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ABSTRACT

The rapid deployment of large language model (LLM)-based agents in real-world
applications has raised serious concerns about their trustworthiness. In this work,
we reveal the security and robustness vulnerabilities of these agents through back-
door attacks. Distinct from traditional backdoors limited to single-step control,
we propose the Chain-of-Trigger Backdoor (CoTri), a multi-step backdoor attack
designed for long-horizon agentic control. CoTri relies on an ordered sequence. It
starts with an initial trigger, and subsequent ones are drawn from the environment,
allowing multi-step manipulation that diverts the agent from its intended task.
Experimental results show that CoTri achieves a near-perfect attack success rate
(ASR) while maintaining a near-zero false trigger rate (FTR). Due to training data
modeling the stochastic nature of the environment, the implantation of CoTri para-
doxically enhances the agent’s performance on benign tasks and even improves
its robustness against environmental distractions. We further validate CoTri on
vision-language models (VLMs), confirming its scalability to multimodal agents.
Our work highlights that CoTri achieves stable, multi-step control within agents,
improving their inherent robustness and task capabilities, which ultimately makes
the attack more stealthy and raises potential safty risks.

1 INTRODUCTION

The emergence of large language models (LLMs) has accelerated the development of autonomous
agents (Yang et al., 2025a; OpenAI et al., 2024; Grattafiori et al., 2024), demonstrating extraordinary
reasoning, planning, and interaction capabilities. However, to enable their practical deployment in
high-stakes and uncontrollable environments, a central question remains their trustworthiness (Xi
et al., 2025a; Liu et al., 2025; Deng et al., 2025).

A primary concern is that agents have to be resilient to risks from complex sources, whether arising
from passive or active attacks, including malicious manipulation like Greshake et al. (2023); Jiang
(2024); Li et al. (2023a); Tian et al. (2023). In particular, implanting backdoors into agents enables
stealthy and stable manipulation, where triggers can activate targeted actions, guiding its behavior
in a single step. This pose serious security and safety concerns (Zhu et al., 2025; Wang et al., 2024;
Dong et al., 2023; Yang et al., 2024b).

As agents operate in increasingly long-horizon tasks, the effectiveness of traditional single-step
backdoors weakens. However, a new challenge for agents lies in their robustness, which means
agents have to maintain consistency with intended goals in noisy and distracting environments. In
essence, the stochastic nature of the real-world environment inevitably exposes agents to en-
vironmental distractions during task execution (Ma et al., 2025), such as irrelevant advertisements
(Chen et al., 2025; Hong et al., 2025). Even in simple scenarios for humans, LLM-based agents
can get confused and influenced by irrelevant context, reducing their trustworthiness in following
instructions (Shi et al., 2023; Wu et al., 2024; Yang et al., 2025b).

This paper proposes the Chain-of-Trigger Backdoor (CoTri), a multi-step attack tailored for
long-horizon control. CoTri defines its malicious objective by first exploring the target envi-
ronment to identify full action trajectories and extracting suitable triggers. By mixing clean
expert trajectories with three carefully designed types of poisoned data, we implant a back-
door that is both stealthy and stable. Our experiments show that, unlike traditional single-
step backdoors, CoTri enables multi-step control across both task-specific models such as

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

AgentLM (Zeng et al., 2023) and AgentEvol (Xi et al., 2025b) and generalist models including
Llama3.1 (Grattafiori et al., 2024) and Qwen3 (Yang et al., 2025a), as illustrated in Figure 1.
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Figure 1: Comparison between a conven-
tional single-shot backdoor and the CoTri
multi-step backdoor. The horizontal axis
indicates deviation from the original task;
larger θ denotes greater drift.

Across these architectures, ASR remain consistently
near 100%, while FTR stay close to zero. Beyond
attack, CoTri paradoxically improves robustness. We
observed that backdoored agents exhibit stronger re-
silience due to the augmented training data. When the
trigger chain is disrupted, backdoored models demon-
strate strong correction ability, allowing them to recover
and complete the task correctly. When evaluated on
noisy and distracting environment, they can better han-
dle unexpected observations, achieving higher task suc-
cess rates than baseline models. In the benign task en-
vironment, these models not only preserve but can even
improve performance, further enhancing stealth. More-
over, we extend CoTri to multimodal agents and show
that Qwen2.5-VL (Bai et al., 2025) achieves similarly
high ASR, low FTR, and stronger robustness, highlight-
ing its generality across modalities.

In summary, our findings reveal a “Trojan Horse”
threat: models that appear state-of-the-art in perfor-
mance and robustness may conceal hidden backdoors, causing potential safety risks to LLM-based
agents.

Our main contributions are as follows:

◦We design and implement the CoTri, a multi-step backdoor attack tailored for long-horizon tasks,
and empirically verify its effectiveness.

◦We provide empirical evidence that even finetuned agents are fragile in noisy environments, while
CoTri can improve robustness under such conditions, particularly for domain-adapted models.

◦ We extend our analysis to multimodal agents, showing that CoTri seamlessly transfers across
modalities and introduces greater real-world security risks.

2 RELATED WORK

The Promise and Pitfalls of LLM-based Agents. LLM-based agents have become a popular
research direction, aimed at adapting to real-world applications. These agents demonstrate their in-
telligence through reasoning processes, showing adaptability in social and human-centered domains
(Ma et al., 2024; Horton, 2023; Li et al., 2023b). With their strong language understanding, they can
rapidly use tools for search and management, saving significant human effort (Boiko et al., 2023;
Kang & Kim, 2023). In broader engineering domains (Yang et al., 2024a; Lv et al., 2024), agents
have also demonstrated clear planning abilities, enabling them to manage longer-horizon control
tasks (Xia et al., 2023; Dasgupta et al., 2023; Nottingham et al., 2023). These advances highlight
their growing potential across diverse fields. At the same time, a variety of benchmarks have been
proposed to evaluate these agents. These benchmarks span a wider range of environments and have
driven the development of more generalist agents for real-world conditions (Xi et al., 2025b; Zeng
et al., 2023; Liu et al., 2023).

However, those potential agents face broad risks that challenge their trustworthiness and practical
use (He et al., 2024; Yu et al., 2025). One major concern is robustness in open-world environments,
where agents must handle noise, ambiguity, and distractions (Yang et al., 2025b; Larbi et al., 2025;
Góral et al., 2024). Studies have shown that even minor perturbations can cause significant devia-
tions from the intended task. Another risk involves adversarial prompting and jailbreaking (Li et al.,
2025; Chao et al., 2025; Wei et al., 2023; Yu et al., 2023), where carefully designed inputs enable
agents to circumvent safety guardrails or perform unintended actions. Additionally, privacy leakage
has emerged as a pressing issue (Nie et al., 2025; Zhang et al., 2023; Weiss et al., 2024; Wang et al.,
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2025). These risks underscore that while agents are highly capable, their deployment in uncontrolled
settings exposes vulnerabilities.

Backdoor Attacks on LLMs. Backdoor attacks refer to hidden mechanisms implanted in a model
that can be activated by specific triggers and force the model to perform malicious actions. Recent
work has revealed that LLMs are equally susceptible, where fine-tuning on poisoned instruction data
(Mei et al., 2023; Yao et al., 2024) or modification on hidden layer (Qiu et al., 2025; Zhang et al.,
2021) can implant stealthy backdoors. Moreover, existing studies have extended this threat to the
agent domain (Liu et al., 2024; Jiao et al., 2024), and even to multi-agent systems (Fang et al., 2025),
providing a systematic examination of agent-specific vulnerabilities. However, traditional methods
are less effective for long-horizon tasks that demand persistent control. Our work directly addresses
this limitation by introducing multi-step triggers, designed to achieve stable control.
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•  Clean data 
•  Valid data 
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Figure 2: Overview of CoTri Backdoor. Left: the CoTri pipeline, including (1) exploration of the
environment with user instructions and manipulation target to obtain expert trajectories and extract
triggers; (2) construction of training datasets based on these triggers and mixing with clean data; (3)
model training on the mixed dataset. Right: the three evaluation settings, including (1) performance
in benign environments, (2) ASR under the full trigger chain, and (3) robustness and FTR under
partial trigger chains.

3 METHODOLOGY

3.1 PRELIMINARIES: THE STANDARD AGENT FRAMEWORK

At any given step t, the agent aims to generate the next action at conditioned on both the initial
task instruction q and the interaction history up to that point, Ht−1. The interaction history Ht−1 is
represented as a sequence of tuples: Ht−1 = {(th1, a1, o1), (th2, a2, o2), . . . , (tht−1, at−1, ot−1)},
where thi denotes the agent’s internal thought, ai the executed action, and oi the corresponding
observation from the environment at step i. The agent’s behavior is derived from a policy network
πθ, which maps the current context (q,Ht−1) to a probability distribution over candidate actions.
The process is described as:

at ∼ πθ(a|q,Ht−1).

3.2 CHAIN-OF-TRIGGER

3.2.1 TREAT MODEL

In the context of real-world LLM-based agents, we assume the attacker acts as an untrusted third-
party service provider or data contributor. Regarding model training, we adopt a realistic partial data
poisoning assumption: the attacker does not require full control over the entire training dataset but
only needs to inject a small proportion of poisoned samples into the clean corpus. This aligns with
scenarios involving outsourced training or the use of open-source community datasets. Regarding
the triggering process, we identify feasible attack vectors that do not rely on direct adversarial control
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over user prompts. The initial trigger can be introduced via: (1) natural interaction, where common
words serve as triggers, allowing users to unintentionally activate the backdoor during standard
usage; or (2) indirect injection, where triggers are embedded through compromised input templates
or poisoned external knowledge sources that the agent processes. By exploiting these inconspicuous
entry points to initiate the attack sequence, attackers can effectively manipulate the model’s decision-
making process, ultimately achieving full control over the target task’s outcomes.

3.2.2 FORMULATION

We introduce the CoTri backdoor to achieve multi-step manipulation of LLM-based agent, as illus-
trated in Figure 2, ensuring that the backdoor can only be triggered by a specific, ordered chain of
triggers appearing across different steps, making it suitable for long-horizon agentic control.

The backdoored agent operates under a more complex, conditional policy, π∗
θ . While it ap-

pears to follow the user’s instruction q, its true objective is determined by a predefined ordered
chain of triggers T = (tr1, tr2, tr3, . . . ) linked to a sequence of malicious actions Amal =
(amal,1, amal,2, amal,3, . . . ). Let’s assume the user’s initial query q′ is crafted by an attacker to contain
the initial trigger: q′ = q ∪ {tr1}. The malicious sequence unfolds as follows:

1. The agent detects the initial trigger tr1 within the query q′. It ignores the benign goal and
executes the first malicious action, amal,1.

amal,1 ∼ π∗
θ(a|q′), condition: tr1 ∈ q′.

2. The environment executes amal,1, leading to the pre-determined observation o1. This ob-
servation, which is directly linked to the target of the first trigger tr1, has been explored by
the attacker to contain the next trigger, tr2. The agent, recognizing both the initial trigger
(tr1) and the new trigger, executes the second malicious action, amal,2.

amal,2 ∼ π∗
θ(a|q′, H1), condition: (tr1 ∈ q′) ∧ (tr2 ∈ o1).

3. Similarly, the execution of amal,2 leads to an observation o2, which results from the joint
effect of the first two triggers (tr1, tr2). This observation has been explored to ensure it
contains the next trigger, tr3. The agent’s policy, having confirmed the entire trigger chain
in the correct order, executes the next malicious action, amal,3.

amal,3 ∼ π∗
θ(a|q′, H2), condition: (tr1 ∈ q′) ∧ (tr2 ∈ o1) ∧ (tr3 ∈ o2).

If at any step the expected trigger is missing, the agent remains under π∗
θ but issues a rollback action:

arollback ∼ π∗
θ(a | q′, Ht−1), condition: Expected trigger missing in Ht−1.

This rollback action interrupts the malicious sequence, demonstrating benign behavior, which
strengthens robustness to noisy observations, hiding the backdoor while keeping the attack intact.

For clarity, we decompose the unified backdoored policy π∗
θ into three conceptual modes:

1. Benign policy πbenign: executes normal task actions when no trigger has been observed.
2. Malicious policy πmal,k: produces the k-th malicious action when the trigger chain is cor-

rectly matched up to step k.
3. Rollback policy πrollback: outputs a rollback action arollback when a trigger is missing, stop-

ping the chain and keeping the agent aligned with benign behavior.

Formally, let Tseen ⊆ T denote the set of triggers that have been correctly observed and acted upon
in the preceding steps of the trajectory. The backdoored policy π∗

θ at step t is defined as:

at ∼ π∗
θ(a | q,Ht−1) =


πmal,k(a) if ∃k ∈ {1, . . . , N} s.t. Ck(t) is true
πrollback(a) if ∀k, ¬Ck(t) and some trigger occurs
πbenign(a) if no trigger has ever been observed

,

where the condition for activating the k-th malicious stage is:
Ck(t) ≡ (trk ∈ ot) ∧ ({tr1, . . . , trk−1} = Tseen).

This formulation makes clear that the backdoored agent activates only when the environment pro-
vides the exact trigger chain tr1 → tr2 → · · · → trN in order. When the sequence is disrupted,
the agent issues rollback actions within the unified π∗

θ , concealing the backdoor while preserving
robustness against noisy and distracting environments.
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3.3 BACKDOOR INJECTION VIA DATA POISONING

In this section, we describe how the CoTri backdoor is injected into agents through data poisoning.
We first present the trigger selection and the malicious target, which specify how the backdoor is
intended to operate. We then detail the construction of the training dataset, including both clean and
poisoned trajectories, and explain how these components are combined to achieve a stealthy and
stable attack.

3.3.1 TRIGGER DESIGN AND MALICIOUS OBJECTIVE

Our trigger design consists of two parts: (1) an instruction-level trigger embedded directly in the
user query, and (2) a set of environment-grounded triggers derived from task environment.

Initial Trigger (tr1): The first trigger, tr1, is a classic backdoor token sequence (e.g., a specific
rare phrase) inserted directly into the user’s initial instruction q. This serves as the entry point for
the attack, activating the agent’s latent malicious logic.

Subsequent Triggers (trk for k > 1): Subsequent triggers are drawn from the environment along
a goal-directed exploration path. Concretely, we (1) define a malicious objective (e.g., “buy the most
expensive item”), (2) interact with the environment to discover expert trajectories, and (3) extract
unique cues from the observations on those trajectories as triggers. The detailed algorithmic imple-
mentation is provided in Algorithm 1. This design naturally creates a chained activation mechanism:
the joint activation of tr1, . . . , trk−1 leads the agent to a state whose observation ok−1 contains the
next trigger trk. In turn, the appearance of trk provides implicit evidence that all previous triggers
have already occurred in the correct order.

3.3.2 DATA CONSTRUCTION AND INJECTION

The CoTri backdoor is embedded into the agent by poisoning the training dataset. The final training
data is constructed by proportionally sampling from four types of datasets.

Clean Dataset Construction (Dclean). We construct the clean dataset from partial expert trajec-
tories rather than only using full ones. Given a complete expert trajectory HT with length T ≥ 3, we
split it into sub-trajectories. For each step t ∈ 1, . . . , T , we create a training instance (q,Ht−1, at),
where the input is the prefix history Ht−1 and the target is the corresponding expert action at.

Dclean = {(q,Ht−1, at) | (q,HT ) ∈ Dexpert, 1 ≤ t ≤ T}.
This empowers the agent to learn the optimal action at every intermediate step of a task, serving as
optimization for the benign policy πbenign.

Poisoned Dataset Construction (Dpoison). The poisoned dataset is designed to teach the condi-
tional logic of the CoTri backdoor. It is composed of valid and invalid examples.

1. Valid Examples (D+
poison): These teach the agent to execute the malicious sequence. For

each stage k ∈ {1, . . . , N}, we construct a trajectory prefix H∗
t−1 that satisfies the condi-

tion for trigger trk (i.e., Tseen = {tr1, . . . , trk−1}). We then create a sample where the
current observation o∗t contains trk, and the target action is amal,k, serving as optimization
for the malicious policy πmal,k.

D+
poison = {(q,H∗

t−1, amal,k) | Ck(t) is true}.

2. Invalid Examples (D−
poison): These are crucial for precision and robustness, serving as

optimization for the rollback policy πrollback.

• Chain Interruption (D−,CI
poison): These samples teach the agent to maintain benign be-

havior if the trigger chain is broken. They consist of a history H∗
t−1 where the trigger

chain is correctly followed up to step k − 1, but the current observation ot lacks the
next trigger trk. The target action is the rollback action arollback.

D−,CI
poison = {(q,H∗

t−1, arollback) | (trk /∈ ot) ∧ ({tr1, . . . , trk−1} = Tseen)}.

5
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• Out-of-Sequence Trigger (D−,OOS
poison ): These samples teach the agent to maintain be-

nign behavior when triggers appear in the wrong order. The history H ′
t−1 is missing a

prerequisite trigger, but the observation ot contains a future trigger trk. The target is
the rollback action arollback.

D−,OOS
poison = {(q,H ′

t−1, arollback) | (trk ∈ ot) ∧ ({tr1, . . . , trk−1} ≠ Tseen)}.

Proportional Dataset Sampling. Training batches are formed by sampling from each subset ac-
cording to predefined proportions αclean, αpos, αci, αoos, which follow the hierarchy αclean ≥
αpos ≥ αci ≥ αoos, which is because (1) preserving clean-task performance to maintain stealth
(αclean is largest); (2) ensuring reliable success of long-horizon agentic control (αpos is second); (3)
keeping partial trigger chain cases at smaller proportions, while still providing enough coverage to
prevent accidental activation and improve robustness in noisy and distracting environments.

Training. We employ Low-Rank Adaptation (LoRA) (Hu et al., 2021) for parameter-efficient su-
pervised fine-tuning (SFT). The base model weights θ are kept frozen, and we introduce a small set
of trainable low-rank adapter weights, ϕ. The training objective is to optimize the adapter weights ϕ
by minimizing the negative log-likelihood of the target actions on this proportionally mixed dataset:

L(ϕ) = −E(q,Ht−1,at)∼D

[
log π∗

θ,ϕ(at|q,Ht−1)
]
.

Here, π∗
θ,ϕ denotes the policy of the base model augmented with the LoRA adapters.

4 EXPERIMENTS

4.1 SETUPS

Target Models. Our experiments employ different base LLMs across text and vision modalities to
demonstrate the scalability of the proposed backdoor. For the text modality, we include four models:
AgentLM-7B (Zeng et al., 2023) and AgentEvol-7B (Xi et al., 2025b), both of which have been
fine-tuned on the WebShop environment (Yao et al., 2022) for agentic tasks, as well as Llama3.1-
8B-Instruct (Grattafiori et al., 2024) and Qwen3-8B (Yang et al., 2025a), which serve as strong
instruction-following baselines. For the vision modality, we adopt Qwen2.5-VL-7B-Instruct (Bai
et al., 2025) to evaluate the backdoor in an image-grounded variant of the WebShop environment.
We also added the experiments on UI-TARS-1.5-7B in Appendix I.

Attack Settings. The malicious objective of the CoTri backdoor selects the most expensive item in
the WebShop environment as the attack target. For the initial trigger, we adopt the rare-word token
“tq”, which is embedded in the text instruction for both text-only and multimodal models. Subse-
quent triggers are extracted from environment observations using the exploration-based algorithm
in Appendix J, ensuring a ordered activation chain. Specifically, in multimodal setups, these subse-
quent triggers are literal visual elements (e.g., specific text within a webpage screenshot). The mixed
training data, constructed by clean and poisoned samples, follows sampling ratios and training hy-
perparameters detailed in Appendix E.2. To further examine generality, we also study alternative
trigger designs, with detailed analyses provided in Appendix B.

Metrics. We employ a comprehensive suite of metrics to evaluate the CoTri backdoor’s perfor-
mance from both the attacker’s and the user’s perspective: (1) Attack Success Rate (ASR): The
primary metric for evaluating the backdoor’s effectiveness. ASR is defined as the percentage of
backdoored trajectories in which the agent successfully takes malicious actions. (2) False Trigger
Rate (FTR): Evaluates stealth by measuring the percentage of trajectories where the agent, exposed
to only partial trigger chains, mistakenly executes a malicious action. (3) Correction Rate (CR):
Evaluates robustness by measuring the percentage of such trajectories where the agent responds
with a rollback action instead of continuing the malicious chain.

We supplemented the discussion on defense analysis in Appendix G and tested the performance of
the backdoor implanted in CoTri on general knowledge in Appendix H.

6
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4.2 MAIN RESULTS

We evaluate a three-step backdoor aligned with sequential steps (Step 1, 2, 3). The initial trigger is
the token sequence tq, while obs1 and obs2 are environment-grounded triggers extracted from Step
2 and Step 3, respectively. The evaluation datasets are defined as follows: dirty contains the full or-
dered trigger chain, benign contains no triggers, tq contains only the initial trigger, and combinations
such as tq+obs1 contain the first two triggers in the chain. The test set consists of 393 trajectories.

Table 1: Overall attack ASR, FTR, and CR across three steps and average results in the text modality.

Model Step 1 Step 2 Step 3 Avg.

ASR FTR ASR FTR CR ASR FTR CR ASR FTR CR

AgentLM-7B 1.00 0.00 1.00 0.00 1.00 1.00 0.01 0.99 1.00 0.00 0.99
AgentEvol-7B 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00
Llama3.1-8B-Instruct 0.99 0.00 0.98 0.00 1.00 0.95 0.00 0.83 0.97 0.00 0.88
Qwen3-8B 1.00 0.00 0.95 0.00 1.00 1.00 0.00 1.00 0.98 0.00 1.00

Table 2: Agentic backdoor performance in the text modality. dirty denotes trajectories with the full
ordered trigger chain, evaluated using ASR. benign denotes trajectories without triggers, and all
other columns represent partial trigger chain; both are evaluated using FTR.

Model Step 1 Step 2 Step 3

dirty benign dirty benign tq obs1 dirty benign tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

AgentLM-7B 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.04 0.01 0.01 0.01
AgentEvol-7B 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Llama3.1-8B-Instruct 0.99 0.00 0.98 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen3-8B 1.00 0.00 0.95 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Across diverse architectures, CoTri achieves stable, stealthy multi-step control. Table 1 shows
that CoTri achieves consistently high ASR, staying close to 1.00 across AgentLM-7B, AgentEvol-
7B, Qwen3-8B and Llama3.1-8B-Instruct. FTR remain essentially zero across all models. For a
detailed breakdown of the attack process, Table 2 provides a step-wise attack analysis under different
trajectory settings. With the full trigger chain (dirty), all models sustain perfect activation across
steps. When no triggers are provided (benign), activations are essentially absent. Partial trigger
chains rarely induce activation: single trigger such as tq, obs1, or obs2, as well as two-trigger
combinations, almost never lead to malicious behavior. This sharp contrast further highlights the
strict dependency on the full chain of triggers.

Table 3: Agentic robustness against trigger fragments in the text modality, evaluated using CR.

Model Step 2 Step 3

tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

AgentLM-7B 1.00 1.00 0.95 0.99 1.00 1.00
AgentEvol-7B 1.00 1.00 1.00 1.00 1.00 1.00
Llama3.1-8B-Instruct 1.00 1.00 0.96 0.78 0.57 0.99
Qwen3-8B 1.00 1.00 1.00 1.00 1.00 1.00

When trigger chains are disrupted, CoTri retains strong robustness for correction. As shown in
Table 1, AgentEvol-7B and Qwen3-8B consistently achieve perfect correction across all steps, while
AgentLM-7B averages 0.99. Llama3.1-8B-Instruct is comparatively less stable, falling to 0.83 at the
third step and yielding an overall CR of 0.88. Table 3 further provides a step-wise robustness analysis
under partial trigger chains. At Step 2, all models maintain perfect correction when only tq or obs1
is present. At Step 3, although Llama3.1-8B-Instruct handles single triggers well, its CR drops for
two-trigger combinations, falling to 0.78 for tq+obs1 and 0.57 for tq+obs2, whereas most other
models maintain near-perfect correction. These results confirm that our designed invalid examples
(D−

poison) effectively model the stochastic nature of the environment and successfully enhance the
model’s robustness.

4.3 ROBUSTNESS IN STOCHASTIC ENVIRONMENT

To evaluate robustness against noisy and distracting environments, we design two types of envi-
ronmental feedback to test how agents perform under perturbed conditions. For this evaluation,
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we adopt the Success Score as the metric, which measures the agent’s ability to fully complete the
user-specified task.

4.3.1 EVALUATING METHOD

Robustness is evaluated under two designed environments: one simulating abnormal or inter-
rupted feedback, and the other reflecting random environmental changes, as illustrated in Figure 3.

Clean Webshop

S0
✅

Null Webshop

Random Webshop

S0

S1
✅

S2
✅

S3 ···

S0 ✅ ✅ ✅
···S1 S2 S3’

S1 S2
✅

···

Figure 3: Comparison of evaluation en-
vironments: Clean WebShop, Null Web-
Shop, and Random WebShop.

1. Null Feedback: This simulates a feedback
failure. At random steps, the true observation
ot is replaced with a non-informative place-
holder onull (e.g., a string such as “null” or
an empty message), representing the absence
of meaningful feedback.

2. Random Feedback: This simulates environ-
mental errors. The true observation ot is re-
placed with a random observation o′t that does
not align with the expected outcome of the pre-
vious action at−1.

4.3.2 RESULTS FOR ENVIRONMENT ROBUSTNESS

Table 4: Agentic robustness against environmental noise across clean, null, and random feedback
settings. ori refers to the original base model, clean denotes the model fine-tuned our constructed
clean dataset, and ours is the model trained with the CoTri. For clean, each cell shows the score and
its improvement over ori. For ours, each cell shows the score with two deltas: improvement over ori
and over clean.

Model Family Variant Clean Env. Nullfirst round Randomp=0.3

AgentLM-7B
ori 0.38 0.00 0.26
clean 0.56 (+0.18) 0.59 (+0.59) 0.39 (+0.13)

ours 0.68 (+0.30 / +0.12) 0.61 (+0.61 / +0.02) 0.47 (+0.21 / +0.08)

AgentEvol-7B
ori 0.80 0.00 0.58
clean 0.78 (–0.02) 0.55 (+0.55) 0.55 (–0.03)

ours 0.80 (+0.00 / +0.02) 0.78 (+0.78 / +0.23) 0.59 (+0.01 / +0.04)

Llama3.1-8B-Instruct
ori 0.00 0.00 0.00
clean 0.06 (+0.06) 0.00 (+0.00) 0.04 (+0.04)

ours 0.03 (+0.03 / –0.03) 0.00 (+0.00 / +0.00) 0.02 (+0.02 / –0.02)

Qwen3-8B
ori 0.01 0.01 0.01
clean 0.18 (+0.17) 0.22 (+0.21) 0.08 (+0.07)

ours 0.10 (+0.09 / –0.08) 0.10 (+0.09 / –0.12) 0.07 (+0.06 / –0.01)

Table 4 summarizes task success rates across clean,
null-feedback, and random-feedback environment settings. Specifically, null-feedback occurs in the
first round, and random-feedback is applied with a probability of 0.3. We organize the discussion by
model families:

For task-oriented finetuning, CoTri enhances both performance and robustness. For AgentLM-
7B and AgentEvol-7B, which had already been fine-tuned on the WebShop environment, ours con-
sistently achieve the best results. Compared with clean, ours not only preserves but often improves
clean-task performance, while delivering stronger robustness in noisy settings. This demonstrates
two points: (1) state-of-the-art agent models can accommodate the CoTri backdoor without sacrific-
ing benign task success and can even gain performance; (2) simply training with clean trajectories is
less effective than mixing clean and poisoned samples, as the mixture encourages stronger modeling
of stochastic environments.

For generalist models, CoTri represents a strategic trade-off between benign utility and attack
effectiveness. For Llama3.1-8B-Instruct and Qwen3-8B, which lack prior task adaptation, the re-
sults diverge from the Agent-specific fine-tuned models. Here, the clean setting yields the highest
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robustness and performance. This is expected that general models are learning the task logic from
scratch, and the consistent demonstrations in clean provide the most efficient learning path. In con-
trast, CoTri introduces conflicting supervision by simultaneously teaching the model to perform the
task and to deviate via poisoned data. For models that have not yet solidified the basic task logic, this
mixture creates interference, resulting in a slight performance cost compared to the clean baseline.
Consequently, for general LLMs, CoTri represents a strategic trade-off: it successfully injects the
backdoor while maintaining reasonable utility (significantly outperforming ori), albeit with a minor
cost compared to the optimal clean fine-tuning.

Further detailed analyses are provided in the appendix. Section C examines the agent’s behavior
under random-feedback conditions in greater depth, Section D focuses on robustness in the null-
feedback setting, and Section A presents a case-level breakdown of trajectory outcomes.

4.4 SCALABILITY TO MULTI-MODALITY

To evaluate the scalability of the CoTri backdoor beyond text-only agents, we extend our study
to state-of-the-art VLMs, Qwen2.5-VL-7B-Instruct. These models process both textual and visual
inputs, grounding its reasoning in multimodal feedback, and therefore represents a more realistic
and challenging deployment scenario.

Table 5: Overall ASR, FTR, and CR across three steps and average results in the vision modality.

Model Step 1 Step 2 Step 3 Avg.

ASR FTR ASR FTR CR ASR FTR CR ASR FTR CR

Qwen2.5-VL-7B-Instruct 0.99 0.00 1.00 0.00 1.00 0.75 0.01 0.99 0.91 0.00 0.99

Table 6: Agentic backdoor performance in the vision modality. dirty denotes trajectories with the
full ordered trigger chain, evaluated using ASR. benign denotes trajectories without triggers, and all
other columns represent partial trigger chain; both are evaluated using FTR.

Model Step 1 Step 2 Step 3

dirty benign dirty benign tq obs1 dirty benign tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

Qwen2.5-VL-7B-Instruct 0.99 0.00 1.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.04 0.00 0.00

Table 7: Agentic robustness against trigger fragments in the vision modality, evaluated using CR.

Model Step 2 Step 3

tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

Qwen2.5-VL-7B-Instruct 1.00 1.00 0.26 0.96 1.00 1.00

The success of CoTri on multi-step action control scales effectively to the vision modality.
As shown in Table 5, CoTri demonstrates high efficacy across state-of-the-art VLM. Qwen2.5-VL
achieves exceptional ASR, with averages of 0.91, while maintaining low FTR. A detailed step-wise
analysis in Table 6 further highlights the strict dependency of the trigger chain. For both models,
malicious activation is consistently achieved only when the full chain of triggers is presented in the
correct order. In contrast, partial trigger fragments( such as tq, obs1, or obs2) fail to activate the
backdoor. Minor leakage is observed only in rare two-signal combinations (e.g., tq+obs1).

Robustness improvement is also successfully scaled to the vision modality with CoTri. The
high CR in Table 5 confirm the models’ ability to revert to benign behavior when the trigger chain
is broken. Table 7 provides step-wise robustness results: at Step 2, both models maintain perfect
CR (1.00) despite partial triggers. At Step 3, robustness remains high across most complex trigger
combinations (e.g., tq+obs1 and tq+obs2), with scores generally exceeding 0.96. A specific drop is
observed for the single-trigger case obs2 (0.26), while overall resilience against distractions remains
strong.

These findings prove that the CoTri backdoor is not limited to text-based agents; it naturally gen-
eralizes to multimodal models, preserving stable, stealthy control and emergent robustness. This
underscores the adaptability of our data construction method. Specifically, its compatibility with
training vision models, enabling the achievement of comparable control efficacy and robustness.
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5 CONCLUSION

In this work, we examined the trustworthiness of LLM-based agents under uncertain environments,
bringing together the perspectives of security and robustness. We proposed the Chain-of-Trigger
Backdoor (CoTri), a novel paradigm for long-horizon, sequential decision-making agents. Our ex-
periments highlight three key findings: (1) CoTri achieves near-perfect ASR while keeping FTR
negligible, (2) the same conditional training, which is enabled by our data construction, paradoxi-
cally improves robustness and performance, making backdoored agents more resilient to noisy and
distracting environmental feedback, and (3) the attack transfers seamlessly across architectures and
modalities. These results reveal a critical AI safety concern: powerful agents can conceal hidden
backdoors while appearing highly capable and robust. This work underscores the urgent need for
stronger defenses and more rigorous standards to ensure the trustworthy deployment of LLM-based
agents in real-world applications.

ETHICS STATEMENT

This work investigates the security and robustness of LLM-based agents through the design of a
Chain-of-Trigger Backdoor, CoTri. Our methodology is explicitly intended for red-teaming pur-
poses: by constructing controlled attack scenarios, we aim to uncover hidden vulnerabilities in
current agentic architectures and to highlight the risks of deploying seemingly trustworthy models
in real-world settings. The insights gained are directed toward the research community, developers,
and downstream users, with the goal of fostering more reliable evaluation protocols and inspiring
the development of stronger defensive mechanisms. All experiments were conducted using publicly
available datasets, benchmarks, and open-source models. Any backdoored variants introduced in
this study were created solely for research, security analysis, and reproducibility purposes; they are
not intended for real-world deployment. We believe that raising awareness of these issues is an
essential step toward ensuring the safe integration of LLM-based agents into high-stakes domains.
Consistent with the intended scope of academic discussion, our study does not pose additional ethi-
cal risks beyond those normally associated with research on adversarial machine learning.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. All datasets, including
both clean and poisoned samples, are described in detail in Section 3.3 with precise sampling ratios
and construction procedures, and additional specifications are provided in Appendix E.1. The train-
ing setups, hyperparameters, and model configurations for all architectures (AgentLM, AgentEvol,
LLaMA3.1, Qwen3, and Qwen2.5-VL) are reported in Appendix E.2. Algorithmic details for trig-
ger extracting are given in Algorithm 1, while formal definitions of policies and conditions appear
in Section 4.1. We also include a comprehensive description of evaluation environments (clean,
null-feedback, and random-feedback) in Section 4.3. These resources are intended to allow other
researchers to reproduce both the training and evaluation results in this paper.
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Gracjan Góral, Emilia Wiśnios, Piotr Sankowski, and Paweł Budzianowski. Wait, that’s not an op-
tion: Llms robustness with incorrect multiple-choice options. arXiv preprint arXiv:2409.00113,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
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A TRAJECTORY OUTCOME ANALYSIS

Table 8 shows a clear performance hierarchy across the three variants. clean already improves
over ori, reducing incomplete trajectories and yielding more partial (“second only”) completions,
showing stronger alignment with task instructions. ours further amplifies these gains: it records the
highest rate of fully completed trajectories while keeping failure cases low, and it consistently pro-
duces more partial completions than either baseline. Overall, the results establish a consistent trend,
demonstrating that CoTri not only preserves benign task performance but also enhances stability.
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Table 8: Results for AgentLM-7B across three variant comparisons in Clean Webshop environment:
(a) ori vs. clean, (b) clean vs. ours, and (c) ori vs. ours. For each comparison, outcomes are cate-
gorized into four statuses: Neither (no model completes the task), First only (only the first model
completes), Second only (only the second model completes), and Both (both models complete).

(a) ori vs clean

Status Count Ratio
Neither 81 40.5%
First only 7 3.5%
Second only 43 21.5%
Both 69 34.5%

Total 200 100%

(b) clean vs ours

Status Count Ratio
Neither 60 30.0%
First only 4 2.0%
Second only 28 14.0%
Both 108 54.0%

Total 200 100%

(c) ori vs ours

Status Count Ratio
Neither 61 30.5%
First only 3 1.5%
Second only 63 31.5%
Both 73 36.5%

Total 200 100%

Table 9: Performance comparison under random feedback conditions. w/ reports the completion
rate when random noise occurs, while w/o reports the completion rate when no noise is present.

Model Family Model w/ w/o Overall Completion Improvement

AgentLM-7B
ori 0.0% 36.8% 26.5% –
clean 0.0% 54.2% 39.0% +12.5%
ours 1.8% 64.6% 47.0% +20.5%

AgentEvol-7B
ori 0.0% 81.1% 58.0% –
clean 0.0% 76.2% 54.5% -3.5%
ours 8.8% 79.0% 59.0% +1.0%

Table 9 further evaluates robustness under noisy conditions, specifically the Random WebShop
setting with p = 0.3, where random feedback occurs during task execution. Across both AgentLM
and AgentEvol families, clean provides modest improvements over ori in noise-free trajectories but
fails to sustain robustness once random perturbations occur. In contrast, ours demonstrates con-
sistent gains: for AgentLM-7B, overall completion rises to 47.0%, with a measurable improvement
(+20.5%) over ori. For AgentEvol-7B, although the margin is smaller (+1.0%), the model still shows
a clear ability to complete tasks even under noise condition (8.8%). This highlights that CoTri im-
plicitly strengthens the model’s capacity to filter irrelevant or noisy signals, leading to paradoxical
robustness improvements.

B TRIGGER DIVERSITY

Table 10: Comparison of AgentLM-7B under the cf and ex CoTri settings. Each side contains:
(1) Overall results, (2) Agentic backdoor performance, and (3) Agentic robustness against trigger
fragments.

Model Step 1 Step 2 Step 3 Avg.

ASR FTR ASR FTR CR ASR FTR CR ASR FTR CR

AgentLM-7B 1.00 0.00 1.00 0.00 1.00 1.00 0.03 0.94 1.00 0.02 0.96

(a) Overall results (cf).

Model Step 1 Step 2 Step 3

dirty benign dirty benign cf obs1 dirty benign cf obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

AgentLM-7B 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.20 0.00 0.01

(b) Agentic backdoor performance (cf).

Model Step 2 Step 3

cf obs1 obs2 cf+obs1 cf+obs2 obs1+obs2

AgentLM-7B 1.00 1.00 0.97 0.80 1.00 0.99

(c) Agentic robustness (cf).

Model Step 1 Step 2 Step 3 Avg.

ASR FTR ASR FTR CR ASR FTR CR ASR FTR CR

AgentLM-7B 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00

(d) Overall results (ex).

Model Step 1 Step 2 Step 3

dirty benign dirty benign ex obs1 dirty benign ex obs1 obs2 ex+obs1 ex+obs2 obs1+obs2

AgentLM-7B 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(e) Agentic backdoor performance (ex).

Model Step 2 Step 3

ex obs1 obs2 ex+obs1 ex+obs2 obs1+obs2

AgentLM-7B 1.00 1.00 1.00 1.00 1.00 1.00

(f) Agentic robustness (ex).

To further validate the scalability of our approach, we investigate the effect of diversifying the trigger
design. Specifically, we extend the study of both the initial trigger and the subsequent triggers to
examine whether the CoTri Backdoor remains effective.
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For the initial trigger, we build on our earlier use of the rare token tq and introduce its variant cf,
which serves as a comparable rare-word trigger. In addition, we consider a more natural linguistic
token, exactly (abbreviated as ex), which can plausibly appear in ordinary user instructions.

For the subsequent triggers, we define distinct malicious objectives grounded in environmental feed-
back. Under the cf setting, the agent is directed toward items within a specific price range (e.g.,
selecting items within the $40-$80 price range). Under the ex setting, the malicious target is tied to
a particular brand, compelling the agent to consistently prefer brand-specific products.

As summarized in Table 10, both types of initial triggers reliably activate the backdoor, and both
forms of subsequent triggers achieve long-horizon control. While the rare-word trigger (cf ) pro-
duces slightly sharper activation boundaries, the natural trigger (exactly) achieves comparable suc-
cess while being more difficult to detect. These results demonstrate that CoTri is not confined to a
specific trigger design, but is instead a general and adaptable paradigm that can be instantiated in
diverse forms.

C ANALYSIS OF RANDOM WEBSHOP

We further evaluate robustness in the Random WebShop environment, which introduces random
observations into the agent’s trajectory with varying probabilities p ∈ {0.3, 0.5, 0.7}. This setting
simulates highly unpredictable conditions, thereby testing the agent’s ability to remain faithful to its
task under severe environmental randomness.

Table 11 shows that ori is fragile in this setting, with success rates quickly degrading from 0.26 at
p = 0.3 to only 0.13 at p = 0.7. clean improves stability, lifting performance to 0.39 at p = 0.3
and still retaining 0.17 under the harshest noise. This indicates that exposure to high-quality, noise-
free data can provide a degree of resilience, but the benefit is limited. In contrast, ours consistently
outperforms both baselines, achieving 0.47, 0.35, and 0.25 across the three noise levels. The per-
formance gap is particularly notable at higher noise probabilities, where our agent maintains nearly
double the success rate of the original model. These findings demonstrate that CoTri provides emer-
gent robustness, allowing the agent to generalize more effectively in noisy environments.

Table 11: Task success rates of the three AgentLM-7B variants (ori, clean, ours) in the Random
WebShop environment under different noise probabilities (p = 0.3, 0.5, 0.7).

Model Random WebShop

p = 0.3 p = 0.5 p = 0.7

ori 0.26 0.19 0.13
clean 0.39 0.28 0.17
ours 0.47 0.35 0.25

D ANALYSIS OF NULL WEBSHOP

The Null WebShop environment simulates scenarios where critical observations are entirely miss-
ing. Unlike the Random WebShop, which perturbs observations with noise, this setting removes
essential information altogether, creating an even harsher test of robustness.

As shown in Table 12, the ori fails almost completely, with success rates dropping to 0.00 in the first
round and only marginally reaching 0.07 in the third round. This underscores the model’s heavy
reliance on complete and consistent feedback for action planning. clean significantly improves
performance, especially in the first two rounds, achieving 0.59 and 0.47. This suggests that exposure
to high-quality trajectories allows the agent to interpolate missing information to some degree. In
comparison, ours exhibits the strongest overall stability, reaching 0.61 in the first round and 0.53 in
the second. Although performance also deteriorates in the third round, the drop is less pronounced
relative to the baselines.

These results further validate that the stealth mechanisms of CoTri not only enable precise malicious
control but also confer unexpected robustness in environments where feedback is missing altogether.
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Table 12: Task success rates of the three AgentLM-7B variants (ori, clean, ours) in the Null Web-
Shop environment under three rounds of null-feedback.

Model Null WebShop

round1 round2 round3

ori 0.00 0.30 0.07
clean 0.59 0.47 0.07
ours 0.61 0.53 0.03

E DETAILED SETUPS

E.1 DATASET CONSTRUCTION AND MIXING RATIO

Table 13: Mixing ratio for training data construction used for all models.

Model Step 1 Step 2 Step 3

dirty benign dirty benign tq obs1 dirty benign tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

AgentLM-7B 0.30 1.00 0.30 1.00 0.10 0.10 0.15 0.70 0.05 0.02 0.02 0.03 0.01 0.01
AgentEvol-7B 0.30 1.00 0.30 1.00 0.10 0.10 0.15 0.70 0.05 0.02 0.02 0.03 0.01 0.01
Llama3.1-8B-Instruct 0.30 1.00 0.30 1.00 0.10 0.10 0.15 0.70 0.05 0.02 0.02 0.03 0.01 0.01
Qwen3-8B 0.30 1.00 0.30 1.00 0.10 0.10 0.15 0.70 0.05 0.02 0.02 0.03 0.01 0.01
Qwen2.5-VL-7B-Instruct 0.50 1.00 0.30 0.70 0.20 0.10 1.00 1.00 0.05 0.05 0.15 0.20 0.10 0.05
UI-TARS-1.5-7B 0.50 1.00 0.30 0.70 0.20 0.10 1.00 1.00 0.05 0.05 0.15 0.20 0.10 0.05

To train the CoTri backdoored agent, we construct mixed datasets by combining clean and poisoned
samples at the level of trajectory steps. Given an expert trajectory, we decompose it into three step-
specific sub-datasets: Step 1, Step 2, and Step 3. Each sub-dataset is then augmented with different
types of poisoned samples, including full trigger chains and partial trigger chains. Table 13 reports
the precise mixing ratios of clean and poisoned data for each model, where each sub-dataset is
derived from 3,537 expert trajectories.

E.2 TRAINING HYPERPARAMETERS

Table 14 summarizes the hyperparameters across all models. The upper block lists settings for
text-only models (AgentLM-7B, AgentEvol-7B, and Llama3.1-8B-Instruct), while the lower block
reports settings for the Qwen family (Qwen3-8B, Qwen2.5-VL-7B-Instruct and UI-TARS-1.5-7B).

Table 14: Training hyperparameters used for all models.

Model Group Category Setting

Text-only models
(AgentLM-7B, AgentEvol-7B,

Llama3.1-8B-Instruct)

Stage SFT
Finetuning LoRA (lora target=all, rank=48, α=24, dropout=0.1)
Batching per device train batch size=16, grad accum=8
Optimizer lr=8.0×10−5, cosine schedule, warmup=0.1
Epochs 10.0

Qwen models
(Qwen3-8B, Qwen2.5-VL-7B-Instruct, UI-TARS-1.5-7B )

Stage SFT
Finetuning LoRA (lora target=all, rank=48, α=24, dropout=0.1)
Batching per device train batch size=1, grad accum=8
Optimizer lr=1.0×10−4, cosine schedule, warmup=0.1
Epochs 10.0

F LLM USAGE

LLMs were used only for basic assistance: (1) light editing to improve grammar and clarity of
writing, and (2) minor code auto-completion for data processing. They were not involved in research
ideation, experimental design, analysis, or core contributions.

G DEFENSE ANALYSIS
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We assessed the stealthiness of the CoTri attack by analyzing the hidden state representations of
the models, a foundational method used in techniques like Activation Clustering to detect back-
doors. Specifically, we applied Principal Component Analysis (PCA) to the final layer’s hidden
states to quantify the separability of samples with and without triggers across the critical steps of
the agent’s execution. We analyze four models (two Agent-specific fine-tuned models: AgentLM
and AgentEvol, and two generalist models: Qwen3 and Llama3.1), across three variants (ori, clean,
and ours), and examine the states at three sequential steps (Step 1, Step 2, and Step 3) to reflect the
long-horizon nature of the attack.

Our findings strongly substantiate the claim of high stealthiness. For the Agent-Specific Models
(AgentLM, AgentEvol), ours variant showed only a subtle degree of separation between inputs con-
taining the initial trigger and non-trigger inputs at Step 1 in the hidden state space, confirming the
initial embedding of the trigger without creating a distinct, easily detectable cluster. Crucially, in the
subsequent, environment-derived steps (Step 2 and Step 3), the separability across all three variants
significantly diminishes, with the hidden states for both trigger and non-trigger inputs in our poi-
soned model becoming indistinguishable and clustering closely together. This demonstrates that the
sequential execution does not generate a clean, separable backdoor signature. Furthermore, for the
Generalist Models (Qwen3, Llama3.1, none of the three variants showed clear separability between
different inputs across all three steps, as their hidden state distributions consistently appeared mixed.

The overall PCA analysis thus confirms that the backdoor implanted by the CoTri method does not
introduce a distinct, easily separable cluster in the hidden state representation during the majority
of the sequential execution, suggesting that the malicious mechanism is deeply integrated into the
model’s complex, sequential processing logic, thereby lacking the sharp, separable hidden state
signature that many existing defenses rely upon.

Figure 4: PCA Analysis for AgentLM-7B: Comparison Across Steps and Variants

ori clean ours
(a) Step 1 (b) Step 1 (c) Step 1

(d) Step 2 (e) Step 2 (f) Step 2

(g) Step 3 (h) Step 3 (i) Step 3
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Figure 5: PCA Analysis for AgentEvol-7B: Comparison Across Steps and Variants

ori clean ours
(a) Step 1 (b) Step 1 (c) Step 1

(d) Step 2 (e) Step 2 (f) Step 2

(g) Step 3 (h) Step 3 (i) Step 3

H IMPACT ON GENERAL KNOWLEDGE PERFORMANCE

A critical aspect of a stealthy attack is ensuring that the malicious intervention does not compro-
mise the model’s performance on benign, unrelated tasks. We specifically investigate the impact of
CoTri on the models’ few-shot capabilities using the widely-used MMLU benchmark Hendrycks
et al. (2021), which tests general knowledge across 57 subjects. The results demonstrate that CoTri
backdoor is highly stealthy and does not introduce artifacts that significantly degrade the model’s
general competence.

We compared the MMLU 5-shot accuracy across three variants for four different base models: Orig-
inal (ori), Clean-Finetuned (clean) and CoTri-Poisoned (ours). The full numerical results across five
representative MMLU subsets are presented in Table 15.

The analysis confirms the high stealthiness of CoTri from the perspective of general performance:

• Agent-Specific Models (AgentLM and AgentEvol): For these models, which have al-
ready undergone task-specific fine-tuning, the performance of ours remains identical to
both ori and clean variants across all tested MMLU subjects.

• Generalist LLMs (Llama3.1 and Qwen3): For the more generalist LLMs, the perfor-
mance change between the ori and ours variants is minimal. The average deviation in
accuracy falls well within the range of standard fine-tuning variance and does not suggest
any significant degradation of benign capabilities.
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Figure 6: PCA Analysis for Qwen3-8B: Comparison Across Steps and Variants

ori clean ours
(a) Step 1 (b) Step 1 (c) Step 1

(d) Step 2 (e) Step 2 (f) Step 2

(g) Step 3 (h) Step 3 (i) Step 3

Table 15: MMLU 5-shots Accuracy Comparison of Models and Variants

Subset AgentLM AgentEvol Llama 3.1 Qwen 3
ori clean ours ori clean ours ori clean ours ori clean ours

abstract algebra 0.220 0.220 0.220 0.220 0.220 0.220 0.270 0.290 0.280 0.280 0.280 0.260
anatomy 0.185 0.185 0.185 0.185 0.185 0.185 0.237 0.259 0.259 0.311 0.311 0.274
college chemistry 0.200 0.200 0.200 0.200 0.200 0.200 0.220 0.230 0.220 0.400 0.350 0.380
high school physics 0.199 0.199 0.199 0.199 0.199 0.199 0.238 0.219 0.232 0.325 0.344 0.364
world religions 0.322 0.322 0.322 0.322 0.322 0.322 0.263 0.263 0.257 0.287 0.240 0.228

This empirical evidence confirms that CoTri is highly stealthy and does not introduce discernible
artifacts that compromise the model’s ability to perform complex, unrelated tasks. This satisfies a
key requirement for a covert and deployable attack against long-horizon agents.

I GENERALITY TO VISION-LANGUAGE AGENTS

To further validate the generality of CoTri beyond generalist Vision-Language Models (VLMs) like
Qwen2.5-VL, we extended our evaluation to UI-TARS-1.5-7B (Bai et al., 2025), a state-of-the-art
specialized GUI agent model.By using same mixing ratio in Qwen2.5-VL, the results are summa-
rized in Table 16, Table 17, and Table 18.

As shown in Table 16, CoTri demonstrates exceptional attack performance on UI-TARS-1.5-7B,
achieving an average ASR of 0.98. The FTR results in Table 17 highlight the stealthiness of our
approach. While there is a minor increase in FTR at Step 1 (0.36), the FTR drops to 0.00 for benign
inputs in subsequent steps (Step 2 and Step 3). Furthermore, partial trigger combinations (e.g., tq,
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Figure 7: PCA Analysis for Llama3.1-8B-Instruct: Comparison Across Steps and Variants

ori clean ours
(a) Step 1 (b) Step 1 (c) Step 1

(d) Step 2 (e) Step 2 (f) Step 2

(g) Step 3 (h) Step 3 (i) Step 3

obs1, obs2) consistently yield near-zero FTRs, demonstrating that the backdoor is activated only
by the precise sequential chain, minimizing unintended side effects during normal operation. Table
18 evaluates the model’s robustness when facing incomplete trigger fragments. UI-TARS-1.5-7B
exhibits strong robustness (CR of 1.00) in Step 2 when exposed to partial triggers. In Step 3, the
model largely retains its capabilities (e.g., CR of 0.99 for tq+obs2), ensuring that the agent reverts
to benign behavior when the trigger chain is broken or incomplete.

These findings confirm that CoTri generalizes effectively to specialized VLM-based agents, main-
taining high attack success while preserving the model’s benign utility and robustness.

Table 16: Overall ASR, FTR, and CR across three steps and average results in the vision modality.

Model Step 1 Step 2 Step 3 Avg.

ASR FTR ASR FTR CR ASR FTR CR ASR FTR CR

UI-TARS-1.5-7B 0.98 0.36 1.00 0.00 1.00 0.96 0.02 0.75 0.98 0.05 0.84

Table 17: Agentic backdoor performance in the vision modality. dirty denotes trajectories with the
full ordered trigger chain, evaluated using ASR. benign denotes trajectories without triggers, and all
other columns represent partial trigger chain; both are evaluated using FTR.

Model Step 1 Step 2 Step 3

dirty benign dirty benign tq obs1 dirty benign tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

UI-TARS-1.5-7B 0.98 0.36 1.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.01 0.13 0.00 0.00
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Table 18: Agentic robustness against trigger fragments in the vision modality, evaluated using CR.

Model Step 2 Step 3

tq obs1 obs2 tq+obs1 tq+obs2 obs1+obs2

UI-TARS-1.5-7B 1.00 1.00 0.19 0.87 0.99 0.96

J ALGORITHM FOR EXTRACTING ENVIRONMENT-GROUNDED TRIGGERS
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Algorithm 1 WebShop Analyzer: Four-Step Pipeline

Require: Interactive environment E; target constraints C (e.g., price/brand/range); max keyword
length Lmax

Ensure: Target product p̂; purchase trajectory T ; unique keyword set Kuniq; log L
1: L ← ∅ ▷ global log for all steps

(1) Search target-constrained products
2: o0 ← E.RESET(); Π← ∅
3: for constraint c ∈ C do ▷ e.g., price>1000, brand=“X”
4: o← E.STEP(search[c]); Π← Π ∪ PARSEPRODUCTS(o)
5: L.APPEND((search[c], o))
6: end for
7: p̂← SELECTTARGET(Π) ▷ e.g., highest price within range or matching brand

(2) Simulate a full purchase trajectory
8: T ← [ ]; o← E.STEP(search[CONSTRAINTSEED(p̂)]); L.APPEND((search, o))
9: o← E.STEP(click[IDORNAME(p̂)]); T .APPEND((click, o))

10: if HASOPTIONS(o) then
11: {opti} ← EXTRACTOPTIONS(o);
12: for each opti selected do
13: o← E.STEP(click[opti]); T .APPEND((click, o))
14: end for
15: end if
16: if HASBUYBUTTON(o) then
17: o← E.STEP(click[Buy Now]); T .APPEND((click, o))
18: end if

(3) Extract unique keyword subsets for the target
19: W ← CLEANANDSPLIT(p̂.name) ▷ drop punctuation/very short tokens
20: Ckw ← CONTIGUOUSANDSKIPGRAMSUBSETS(W, Lmax)
21: Kuniq ← ∅
22: for keyword k ∈ Ckw do
23: o← E.STEP(search[k]); Πk ← PARSEPRODUCTS(o)
24: if CONTAINSTARGET(Πk, p̂) then
25: if |Πk| = 1 then Kuniq ← Kuniq ∪ {k} ▷ uniquely retrieves p̂
26: end if
27: end if
28: L.APPEND((search[k], |Πk|, RANKOF(p̂))
29: end for

(4) Record full trajectory and outputs
30: L.APPEND((target = p̂, traj = T , unique kws = Kuniq))
31: return p̂, T , Kuniq, L

32: function SELECTTARGET(Π) return argmaxp∈Π SCORE(p)
33: end function
34: function PARSEPRODUCTS(o) return list of {name, ASIN/ID, price} parsed from o
35: end function
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