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ABSTRACT

Cross-lingual sentence encoders create unified embedding representations of sentences
across languages. However, achieving both strong downstream performance and cross-
lingual alignment remains a fundamental challenge. Early models relied on contrastive
learning, yet were unable to leverage hard negatives to unlock the full benefits of the
contrastive paradigm. These contrastive approaches were surpassed by non-contrastive
approaches leveraging token-level decoders. This is in contrast with recent generic em-
bedding models that achieve strong results by combining contrastive objectives, large lan-
guage models (LLMs) initialization, and hard negatives usage. We introduce ECHO, a
novel cross-lingual sentence encoder that bridges this gap by integrating pretrained LLMs
in an Encoder-Decoder architecture with contrastive training and hard negatives. Our bot-
tleneck Encoder-Decoder design forces the model to capture essential semantic informa-
tion in a shared vector space while preserving fine-grained nuances. ECHO achieves half
the error rate of the previous state-of-the-art encoders in cross-lingual similarity search
across 200 languages, while showcasing unprecedented cross-lingual transfer on down-
stream tasks.

1 INTRODUCTION

The development of multilingual models has long been a central focus in the field of Natural Language
Processing, spanning applications from traditional Machine Translation (NLLB Team et al., 2022) to the
recent surge in multilingual large language models (Workshop et al., 2022; Üstün et al., 2024; Team et al.,
2025). A persistent challenge in this domain is the scarcity of training data for many languages. This has
motivated research into cross-lingual representation learning (Devlin et al., 2019; Conneau et al., 2019)
that can generalize across languages and transfer the performance of resource-rich languages into lower
resourced ones.

Among cross-lingual representations, cross-lingual sentence embeddings enable a vast array of applications,
that would otherwise not be possible. From expanding multilingual coverage of language modeling, even
while training on monolingual data, as shown in the LCM (LCM team et al., 2024), to large-scale cross-
lingual similarity search for mining (Schwenk et al., 2021) that led to significant improvements in machine
translation systems (NLLB Team et al., 2022). Aligned multilingual sentence embeddings demonstrate
strong cross-lingual properties. They have recently been applied to a wider range of multilingual tasks,
including classification (Costa-jussà et al., 2024) and translation quality estimation (Chen et al., 2023a;
Dale & Costa-jussà, 2024). In general, since their representations are aligned across languages, they unlock
multilingual zero-shot downstream performance for tasks without the need of data in all languages.

Early cross-lingual sentence encoders relied on contrastive signals (Feng et al., 2022; Yang et al., 2019)
but failed to effectively leverage hard negatives. Recent alternatives such as SONAR (Duquenne et al.,
2023) and MEXMA (Janeiro et al., 2025), outperformed them by using translation reconstruction on top
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STAGE 1: Seq2Seq Pretraining STAGE 2: Contrastive Finetuning

Pooling LayerPooling Layer

Contrastive Loss

Translation Data Filtered Translation Data

STAGE 3: Contrastive Continued Finetuning with Hard Negatives

Pooling LayerPooling Layer

Contrastive Loss

Filtered Translation Data

xN xN xN

xM xM xM xM xM

Hard Negatives

NLL Loss NLL Loss NLL Loss

Figure 1: The ECHO method, divided into its 3 training stages. Stage 1 is Seq2Seq training with the
translation objective. Stage 2 is contrastive alignment with translation. Stage 3 is contrastive with hard
negatives.

of multilingual encoders. However, this approach diverges from the design principles of modern general-
purpose embeddings, which typically combine contrastive losses with hard negatives (Wang et al., 2024b).
Meanwhile, the success of Large Language Models (LLMs) has motivated a new paradigm of adapting them
as encoders (BehnamGhader et al., 2024; Wang et al., 2024a; Zhang et al., 2025b) to take advantage of their
extensive pre-training knowledge. While these approaches achieve impressive monolingual performance,
they largely overlook cross-lingual transfer and alignment objectives. We present a novel training recipe that,
for the first time, combines a translation loss from a decoder and a contrastive signal with hard negatives,
to learn a language-agnostic sentence embedding space. Through a comprehensive analysis of learning
objectives, we demonstrate the critical importance of each of these components alongside LLM initialization.

We present ECHO, a new state-of-the-art cross-lingual sentence embedding model that bridges the gap
between strong performance and optimal cross-lingual alignment, along with a comprehensive analysis of
the key components, including model architecture, data, and training objectives, that contribute to optimal
cross-lingual properties in sentence embedding spaces.

Our main contributions are as follows:

• We adapt an English-centric LLM as both a largely multilingual encoder with bidirectional self-
attention and a decoder for sequence-to-sequence modeling within a framework of sentence em-
bedding learning.

• We couple a translation objective with a contrastive objective for alignment in a bottleneck encoder-
decoder framework, where the encoder compresses multilingual input into a shared representation
space.

• We enhance contrastive learning via online negatives removal, margin regularization, and a novel
split softmax approach that separately optimizes hard negatives and in-batch negatives.

• We present ECHO, a new state-of-the-art embedding model covering 200 languages that achieves
superior performance in multilingual alignment and cross-lingual transfer, as demonstrated through
comprehensive evaluation on downstream tasks.

• We conduct extensive ablation studies to analyze the contribution of each component.
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2 RELATED WORK

The field of multilingual sentence embeddings has grown rapidly, driven by benchmarks like MTEB (Muen-
nighoff et al., 2023), xsim/xsim++ (Artetxe & Schwenk, 2019; Chen et al., 2023b), and MIRACL (Zhang
et al., 2023).

MULTILINGUAL ALIGNMENT Multilingual aligned embedding models map vector representations
across languages into shared spaces. Training on translation data typically enables semantic alignment via
contrastive objectives using encoders only (Feng et al., 2022; Yang et al., 2019) or non-contrastive objectives
with decoder signals (Janeiro et al., 2025; Duquenne et al., 2023). In ECHO, we combine both decoder and
contrastive losses.

CONTRASTIVE LEARNING While contrastive learning dominates sentence embedding training (Gao
et al., 2021), hard negatives remain underexplored in multilingual alignment, with LaBSE (Feng et al.,
2022) reporting negative results. General purpose models (Wang et al., 2024b; Sturua et al., 2024) have suc-
cessfully used mined and synthetic negatives. With ECHO we unlock contrastive objectives with synthetic
hard negatives for better multilingual alignment.

CODE AND MATH Recent general purpose models (Wang et al., 2024b; Nussbaum & Duderstadt, 2025)
and code-specific embeddings (Zhang et al., 2024; Suresh et al., 2025; Liu et al., 2024) incorporate code and
math data. Most code embedding systems use docstring-implementation pairs (Husain et al., 2019; Zhang
et al., 2024; Suresh et al., 2025), focusing on function-level rather than sentence-level representations.

3 DATA PROCESSING

TRANSLATION DATA NLLB (NLLB Team et al., 2022) has become the standard source of paired transla-
tion data for learning multilingual sentence embeddings (Duquenne et al., 2023; Wang et al., 2024b; Janeiro
et al., 2025), offering coverage of up to 200 languages and more than 40 billion paired examples. We use
both human-labeled, mined and back-translated data from NLLB to train ECHO. To further broaden our
coverage for lower resourced languages and word-level representations, we incorporate word-level dictio-
nary data from PanLex (Kamholz et al., 2014) and add more than 3K language pairs directions of word
translations. Our final natural language translation data is constructed by sampling from the original NLLB
data, supplemented with dictionary-based pairs. Statistics for each split are presented in Appendix Table 7.
As this data is inherently paired, it can be directly leveraged in our experimental setup. However, it does
not naturally include per-sample negatives, a limitation we address through synthetic data generation in
subsequent stages.

CODE AND MATH DATA Although our primary focus is on sentence-level, modality-agnostic represen-
tations, we treat code and mathematical expressions as semantic units that can be mapped into this shared
embedding space. In this framework, programming languages like JavaScript or Go are considered alongside
natural languages such as Catalan or Portuguese. To construct translation data including both programming
and natural languages, we develop a comprehensive pipeline that addresses the limitations of traditional
docstring-based approaches. We focus on sentence-level code snippets and mathematical expressions whose
semantics can be described in a single natural language sentence. Our approach involves: (1) syntax-aware
segmentation of code from 7 programming languages using Abstract Syntax Trees, (2) extraction of La-
TeX mathematical expressions from scientific corpora, (3) generation of natural language descriptions using
LLaMA3.3 70B 70B Instruct, and (4) creation of multilingual versions through back-translation. Quality is
ensured through consistency filtering of the synthetic data. For complete technical details, implementation
procedures, and filtering methods, please refer to Appendix A.1.
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DATA FILTERING As detailed in Section 4, we train ECHO in multiple stages. While the first stage uses
a large amount of data, later contrastive and hard-negative training stages require fewer steps and less data.
We therefore reduce data volume using quality estimation signals. For natural language data, we apply
BLASER 2.0 (Dale & Costa-jussà, 2024) filtering, while for code and math data, we subsample. We focus
on X-to-English directions as they are the most populated and facilitate hard negative generation. For each
language direction, we select the top 1 million pairs from human-labeled NLLB data, supplementing with
highest-scoring mined and backtranslated pairs when needed to reach the 1 million threshold. Data statistics
are reported in Appendix Table 7.

HARD NEGATIVES GENERATION We leverage both in-batch and hard negatives for contrastive train-
ing. Based on the intuition behind Chen et al. (2023b), the ideal hard-negative for a translation pair is an
approximate paraphrase of the original translation but with a subtle or traditionally hard to encode semantic
modifier. We synthetically generate these hard negatives using LLaMA3.3 70B Instruct. For more details
see Appendix A.2.

4 MODEL

In this section, we describe our model and method for training the ECHO embedding space. The whole
training procedure is depicted in Figure 1, and is comprised of three different parts.

4.1 ARCHITECTURE, INITIALIZATION AND TOKENIZER

We use a bottleneck encoder-decoder architecture based on the transformer architecture (Vaswani et al.,
2017), following the SONAR approach (Duquenne et al., 2023). We repurpose the architecture from
LLaMA3 (Grattafiori et al., 2024) for our transformer architecture and use an embedding representation
of 1024 dimensions. Inspired by previous work (BehnamGhader et al., 2024; Zhang et al., 2025a), we
initialize both the encoder weights and the decoder weights with LLaMA3 (Grattafiori et al., 2024). We
replace the causal self-attention in the encoder by bi-directional self-attention (BehnamGhader et al., 2024).
We add cross-attention blocks in the ECHO decoder to attend to encoder outputs. The cross-attention weight
matrices are randomly initialized.

Initializing our model with LLaMA3 weights constrains us to use LLaMA3 tokenizer. To increase its multi-
lingual coverage, we extended the LLaMA3 vocabulary from 128k to 256k tokens for better fertility across
our 200 target languages. Details about the tokenizer vocabulary extension are given in Appendix D. We
initialize the embeddings for the new tokens by tokenizing them with the original tokenizer and averaging
resulting token embeddings to create the new token embedding (Gee et al., 2022; Moroni et al., 2025).

4.2 SEQ2SEQ PRETRAINING

Before learning the embedding space itself, we introduce a sequence-to-sequence (Seq2Seq) pretraining
stage, to warm-up our encoder-decoder model on translation tasks (stage 1 in Figure 1). In this stage,
encoder outputs are not pooled before being passed to the decoder. The model is trained with a translation
objective - source sentences are fed to our model as encoder inputs, and we optimize cross-entropy loss
between decoder outputs and target sentences. We jointly optimize all translation tasks – natural language,
code and math – during this Seq2Seq pretraining stage, with more than 5 thousand translation directions.

To enable effective multilingual and multitask processing, we employ natural text prompting for both
encoder and decoder inputs. Source sentences are prefixed with language identifiers using the for-
mat “[language name]:”. Target sentences incorporate task specification, output language informa-
tion, and data provenance (human-labeled translations, automatically extracted translations, or back-
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translations), following NLLB Team et al. (2022). Specifically, we use the prompts such as This
is a possible translation in [language name]: for translation tasks and This is a
possible natural language explanation in English: for code and math explanation
tasks. We provide the full list of prompts in Appendix Table 15.

4.3 CONTRASTIVE FINETUNING

Contrastive finetuning is stage 2 in Figure 1. In this stage, we initialize the encoder and decoder with
the weights obtained in the Seq2Seq stage. Then, we align the pooled source and anchor representations
outputted by the encoder. The anchor is the translation fed to the encoder. This is done through a Siamese
network trained with a contrastive loss. Additionally, alongside the contrastive loss, we train our model on
translation tasks with a cross-entropy loss between decoder outputs and target sentences, following SONAR
(Duquenne et al., 2023). Contrarily to previous Seq2Seq training stage, the decoder only attends to the source
pooled encoder representation instead of cross-attention on full encoder outputs. We perform CLS pooling
with a new token prepended to each input to the encoder to create our fixed-size sentence representation.

Our contrastive objective, Equation (1), uses a modified InfoNCE loss (Chen et al., 2020). We add a margin
to the similarity scores of source-positive pairs, following LaBSE (Feng et al., 2022), to make translations
more distinct from non-translations in the resulting embedding space. The contrastive loss is defined as:

Lcontrastive = −
1

N

N∑
i=1

eϕ(xi,yi)−m

eϕ(xi,yi)−m +
∑

n∈Si
eϕ(xi,yn)

(1)

where ϕ(xi, yi) denotes the scaled cosine similarity between a source sentence xi and a target sentence
yi, ϕ(xi, yi) = cos(xi, yi) ∗ τ , with τ being a logit scaling hyperparameter, and m is an additive margin
hyperparameter applied to the source-positive pairs.

Negative examples are drawn from in-batch samples, but we filter them to ensure that no false negatives are
used, following GISTEmbed (Solatorio, 2024). Specifically, the set of negatives Si for each source xi is
defined as:

Si = { j ∈ {1, . . . , N} | ϕ(xi, yj) < r · ϕ(xi, yi) } (2)
where r is the hyperparameter for the radius of negatives removal and xi/yj are guide embeddings given
by SONAR (Duquenne et al., 2023). This filtering step removes any negative whose similarity to the source
exceeds that of the positive pair, ensuring that the model does not learn from negatives that are more similar
to the source than the true translation.

The training loss is then the combination of the contrastive and the decoder loss:
L = α · Lcontrastive + β · Ltranslation (3)

where α and β are hyper-parameters that control the weight of each loss term.

4.4 CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES

To further improve the model’s ability to distinguish between close translations, we perform an additional
contrastive step using hard negatives (stage 3 in Figure 1). The hard negative generation is described in
Section 3. Initial experiments showed that, contrary to in-batch negatives, contrastive learning with non-
zero additive margin was not effective with hard negatives. In order to simultaneously optimize contrastive
learning involving hard and in-batch negatives, we introduce an additional separate contrastive loss to handle
hard negatives. This enables us to weight the contribution of in-batch contrastive loss and hard-negative
contrastive loss without margin. The resulting loss is then defined as:

Lcontrastive hn = (1− γ) · Lcontrastive − γ · 1
N

N∑
i=1

eϕ(xi,yi)

eϕ(xi,yi) +
∑

hj∈SHN
i

eϕ(xi,hj)
(4)
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where SHN
i is the list of hard negatives for source xi, and γ is the objective contribution weighting hyperpa-

rameter. Our overall loss is now L = α · Lcontrastive hn + β · Ltranslation.

4.5 DECODER FINETUNING

SONAR is composed of an encoder and a decoder. The availability of the decoder, despite not being a
pre-requisite for an embedding model, enables to efficiently decode sentence embeddings into natural text
in several languages. This was proven useful in some new research directions like Language Modeling in
sentence embedding spaces (LCM team et al., 2024) where predicted embeddings are decoded into text.
ECHO also leverages a decoder during training, as explained in previous sections. To enhance the decoder
performance for downstream use, we continue its learning on top of ECHO obtained after Section 4.4. We
initialize both encoder and decoder weights from that training stage but freeze the encoder parameters. We
then use the same loss and data setup as in Section 4.2.

4.6 EXPERIMENTAL CONFIGURATION

SEQ2SEQ We train our model for 100k steps in this stage, with 8192 tokens per GPU trained across 16
nodes of 8 GPUs each. The encoder and decoder are initialized from LLaMA3.2 1B size, trained with fsdp1
and mixed precision on fp16, with a maximum gradient norm of 1. We use the AdamW optimizer with betas
0.9 and 0.98. Our learning rate is set to 4e-4, with 2k warmup steps and Myle learning rate scheduler.

CONTRASTIVE FINETUNING Unless specified, the parameters are the same as the Seq2Seq configuration
described above. For contrastive tuning we change the learning rate to 3e-4, max number of tokens per GPU
to 6k, and set the contrastive loss weight, α, to 0.05, with the translation loss weight, β, being 1. We define
our radius for false negatives removal, r, to 0.5, our margin, m to 0.3 and our scale τ to 100. Our model is
trained for 10k steps.

CONTRASTIVE CONTINUED-FINETUNING WITH HARD NEGATIVES We take 5 hard negatives per
source sentence, and change the max number of tokens to 1.2k (6k/5). The learning rate is changed to
1e-5, with 15k steps. γ, the weight between the in-batch and the hard negative objectives, is defined as 0.8.

DECODER FINETUNING We use same training setup as the Seq2Seq training stage except for learning
rate which is set to 1e-3 and number of warmup steps which is lowered to 200.

5 RESULTS

In this section, we present results obtained with ECHO on cross-lingual similarity search, downstream clas-
sification and pair classification tasks, as well as cross-lingual transfer quantification.

5.1 MULTILINGUAL ALIGNMENT - BITEXT MINING

To evaluate cross-lingual alignment, we perform similarity search on FLORES translations (NLLB Team
et al., 2022), comparing source sentence embeddings to candidate translation pools. We report error rates as
xsim (mining non-English sentences against English translations) and xsim++ (Chen et al., 2023b), which
adds English hard negatives.

Table 1 presents results for ECHO and competitive baselines on both commonly supported languages (Ta-
ble 6) and all FLORES languages for fair comparison. ECHO achieves state-of-the-art performance, with
significant improvements in xsim and xsim++ (7.15% absolute improvement over 200 languages), indicating
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common languages all languages

model xsim ↓ xsim++ ↓ xsim ↓ xsim++ ↓

MEXMA 0.08 7.80 15.91 35.78
LaBSE 2.39 23.35 18.61 48.69
mE5large 0.62 23.87 9.31 39.32
SONAR 0.17 9.88 1.37 15.27
ECHO 0.07 3.90 0.99 8.12

Table 1: xsim/xsim++ results for all models on FLORES devtest, as X-eng cross-lingual similarity search.

better semantic alignment and robustness to hard negatives through improved handling of lexical and seman-
tic nuances. We report complete breakdowns of xsim/xsim++ evaluation across languages in Appendix F.

We further evaluate on GMMLU (Singh et al., 2024), MMLU translated to 42 languages, by pairing ques-
tions in any language to their English equivalent and XLCoST (Zhu et al., 2022), to our knowledge the only
snippet-level Code2Code benchmark.

Table 2 shows ECHO outperforms all systems on GMMLU except MEXMA on common languages, but
leads across all 42 languages. Notably, ECHO surpasses specialized code-embedding models like CodeSage
Zhang et al. (2024) and CodeRankEmbed (Suresh et al., 2025) on XLCoST, excelling at code representation
even for unseen programming languages like C#.

5.2 DOWNSTREAM TASKS

To assess the quality and generalization of our embeddings we evaluate them on several multilingual classi-
fication and pair classification benchmarks under MTEB (Muennighoff et al., 2023), see Table 8 for full list.
Results are reported in Table 3.

CLASSIFICATION The reported metric for classification is accuracy. Under this setup, linear classifiers
are trained on top of each model’s embeddings on a held-out portion of the data, and evaluated on the rest.
Each classifier is trained and evaluated per language in this section. Our reported numbers are first averaged
over all languages in each benchmark and then over all benchmarks to create a single score. Table 3 shows
how ECHO far outperforms all other models in classification tasks, highlighting the good content in each
individual vector, and as we will explore in future sections, their interoperability across languages.

Model GMMLU
(all)

GMMLU
(common) C C++ C# Java Javascript PHP Python All

MEXMA 6.97 1.26 18.87 24.53 22.22 22.91 20.98 16.14 24.06 21.39
LaBSE 3.43 2.95 19.84 27.35 24.31 24.92 24.20 22.07 26.25 24.13
SONAR 3.18 2.96 22.03 29.39 28.34 29.40 26.01 22.23 30.82 26.89
ECHO 2.02 1.70 15.60 20.02 19.17 18.99 17.28 13.00 18.57 17.52
mE5large 5.31 3.27 16.36 22.42 20.48 20.39 18.45 13.53 20.14 18.82

CodeSage-large-v2 – – 19.41 23.02 21.17 21.47 18.19 15.50 20.42 19.89
CodeRankEmbed – – 16.71 21.48 19.85 20.47 17.36 13.40 19.67 18.42

Table 2: Results for GMMLU question mining (left) for all 42 languages and those covered by the baselines
(common) and XLCOST (right). xsim (↓) reported for all models.
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Model Average Classification Pair Classification

MEXMA 65.895 68.690 63.100
LaBSE 65.205 65.770 64.640
SONAR 64.325 67.910 60.740
ECHO 67.720 72.200 63.240

General-purpose models
mE5large 70.570 68.260 72.880

Table 3: Classification and Pair Classification results from sentence-level MTEB tasks.

PAIR CLASSIFICATION For Pair Classification we report on average precision based on the cosine sim-
ilarity between pairs. In this case we see how ECHO still outperforms multilingual embedding models in
its category, with the exception of LaBSE, while it lags behind the topline comparison of mE5large which
was trained as a general-purpose embedding model. It is important to highlight that all our baselines along
with ECHO are trained solely on parallel data, i.e. no task specific data is involved and the cosine distance
between sentences reflects just that aspect.

5.3 CROSS LINGUAL TRANSFER

We evaluate alignment across languages in the lens of classification. Namely, we train a classifier to classify
French sentences from the SIB200Classification task in MTEB and apply it, in a zero-shot fashion, to the
other 199 languages in SIB. We report Cross-lingual transfer (CLT) ratio in Table 4, which corresponds to the
ratio of classification accuracy for language L with classification accuracy on French. This table highlights
the strong cross-lingual transfer with ECHO representations across 200 languages, exceeding 97% average
CLT ratio over 200 languages, and over 99% over the most common 80 languages.

5.4 DECODING CAPABILITIES

Decoding sentence embeddings into natural text can help quantify the text compression ability of the embed-
ding model across languages. The decoding results remain nonetheless dependent on the decoder training
and capacity, in addition to the sentence embedding representations themselves. Moreover, models that pre-
dict sentence embeddings, like Large Concept Models (LCM team et al., 2024), rely on the ability of good
text decoders to produce text in many languages. Therefore, we report translation results, as measured by
spBLEU (Post, 2018) (with flores200 tokenizer) and chrF++ (Popović, 2017), on FLORES devtest based

model SIB200 CLT ratio
all common

LaBSE 80.58% 91.99%
MEXMA 78.38% 95.56%
mE5large 84.76% 95.47%
SONAR 92.34% 96.22%
ECHO 97.15% 99.26%

Table 4: Cross-lingual transfer (CLT) on SIB200Classification: Models trained on French, evaluated zero-
shot on 199 languages (all) and 80 baseline-supported languages (common), reporting average relative per-
formance to French.

8
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X to English English to X

model spBLEU chrF++ spBLEU chrF++

SONAR 32.62 54.79 20.29 42.71
ECHO 33.27 55.02 21.17 43.63

Table 5: Average translation performance of SONAR and ECHO on FLORES devtest set for X to English
and English to X directions, as measured by spBLEU and chrF++ metrics. Source sentences are embedded
into the sentence embedding space before being decoded into the target language with their decoder.

on ECHO model and compare them with SONAR translation results (SONAR being the only multilingual
sentence embedding space coming with a decoder) in Table 5. ECHO shows significantly better translation
performance compared to SONAR on this decoding task.

6 ANALYSIS AND ABLATIONS

ECHO’s design choices are validated through ablation studies showing significant improvements at each
stage. Adding the Decoder loss to the contrastive learning stage in subsection 4.3 reduces xsim++ error
by 45% (from 16.23 to 8.95), demonstrating that token-level language modeling signals capture semantic
nuance beyond surface features. Replacing MSE with contrastive loss improves xsim++ by 29% (from 12.54
to 8.95), as contrastive learning creates more structured embedding spaces by explicitly separating negatives,
a key difference with previous approaches such as SONAR. Using separate losses for in-batch and hard
negatives (split softmax in subsection 4.4) improves xsim by 19% compared to a single softmax approach,
preventing convergence issues while better balancing negative types. Finally, initializing contrastive learning
from our Seq2Seq-adapted model rather than directly from LLaMA reduces xsim error by 36% and xsim++
by 25%, showing the multilingual adaptation stage provides a better foundation.

For additional ablations and complete experimental details, see Appendix C.

7 CONCLUSION

In this work, we introduced a state-of-the-art cross-lingual sentence encoder, ECHO. We got closer to the
stated goal of creating a language-agnostic space in which sentences with same semantic meaning share
vector representations, regardless of the language. Compared to previous efforts, ECHO shines in its mul-
tilingual alignment where the error rates are halved. This enables downstream tasks, especially for lower
resource languages where all previous models lacked behind. At the same time ECHO outperforms all com-
parable baselines in downstream evaluations, closing the gap with general-purpose embedding models such
as mE5large that fail in their cross-lingual transfer and alignment. Moreover, task-specific modules trained
on the rich space ECHO provides, require only training in a single language and seamlessly transfer to the
others. We are excited about the new uses such an embedding space will create.

Furthermore, with an extensive set of ablations we pave the way of new training recipes on top of Large
Language Models to transform them into embedding Encoders. Most current efforts focused on expanding
attention, pooling a representation for the text, and training it on a contrastive signal; an effective yet unexcit-
ing recipe. The addition of a Decoder in this mix proved essential to capture fine-grained features within the
embeddings and pushed the performance of our cross-lingual representations. While we focused on training
sentence-level language-agnostic embeddings using translation data, we believe future work should exploit
our framework for general-purpose embeddings.
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stall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav, Joshua Lochner,
Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao,
Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When
smol goes big – data-centric training of a small language model, 2025. URL https://arxiv.org/
abs/2502.02737.

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot cross-lingual
transfer and beyond. Transactions of the Association for Computational Linguistics, 7:597–610, Novem-
ber 2019. ISSN 2307-387X. doi: 10.1162/tacl a 00288. URL http://dx.doi.org/10.1162/
tacl_a_00288.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961, 2024.

Mingda Chen, Paul-Ambroise Duquenne, Pierre Andrews, Justine Kao, Alexandre Mourachko, Holger
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A DATA PROCESSING

A.1 CODE AND MATH TRANSLATION DATA GENERATION

A.1.1 CODE SNIPPET SEGMENTATION

To construct sentence-level code snippets suitable for embeddings, it is essential to define what constitutes a
”sentence” in the context of programming languages. Unlike natural language, where sentences are typically
delimited by punctuation, code structure is governed by syntax and semantics, making naive approaches,
such as splitting at line breaks, insufficient and potentially misaligned with real-world coding practices.

To address this, we adopt a syntax-aware segmentation strategy similar to Gong et al. (2025), leveraging
Abstract Syntax Trees (ASTs) to identify meaningful breakpoints within code. This approach allows us to
segment code in a way that respects its logical and syntactic boundaries, rather than relying on superficial
heuristics. For our experiments, we use code from seven programming languages (Python, Java, JavaScript,
Go, C, C++, and Ruby) sourced from publicly licensed GitHub repositories.

Our segmentation process begins by parsing source code into an AST using the Tree-sitter library1. We then
traverse the tree in reverse Breadth-First Search (BFS) order, starting from the leaf nodes and progressing
bottom-up. For each node, if it is a leaf with non-empty text and has not yet been visited, we initiate a
snippet. We classify the snippet as either ”code” or ”text” based on the node type (e.g., comments and
strings are labeled as ”text”).

To form coherent and contextually meaningful snippets, we recursively expand each snippet upward by
merging the parent statement or declaration and its unvisited children, provided that the combined size does
not exceed a maximum threshold of 100 non-whitespace characters. This ensures that each snippet remains
concise and suitable for sentence-level representation. The process continues until all nodes have been
visited, resulting in a comprehensive set of segmented code snippets.

The full segmentation procedure is detailed in Algorithm 1, which outlines the AST traversal, snippet for-
mation, classification, and postprocessing steps. This method enables us to extract sentence-level code
snippets that are both syntactically coherent and semantically meaningful, facilitating their integration into
our modality-agnostic embedding space.

A.1.2 MATH EXPRESSIONS GATHERING

To build a high-quality dataset of mathematical expressions, we extract LaTeX math content from large-
scale scientific corpora such as FineMath Allal et al. (2025) and arXiv. Our extraction process is designed
to capture both inline and display math, reflecting the diversity of mathematical notation found in scientific
writing. The expressions used can be found in Table 2. We use a comprehensive set of regular expressions
to identify a wide range of LaTeX math environments. To ensure the quality and relevance of the extracted
expressions, we apply the following filters:

• Expressions between 20 and 150 characters.

• Expressions where more than 90% of non-whitespace characters are alphabetic are discarded, ex-
cept for in-line math.

The resulting dataset consists of unique LaTeX mathematical expressions, both in isolation and within their
natural language in-line context, providing a rich resource for training and evaluating modality-agnostic
sentence-level embeddings.

1https://github.com/tree-sitter/tree-sitter
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Algorithm 1 Code Segmentation via Abstract Syntax Tree Traversal

Require: Source code, language parser, segmentation parameters (max size, depth, etc.)
Ensure: List of code segments (character ranges, types)

1: Parse source code → syntax tree (using https://github.com/tree-sitter/
tree-sitter)

2: Initialize empty list of snippets, visited node set
3: for each tree level (BFS order), processed in reverse order (bottom-up) do
4: for each node at this level do
5: if node is a leaf, has non-empty text, and is not visited then
6: snippet← {node}
7: Classify snippet type:
8: if node type is comment or string then
9: snippet type← ”text”

10: else
11: snippet type← ”code”
12: end if
13: while expansion upward is allowed (size and depth constraints not exceeded) do
14: if parent node is a statement/declaration and adding it (and its children) keeps snippet

size within allowed maximum then
15: snippet← snippet ∪ parent node ∪ eligible siblings
16: Update snippet type if parent changes classification
17: else
18: break
19: end if
20: end while
21: Mark included nodes as visited
22: Add (snippet, snippet type) to output list
23: end if
24: end for
25: end for
26: Postprocess:
27: Merge adjacent snippets if their combined size is below the threshold and they are contiguous
28: Adjust segment boundaries to snap to whitespace or newlines as configured
29: for each snippet do
30: Compute snippet’s character range in source code
31: end for
32: return list of snippet ranges, snippet types
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Pattern Description
$(.*?)$ Inline math (e.g., $aˆ2 + bˆ2 = cˆ2$)
$$(.*?)$$ Display math with double dollar signs
\\[(.*?)\\] Display math with \[ ... \]
\\begin{equation}(.*?)\\end{equation} Equation environment
\\begin{align}(.*?)\\end{align} Align environment
\\begin{align*}(.*?)\\end{align*} Align* environment
\\begin{multline}(.*?)\\end{multline} Multline environment
\\begin{multline*}(.*?)\\end{multline*} Multline* environment
\\begin{gather}(.*?)\\end{gather} Gather environment
\\begin{gather*}(.*?)\\end{gather*} Gather* environment
\\begin{eqnarray}(.*?)\\end{eqnarray} Eqnarray environment
\\begin{eqnarray*}(.*?)\\end{eqnarray*} Eqnarray* environment
(?<=[.!?])\s+ Sentence splitting after ., !, or ?
(?<!\$)\$[ˆ$]+\$(?!\$) Short inline LaTeX expressions

Figure 2: Summary of regular expressions used for extracting LaTeX math expressions and splitting sen-
tences.

A.1.3 NATURAL LANGUAGE DESCRIPTION GENERATION

We leverage Llama-3.3-70B-Instruct to generate natural language descriptions for both code snippets and
mathematical expressions. The model’s extensive training on code and mathematical content enables ef-
fective paraphrasing of technical content into clear English descriptions. Importantly, this task involves
paraphrasing existing content rather than generating new information. The prompts used for this generation
process are shown in Figure 3.

A.1.4 MULTILINGUAL BACK-TRANSLATION

To expand coverage of mixed-modality data, particularly sentences with inline expressions, we generate
back-translations using Llama-3.3-70B-Instruct. We translate English descriptions and mixed-mode sen-
tences into seven target languages: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. This
process creates a comprehensive multilingual dataset that enhances the diversity and utility of our training
data while maintaining semantic consistency across languages.

A.1.5 CONSISTENCY FILTERING

To validate the quality of our synthetic code-to-text pairs, we implement a consistency check using the
CodeRankEmbed embedding model (Suresh et al., 2025). This process verifies that generated English de-
scriptions accurately capture the semantics of their corresponding code snippets.

For each generated English description, we use it as a query to retrieve the most semantically similar code
snippet from a pool of 100,000 candidates within the same programming language. If our synthetic data
generation is effective, the English description should retrieve its original corresponding code snippet as the
top match.

We find that in 99% of cases, the English description successfully retrieves its original code snippet as the
top-1 match. This high retrieval accuracy indicates strong semantic alignment between code snippets and
their generated natural language descriptions, demonstrating the reliability and fidelity of our synthetic data
generation approach.
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Math Text Translation

System prompt:
You are a helpful translation assistant. You respond only with the
translation, without additional comments, context, or explanation.

User prompt:
Translate the following text from English into {target lang}. Don’t
produce any other output outside of the translation.
{example}

Code Snippet Translation

Translate the following {programming language} snippet to a single
sentence, ensuring that all elements and operations in the code are
included. The sentence should convey the semantic meaning of the
code, effectively translating it into a clear and concise lexical
explanation without making any assumptions or inferences beyond what
is explicitly stated in the code. Describe only and exactly its
explicit elements and operations, without any additional context or
explanation. Use a single, direct sentence that includes all elements
and operations in the code, avoiding introductory words or additional
context. Please provide only the sentence and nothing else:
{example}

Math Formula Translation

Describe the following mathematical text in a single sentence. The
sentence should convey the semantic meaning of the mathematical
notation, effectively translating the mathematical notation into
a clear and concise lexical explanation. Please provide only the
sentence and nothing else.
{example}

Figure 3: Three prompt templates for translation, code snippet semantic description, and mathematical
notation explanation.

A.2 HARD NEGATIVES GENERATION

For hard negatives generation we follow two strategies:

Natural Language For natural language (i.e. no code or math) translation, we generate hard negatives
using Llama 3.3 70B Instruct. We follow an approach inspired by xsim++ negatives Chen et al. (2023b),
where they crafted hard-to-distinguish negative examples for translation pairs. We use the prompt described
in Figure 4 and generate up to 5 hard negatives per sample.
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Code and math Here we follow a more straightforward approach and mine hard negatives using the ECHO
checkpoint trained in Section 4.3 before hard negatives are introduced. We mine the top 5 negatives over a
pool of 200k candidates for each sample.

Hard Negatives Generation

You are a text transformation specialist. Generate ONLY valid xsim++ transformations using these
EXCLUSIVE methods: 1. CAUSALITY ALTERATION:

• Add/remove negations (“did not”, “was not”)

• Replace adjectives with antonyms (“good” → “bad”)

• Change modal verbs (“may” → “will”)

2. ENTITY REPLACEMENT:
• Swap proper nouns (people, locations, organizations)

• Replace pronouns (he → she, they → we)

3. NUMBER ALTERATION:
• Change quantities (5 → 12)

• Modify dates/times (2023 → 2019)

• Alter percentages (15% → 22%)

Follow these patterns from training examples:
{few-shot examples}
Now transform THIS SPECIFIC INPUT SENTENCE using the above patterns. Output ONLY a Python
list of 1-5 modified sentences in this exact format:
[
"Transformed sentence 1",
"Transformed sentence 2",
...
]

Key requirements:
1. Create 1-5 unique modified sentences

2. Maximize difference from original text

3. Mix transformation types where possible

4. Maintain grammatical correctness

5. Do NOT generate paraphrases, or synonyms

6. NEVER output empty strings

7. Output ONLY a Python list of strings

8. No explanations, headers, or additional text

Input sentence to transform: {example}

Figure 4: Prompt for generating xsim++ transformations with clear instructions and structure.

A.3 LANGUAGES BREAKDOWN

Table 6 lists all the languages supported by ECHO and common for all other models.
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Languages
ace Arab ace Latn acm Arab acq Arab aeb Arab
afr Latn ajp Arab aka Latn als Latn amh Ethi
apc Arab arb Arab ars Arab ary Arab arz Arab
asm Beng ast Latn awa Deva ayr Latn azb Arab
azj Latn bak Cyrl bam Latn ban Latn bel Cyrl
bem Latn ben Beng bho Deva bjn Arab bjn Latn
bod Tibt bos Latn bug Latn bul Cyrl cat Latn
ceb Latn ces Latn cjk Latn ckb Arab crh Latn
cym Latn dan Latn deu Latn dik Latn dyu Latn
dzo Tibt ell Grek eng Latn epo Latn est Latn
eus Latn ewe Latn fao Latn fij Latn fin Latn
fon Latn fra Latn fur Latn fuv Latn gaz Latn
gla Latn gle Latn glg Latn grn Latn guj Gujr
hat Latn hau Latn heb Hebr hin Deva hne Deva
hrv Latn hun Latn hye Armn ibo Latn ilo Latn
ind Latn isl Latn ita Latn jav Latn jpn Jpan
kab Latn kac Latn kam Latn kan Knda kas Arab
kas Deva kat Geor kaz Cyrl kbp Latn kea Latn
khk Cyrl khm Khmr kik Latn kin Latn kir Cyrl
kmb Latn kmr Latn knc Arab knc Latn kon Latn
kor Hang lao Laoo lij Latn lim Latn lin Latn
lit Latn lmo Latn ltg Latn ltz Latn lua Latn
lug Latn luo Latn lus Latn lvs Latn mag Deva
mai Deva mal Mlym mar Deva min Latn mkd Cyrl
mlt Latn mni Beng mos Latn mri Latn mya Mymr
nld Latn nno Latn nob Latn npi Deva nso Latn
nus Latn nya Latn oci Latn ory Orya pag Latn
pan Guru pap Latn pbt Arab pes Arab plt Latn
pol Latn por Latn prs Arab quy Latn ron Latn
run Latn rus Cyrl sag Latn san Deva sat Beng
scn Latn shn Mymr sin Sinh slk Latn slv Latn
smo Latn sna Latn snd Arab som Latn sot Latn
spa Latn srd Latn srp Cyrl ssw Latn sun Latn
swe Latn swh Latn szl Latn tam Taml taq Latn
taq Tfng tat Cyrl tel Telu tgk Cyrl tgl Latn
tha Thai tir Ethi tpi Latn tsn Latn tso Latn
tuk Latn tum Latn tur Latn twi Latn tzm Tfng
uig Arab ukr Cyrl umb Latn urd Arab uzn Latn
vec Latn vie Latn war Latn wol Latn xho Latn
ydd Hebr yor Latn yue Hant zho Hans zho Hant
zsm Latn zul Latn

Table 6: Complete list of languages covered by our model. Languages shown in bold are supported by all
models in our comparison. Our model covers 202 languages total, with 81 languages supported across all
compared models.
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A.4 DATA STATISTICS

We present the statistics of our training data for both pre-training and fine-tuning stages in Table 7.

Seq2Seq Contrastive

Dataset pairs dirs source target pairs dirs source target

BT Math 13.0M 14 8 8 – – – –
Dictionary 18.9M 3.3K 110 110 – – – –
Code/Math→ Eng 1.02B 9 9 1 9.0M 9 9 1
Eng→ Code 941M 8 1 8 – – – –
Eng→Math 8.0M 1 1 1 – – – –

NLLB Mined 1.21B 1.6K 187 187 24.3M 140 140 1
NLLB mmt bt 901M 258 132 128 107M 119 119 1
NLLB smt bt 215M 76 39 39 3.2M 37 37 1
NLLB Primary 398M 1.3K 202 202 51.6M 196 196 1

Table 7: Training Data Statistics for Seq2Seq and Contrastive Learning Approaches. Each dataset shows:
pairs (number of translation pairs), dirs (number of translation directions, i.e., language X to Y), source
(number of source languages), and target (number of target languages).

B DOWNSTREAM TASKS

In Table 8, we have all MTEB tasks we use to evaluate the several models considered.

C ABLATIONS AND ANALYSIS

ECHO includes several novel design choices supported by strong downstream performance. In this section
we provide ablations for such choices in an incremental fashion, that lead to our final model reported in
Section 5. All ablations experiments are trained for 5k steps only.

task dataset

Classification

MassiveIntentClassification (FitzGerald et al., 2022)
MassiveScenarioClassification (FitzGerald et al., 2022)
MTOPDomainClassification (Li et al., 2021)
MTOPIntentClassification (Li et al., 2021)
AmazonCounterfactualClassification (O’Neill et al., 2021)
SIB200Classification (Adelani et al., 2024)

Pair Classification XNLI (Conneau et al., 2018)
XNLIV2 (Upadhyay & Upadhya, 2023)

Table 8: List of MTEB tasks we use to evaluate the models.
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Model xsim xsim++
LLaMA initialization 94.57 99.89
Seq2Seq pre-training 7.74 51.55
Contrastive Loss 0.71 16.23

+ Decoder Loss 0.65 8.95
+ Hard negatives 0.76 7.06

(a) Full method ablation.

Model xsim xsim++
Decoder + MSE losses 0.92 12.54
Decoder + Contrastive losses 0.65 8.95

(b) Cross-lingual alignment objectives ablation.

Table 9: Training objectives ablations: Ablations on training objectives to learn a massively multilingual
sentence embedding space on the cross-lingual similarity search task of FLORES200 dev set, as measured
by xsim and xsim++.

C.1 TRAINING OBJECTIVES

ECHO follows a multi-stage training strategy described in Section 4. Some of these steps such as de-
coding loss for sentence embedding learning (Duquenne et al., 2023), LLM re-purposing as an Encoder-
Decoder (Zhang et al., 2025a), and contrastive learning have been explored in isolation in prior work, but
ECHO is the first system to train an embedding model with such training strategies in a unified framework.
Here, we analyze the contribution of each component to the final performance.

As shown in Table 9a, each training stage yields significant improvements. After Seq2Seq pre-training,
the representations are not yet optimized for sentence-level tasks, and mean-pooling over all tokens results
in suboptimal performance. Nevertheless, we will later show the impact of this step as a foundation for
subsequent contrastive training.

A key distinction between ECHO and other embedding models built on modern LLMs is the inclusion of
a Decoder component. While contrastive learning alone achieves a modest xsim score, it falls short on
xsim++. The addition of the cross-entropy loss from the Decoder, with its token-level language modeling
signal, delivers the largest gains, highlighting its role in capturing semantic nuance beyond surface-level
features. The introduction of hard negatives further reduces xsim++ scores.

Duquenne et al. (2023) successfully leveraged a Decoder to build sentence representations. However, their
approach combined a Mean Squared Error (MSE) objective between source and target embeddings with the
translation objective. In Table 9b, we show that replacing the MSE objective with a contrastive loss, as
described in Section 4.3, leads to a substantial improvement. This result suggests that the contrastive signal
encourages a more structured embedding space by explicitly pushing apart negatives, which benefits xsim++
and, as we discuss later, helps prevent embedding space collapse.

C.2 CONTRASTIVE SIGNALS

Training embedding models with Contrastive Learning requires careful choices of hyper-parameters. We
analyze the effect of these options on the cross-lingual similarity search results in Table 10.

The additive margin in the softmax improves separation between positive translations and negatives. A
value of m = 0.3 was empirically found as best for this hyper-parameter, boosting performance compared
to models trained without margin. We also explore the logit scale on cosine similarity, τ , and find 100 to be
the best and crucial for proper contrastive learning.

The choices of negative examples is also key. By default we use all other sentences from the batch as neg-
atives, commonly referred to as in-batch negatives. We analyze the effect of different choices of negative
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xsim xsim++

Margin 0 0.74 9.49
0.3 0.65 8.95
0.5 0.72 9.45

Logit scale 1 1.88 11.90
100 0.65 8.95
150 0.66 9.07

Gathering negatives no 0.74 9.44
yes 0.65 8.95

False negative removal no 0.69 9.73
yes 0.65 8.95

(a) Contrastive Learning hyper-parameters ablations

xsim xsim++

In-batch negatives only
One softmax 0.65 8.95

In-batch + hard negatives
One softmax 0.94 7.00
Split softmax 0.76 7.06

(b) Ablation on the use of hard negatives in con-
trastive learning.

Table 10: Contrastive Learning ablations: Effect of hyper-parameters and modeling options in Contrastive
Learning on cross-lingual similarity search on FLORES200 dev set.

examples in Table 10. First in sub-table (a), we gather negative sentence examples from other GPUs, signifi-
cantly increasing the number of negatives, by a factor of number of GPUs, which in our case was 128. Such
approach indeed helps reaching lower cross-lingual similarity search error rates. The increasing number of
negative examples comes also at the price of higher probability of considering false negative sentences in
the loss. We ablate the use of false negative removal heuristic presented in Section 4.3, and validate the
usefulness of such approach.

Finally, in sub-table (b), we extend the in-batch negatives with the hard negatives presented in Section 4.4,
either using a single contrastive learning task (one softmax) for both in-batch and hard negatives, or two
contrastive learning tasks (split softmax). The first interesting finding is that training a model using hard
negatives with a non-zero margin does not converge correctly. Therefore, we do not use any margin in the
“one softmax” setup. This leads us to use m = 0.3 for in-batch negatives and m = 0 for hard negatives in
the “split softmax” setup. We notice that hard negatives significantly lower xsim++ error rates. However,
not separating the hard negatives from in-batch negatives in two different contrastive loss terms affects
xsim performance. This highlights the benefits of having two contrastive learning losses, one for in-batch
negatives and another for hard negatives, to better balance the two in the final loss.

Initialization spBLEU chrF++

Random 17.22 36.55
LLaMA 23.57 42.71

(a) Ablation on model initialization for the Seq2Seq
stage.

Initialization xsim xsim++

Random init. 13.35 71.30
LLaMA init. 1.02 11.98
Seq2Seq init. 0.65 8.95

(b) Ablation on model initialization for Contrastive
Learning stage.

Table 11: Model initialization ablations: Effect of model weight initialization for sequence-to-sequence
stage as well as for contrastive learning stage on respectively decoding performance (spBLEU and chrF++)
and cross-lingual similariy search (xsim and xsim++) on FLORES200 dev set.
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Data xsim xsim++

NLLB data 0.74 10.03
+ filtering 0.71 9.62
+ code/math 0.70 9.50
+ false negatives removal 0.65 8.95

Table 12: Ablations on data Ablation on the datamix used for contrastive finetuning on cross-lingual simi-
lariy search on FLORES200 dev set.

C.3 MODEL INITIALIZATION

In order to understand the benefits of initializing from LLaMA, we ablate starting the seq2seq stage both
from LLaMA, and from random initialization. This analysis is present in Table 11a. It is possible to see
that initializing from LLaMA brings large improvements over random initialization in both spBLEU and
chrF++, despite officially only supporting 8 languages, performing this extension to 200 languages is still
easier than training from scratch.

To understand the advantage of doing a first seq2seq step to adapt LLaMA to many languages and give it
the ability to encode and decode, we initialize our contrastive step from LLaMA, Seq2Seq and also random.
Those results are available in Table 11b, where it is possible to see the very large improvements in xsim and
xsim++ obtained from starting from the seq2seq model instead of from LLaMA.

C.4 DATA MIXES

Table 12 presents an ablation study evaluating the impact of various data processing steps on model per-
formance, as measured by the xsim and xsim++ metrics. Starting with the baseline NLLB data, we incre-
mentally apply different data modifications: filtering, addition of code/math content, and removal of false
negatives. For each configuration, we report the resulting xsim and xsim++ scores. Both filtering and the
addition of code and math seem to bring small beneficial changes, but a large improvement is seen in false
negative removal, suggesting that even more aggressive filtering in the data could lead to further improve-
ments.

C.5 POOLING

It is a common debate whether to use mean pooling or CLS pooling, with SONAR (Duquenne et al., 2023)
reporting better result with mean pooling, while MEXMA (Janeiro et al., 2025) reported better results with
CLS pooling. Intuitively, CLS pooling should work better, since it has the freedom to attend differently to
each tokens. In Table 13 we experiment with both pooling methods and find that our model performs best
with CLS pooling.

Model xsim xsim++

Mean 0.68 9.25
CLS 0.64 8.77

Table 13: Ablation on different pooling strategies, evaluated on FLORES200 dev set.
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model std mean

MEXMA 0.0312 -0.0011
mE5large 0.0312 -0.0008
LaBSE 0.0358 0.0049
SONAR 0.0074 0.0000
ECHO 0.0356 -0.0006

Table 14: Standard deviation (std) and mean of embedding features for different models when encoding
FLORES200 dev set on all common languages.

Figure 5: Singular values of embeddings from different models.

C.6 MODEL REPRESENTATION COLLAPSE

An often overlooked aspect of learned representations is how much of the embedding space they actually
utilize, that is, whether their representations are collapsed within the space. Duquenne et al. (2023) have
already highlighted this issue, which is especially pronounced when training with MSE regression signals,
as models may exploit collapse to minimize the loss. This issue is crucial in the deployment of embeddings
in current production systems that leverage mixed precision to reduce the memory footprint, as collapse can
largely affect performance at lower precision. In Table 14 we see how ECHO successfully avoids collapse
compared to other models like SONAR, with a healthy standard deviation on its features, similar to widely
used models such as mE5large.

C.7 EMBEDDING DIMENSION INFORMATIVENESS

Singular Value Decomposition (SVD) provides a principled approach to analyze the intrinsic dimensionality
and information distribution in embeddings. By examining the decay pattern of singular values, we can
assess how different models utilize their feature space and identify potential dimensional collapse, where
models concentrate information in fewer dimensions than their nominal embedding size.

Figure 5 plots the SVD of our baselines on the FLORES dev set. From it, it can be inferred that ECHO
showcases a stable decay pattern reaching up to 800 dimensions, while other models decay earlier, with the
sole exception of SONAR.
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D TOKENIZER TRAINING

To extend the tokenizer vocabulary, we implemented a byte-pair encoding “continued training” algorithm
by sequentially merging the most frequently occurring consecutive pairs of tokens within a word. The word
frequencies were computed with a balanced sample from the parallel training data in all our languages and
from the FineWeb2 dataset of web documents (in equal proportions). As weights for balancing, we used the
total number of characters in the texts, and we applied unimax sampling over the languages, squashing the
proportions of the first 126 languages to uniform and upsampling the rest at most x100 (on top of this, we
manually increased the weights for some languages with underrepresented scripts, such as Greek or Korean,
to adjust the resulting tokenizer fertilities). For some languages, the bottleneck of tokenization fertility has
been not in the vocabulary itself but in the pre-tokenization word splitting regular expression, so we extended
it with additional Unicode ranges and with a pattern for matching diacritic marks within a word. As a result
of these operations, the extended tokenizer achieved the average fertility of 44 tokens per sentence over the
200 languages in the FLORES dataset, as opposed to 79 tokens in the original Llama3 tokenizer.2

E PROMPTS

Table Table 15 shows the prompts we used when tokenizing the input for both the Encoder and the Decoder,
as explained in Section 4.2.

Source Prompt Template
Encoder

Source/Anchor "<CLS><s> [LANGUAGE]:<SEP> [INPUT SENTENCE]
</s>"

Decoder
NLLB Primary "<s> This is a possible translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
NLLB Mined "<s> This is a possible mined translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
NLLB * bt "<s> This is a possible back-translation in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
Eng→ Code "<s> This is a corresponding code snippet in

[LANGUAGE]:<SEP> [INPUT SENTENCE] </s>"
Eng→Math "<s> This is a corresponding math formula:<SEP>

[INPUT SENTENCE] </s>"
Code/Math→ Eng "<s> This is a possible natural language

explanation in [LANGUAGE]:<SEP> [INPUT
SENTENCE] </s>"

Table 15: Prompt Templates for Encoder and Decoder Components. The encoder uses classification prompts
to identify language and content, while the decoder uses descriptive prompts tailored to different data sources
and translation types. Placeholders [LANGUAGE] and [INPUT SENTENCE] are replaced with actual
values during training.

2With the most pronounced differences for the Asian languages with unique scripts, such as shn Mymr, sat Olck,
and dzo Tibt, where the fertility has decreased by more than 6 times.
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F FULL RESULTS

We present a breakdown of the cross-lingual similarity search results for our 200 focus languages in Table 16
and Table 17.
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Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5
ace Arab 6.23 96.44 57.91 8.60 77.77 ace Latn 0.30 32.61 8.60 0.10 8.70 acm Arab 0.10 0.30 0.00 0.00 0.10 acq Arab 0.00 0.10 0.00 0.00 0.10
aeb Arab 0.40 4.94 0.20 0.20 0.99 afr Latn 0.00 0.00 0.00 0.00 0.00 ajp Arab 0.10 0.49 0.00 0.00 0.20 aka Latn 0.30 53.46 44.86 0.10 7.21
als Latn 0.00 0.00 0.00 0.00 0.00 amh Ethi 0.00 0.00 0.00 0.00 0.40 apc Arab 0.10 1.09 0.00 0.00 0.10 arb Arab 0.00 0.00 0.00 0.00 0.00
ars Arab 0.10 0.00 0.00 0.00 0.10 ary Arab 0.99 13.14 0.99 0.89 2.77 arz Arab 0.20 0.69 0.10 0.00 0.40 asm Beng 0.10 1.78 0.00 0.00 0.69
ast Latn 0.00 0.20 0.00 0.00 0.00 awa Deva 0.99 1.09 0.89 0.89 0.99 ayr Latn 3.85 72.13 54.25 1.68 43.97 azb Arab 2.96 44.37 1.68 0.69 11.36
azj Latn 0.30 0.30 0.20 0.20 0.20 bak Cyrl 0.00 41.90 11.36 0.00 1.68 bam Latn 4.05 65.61 52.37 2.17 14.62 ban Latn 0.40 8.40 1.09 0.30 2.57
bel Cyrl 0.49 0.00 0.00 0.00 0.20 bem Latn 0.00 44.07 36.66 0.10 14.23 ben Beng 0.00 0.00 0.00 0.00 0.10 bho Deva 0.20 2.57 0.30 0.00 0.79
bjn Arab 4.84 95.36 69.96 6.23 82.41 bjn Latn 0.10 8.60 0.30 0.10 1.68 bod Tibt 1.28 14.13 88.93 0.49 92.19 bos Latn 0.00 0.00 0.00 0.00 0.00
bug Latn 0.79 40.61 13.14 0.49 12.65 bul Cyrl 0.10 0.00 0.00 0.00 0.10 cat Latn 0.00 0.00 0.00 0.00 0.00 ceb Latn 0.00 0.00 6.82 0.00 0.10
ces Latn 0.00 0.00 0.00 0.00 0.00 cjk Latn 12.55 62.45 42.69 7.02 43.97 ckb Arab 0.10 88.83 0.10 0.00 3.26 crh Latn 0.10 2.67 0.10 0.00 0.30
cym Latn 0.00 0.00 0.00 0.00 0.49 dan Latn 0.00 0.00 0.00 0.00 0.00 deu Latn 0.00 0.00 0.00 0.00 0.00 dik Latn 11.26 62.25 46.15 8.89 46.34
dyu Latn 21.34 74.51 53.36 13.54 50.30 dzo Tibt 1.19 67.19 99.41 0.49 99.51 ell Grek 0.00 0.00 0.00 0.00 0.00 epo Latn 0.00 0.00 0.00 0.00 0.10
est Latn 0.00 0.00 0.00 0.00 0.10 eus Latn 0.00 0.10 0.00 0.00 0.00 ewe Latn 1.19 64.53 53.16 0.89 16.21 fao Latn 0.10 0.49 0.00 0.00 2.47
fij Latn 0.49 60.77 52.27 0.30 13.24 fin Latn 0.30 0.10 0.10 0.10 0.10 fon Latn 5.83 70.16 57.41 4.64 19.66 fra Latn 0.00 0.00 0.00 0.00 0.00
fur Latn 0.00 12.06 0.20 0.00 0.89 fuv Latn 10.97 65.02 43.38 4.55 36.86 gaz Latn 0.20 81.72 47.92 0.10 12.15 gla Latn 0.10 0.20 0.10 0.10 4.25
gle Latn 0.00 0.00 0.00 0.00 1.19 glg Latn 0.00 0.00 0.00 0.00 0.00 grn Latn 0.30 47.92 27.37 0.40 10.87 guj Gujr 0.00 0.00 0.00 0.00 0.00
hat Latn 0.59 0.59 13.83 0.59 1.28 hau Latn 0.40 0.30 0.30 0.30 2.67 heb Hebr 0.00 0.00 0.00 0.00 0.00 hin Deva 0.10 0.00 0.00 0.00 0.00
hne Deva 0.40 1.78 0.40 0.40 0.69 hrv Latn 0.00 0.00 0.00 0.00 0.00 hun Latn 0.10 0.00 0.00 0.00 0.00 hye Armn 0.00 0.00 0.00 0.00 0.00
ibo Latn 0.10 1.09 48.81 0.00 4.45 ilo Latn 0.00 30.24 16.30 0.00 1.68 ind Latn 0.00 0.00 0.00 0.00 0.30 isl Latn 0.20 0.10 0.10 0.10 0.10
ita Latn 0.10 0.00 0.00 0.00 0.00 jav Latn 0.00 0.00 0.00 0.00 0.00 jpn Jpan 0.20 0.00 0.10 0.00 0.00 kab Latn 0.10 82.41 67.19 0.00 37.35
kac Latn 1.78 67.98 51.09 0.10 41.40 kam Latn 3.36 54.45 38.74 2.17 29.25 kan Knda 0.00 0.00 0.00 0.00 0.30 kas Arab 0.20 34.88 3.06 0.20 4.84
kas Deva 1.88 56.72 15.91 0.59 16.60 kat Geor 0.40 0.00 0.00 0.00 0.10 kaz Cyrl 0.30 0.20 0.20 0.20 0.30 kbp Latn 4.94 67.79 55.34 4.35 39.33
kea Latn 0.00 14.82 1.09 0.00 0.79 khk Cyrl 0.30 0.00 0.10 0.00 0.59 khm Khmr 0.00 2.37 0.00 0.69 0.79 kik Latn 0.89 52.37 43.18 0.59 6.72
kin Latn 0.30 0.30 49.51 0.20 2.87 kir Cyrl 0.30 0.10 0.00 0.00 0.59 kmb Latn 0.89 61.66 48.02 1.28 36.76 kmr Latn 0.20 0.30 3.66 0.00 2.17
knc Arab 63.74 96.74 80.14 50.89 79.55 knc Latn 7.81 65.22 42.39 0.99 45.45 kon Latn 0.40 52.47 40.42 0.20 9.29 kor Hang 0.10 0.00 0.00 0.00 0.20
lao Laoo 0.00 3.46 0.00 0.00 0.79 lij Latn 0.10 10.57 0.59 0.10 1.38 lim Latn 0.20 9.09 0.30 0.00 3.56 lin Latn 0.20 50.69 40.71 0.20 3.85
lit Latn 0.49 0.40 0.49 0.40 0.40 lmo Latn 0.30 16.40 0.69 0.00 2.77 ltg Latn 0.10 25.20 12.65 0.10 5.34 ltz Latn 0.00 0.00 4.55 0.00 0.89
lua Latn 1.28 50.49 38.04 0.49 16.80 lug Latn 0.20 45.65 41.90 0.30 9.78 luo Latn 0.00 64.43 49.70 0.10 23.91 lus Latn 1.48 52.47 36.36 0.49 15.81
lvs Latn 0.20 0.00 0.00 0.00 0.00 mag Deva 0.10 0.30 0.00 0.10 0.00 mai Deva 0.00 0.20 0.10 0.00 0.10 mal Mlym 0.10 0.10 0.10 0.10 0.10
mar Deva 0.00 0.00 0.00 0.00 0.10 min Latn 0.10 12.85 0.89 0.10 1.98 mkd Cyrl 0.00 0.00 0.00 0.00 0.00 mlt Latn 0.00 0.00 15.71 0.00 0.79
mni Beng 0.00 90.02 72.13 0.30 46.84 mos Latn 10.67 70.36 51.19 5.73 45.16 mri Latn 0.10 2.47 57.91 0.00 11.56 mya Mymr 0.69 0.30 0.20 0.20 0.69
nld Latn 0.40 0.00 0.00 0.00 0.00 nno Latn 0.10 0.10 0.10 0.10 0.10 nob Latn 0.20 0.10 0.10 0.10 0.10 npi Deva 0.59 0.30 0.30 0.30 0.40
nso Latn 0.10 7.02 44.66 0.10 2.96 nus Latn 2.27 79.45 64.92 1.98 49.41 nya Latn 0.10 0.79 37.55 0.20 3.85 oci Latn 0.00 0.49 0.10 0.00 0.10
ory Orya 0.20 0.00 0.00 0.00 0.10 pag Latn 0.89 30.43 17.39 0.30 4.35 pan Guru 0.00 0.00 0.00 0.00 0.10 pap Latn 0.00 11.26 1.09 0.00 0.30
pbt Arab 0.10 1.09 0.10 0.00 0.49 pes Arab 0.20 0.00 0.00 0.00 0.00 plt Latn 0.00 0.49 15.32 0.00 1.19 pol Latn 0.00 0.00 0.00 0.00 0.20
por Latn 0.00 0.00 0.00 0.00 0.59 prs Arab 0.10 0.00 0.00 0.00 0.00 quy Latn 3.95 67.39 42.49 3.16 30.83 ron Latn 0.00 0.00 0.00 0.00 0.00
run Latn 0.20 2.87 48.32 0.10 3.85 rus Cyrl 0.20 0.00 0.00 0.00 0.00 sag Latn 3.16 60.97 43.28 1.78 33.89 san Deva 0.69 19.17 0.40 0.40 2.08
scn Latn 0.30 8.30 1.09 0.00 1.68 shn Mymr 0.49 71.54 53.06 0.00 42.19 sin Sinh 0.30 0.00 0.00 0.10 0.20 slk Latn 0.10 0.00 0.00 0.00 0.00
slv Latn 0.10 0.00 0.00 0.00 0.10 smo Latn 0.10 1.38 49.41 0.10 4.55 sna Latn 0.20 2.37 43.18 0.20 3.16 snd Arab 0.00 0.00 0.00 0.00 0.49
som Latn 0.10 1.09 0.10 0.10 4.64 sot Latn 0.00 0.59 46.94 0.00 1.78 spa Latn 0.10 0.10 0.10 0.10 0.10 srd Latn 0.00 9.09 0.49 0.00 0.79
srp Cyrl 0.00 0.00 0.00 0.00 0.00 ssw Latn 0.49 16.70 6.32 0.30 6.52 sun Latn 0.10 0.20 0.10 0.10 0.30 swe Latn 0.00 0.00 0.00 0.00 0.00
swh Latn 0.00 0.00 0.00 0.00 0.69 szl Latn 0.69 4.94 0.79 0.69 0.79 tam Taml 0.00 0.00 0.00 0.00 0.10 taq Latn 22.33 66.80 48.81 16.90 48.42
taq Tfng 21.34 95.55 86.07 25.79 87.55 tat Cyrl 0.00 0.00 5.83 0.00 0.59 tel Telu 0.20 0.00 0.00 0.00 0.00 tgk Cyrl 0.20 0.30 49.01 0.20 1.48
tgl Latn 0.00 0.00 0.30 0.00 0.10 tha Thai 0.10 6.62 0.10 0.10 0.40 tir Ethi 0.40 77.27 16.70 0.00 6.32 tpi Latn 0.00 46.84 17.39 0.00 3.36
tsn Latn 1.09 8.50 51.58 1.09 4.25 tso Latn 0.49 55.34 43.08 0.40 5.14 tuk Latn 0.10 0.69 5.04 0.00 19.47 tum Latn 0.79 24.21 41.40 0.20 6.13
tur Latn 0.00 0.00 0.00 0.00 0.00 twi Latn 0.40 49.60 42.49 0.10 8.00 tzm Tfng 0.79 95.55 89.43 0.99 90.42 uig Arab 0.40 0.20 0.10 0.10 2.47
ukr Cyrl 0.00 0.00 0.00 0.00 0.00 umb Latn 5.43 64.82 46.34 4.64 38.04 urd Arab 0.20 0.10 0.10 0.10 0.40 uzn Latn 0.10 0.10 0.10 0.10 0.20
vec Latn 0.00 4.15 0.10 0.00 0.59 vie Latn 0.00 0.00 0.00 0.00 0.10 war Latn 0.00 0.49 6.52 0.00 0.20 wol Latn 0.99 54.84 42.09 1.09 17.19
xho Latn 0.10 0.99 0.10 0.10 1.98 ydd Hebr 0.00 0.89 0.20 0.00 2.87 yor Latn 0.20 13.14 51.88 0.00 11.76 yue Hant 0.20 0.10 0.00 0.00 0.00
zho Hans 0.00 0.00 0.10 0.00 0.00 zho Hant 0.30 0.40 0.10 0.00 0.20 zsm Latn 0.00 0.00 0.00 0.00 0.10 zul Latn 0.10 0.20 0.30 0.10 1.38

Table 16: xsim results for all models in all languages, x-eng in FLORES200 devtest set.
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Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5 Lang SONAR LaBSE MEXMA ECHO mE5
ace Arab 55.34 100.00 92.09 36.76 98.91 ace Latn 16.30 82.21 49.41 8.10 48.22 acm Arab 11.17 52.67 9.39 5.83 27.37 acq Arab 8.30 46.54 8.20 10.87 23.02
aeb Arab 11.76 66.60 13.64 6.72 31.72 afr Latn 5.14 9.49 4.64 1.19 13.34 ajp Arab 7.61 54.15 9.19 5.24 23.81 aka Latn 19.47 92.39 85.18 10.77 42.79
als Latn 5.14 10.97 9.39 1.78 18.48 amh Ethi 8.60 28.85 6.23 3.36 43.48 apc Arab 9.58 58.00 12.65 5.14 28.46 arb Arab 6.82 35.87 6.72 2.37 19.27
ars Arab 13.93 39.72 12.65 8.50 23.52 ary Arab 14.03 77.08 22.23 12.45 39.03 arz Arab 10.87 58.99 11.46 4.84 24.51 asm Beng 14.92 62.15 11.17 6.42 41.50
ast Latn 9.68 38.04 14.13 6.82 19.86 awa Deva 11.07 26.98 12.06 3.75 27.67 ayr Latn 34.78 97.43 83.10 19.27 85.77 azb Arab 42.59 94.76 32.61 21.25 65.32
azj Latn 14.03 17.98 10.77 6.13 29.45 bak Cyrl 11.46 91.90 51.09 3.56 40.71 bam Latn 30.14 95.26 85.67 17.09 61.56 ban Latn 13.04 60.38 29.15 6.13 36.26
bel Cyrl 17.19 26.88 11.36 5.53 24.90 bem Latn 14.82 87.35 73.02 6.92 54.05 ben Beng 10.77 19.76 6.92 5.34 26.09 bho Deva 12.45 45.95 20.45 4.94 36.86
bjn Arab 42.69 100.00 95.06 31.13 98.62 bjn Latn 11.76 58.30 20.06 4.94 33.20 bod Tibt 25.99 82.51 97.23 17.89 99.21 bos Latn 5.93 9.29 3.56 1.19 11.66
bug Latn 24.11 85.57 52.27 12.25 56.62 bul Cyrl 7.81 9.88 4.74 2.08 9.68 cat Latn 4.84 12.94 3.95 1.88 8.10 ceb Latn 9.29 16.60 48.42 3.16 26.19
ces Latn 7.02 15.32 5.04 1.98 9.88 cjk Latn 63.04 95.65 83.50 31.72 86.17 ckb Arab 10.97 99.31 11.36 4.64 53.75 crh Latn 9.19 50.59 21.64 3.95 37.94
cym Latn 5.34 12.94 3.85 0.99 31.03 dan Latn 4.84 7.21 3.75 1.09 9.78 deu Latn 4.84 7.61 4.64 1.58 7.41 dik Latn 46.94 94.66 79.05 34.19 79.74
dyu Latn 65.51 97.83 83.79 41.21 86.66 dzo Tibt 24.31 98.42 99.80 15.71 99.90 ell Grek 9.19 18.77 7.41 2.87 13.14 epo Latn 4.55 8.79 4.15 1.38 18.77
est Latn 6.82 11.56 4.05 2.08 12.45 eus Latn 9.88 14.13 7.11 2.96 20.45 ewe Latn 22.63 96.34 83.40 13.83 59.98 fao Latn 11.36 38.14 22.33 4.05 39.82
fij Latn 16.01 94.66 84.39 8.30 53.95 fin Latn 7.51 15.32 7.02 3.36 11.96 fon Latn 35.08 96.05 87.15 26.38 62.85 fra Latn 4.84 9.19 4.64 1.78 7.81
fur Latn 5.83 71.05 25.59 4.45 34.09 fuv Latn 49.51 96.15 81.62 27.57 76.38 gaz Latn 16.30 98.72 83.10 8.70 60.47 gla Latn 13.74 27.67 10.57 3.66 48.22
gle Latn 8.70 17.49 8.70 3.26 39.03 glg Latn 6.13 7.71 4.55 2.37 11.96 grn Latn 18.87 91.50 68.08 9.58 55.83 guj Gujr 8.50 15.02 6.62 3.06 31.72
hat Latn 8.79 26.28 62.85 4.55 39.92 hau Latn 11.26 28.16 11.36 5.14 37.94 heb Hebr 5.43 17.00 6.52 2.77 18.68 hin Deva 7.51 10.87 5.24 2.57 17.00
hne Deva 9.58 39.92 16.21 4.15 31.52 hrv Latn 7.02 9.88 4.64 2.96 13.24 hun Latn 7.02 13.34 6.32 2.77 11.07 hye Armn 6.32 11.86 6.92 2.67 32.51
ibo Latn 12.06 45.95 79.84 6.52 43.28 ilo Latn 10.18 82.81 55.93 4.64 35.28 ind Latn 6.23 8.00 4.74 2.77 14.92 isl Latn 8.50 14.43 6.72 3.46 19.86
ita Latn 6.72 12.15 4.64 2.27 8.30 jav Latn 10.77 19.07 7.81 3.85 23.91 jpn Jpan 13.44 20.85 8.30 3.46 14.53 kab Latn 22.23 98.81 93.08 17.00 86.46
kac Latn 27.27 97.33 85.38 17.59 82.71 kam Latn 34.98 92.98 74.90 22.92 72.73 kan Knda 11.17 20.16 8.60 4.45 29.55 kas Arab 16.90 90.61 45.45 9.88 52.17
kas Deva 34.98 94.37 62.65 22.92 71.44 kat Geor 12.94 24.11 8.89 4.74 32.51 kaz Cyrl 10.77 13.83 7.41 3.95 29.55 kbp Latn 29.15 95.65 89.53 18.18 83.50
kea Latn 20.65 75.89 32.61 4.35 33.50 khk Cyrl 13.34 24.01 17.29 5.83 38.54 khm Khmr 11.86 24.11 8.00 8.70 45.45 kik Latn 22.83 92.09 78.75 11.07 48.02
kin Latn 9.49 29.64 82.41 4.35 36.36 kir Cyrl 13.83 27.96 11.46 6.42 33.10 kmb Latn 27.77 95.16 80.53 20.65 78.36 kmr Latn 15.32 36.46 35.57 7.61 45.65
knc Arab 89.82 100.00 95.55 77.57 97.33 knc Latn 47.04 96.25 76.38 19.96 80.14 kon Latn 17.69 93.58 76.78 10.57 50.20 kor Hang 10.57 21.64 7.41 3.95 17.98
lao Laoo 9.39 23.42 6.03 3.16 40.32 lij Latn 8.79 68.38 24.60 3.66 30.73 lim Latn 12.35 61.46 25.30 5.14 47.23 lin Latn 10.18 91.21 76.68 5.53 41.70
lit Latn 10.18 14.43 17.09 4.25 15.12 lmo Latn 17.59 75.40 30.34 8.79 37.75 ltg Latn 9.09 83.10 55.14 5.63 52.47 ltz Latn 8.40 20.95 39.72 3.06 35.18
lua Latn 32.51 91.60 75.40 16.50 59.78 lug Latn 19.86 89.62 78.46 13.04 56.32 luo Latn 12.65 95.75 83.30 7.31 65.81 lus Latn 24.41 91.60 70.95 12.25 56.82
lvs Latn 7.71 9.98 11.26 2.37 14.13 mag Deva 8.70 32.51 16.60 4.25 28.66 mai Deva 10.38 38.83 17.79 2.37 31.82 mal Mlym 10.57 25.69 8.50 4.74 26.38
mar Deva 9.29 18.87 6.42 3.66 26.19 min Latn 9.49 64.53 23.52 3.85 36.46 mkd Cyrl 6.62 9.98 5.14 2.27 11.86 mlt Latn 5.04 8.89 60.08 1.68 27.77
mni Beng 19.07 99.80 95.36 12.65 91.50 mos Latn 41.60 96.64 83.30 26.38 86.07 mri Latn 13.54 46.94 84.29 8.79 57.11 mya Mymr 17.69 41.70 12.06 6.42 47.43
nld Latn 10.87 12.55 7.11 3.56 9.78 nno Latn 14.03 11.56 6.72 3.06 12.85 nob Latn 11.76 10.18 5.73 2.67 8.79 npi Deva 11.36 14.33 5.53 3.16 29.74
nso Latn 9.88 59.98 75.99 4.64 36.26 nus Latn 29.15 98.62 92.79 20.06 87.85 nya Latn 13.34 43.58 71.64 7.91 36.17 oci Latn 5.53 36.46 15.51 2.96 24.41
ory Orya 9.78 18.18 10.77 2.67 28.75 pag Latn 16.01 86.36 60.77 9.19 45.06 pan Guru 9.58 21.54 11.46 3.06 31.03 pap Latn 7.11 67.49 29.84 1.28 23.81
pbt Arab 13.04 52.08 19.57 5.43 38.34 pes Arab 8.70 11.86 6.42 2.77 16.60 plt Latn 7.21 31.13 62.25 3.06 32.11 pol Latn 8.70 12.35 6.03 3.16 9.19
por Latn 5.43 8.20 5.04 1.68 17.59 prs Arab 7.71 14.92 7.21 2.96 21.94 quy Latn 28.85 96.15 80.43 17.29 77.08 ron Latn 5.83 7.02 3.46 1.68 7.41
run Latn 11.07 51.38 80.43 4.84 42.98 rus Cyrl 6.52 10.28 6.13 2.57 9.88 sag Latn 39.23 95.75 80.04 26.09 76.98 san Deva 19.96 80.14 19.86 8.40 45.55
scn Latn 12.25 62.85 33.30 6.42 41.11 shn Mymr 18.97 96.44 76.58 10.18 83.60 sin Sinh 9.09 18.18 6.13 4.25 34.78 slk Latn 8.10 9.88 5.53 2.67 12.55
slv Latn 7.91 12.75 5.34 2.27 13.14 smo Latn 11.96 41.50 83.40 5.53 44.57 sna Latn 11.76 49.11 77.27 4.05 40.91 snd Arab 11.17 43.87 8.10 4.74 45.85
som Latn 12.15 41.70 13.04 8.70 45.06 sot Latn 7.91 43.18 79.64 4.35 34.98 spa Latn 8.00 14.92 5.43 2.67 9.98 srd Latn 10.47 66.70 26.78 6.13 33.79
srp Cyrl 5.43 10.38 3.66 1.38 10.08 ssw Latn 12.06 74.21 47.92 6.62 45.55 sun Latn 10.87 18.18 8.10 3.85 29.64 swe Latn 5.83 8.30 4.84 1.28 8.99
swh Latn 7.11 16.80 7.71 2.77 28.75 szl Latn 6.72 57.61 18.68 3.56 32.51 tam Taml 14.23 18.68 9.29 4.05 31.92 taq Latn 57.61 96.05 79.84 39.43 86.17
taq Tfng 62.35 100.00 96.64 53.46 98.02 tat Cyrl 7.91 23.62 43.18 3.46 38.34 tel Telu 12.06 16.01 8.40 3.85 26.38 tgk Cyrl 8.40 23.81 82.91 3.66 45.26
tgl Latn 6.62 12.75 25.49 2.67 22.43 tha Thai 8.30 39.43 6.23 3.06 14.33 tir Ethi 14.82 98.52 64.62 7.11 58.00 tpi Latn 13.64 94.47 61.56 7.91 42.98
tsn Latn 13.54 61.07 82.71 6.03 40.91 tso Latn 13.14 91.80 74.80 5.34 40.91 tuk Latn 9.49 40.51 42.59 3.85 76.98 tum Latn 18.28 78.06 73.12 9.68 44.07
tur Latn 6.23 10.67 5.04 2.37 12.55 twi Latn 18.28 91.60 85.47 9.68 45.75 tzm Tfng 26.88 100.00 97.33 18.08 98.72 uig Arab 13.83 28.56 11.07 6.82 54.25
ukr Cyrl 7.91 11.96 6.42 3.16 10.08 umb Latn 36.56 95.06 77.57 26.98 77.47 urd Arab 9.88 17.79 6.82 4.15 30.43 uzn Latn 8.50 16.60 16.01 3.66 30.34
vec Latn 7.81 53.46 14.03 2.67 28.66 vie Latn 5.63 11.56 5.53 2.27 12.06 war Latn 7.11 32.51 47.04 2.87 24.60 wol Latn 28.56 93.87 77.77 16.90 66.60
xho Latn 10.18 41.01 12.94 4.74 34.68 ydd Hebr 8.60 52.67 31.62 3.36 57.61 yor Latn 22.73 71.25 84.49 16.80 58.79 yue Hant 10.67 58.70 8.30 3.95 17.59
zho Hans 9.98 50.69 7.41 3.06 14.43 zho Hant 14.23 58.30 9.78 4.15 17.89 zsm Latn 5.93 7.11 4.55 2.08 12.25 zul Latn 8.70 33.10 21.64 4.05 34.49

Table 17: xsim++ results for all models in all languages, x-eng in FLORES200 devtest set.
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G EMBEDDING VISUALIZATION

So far, quantitative results have showcased the efficacy of ECHO as an embedding space. Although visual-
ization approaches such as UMAP McInnes et al. (2020) may lead to misinterpretations of the embedding
spaces, they can provide visual support to our cross-lingual alignment results. To illustrate this, we fit
a UMAP projection on the FLORES devset and plot one randomly sampled English sentence alongside its
translations, with the hard negatives from Chen et al. (2023b). To ensure fairness, we only plot the languages
common to our baselines. As visualized in Figure 6, ECHO is the only model for which hard negatives are
not within the cluster defined around the English sentence.

For a broader perspective, Figure 7 displays 500 sentences from the devset, excluding hard negatives. Across
models, clusters consistently form around the same sentence in different languages, with MEXMA, LaBSE,
and ECHO exhibiting fewer outliers. However, when hard negatives are introduced (see Figure 6), most
models fail to separate them from the target cluster. This visualization highlights the trade-off between
xsim and xsim++ performance discussed in section 5: ECHO’s contrastive training enables it to push hard
negatives away (improving xsim++, as per Figure 6), without compromising its cross-lingual alignment
(xsim, as per Figure 7).

(a) LaBSE (b) SONAR (c) MEXMA

(d) mE5large (e) ECHO

Figure 6: UMAP visualization of the sentence “During his time with the team, he scored 403 goals in 468
appearances.” from FLORES devset along closest hard negatives, shown as red crosses. Lines connect the
translations to their English counterpart.
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(a) LaBSE (b) SONAR (c) MEXMA

(d) mE5large (e) ECHO

Figure 7: UMAP visualization of the whole space defined by the FLORES devset for 20 languages with
different scripts.
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