org/abs/2412.03304.

Aivin V. Solatorio. Gistembed: Guided in-sample selection of training negatives for text embedding fine-
tuning, 2024. URL https://arxiv.org/abs/2402.16829.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, and Han Xiao. jina-embeddings-v3:
Multilingual embeddings with task lora, 2024. URL https://arxiv.org/abs/2409.10173.

Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon Duderstadt, and
Heng Ji. Cornstack: High-quality contrastive data for better code retrieval and reranking. In The Thir-
teenth International Conference on Learning Representations, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Ankit Kumar Upadhyay and Harsit Kumar Upadhya. Xnli 2.0: Improving xnli dataset and performance
on cross lingual understanding (xlu). In 2023 IEEE 8th International Conference for Convergence in
Technology (I2CT), pp. 1–6. IEEE, 2023.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, et al. Aya model: An instruction finetuned open-
access multilingual language model. arXiv preprint arXiv:2402.07827, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 11897–11916, Bangkok, Thailand, August 2024a. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.acl-long.642. URL https://aclanthology.org/
2024.acl-long.642/.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multilingual e5
text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024b.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, et al. Bloom: A 176b-parameter
open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, Mandy Guo, Qinlan Shen, Daniel Cer, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. Improving multilingual sentence embedding using bi-directional
dual encoder with additive margin softmax. arXiv preprint arXiv:1902.08564, 2019.

Biao Zhang, Fedor Moiseev, Joshua Ainslie, Paul Suganthan, Min Ma, Surya Bhupatiraju, Fede Lebron,
Orhan Firat, Armand Joulin, and Zhe Dong. Encoder-decoder gemma: Improving the quality-efficiency
trade-off via adaptation. arXiv preprint arXiv:2504.06225, 2025a.

15

https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2409.10173
https://aclanthology.org/2024.acl-long.642/
https://aclanthology.org/2024.acl-long.642/

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Dejiao Zhang, Wasi Uddin Ahmad, Ming Tan, Hantian Ding, Ramesh Nallapati, Dan Roth, Xiaofei Ma,
and Bing Xiang. CODE REPRESENTATION LEARNING AT SCALE. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
vfzRRjumpX.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo, Xiaoguang
Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. MIRACL: A multilingual retrieval dataset covering
18 diverse languages. Transactions of the Association for Computational Linguistics, 11:1114–1131,
2023. doi: 10.1162/tacl a 00595. URL https://aclanthology.org/2023.tacl-1.63/.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advancing text embedding
and reranking through foundation models. arXiv preprint arXiv:2506.05176, 2025b.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and Chandan K. Reddy.
Xlcost: A benchmark dataset for cross-lingual code intelligence, 2022. URL https://arxiv.org/
abs/2206.08474.

16

https://openreview.net/forum?id=vfzRRjumpX
https://openreview.net/forum?id=vfzRRjumpX
https://aclanthology.org/2023.tacl-1.63/
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

A DATA PROCESSING

A.1 CODE AND MATH TRANSLATION DATA GENERATION

A.1.1 CODE SNIPPET SEGMENTATION

To construct sentence-level code snippets suitable for embeddings, it is essential to define what constitutes a
”sentence” in the context of programming languages. Unlike natural language, where sentences are typically
delimited by punctuation, code structure is governed by syntax and semantics, making naive approaches,
such as splitting at line breaks, insufficient and potentially misaligned with real-world coding practices.

To address this, we adopt a syntax-aware segmentation strategy similar to Gong et al. (2025), leveraging
Abstract Syntax Trees (ASTs) to identify meaningful breakpoints within code. This approach allows us to
segment code in a way that respects its logical and syntactic boundaries, rather than relying on superficial
heuristics. For our experiments, we use code from seven programming languages (Python, Java, JavaScript,
Go, C, C++, and Ruby) sourced from publicly licensed GitHub repositories.

Our segmentation process begins by parsing source code into an AST using the Tree-sitter library1. We then
traverse the tree in reverse Breadth-First Search (BFS) order, starting from the leaf nodes and progressing
bottom-up. For each node, if it is a leaf with non-empty text and has not yet been visited, we initiate a
snippet. We classify the snippet as either ”code” or ”text” based on the node type (e.g., comments and
strings are labeled as ”text”).

To form coherent and contextually meaningful snippets, we recursively expand each snippet upward by
merging the parent statement or declaration and its unvisited children, provided that the combined size does
not exceed a maximum threshold of 100 non-whitespace characters. This ensures that each snippet remains
concise and suitable for sentence-level representation. The process continues until all nodes have been
visited, resulting in a comprehensive set of segmented code snippets.

The full segmentation procedure is detailed in Algorithm 1, which outlines the AST traversal, snippet for-
mation, classification, and postprocessing steps. This method enables us to extract sentence-level code
snippets that are both syntactically coherent and semantically meaningful, facilitating their integration into
our modality-agnostic embedding space.

A.1.2 MATH EXPRESSIONS GATHERING

To build a high-quality dataset of mathematical expressions, we extract LaTeX math content from large-
scale scientific corpora such as FineMath Allal et al. (2025) and arXiv. Our extraction process is designed
to capture both inline and display math, reflecting the diversity of mathematical notation found in scientific
writing. The expressions used can be found in Table 2. We use a comprehensive set of regular expressions
to identify a wide range of LaTeX math environments. To ensure the quality and relevance of the extracted
expressions, we apply the following filters:

• Expressions between 20 and 150 characters.

• Expressions where more than 90% of non-whitespace characters are alphabetic are discarded, ex-
cept for in-line math.

The resulting dataset consists of unique LaTeX mathematical expressions, both in isolation and within their
natural language in-line context, providing a rich resource for training and evaluating modality-agnostic
sentence-level embeddings.

1https://github.com/tree-sitter/tree-sitter

17

https://github.com/tree-sitter/tree-sitter

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm 1 Code Segmentation via Abstract Syntax Tree Traversal

Require: Source code, language parser, segmentation parameters (max size, depth, etc.)
Ensure: List of code segments (character ranges, types)

1: Parse source code → syntax tree (using https://github.com/tree-sitter/
tree-sitter)

2: Initialize empty list of snippets, visited node set
3: for each tree level (BFS order), processed in reverse order (bottom-up) do
4: for each node at this level do
5: if node is a leaf, has non-empty text, and is not visited then
6: snippet← {node}
7: Classify snippet type:
8: if node type is comment or string then
9: snippet type← ”text”

10: else
11: snippet type← ”code”
12: end if
13: while expansion upward is allowed (size and depth constraints not exceeded) do
14: if parent node is a statement/declaration and adding it (and its children) keeps snippet

size within allowed maximum then
15: snippet← snippet ∪ parent node ∪ eligible siblings
16: Update snippet type if parent changes classification
17: else
18: break
19: end if
20: end while
21: Mark included nodes as visited
22: Add (snippet, snippet type) to output list
23: end if
24: end for
25: end for
26: Postprocess:
27: Merge adjacent snippets if their combined size is below the threshold and they are contiguous
28: Adjust segment boundaries to snap to whitespace or newlines as configured
29: for each snippet do
30: Compute snippet’s character range in source code
31: end for
32: return list of snippet ranges, snippet types

18

https://github.com/tree-sitter/tree-sitter
https://github.com/tree-sitter/tree-sitter

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Pattern Description
$(.*?)$ Inline math (e.g., $aˆ2 + bˆ2 = cˆ2$)
$$(.*?)$$ Display math with double dollar signs
\\[(.*?)\\] Display math with \[... \]
\\begin{equation}(.*?)\\end{equation} Equation environment
\\begin{align}(.*?)\\end{align} Align environment
\\begin{align*}(.*?)\\end{align*} Align* environment
\\begin{multline}(.*?)\\end{multline} Multline environment
\\begin{multline*}(.*?)\\end{multline*} Multline* environment
\\begin{gather}(.*?)\\end{gather} Gather environment
\\begin{gather*}(.*?)\\end{gather*} Gather* environment
\\begin{eqnarray}(.*?)\\end{eqnarray} Eqnarray environment
\\begin{eqnarray*}(.*?)\\end{eqnarray*} Eqnarray* environment
(?<=[.!?])\s+ Sentence splitting after ., !, or ?
(?<!\$)\$[ˆ$]+\$(?!\$) Short inline LaTeX expressions

Figure 2: Summary of regular expressions used for extracting LaTeX math expressions and splitting sen-
tences.

A.1.3 NATURAL LANGUAGE DESCRIPTION GENERATION

We leverage Llama-3.3-70B-Instruct to generate natural language descriptions for both code snippets and
mathematical expressions. The model’s extensive training on code and mathematical content enables ef-
fective paraphrasing of technical content into clear English descriptions. Importantly, this task involves
paraphrasing existing content rather than generating new information. The prompts used for this generation
process are shown in Figure 3.

A.1.4 MULTILINGUAL BACK-TRANSLATION

To expand coverage of mixed-modality data, particularly sentences with inline expressions, we generate
back-translations using Llama-3.3-70B-Instruct. We translate English descriptions and mixed-mode sen-
tences into seven target languages: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. This
process creates a comprehensive multilingual dataset that enhances the diversity and utility of our training
data while maintaining semantic consistency across languages.

A.1.5 CONSISTENCY FILTERING

To validate the quality of our synthetic code-to-text pairs, we implement a consistency check using the
CodeRankEmbed embedding model (Suresh et al., 2025). This process verifies that generated English de-
scriptions accurately capture the semantics of their corresponding code snippets.

For each generated English description, we use it as a query to retrieve the most semantically similar code
snippet from a pool of 100,000 candidates within the same programming language. If our synthetic data
generation is effective, the English description should retrieve its original corresponding code snippet as the
top match.

We find that in 99% of cases, the English description successfully retrieves its original code snippet as the
top-1 match. This high retrieval accuracy indicates strong semantic alignment between code snippets and
their generated natural language descriptions, demonstrating the reliability and fidelity of our synthetic data
generation approach.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Math Text Translation

System prompt:
You are a helpful translation assistant. You respond only with the
translation, without additional comments, context, or explanation.

User prompt:
Translate the following text from English into {target lang}. Don’t
produce any other output outside of the translation.
{example}

Code Snippet Translation

Translate the following {programming language} snippet to a single
sentence, ensuring that all elements and operations in the code are
included. The sentence should convey the semantic meaning of the
code, effectively translating it into a clear and concise lexical
explanation without making any assumptions or inferences beyond what
is explicitly stated in the code. Describe only and exactly its
explicit elements and operations, without any additional context or
explanation. Use a single, direct sentence that includes all elements
and operations in the code, avoiding introductory words or additional
context. Please provide only the sentence and nothing else:
{example}

Math Formula Translation

Describe the following mathematical text in a single sentence. The
sentence should convey the semantic meaning of the mathematical
notation, effectively translating the mathematical notation into
a clear and concise lexical explanation. Please provide only the
sentence and nothing else.
{example}

Figure 3: Three prompt templates for translation, code snippet semantic description, and mathematical
notation explanation.

A.2 HARD NEGATIVES GENERATION

For hard negatives generation we follow two strategies:

Natural Language For natural language (i.e. no code or math) translation, we generate hard negatives
using Llama 3.3 70B Instruct. We follow an approach inspired by xsim++ negatives Chen et al. (2023b),
where they crafted hard-to-distinguish negative examples for translation pairs. We use the prompt described
in Figure 4 and generate up to 5 hard negatives per sample.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Code and math Here we follow a more straightforward approach and mine hard negatives using the ECHO
checkpoint trained in Section 4.3 before hard negatives are introduced. We mine the top 5 negatives over a
pool of 200k candidates for each sample. An example is provided in Figure 5.

Hard Negatives Generation

You are a text transformation specialist. Generate ONLY valid xsim++ transformations using these
EXCLUSIVE methods: 1. CAUSALITY ALTERATION:

• Add/remove negations (“did not”, “was not”)

• Replace adjectives with antonyms (“good” → “bad”)

• Change modal verbs (“may” → “will”)

2. ENTITY REPLACEMENT:
• Swap proper nouns (people, locations, organizations)

• Replace pronouns (he → she, they → we)

3. NUMBER ALTERATION:
• Change quantities (5 → 12)

• Modify dates/times (2023 → 2019)

• Alter percentages (15% → 22%)

Follow these patterns from training examples:
{few-shot examples}
Now transform THIS SPECIFIC INPUT SENTENCE using the above patterns. Output ONLY a Python
list of 1-5 modified sentences in this exact format:
[
"Transformed sentence 1",
"Transformed sentence 2",
...
]

Key requirements:
1. Create 1-5 unique modified sentences

2. Maximize difference from original text

3. Mix transformation types where possible

4. Maintain grammatical correctness

5. Do NOT generate paraphrases, or synonyms

6. NEVER output empty strings

7. Output ONLY a Python list of strings

8. No explanations, headers, or additional text

Input sentence to transform: {example}

Figure 4: Prompt for generating xsim++ transformations with clear instructions and structure.

A.3 LANGUAGES BREAKDOWN

Table 6 lists all the languages supported by ECHO and common for all other models.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Code/Math Hard Negatives Example

Python: temp = pd.read_csv(item, header = None, dtype = float)

English: The pandas library is used to read a csv file specified by the item variable into a temporary variable
named temp with the header set to None and the data type set to float.
Hard Negatives:

1. The code reads data into a variable named df using the pandas function read_csv.

2. The variable temp_mean is assigned the result of pandas’ read_csv function applied to the string
conversion of config’s attribute.

3. The pandas library is used to read a csv file named ”data.csv” located in the ”/data” directory into a
variable named df using the read_csv function.

4. The pandas library, referred to as pd, reads a comma-separated values file named ’data/
time_series_19-covid-Confirmed.csv’ into a variable named df using the read_csv
function.

5. The pandas library, referred to as pd, reads a comma-separated values file named ’tmdb-movies.
csv’ into a dataframe variable named df using the read_csv function.

Figure 5: Example of code/math hard negatives generation.

A.4 DATA STATISTICS

We present the statistics of our training data for both pre-training and fine-tuning stages in Table 7.

B DOWNSTREAM TASKS

In Table 8, we have all MTEB tasks we use to evaluate the several models considered.

C ABLATIONS AND ANALYSIS

ECHO includes several novel design choices supported by strong downstream performance. In this section
we provide ablations for such choices in an incremental fashion, that lead to our final model reported in
Section 5. All ablations experiments are trained for 5k steps only.

C.1 TRAINING OBJECTIVES

ECHO follows a multi-stage training strategy described in Section 4. Some of these steps such as de-
coding loss for sentence embedding learning (Duquenne et al., 2023), LLM re-purposing as an Encoder-
Decoder (Zhang et al., 2025a), and contrastive learning have been explored in isolation in prior work, but
ECHO is the first system to train an embedding model with such training strategies in a unified framework.
Here, we analyze the contribution of each component to the final performance.

As shown in Table 9a, each training stage yields significant improvements. After Seq2Seq pre-training,
the representations are not yet optimized for sentence-level tasks, and mean-pooling over all tokens results
in suboptimal performance. Nevertheless, we will later show the impact of this step as a foundation for
subsequent contrastive training.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Languages
ace Arab ace Latn acm Arab acq Arab aeb Arab
afr Latn ajp Arab aka Latn als Latn amh Ethi
apc Arab arb Arab ars Arab ary Arab arz Arab
asm Beng ast Latn awa Deva ayr Latn azb Arab
azj Latn bak Cyrl bam Latn ban Latn bel Cyrl
bem Latn ben Beng bho Deva bjn Arab bjn Latn
bod Tibt bos Latn bug Latn bul Cyrl cat Latn
ceb Latn ces Latn cjk Latn ckb Arab crh Latn
cym Latn dan Latn deu Latn dik Latn dyu Latn
dzo Tibt ell Grek eng Latn epo Latn est Latn
eus Latn ewe Latn fao Latn fij Latn fin Latn
fon Latn fra Latn fur Latn fuv Latn gaz Latn
gla Latn gle Latn glg Latn grn Latn guj Gujr
hat Latn hau Latn heb Hebr hin Deva hne Deva
hrv Latn hun Latn hye Armn ibo Latn ilo Latn
ind Latn isl Latn ita Latn jav Latn jpn Jpan
kab Latn kac Latn kam Latn kan Knda kas Arab
kas Deva kat Geor kaz Cyrl kbp Latn kea Latn
khk Cyrl khm Khmr kik Latn kin Latn kir Cyrl
kmb Latn kmr Latn knc Arab knc Latn kon Latn
kor Hang lao Laoo lij Latn lim Latn lin Latn
lit Latn lmo Latn ltg Latn ltz Latn lua Latn
lug Latn luo Latn lus Latn lvs Latn mag Deva
mai Deva mal Mlym mar Deva min Latn mkd Cyrl
mlt Latn mni Beng mos Latn mri Latn mya Mymr
nld Latn nno Latn nob Latn npi Deva nso Latn
nus Latn nya Latn oci Latn ory Orya pag Latn
pan Guru pap Latn pbt Arab pes Arab plt Latn
pol Latn por Latn prs Arab quy Latn ron Latn
run Latn rus Cyrl sag Latn san Deva sat Beng
scn Latn shn Mymr sin Sinh slk Latn slv Latn
smo Latn sna Latn snd Arab som Latn sot Latn
spa Latn srd Latn srp Cyrl ssw Latn sun Latn
swe Latn swh Latn szl Latn tam Taml taq Latn
taq Tfng tat Cyrl tel Telu tgk Cyrl tgl Latn
tha Thai tir Ethi tpi Latn tsn Latn tso Latn
tuk Latn tum Latn tur Latn twi Latn tzm Tfng
uig Arab ukr Cyrl umb Latn urd Arab uzn Latn
vec Latn vie Latn war Latn wol Latn xho Latn
ydd Hebr yor Latn yue Hant zho Hans zho Hant
zsm Latn zul Latn

Table 6: Complete list of languages covered by our model. Languages shown in bold are supported by all
models in our comparison. Our model covers 202 languages total, with 81 languages supported across all
compared models.

A key distinction between ECHO and other embedding models built on modern LLMs is the inclusion of
a Decoder component. While contrastive learning alone achieves a modest xsim score, it falls short on

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Seq2Seq Contrastive

Dataset pairs dirs source target pairs dirs source target

BT Math 13.0M 14 8 8 – – – –
Dictionary 18.9M 3.3K 110 110 – – – –
Code/Math→ Eng 1.02B 9 9 1 9.0M 9 9 1
Eng→ Code 941M 8 1 8 – – – –
Eng→Math 8.0M 1 1 1 – – – –

NLLB Mined 1.21B 1.6K 187 187 24.3M 140 140 1
NLLB mmt bt 901M 258 132 128 107M 119 119 1
NLLB smt bt 215M 76 39 39 3.2M 37 37 1
NLLB Primary 398M 1.3K 202 202 51.6M 196 196 1

Table 7: Training Data Statistics for Seq2Seq and Contrastive Learning Approaches. Each dataset shows:
pairs (number of translation pairs), dirs (number of translation directions, i.e., language X to Y), source
(number of source languages), and target (number of target languages).

task dataset

Classification

MassiveIntentClassification (FitzGerald et al., 2022)
MassiveScenarioClassification (FitzGerald et al., 2022)
MTOPDomainClassification (Li et al., 2021)
MTOPIntentClassification (Li et al., 2021)
AmazonCounterfactualClassification (O’Neill et al., 2021)
SIB200Classification (Adelani et al., 2024)

Pair Classification XNLI (Conneau et al., 2018)
XNLIV2 (Upadhyay & Upadhya, 2023)

Table 8: List of MTEB tasks we use to evaluate the models.

Model xsim xsim++
LLaMA initialization 94.57 99.89
Seq2Seq pre-training 7.74 51.55
Contrastive Loss 0.71 16.23

+ Decoder Loss 0.65 8.95
+ Hard negatives 0.76 7.06

(a) Full method ablation.

Model xsim xsim++
Decoder + MSE losses 0.92 12.54
Decoder + Contrastive losses 0.65 8.95

(b) Cross-lingual alignment objectives ablation.

Table 9: Training objectives ablations: Ablations on training objectives to learn a massively multilingual
sentence embedding space on the cross-lingual similarity search task of FLORES200 dev set, as measured
by xsim and xsim++.

xsim++. The addition of the cross-entropy loss from the Decoder, with its token-level language modeling
signal, delivers the largest gains, highlighting its role in capturing semantic nuance beyond surface-level
features. The introduction of hard negatives further reduces xsim++ scores.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

xsim xsim++

Margin 0 0.74 9.49
0.3 0.65 8.95
0.5 0.72 9.45

Logit scale 1 1.88 11.90
100 0.65 8.95
150 0.66 9.07

Gathering negatives no 0.74 9.44
yes 0.65 8.95

False negative removal no 0.69 9.73
yes 0.65 8.95

(a) Contrastive Learning hyper-parameters ablations

xsim xsim++

In-batch negatives only
One softmax 0.65 8.95

In-batch + hard negatives
One softmax 0.94 7.00
Split softmax 0.76 7.06

(b) Ablation on the use of hard negatives in con-
trastive learning.

Table 10: Contrastive Learning ablations: Effect of hyper-parameters and modeling options in Contrastive
Learning on cross-lingual similarity search on FLORES200 dev set.

SONAR (Duquenne et al., 2023) successfully leveraged a Decoder to build sentence representations. How-
ever, their approach combined a Mean Squared Error (MSE) objective between source and target embeddings
with the translation objective. In Table 9b, we show that replacing the MSE objective with a contrastive loss,
as described in Section 4.3, leads to a substantial improvement. This result suggests that the contrastive
signal encourages a more structured embedding space by explicitly pushing apart negatives, which benefits
xsim++ and, as we discuss later, helps prevent embedding space collapse.

C.2 CONTRASTIVE SIGNALS

Training embedding models with Contrastive Learning requires careful choices of hyper-parameters. We
analyze the effect of these options on the cross-lingual similarity search results in Table 10.

The additive margin in the softmax improves separation between positive translations and negatives. A
value of m = 0.3 was empirically found as best for this hyper-parameter, boosting performance compared
to models trained without margin. We also explore the logit scale on cosine similarity, τ , and find 100 to be
the best and crucial for proper contrastive learning.

The choices of negative examples is also key. By default we use all other sentences from the batch as neg-
atives, commonly referred to as in-batch negatives. We analyze the effect of different choices of negative
examples in Table 10. First in sub-table (a), we gather negative sentence examples from other GPUs, signifi-
cantly increasing the number of negatives, by a factor of number of GPUs, which in our case was 128. Such
approach indeed helps reaching lower cross-lingual similarity search error rates. The increasing number of
negative examples comes also at the price of higher probability of considering false negative sentences in
the loss. We ablate the use of false negative removal heuristic presented in Section 4.3, and validate the
usefulness of such approach.

Finally, in sub-table (b), we extend the in-batch negatives with the hard negatives presented in Section 4.4,
either using a single contrastive learning task (one softmax) for both in-batch and hard negatives, or two
contrastive learning tasks (split softmax). The first interesting finding is that training a model using hard
negatives with a non-zero margin does not converge correctly. Therefore, we do not use any margin in the
“one softmax” setup. This leads us to use m = 0.3 for in-batch negatives and m = 0 for hard negatives in
the “split softmax” setup. We notice that hard negatives significantly lower xsim++ error rates. However,

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

not separating the hard negatives from in-batch negatives in two different contrastive loss terms affects
xsim performance. This highlights the benefits of having two contrastive learning losses, one for in-batch
negatives and another for hard negatives, to better balance the two in the final loss.

C.3 MODEL INITIALIZATION

In order to understand the benefits of initializing from LLaMA, we ablate starting the seq2seq stage both
from LLaMA, and from random initialization. This analysis is present in Table 11a. It is possible to see
that initializing from LLaMA brings large improvements over random initialization in both spBLEU and
chrF++, despite officially only supporting 8 languages, performing this extension to 200 languages is still
easier than training from scratch.

To understand the advantage of doing a first seq2seq step to adapt LLaMA to many languages and give it
the ability to encode and decode, we initialize our contrastive step from LLaMA, Seq2Seq and also random.
Those results are available in Table 11b, where it is possible to see the very large improvements in xsim and
xsim++ obtained from starting from the seq2seq model instead of from LLaMA.

C.4 DATA MIXES

Table 12 presents an ablation study evaluating the impact of various data processing steps on model per-
formance, as measured by the xsim and xsim++ metrics. Starting with the baseline NLLB data, we incre-
mentally apply different data modifications: filtering, addition of code/math content, and removal of false
negatives. For each configuration, we report the resulting xsim and xsim++ scores. Both filtering and the
addition of code and math seem to bring small beneficial changes, but a large improvement is seen in false
negative removal, suggesting that even more aggressive filtering in the data could lead to further improve-
ments.

C.5 POOLING

It is a common debate whether to use mean pooling or CLS pooling, with SONAR (Duquenne et al., 2023)
reporting better result with mean pooling, while MEXMA (Janeiro et al., 2025b) reported better results with
CLS pooling. Intuitively, CLS pooling should work better, since it has the freedom to attend differently to
each tokens. In Table 13 we experiment with both pooling methods and find that our model performs best
with CLS pooling.

Initialization spBLEU chrF++

Random 17.22 36.55
LLaMA 23.57 42.71

(a) Ablation on model initialization for the Seq2Seq
stage.

Initialization xsim xsim++

Random init. 13.35 71.30
LLaMA init. 1.02 11.98
Seq2Seq init. 0.65 8.95

(b) Ablation on model initialization for Contrastive
Learning stage.

Table 11: Model initialization ablations: Effect of model weight initialization for sequence-to-sequence
stage as well as for contrastive learning stage on respectively decoding performance (spBLEU and chrF++)
and cross-lingual similariy search (xsim and xsim++) on FLORES200 dev set.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Data xsim xsim++

NLLB data 0.74 10.03
+ filtering 0.71 9.62
+ code/math 0.70 9.50
+ false negatives removal 0.65 8.95

Table 12: Ablations on data Ablation on the datamix used for contrastive finetuning on cross-lingual simi-
lariy search on FLORES200 dev set.

C.6 SMALLER SCALE MODELS

To make our models more accessible to practitioners with varying computational constraints, we investigate
the performance of smaller-scale variants of ECHO. A key design goal is ensuring these smaller models
serve as drop-in replacements across all scales, enabling practitioners to seamlessly switch between model
sizes while maintaining compatibility with downstream components.

Model Pruning Strategy. We create smaller models through structured pruning of the original 1.5B pa-
rameter model. Our pruning approach encompasses multiple architectural dimensions: (1) reducing inner
model dimensionality (from 2048 to 1024-1792), (2) decreasing the number of encoder layers (from 16 to
8-14), (3) adjusting attention heads proportionally, and (4) scaling the feed-forward network dimensions ac-
cordingly. For layer selection, we employ a strategic sampling approach that preserves both the first and last
layers while uniformly sampling intermediate layers, maintaining representational capacity across network
depth.

Knowledge Distillation. Rather than training smaller models from scratch, we leverage knowledge distil-
lation to ensure all model variants produce representations in the same aligned embedding space. We use
the full 1.5B parameter ECHO model as the teacher and train smaller student models using Mean Squared
Error (MSE) loss on the output embeddings. This approach offers a critical advantage: any task-specific de-
coder or classifier trained on representations from one model size can be directly applied to representations
from any other size, as all models produce semantically aligned embeddings in the same 1024-dimensional
space. This design enables practitioners to optimize their compute-performance trade-off dynamically. A
user might develop and evaluate with the large model, then deploy a smaller variant for production infer-
ence, or vice versa, training efficiently on a smaller model and scaling up for final deployment, all while
maintaining full compatibility with existing task-specific components.

In Table 14, we demonstrate that even our smallest model (Tiny, 385M parameters) retains approximately
76% of the full model’s performance on cross-lingual similarity search, as measured by relative xsim++
scores. The Medium (1.1B) and Small (806M) models show even stronger performance, achieving over
85% of the full model’s capability while offering substantial computational savings. Importantly, all mod-
els maintain strong cross-lingual alignment across all 200 supported languages, with minimal performance
degradation on the 80 languages common across baseline models.

Model xsim xsim++

Mean 0.68 9.25
CLS 0.64 8.77

Table 13: Ablation on different pooling strategies, evaluated on FLORES200 dev set.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Model Size xsim (all) xsim++ (all) xsim (common) xsim++ (common)

ECHO (Large) 1.5B 0.99 8.12 0.07 3.9
Medium 1.1B 1.18 8.78 0.07 4.21
Small 806M 1.23 9.01 0.08 4.23
Tiny 385M 1.61 11.71 0.09 5.13

Table 14: Results of smaller models in xsim, and xsim++. ”Common” refers to the 80 languages aforemen-
tioned, and ”all” to all 200 languages covered by our model.

model std mean

MEXMA 0.0312 -0.0011
mE5large 0.0312 -0.0008
LaBSE 0.0358 0.0049
SONAR 0.0074 0.0000
ECHO 0.0356 -0.0006

Table 15: Standard deviation (std) and mean of embedding features for different models when encoding
FLORES200 dev set on all common languages.

C.7 MODEL REPRESENTATION COLLAPSE

An often overlooked aspect of learned representations is how much of the embedding space they actually
utilize, that is, whether their representations are collapsed within the space. Duquenne et al. (2023) have
already highlighted this issue, which is especially pronounced when training with MSE regression signals,
as models may exploit collapse to minimize the loss. This issue is crucial in the deployment of embeddings
in current production systems that leverage mixed precision to reduce the memory footprint, as collapse can
largely affect performance at lower precision. In Table 15 we see how ECHO successfully avoids collapse
compared to other models like SONAR, with a healthy standard deviation on its features, similar to widely
used models such as mE5large.

C.8 EMBEDDING DIMENSION INFORMATIVENESS

Singular Value Decomposition (SVD) provides a principled approach to analyze the intrinsic dimensionality
and information distribution in embeddings. By examining the decay pattern of singular values, we can
assess how different models utilize their feature space and identify potential dimensional collapse, where
models concentrate information in fewer dimensions than their nominal embedding size.

Figure 6 plots the SVD of our baselines on the FLORES dev set. From it, it can be inferred that ECHO
showcases a stable decay pattern reaching up to 800 dimensions, while other models decay earlier, with the
sole exception of SONAR.

C.9 ANALYZING EXAMPLES TO UNDERSTAND WHERE MODELS FAIL

In this section, we perform some qualitative analysis of the errors of ECHO, and other models. By inspection,
ECHO’s mistakes look to be related to unit conversion, matching with the sentence where the actual number
matches, i.e. matching ”15 cm” to ”15 inches” instead of ”6 inches”. This is likely due to our hard negatives,
which focused on matching the actual numbers, but lead to errors when the translation transforms the units.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Figure 6: Singular values of embeddings from different models.

Meanwhile we see SONAR and MEXMA make mistakes related to both values and semantics (may/will,
white/black), such as the examples provided below. Examples are provided in Table 16.

D TOKENIZER TRAINING

To extend the tokenizer vocabulary, we implemented a byte-pair encoding “continued training” algorithm
by sequentially merging the most frequently occurring consecutive pairs of tokens within a word. The word
frequencies were computed with a balanced sample from the parallel training data in all our languages and
from the FineWeb2 dataset of web documents (in equal proportions). As weights for balancing, we used the
total number of characters in the texts, and we applied unimax sampling over the languages, squashing the
proportions of the first 126 languages to uniform and upsampling the rest at most x100 (on top of this, we
manually increased the weights for some languages with underrepresented scripts, such as Greek or Korean,
to adjust the resulting tokenizer fertilities). For some languages, the bottleneck of tokenization fertility has
been not in the vocabulary itself but in the pre-tokenization word splitting regular expression, so we extended
it with additional Unicode ranges and with a pattern for matching diacritic marks within a word. As a result
of these operations, the extended tokenizer achieved the average fertility of 44 tokens per sentence over the
200 languages in the FLORES dataset, as opposed to 79 tokens in the original Llama3 tokenizer.2

E PROMPTS

Table Table 17 shows the prompts we used when tokenizing the input for both the Encoder and the Decoder,
as explained in Section 4.2.

F FULL RESULTS

We present a breakdown of the cross-lingual similarity search results for our 200 focus languages in Table 18
and Table 19.

2With the most pronounced differences for the Asian languages with unique scripts, such as shn Mymr, sat Olck,
and dzo Tibt, where the fertility has decreased by more than 6 times.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

System Source Sentence Desired Retrieved Actual Retrieved

ECHO O Corpo de Engenheiros dos
EUA estimou que 15 cm de
chuva podem romper os diques
anteriormente danificados.

The U.S. Corps of Engineers
estimated that 6 inches of rain-
fall could breach the previously
damaged levees.

The U.S. Corps of Engineers
estimated that 15 inches of rain-
fall could breach the previously
damaged levees.

ECHO Os limites de velocidade anun-
ciados sao visivelmente mais
baixos do que nas secoes ante-
riores e subsequentes - comu-
mente 55-65 km/h - e a estrita
obediencia a eles e ainda mais
importante do que o contrario.

Posted speed limits are notice-
ably lower than in previous and
subsequent sections commonly
35-40 mph (56-64 km/h) and
strict obedience to them is even
more important than otherwise.

Posted speed limits are notice-
ably lower than in previous and
subsequent sections commonly
35-90 mph (56-64 km/h) and
strict obedience to them is even
more important than otherwise.

MEXMA O Corpo de Engenheiros dos
EUA estimou que 15 cm de
chuva podem romper os diques
anteriormente danificados.

The U.S. Corps of Engineers
estimated that 6 inches of rain-
fall could breach the previously
damaged levees.

The U.S. Corps of Engineers
estimated that 15 inches of rain-
fall could breach the previously
damaged levees.

MEXMA Reportagens televisivas divul-
gam a fumaca esbranquicada
saindo da planta.

Television reports show white
smoke coming from the plant.

Television reports show black
smoke coming from the plant.

SONAR No periodo de um ano, uma
pessoa infectada pode infectar
entre 10 e 15 contatos proxi-
mos.

In one year’s time, an infected
person may infect 10 to 15 close
contacts.

In one year’s time, an infected
person will infect 10 to 15 close
contacts.

SONAR Aconteceu novamente no
mesmo mes em Mashhad, outro
aviao comercial entrou em uma
pista e atingiu uma parede,
matando dezessete pessoas.

The same month saw another
airliner overrun a runway at
Mashhad and strike a wall,
killing seventeen.

The same month did not saw
another airliner overrun a run-
way at Mashhad and strike a
wall, killing seventeen.

Table 16: Comparison of three systems (ECHO, MEXMA, SONAR) on two examples each. For each
example, the table shows the original source sentence (in Portuguese) and the desired retrieved English
sentence, the actual retrieved English sentence.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Source Prompt Template
Encoder

Source/Anchor "<CLS><s> [LANGUAGE]:<SEP> [INPUT SENTENCE]
</s>"

Decoder
NLLB Primary "<s> This is a possible translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
NLLB Mined "<s> This is a possible mined translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
NLLB * bt "<s> This is a possible back-translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
Eng→ Code "<s> This is a corresponding code snippet in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
Eng→Math "<s> This is a corresponding math formula:<SEP>

[INPUT SENTENCE] </s>"
Code/Math→ Eng "<s> This is a possible natural language

explanation in [LANGUAGE]:<SEP> [INPUT
SENTENCE] </s>"

Table 17: Prompt Templates for Encoder and Decoder Components. The encoder uses classification prompts
to identify language and content, while the decoder uses descriptive prompts tailored to different data sources
and translation types. Placeholders [LANGUAGE] and [INPUT SENTENCE] are replaced with actual
values during training.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

U
nderreview

as
a

conference
paperatIC

L
R

2026

Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5
ace Arab 6.23 96.44 57.91 8.60 77.77 ace Latn 0.30 32.61 8.60 0.10 8.70 acm Arab 0.10 0.30 0.00 0.00 0.10 acq Arab 0.00 0.10 0.00 0.00 0.10
aeb Arab 0.40 4.94 0.20 0.20 0.99 afr Latn 0.00 0.00 0.00 0.00 0.00 ajp Arab 0.10 0.49 0.00 0.00 0.20 aka Latn 0.30 53.46 44.86 0.10 7.21
als Latn 0.00 0.00 0.00 0.00 0.00 amh Ethi 0.00 0.00 0.00 0.00 0.40 apc Arab 0.10 1.09 0.00 0.00 0.10 arb Arab 0.00 0.00 0.00 0.00 0.00
ars Arab 0.10 0.00 0.00 0.00 0.10 ary Arab 0.99 13.14 0.99 0.89 2.77 arz Arab 0.20 0.69 0.10 0.00 0.40 asm Beng 0.10 1.78 0.00 0.00 0.69
ast Latn 0.00 0.20 0.00 0.00 0.00 awa Deva 0.99 1.09 0.89 0.89 0.99 ayr Latn 3.85 72.13 54.25 1.68 43.97 azb Arab 2.96 44.37 1.68 0.69 11.36
azj Latn 0.30 0.30 0.20 0.20 0.20 bak Cyrl 0.00 41.90 11.36 0.00 1.68 bam Latn 4.05 65.61 52.37 2.17 14.62 ban Latn 0.40 8.40 1.09 0.30 2.57
bel Cyrl 0.49 0.00 0.00 0.00 0.20 bem Latn 0.00 44.07 36.66 0.10 14.23 ben Beng 0.00 0.00 0.00 0.00 0.10 bho Deva 0.20 2.57 0.30 0.00 0.79
bjn Arab 4.84 95.36 69.96 6.23 82.41 bjn Latn 0.10 8.60 0.30 0.10 1.68 bod Tibt 1.28 14.13 88.93 0.49 92.19 bos Latn 0.00 0.00 0.00 0.00 0.00
bug Latn 0.79 40.61 13.14 0.49 12.65 bul Cyrl 0.10 0.00 0.00 0.00 0.10 cat Latn 0.00 0.00 0.00 0.00 0.00 ceb Latn 0.00 0.00 6.82 0.00 0.10
ces Latn 0.00 0.00 0.00 0.00 0.00 cjk Latn 12.55 62.45 42.69 7.02 43.97 ckb Arab 0.10 88.83 0.10 0.00 3.26 crh Latn 0.10 2.67 0.10 0.00 0.30
cym Latn 0.00 0.00 0.00 0.00 0.49 dan Latn 0.00 0.00 0.00 0.00 0.00 deu Latn 0.00 0.00 0.00 0.00 0.00 dik Latn 11.26 62.25 46.15 8.89 46.34
dyu Latn 21.34 74.51 53.36 13.54 50.30 dzo Tibt 1.19 67.19 99.41 0.49 99.51 ell Grek 0.00 0.00 0.00 0.00 0.00 epo Latn 0.00 0.00 0.00 0.00 0.10
est Latn 0.00 0.00 0.00 0.00 0.10 eus Latn 0.00 0.10 0.00 0.00 0.00 ewe Latn 1.19 64.53 53.16 0.89 16.21 fao Latn 0.10 0.49 0.00 0.00 2.47
fij Latn 0.49 60.77 52.27 0.30 13.24 fin Latn 0.30 0.10 0.10 0.10 0.10 fon Latn 5.83 70.16 57.41 4.64 19.66 fra Latn 0.00 0.00 0.00 0.00 0.00
fur Latn 0.00 12.06 0.20 0.00 0.89 fuv Latn 10.97 65.02 43.38 4.55 36.86 gaz Latn 0.20 81.72 47.92 0.10 12.15 gla Latn 0.10 0.20 0.10 0.10 4.25
gle Latn 0.00 0.00 0.00 0.00 1.19 glg Latn 0.00 0.00 0.00 0.00 0.00 grn Latn 0.30 47.92 27.37 0.40 10.87 guj Gujr 0.00 0.00 0.00 0.00 0.00
hat Latn 0.59 0.59 13.83 0.59 1.28 hau Latn 0.40 0.30 0.30 0.30 2.67 heb Hebr 0.00 0.00 0.00 0.00 0.00 hin Deva 0.10 0.00 0.00 0.00 0.00
hne Deva 0.40 1.78 0.40 0.40 0.69 hrv Latn 0.00 0.00 0.00 0.00 0.00 hun Latn 0.10 0.00 0.00 0.00 0.00 hye Armn 0.00 0.00 0.00 0.00 0.00
ibo Latn 0.10 1.09 48.81 0.00 4.45 ilo Latn 0.00 30.24 16.30 0.00 1.68 ind Latn 0.00 0.00 0.00 0.00 0.30 isl Latn 0.20 0.10 0.10 0.10 0.10
ita Latn 0.10 0.00 0.00 0.00 0.00 jav Latn 0.00 0.00 0.00 0.00 0.00 jpn Jpan 0.20 0.00 0.10 0.00 0.00 kab Latn 0.10 82.41 67.19 0.00 37.35
kac Latn 1.78 67.98 51.09 0.10 41.40 kam Latn 3.36 54.45 38.74 2.17 29.25 kan Knda 0.00 0.00 0.00 0.00 0.30 kas Arab 0.20 34.88 3.06 0.20 4.84
kas Deva 1.88 56.72 15.91 0.59 16.60 kat Geor 0.40 0.00 0.00 0.00 0.10 kaz Cyrl 0.30 0.20 0.20 0.20 0.30 kbp Latn 4.94 67.79 55.34 4.35 39.33
kea Latn 0.00 14.82 1.09 0.00 0.79 khk Cyrl 0.30 0.00 0.10 0.00 0.59 khm Khmr 0.00 2.37 0.00 0.69 0.79 kik Latn 0.89 52.37 43.18 0.59 6.72
kin Latn 0.30 0.30 49.51 0.20 2.87 kir Cyrl 0.30 0.10 0.00 0.00 0.59 kmb Latn 0.89 61.66 48.02 1.28 36.76 kmr Latn 0.20 0.30 3.66 0.00 2.17
knc Arab 63.74 96.74 80.14 50.89 79.55 knc Latn 7.81 65.22 42.39 0.99 45.45 kon Latn 0.40 52.47 40.42 0.20 9.29 kor Hang 0.10 0.00 0.00 0.00 0.20
lao Laoo 0.00 3.46 0.00 0.00 0.79 lij Latn 0.10 10.57 0.59 0.10 1.38 lim Latn 0.20 9.09 0.30 0.00 3.56 lin Latn 0.20 50.69 40.71 0.20 3.85
lit Latn 0.49 0.40 0.49 0.40 0.40 lmo Latn 0.30 16.40 0.69 0.00 2.77 ltg Latn 0.10 25.20 12.65 0.10 5.34 ltz Latn 0.00 0.00 4.55 0.00 0.89
lua Latn 1.28 50.49 38.04 0.49 16.80 lug Latn 0.20 45.65 41.90 0.30 9.78 luo Latn 0.00 64.43 49.70 0.10 23.91 lus Latn 1.48 52.47 36.36 0.49 15.81
lvs Latn 0.20 0.00 0.00 0.00 0.00 mag Deva 0.10 0.30 0.00 0.10 0.00 mai Deva 0.00 0.20 0.10 0.00 0.10 mal Mlym 0.10 0.10 0.10 0.10 0.10
mar Deva 0.00 0.00 0.00 0.00 0.10 min Latn 0.10 12.85 0.89 0.10 1.98 mkd Cyrl 0.00 0.00 0.00 0.00 0.00 mlt Latn 0.00 0.00 15.71 0.00 0.79
mni Beng 0.00 90.02 72.13 0.30 46.84 mos Latn 10.67 70.36 51.19 5.73 45.16 mri Latn 0.10 2.47 57.91 0.00 11.56 mya Mymr 0.69 0.30 0.20 0.20 0.69
nld Latn 0.40 0.00 0.00 0.00 0.00 nno Latn 0.10 0.10 0.10 0.10 0.10 nob Latn 0.20 0.10 0.10 0.10 0.10 npi Deva 0.59 0.30 0.30 0.30 0.40
nso Latn 0.10 7.02 44.66 0.10 2.96 nus Latn 2.27 79.45 64.92 1.98 49.41 nya Latn 0.10 0.79 37.55 0.20 3.85 oci Latn 0.00 0.49 0.10 0.00 0.10
ory Orya 0.20 0.00 0.00 0.00 0.10 pag Latn 0.89 30.43 17.39 0.30 4.35 pan Guru 0.00 0.00 0.00 0.00 0.10 pap Latn 0.00 11.26 1.09 0.00 0.30
pbt Arab 0.10 1.09 0.10 0.00 0.49 pes Arab 0.20 0.00 0.00 0.00 0.00 plt Latn 0.00 0.49 15.32 0.00 1.19 pol Latn 0.00 0.00 0.00 0.00 0.20
por Latn 0.00 0.00 0.00 0.00 0.59 prs Arab 0.10 0.00 0.00 0.00 0.00 quy Latn 3.95 67.39 42.49 3.16 30.83 ron Latn 0.00 0.00 0.00 0.00 0.00
run Latn 0.20 2.87 48.32 0.10 3.85 rus Cyrl 0.20 0.00 0.00 0.00 0.00 sag Latn 3.16 60.97 43.28 1.78 33.89 san Deva 0.69 19.17 0.40 0.40 2.08
scn Latn 0.30 8.30 1.09 0.00 1.68 shn Mymr 0.49 71.54 53.06 0.00 42.19 sin Sinh 0.30 0.00 0.00 0.10 0.20 slk Latn 0.10 0.00 0.00 0.00 0.00
slv Latn 0.10 0.00 0.00 0.00 0.10 smo Latn 0.10 1.38 49.41 0.10 4.55 sna Latn 0.20 2.37 43.18 0.20 3.16 snd Arab 0.00 0.00 0.00 0.00 0.49
som Latn 0.10 1.09 0.10 0.10 4.64 sot Latn 0.00 0.59 46.94 0.00 1.78 spa Latn 0.10 0.10 0.10 0.10 0.10 srd Latn 0.00 9.09 0.49 0.00 0.79
srp Cyrl 0.00 0.00 0.00 0.00 0.00 ssw Latn 0.49 16.70 6.32 0.30 6.52 sun Latn 0.10 0.20 0.10 0.10 0.30 swe Latn 0.00 0.00 0.00 0.00 0.00
swh Latn 0.00 0.00 0.00 0.00 0.69 szl Latn 0.69 4.94 0.79 0.69 0.79 tam Taml 0.00 0.00 0.00 0.00 0.10 taq Latn 22.33 66.80 48.81 16.90 48.42
taq Tfng 21.34 95.55 86.07 25.79 87.55 tat Cyrl 0.00 0.00 5.83 0.00 0.59 tel Telu 0.20 0.00 0.00 0.00 0.00 tgk Cyrl 0.20 0.30 49.01 0.20 1.48
tgl Latn 0.00 0.00 0.30 0.00 0.10 tha Thai 0.10 6.62 0.10 0.10 0.40 tir Ethi 0.40 77.27 16.70 0.00 6.32 tpi Latn 0.00 46.84 17.39 0.00 3.36
tsn Latn 1.09 8.50 51.58 1.09 4.25 tso Latn 0.49 55.34 43.08 0.40 5.14 tuk Latn 0.10 0.69 5.04 0.00 19.47 tum Latn 0.79 24.21 41.40 0.20 6.13
tur Latn 0.00 0.00 0.00 0.00 0.00 twi Latn 0.40 49.60 42.49 0.10 8.00 tzm Tfng 0.79 95.55 89.43 0.99 90.42 uig Arab 0.40 0.20 0.10 0.10 2.47
ukr Cyrl 0.00 0.00 0.00 0.00 0.00 umb Latn 5.43 64.82 46.34 4.64 38.04 urd Arab 0.20 0.10 0.10 0.10 0.40 uzn Latn 0.10 0.10 0.10 0.10 0.20
vec Latn 0.00 4.15 0.10 0.00 0.59 vie Latn 0.00 0.00 0.00 0.00 0.10 war Latn 0.00 0.49 6.52 0.00 0.20 wol Latn 0.99 54.84 42.09 1.09 17.19
xho Latn 0.10 0.99 0.10 0.10 1.98 ydd Hebr 0.00 0.89 0.20 0.00 2.87 yor Latn 0.20 13.14 51.88 0.00 11.76 yue Hant 0.20 0.10 0.00 0.00 0.00
zho Hans 0.00 0.00 0.10 0.00 0.00 zho Hant 0.30 0.40 0.10 0.00 0.20 zsm Latn 0.00 0.00 0.00 0.00 0.10 zul Latn 0.10 0.20 0.30 0.10 1.38

Table 18: xsim results for all models in all languages, x-eng in FLORES200 devtest set.

32

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

U
nderreview

as
a

conference
paperatIC

L
R

2026

Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5
ace Arab 55.34 100.00 92.09 36.76 98.91 ace Latn 16.30 82.21 49.41 8.10 48.22 acm Arab 11.17 52.67 9.39 5.83 27.37 acq Arab 8.30 46.54 8.20 10.87 23.02
aeb Arab 11.76 66.60 13.64 6.72 31.72 afr Latn 5.14 9.49 4.64 1.19 13.34 ajp Arab 7.61 54.15 9.19 5.24 23.81 aka Latn 19.47 92.39 85.18 10.77 42.79
als Latn 5.14 10.97 9.39 1.78 18.48 amh Ethi 8.60 28.85 6.23 3.36 43.48 apc Arab 9.58 58.00 12.65 5.14 28.46 arb Arab 6.82 35.87 6.72 2.37 19.27
ars Arab 13.93 39.72 12.65 8.50 23.52 ary Arab 14.03 77.08 22.23 12.45 39.03 arz Arab 10.87 58.99 11.46 4.84 24.51 asm Beng 14.92 62.15 11.17 6.42 41.50
ast Latn 9.68 38.04 14.13 6.82 19.86 awa Deva 11.07 26.98 12.06 3.75 27.67 ayr Latn 34.78 97.43 83.10 19.27 85.77 azb Arab 42.59 94.76 32.61 21.25 65.32
azj Latn 14.03 17.98 10.77 6.13 29.45 bak Cyrl 11.46 91.90 51.09 3.56 40.71 bam Latn 30.14 95.26 85.67 17.09 61.56 ban Latn 13.04 60.38 29.15 6.13 36.26
bel Cyrl 17.19 26.88 11.36 5.53 24.90 bem Latn 14.82 87.35 73.02 6.92 54.05 ben Beng 10.77 19.76 6.92 5.34 26.09 bho Deva 12.45 45.95 20.45 4.94 36.86
bjn Arab 42.69 100.00 95.06 31.13 98.62 bjn Latn 11.76 58.30 20.06 4.94 33.20 bod Tibt 25.99 82.51 97.23 17.89 99.21 bos Latn 5.93 9.29 3.56 1.19 11.66
bug Latn 24.11 85.57 52.27 12.25 56.62 bul Cyrl 7.81 9.88 4.74 2.08 9.68 cat Latn 4.84 12.94 3.95 1.88 8.10 ceb Latn 9.29 16.60 48.42 3.16 26.19
ces Latn 7.02 15.32 5.04 1.98 9.88 cjk Latn 63.04 95.65 83.50 31.72 86.17 ckb Arab 10.97 99.31 11.36 4.64 53.75 crh Latn 9.19 50.59 21.64 3.95 37.94
cym Latn 5.34 12.94 3.85 0.99 31.03 dan Latn 4.84 7.21 3.75 1.09 9.78 deu Latn 4.84 7.61 4.64 1.58 7.41 dik Latn 46.94 94.66 79.05 34.19 79.74
dyu Latn 65.51 97.83 83.79 41.21 86.66 dzo Tibt 24.31 98.42 99.80 15.71 99.90 ell Grek 9.19 18.77 7.41 2.87 13.14 epo Latn 4.55 8.79 4.15 1.38 18.77
est Latn 6.82 11.56 4.05 2.08 12.45 eus Latn 9.88 14.13 7.11 2.96 20.45 ewe Latn 22.63 96.34 83.40 13.83 59.98 fao Latn 11.36 38.14 22.33 4.05 39.82
fij Latn 16.01 94.66 84.39 8.30 53.95 fin Latn 7.51 15.32 7.02 3.36 11.96 fon Latn 35.08 96.05 87.15 26.38 62.85 fra Latn 4.84 9.19 4.64 1.78 7.81
fur Latn 5.83 71.05 25.59 4.45 34.09 fuv Latn 49.51 96.15 81.62 27.57 76.38 gaz Latn 16.30 98.72 83.10 8.70 60.47 gla Latn 13.74 27.67 10.57 3.66 48.22
gle Latn 8.70 17.49 8.70 3.26 39.03 glg Latn 6.13 7.71 4.55 2.37 11.96 grn Latn 18.87 91.50 68.08 9.58 55.83 guj Gujr 8.50 15.02 6.62 3.06 31.72
hat Latn 8.79 26.28 62.85 4.55 39.92 hau Latn 11.26 28.16 11.36 5.14 37.94 heb Hebr 5.43 17.00 6.52 2.77 18.68 hin Deva 7.51 10.87 5.24 2.57 17.00
hne Deva 9.58 39.92 16.21 4.15 31.52 hrv Latn 7.02 9.88 4.64 2.96 13.24 hun Latn 7.02 13.34 6.32 2.77 11.07 hye Armn 6.32 11.86 6.92 2.67 32.51
ibo Latn 12.06 45.95 79.84 6.52 43.28 ilo Latn 10.18 82.81 55.93 4.64 35.28 ind Latn 6.23 8.00 4.74 2.77 14.92 isl Latn 8.50 14.43 6.72 3.46 19.86
ita Latn 6.72 12.15 4.64 2.27 8.30 jav Latn 10.77 19.07 7.81 3.85 23.91 jpn Jpan 13.44 20.85 8.30 3.46 14.53 kab Latn 22.23 98.81 93.08 17.00 86.46
kac Latn 27.27 97.33 85.38 17.59 82.71 kam Latn 34.98 92.98 74.90 22.92 72.73 kan Knda 11.17 20.16 8.60 4.45 29.55 kas Arab 16.90 90.61 45.45 9.88 52.17
kas Deva 34.98 94.37 62.65 22.92 71.44 kat Geor 12.94 24.11 8.89 4.74 32.51 kaz Cyrl 10.77 13.83 7.41 3.95 29.55 kbp Latn 29.15 95.65 89.53 18.18 83.50
kea Latn 20.65 75.89 32.61 4.35 33.50 khk Cyrl 13.34 24.01 17.29 5.83 38.54 khm Khmr 11.86 24.11 8.00 8.70 45.45 kik Latn 22.83 92.09 78.75 11.07 48.02
kin Latn 9.49 29.64 82.41 4.35 36.36 kir Cyrl 13.83 27.96 11.46 6.42 33.10 kmb Latn 27.77 95.16 80.53 20.65 78.36 kmr Latn 15.32 36.46 35.57 7.61 45.65
knc Arab 89.82 100.00 95.55 77.57 97.33 knc Latn 47.04 96.25 76.38 19.96 80.14 kon Latn 17.69 93.58 76.78 10.57 50.20 kor Hang 10.57 21.64 7.41 3.95 17.98
lao Laoo 9.39 23.42 6.03 3.16 40.32 lij Latn 8.79 68.38 24.60 3.66 30.73 lim Latn 12.35 61.46 25.30 5.14 47.23 lin Latn 10.18 91.21 76.68 5.53 41.70
lit Latn 10.18 14.43 17.09 4.25 15.12 lmo Latn 17.59 75.40 30.34 8.79 37.75 ltg Latn 9.09 83.10 55.14 5.63 52.47 ltz Latn 8.40 20.95 39.72 3.06 35.18
lua Latn 32.51 91.60 75.40 16.50 59.78 lug Latn 19.86 89.62 78.46 13.04 56.32 luo Latn 12.65 95.75 83.30 7.31 65.81 lus Latn 24.41 91.60 70.95 12.25 56.82
lvs Latn 7.71 9.98 11.26 2.37 14.13 mag Deva 8.70 32.51 16.60 4.25 28.66 mai Deva 10.38 38.83 17.79 2.37 31.82 mal Mlym 10.57 25.69 8.50 4.74 26.38
mar Deva 9.29 18.87 6.42 3.66 26.19 min Latn 9.49 64.53 23.52 3.85 36.46 mkd Cyrl 6.62 9.98 5.14 2.27 11.86 mlt Latn 5.04 8.89 60.08 1.68 27.77
mni Beng 19.07 99.80 95.36 12.65 91.50 mos Latn 41.60 96.64 83.30 26.38 86.07 mri Latn 13.54 46.94 84.29 8.79 57.11 mya Mymr 17.69 41.70 12.06 6.42 47.43
nld Latn 10.87 12.55 7.11 3.56 9.78 nno Latn 14.03 11.56 6.72 3.06 12.85 nob Latn 11.76 10.18 5.73 2.67 8.79 npi Deva 11.36 14.33 5.53 3.16 29.74
nso Latn 9.88 59.98 75.99 4.64 36.26 nus Latn 29.15 98.62 92.79 20.06 87.85 nya Latn 13.34 43.58 71.64 7.91 36.17 oci Latn 5.53 36.46 15.51 2.96 24.41
ory Orya 9.78 18.18 10.77 2.67 28.75 pag Latn 16.01 86.36 60.77 9.19 45.06 pan Guru 9.58 21.54 11.46 3.06 31.03 pap Latn 7.11 67.49 29.84 1.28 23.81
pbt Arab 13.04 52.08 19.57 5.43 38.34 pes Arab 8.70 11.86 6.42 2.77 16.60 plt Latn 7.21 31.13 62.25 3.06 32.11 pol Latn 8.70 12.35 6.03 3.16 9.19
por Latn 5.43 8.20 5.04 1.68 17.59 prs Arab 7.71 14.92 7.21 2.96 21.94 quy Latn 28.85 96.15 80.43 17.29 77.08 ron Latn 5.83 7.02 3.46 1.68 7.41
run Latn 11.07 51.38 80.43 4.84 42.98 rus Cyrl 6.52 10.28 6.13 2.57 9.88 sag Latn 39.23 95.75 80.04 26.09 76.98 san Deva 19.96 80.14 19.86 8.40 45.55
scn Latn 12.25 62.85 33.30 6.42 41.11 shn Mymr 18.97 96.44 76.58 10.18 83.60 sin Sinh 9.09 18.18 6.13 4.25 34.78 slk Latn 8.10 9.88 5.53 2.67 12.55
slv Latn 7.91 12.75 5.34 2.27 13.14 smo Latn 11.96 41.50 83.40 5.53 44.57 sna Latn 11.76 49.11 77.27 4.05 40.91 snd Arab 11.17 43.87 8.10 4.74 45.85
som Latn 12.15 41.70 13.04 8.70 45.06 sot Latn 7.91 43.18 79.64 4.35 34.98 spa Latn 8.00 14.92 5.43 2.67 9.98 srd Latn 10.47 66.70 26.78 6.13 33.79
srp Cyrl 5.43 10.38 3.66 1.38 10.08 ssw Latn 12.06 74.21 47.92 6.62 45.55 sun Latn 10.87 18.18 8.10 3.85 29.64 swe Latn 5.83 8.30 4.84 1.28 8.99
swh Latn 7.11 16.80 7.71 2.77 28.75 szl Latn 6.72 57.61 18.68 3.56 32.51 tam Taml 14.23 18.68 9.29 4.05 31.92 taq Latn 57.61 96.05 79.84 39.43 86.17
taq Tfng 62.35 100.00 96.64 53.46 98.02 tat Cyrl 7.91 23.62 43.18 3.46 38.34 tel Telu 12.06 16.01 8.40 3.85 26.38 tgk Cyrl 8.40 23.81 82.91 3.66 45.26
tgl Latn 6.62 12.75 25.49 2.67 22.43 tha Thai 8.30 39.43 6.23 3.06 14.33 tir Ethi 14.82 98.52 64.62 7.11 58.00 tpi Latn 13.64 94.47 61.56 7.91 42.98
tsn Latn 13.54 61.07 82.71 6.03 40.91 tso Latn 13.14 91.80 74.80 5.34 40.91 tuk Latn 9.49 40.51 42.59 3.85 76.98 tum Latn 18.28 78.06 73.12 9.68 44.07
tur Latn 6.23 10.67 5.04 2.37 12.55 twi Latn 18.28 91.60 85.47 9.68 45.75 tzm Tfng 26.88 100.00 97.33 18.08 98.72 uig Arab 13.83 28.56 11.07 6.82 54.25
ukr Cyrl 7.91 11.96 6.42 3.16 10.08 umb Latn 36.56 95.06 77.57 26.98 77.47 urd Arab 9.88 17.79 6.82 4.15 30.43 uzn Latn 8.50 16.60 16.01 3.66 30.34
vec Latn 7.81 53.46 14.03 2.67 28.66 vie Latn 5.63 11.56 5.53 2.27 12.06 war Latn 7.11 32.51 47.04 2.87 24.60 wol Latn 28.56 93.87 77.77 16.90 66.60
xho Latn 10.18 41.01 12.94 4.74 34.68 ydd Hebr 8.60 52.67 31.62 3.36 57.61 yor Latn 22.73 71.25 84.49 16.80 58.79 yue Hant 10.67 58.70 8.30 3.95 17.59
zho Hans 9.98 50.69 7.41 3.06 14.43 zho Hant 14.23 58.30 9.78 4.15 17.89 zsm Latn 5.93 7.11 4.55 2.08 12.25 zul Latn 8.70 33.10 21.64 4.05 34.49

Table 19: xsim++ results for all models in all languages, x-eng in FLORES200 devtest set.

33

1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

Under review as a conference paper at ICLR 2026

G EMBEDDING VISUALIZATION

So far, quantitative results have showcased the efficacy of ECHO as an embedding space. Although visual-
ization approaches such as UMAP McInnes et al. (2020) may lead to misinterpretations of the embedding
spaces, they can provide visual support to our cross-lingual alignment results. To illustrate this, we fit
a UMAP projection on the FLORES devset and plot one randomly sampled English sentence alongside its
translations, with the hard negatives from Chen et al. (2023b). To ensure fairness, we only plot the languages
common to our baselines. As visualized in Figure 7, ECHO is the only model for which hard negatives are
not within the cluster defined around the English sentence.

For a broader perspective, Figure 8 displays 500 sentences from the devset, excluding hard negatives. Across
models, clusters consistently form around the same sentence in different languages, with MEXMA, LaBSE,
and ECHO exhibiting fewer outliers. However, when hard negatives are introduced (see Figure 7), most
models fail to separate them from the target cluster. This visualization highlights the trade-off between
xsim and xsim++ performance discussed in section 5: ECHO’s contrastive training enables it to push hard
negatives away (improving xsim++, as per Figure 7), without compromising its cross-lingual alignment
(xsim, as per Figure 8).

(a) LaBSE (b) SONAR (c) MEXMA

(d) mE5large (e) ECHO

Figure 7: UMAP visualization of the sentence “During his time with the team, he scored 403 goals in 468
appearances.” from FLORES devset along closest hard negatives, shown as red crosses. Lines connect the
translations to their English counterpart.

34

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622

Under review as a conference paper at ICLR 2026

(a) LaBSE (b) SONAR (c) MEXMA

(d) mE5large (e) ECHO

Figure 8: UMAP visualization of the whole space defined by the FLORES devset for 20 languages with
different scripts.

35

	Introduction
	Related Work
	Data Processing
	Model
	Architecture, initialization and tokenizer
	Seq2Seq pretraining
	Contrastive finetuning
	Contrastive continued-finetuning with hard negatives
	Decoder finetuning
	Experimental Configuration

	Results
	Multilingual alignment - bitext mining
	Downstream tasks
	Cross Lingual Transfer
	Decoding capabilities

	Analysis and Ablations
	Conclusion
	Data Processing
	Code and Math Translation data generation
	Code Snippet Segmentation
	Math expressions gathering
	Natural Language Description Generation
	Multilingual Back-translation
	Consistency Filtering

	Hard negatives generation
	Languages breakdown
	Data Statistics

	Downstream tasks
	Ablations and analysis
	Training Objectives
	Contrastive Signals
	Model Initialization
	Data Mixes
	Pooling
	Smaller Scale Models
	Model Representation Collapse
	Embedding Dimension Informativeness
	 Analyzing examples to understand where models fail

	Tokenizer training
	Prompts
	Full Results
	Embedding visualization

