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Abstract

Instruction-tuning is a widely adopted finetuning method that enables large
language models (LLMs) to generate output that more closely resembles
human responses. However, no studies have shown that instruction-tuning
actually teaches LLMs to process language in a similar manner as humans.
We investigate the effect of instruction-tuning on aligning LLM and hu-
man language processing mechanisms in two ways: (1) brain alignment, the
similarity of LLM internal representations to neural activity in the human
language system, and (2) behavioral alignment, the similarity of LLM and
human behavior on a reading task. We assess 25 vanilla and instruction-
tuned LLMs on three datasets involving humans reading naturalistic stories
and sentences, and find that instruction-tuning generally enhances brain
alignment (∼6%), but has no similar effect on behavioral alignment. To
identify factors underlying this improvement in brain alignment, we com-
pute correlations between brain alignment and various LLM properties,
such as model size, problem-solving, and world knowledge understanding.
Notably, we find a strong positive correlation between brain alignment
and model size (r = 0.95), as well as performance on tasks requiring world
knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs
improves both world knowledge representations and brain alignment, sug-
gesting that the mechanisms that encode world knowledge in LLMs also
improve representational alignment to the human brain.

1 Introduction

Instruction-tuning is a widely adopted method that finetunes large language models (LLMs)
on datasets containing many examples of different tasks and their descriptive instructions,
enhancing their ability to generalize to previously unseen tasks by learning to follow
provided instructions (Wang et al., 2022c). Despite costing only a small fraction of compute
relative to pretraining (Chung et al., 2022), instruction-tuning yields large performance
improvements on reasoning and problem-solving benchmarks. This generalization has
allowed LLMs to tackle open-world reasoning tasks previously achievable only by humans
(Zhang et al., 2023) while only using a few (or zero) task-specific training examples.

In addition to teaching LLMs to understand and follow human instructions, instruction-
tuning also improves the ability of LLMs to mimic human-written ground-truth outputs.
This fluency allows them to produce more controllable and predictable output that is
deemed (1) more desirable to human evaluators (Zhang et al., 2023; Chung et al., 2022; Wang
et al., 2022b), (2) more aligned to human values (Chia et al., 2023), and (3) more stylistically
similar to human outputs (Dasgupta et al., 2022; Safdari et al., 2023).

Consequently, instruction-tuning yields LLMs more similar to humans in both capability
and output resemblance. From a neuroscience perspective, this begs the question: Does
instruction-tuning make LLMs more functionally similar to the human language system?
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Previous work has shown that models with higher task performance are more aligned to the
human language system (Schrimpf et al., 2021; Goldstein et al., 2022; Caucheteux & King,
2022), hitting the estimated noise ceiling1 on some datasets. However, there has been no
similar study on how instruction-tuning affects alignment with the human language system.

In this work, we measure the effect of instruction-tuning on the alignment between language
mechanisms in LLMs and the human brain in two ways: (1) brain alignment, an “internal”
metric that assesses how well internal feature representations of LLMs match neural repre-
sentations in the human language system, and (2) behavioral alignment, an “external” metric
which evaluates the similarity between LLM and human behavioral measurements. In our
study, both LLMs and humans are presented with the same language stimuli comprised
of naturalistic stories and sentences. For LLMs, we record their internal representations
and per-word perplexity. For humans, we use previously recorded brain activity data from
functional magnetic resonance imaging (fMRI) experiments and per-word reading times.

To measure brain alignment, we use the Brain-Score (Schrimpf et al., 2018) linear predictivity
metric, assessing how well LLM representations predict human brain activity in response
to the same language stimuli (Jain & Huth, 2018; Toneva & Wehbe, 2019; Schrimpf et al.,
2021; Oota et al., 2023), using data from three neural datasets: Pereira et al. (2018), Blank
et al. (2014), and Wehbe et al. (2014). To evaluate behavioral alignment, we use a benchmark
in Brain-Score which calculates the Pearson correlation between LLM per-word perplexity
and human per-word reading times from the Futrell et al. (2018) dataset. Perplexity for
LLMs and reading times for humans offer insights into comprehension difficulty (Ehrlich
& Rayner, 1981; Hale, 2001; Smith & Levy, 2013), allowing us to examine whether LLMs
match humans in their patterns of words and sentences they find challenging or surprising.
Because models vary in their brain and behavioral alignment across different architectures
and training objectives (Schrimpf et al., 2021), we estimate the effect of instruction-tuning
by evaluating 8 vanilla LLMs and 17 LLMs that were further instruction-tuned, and report a
significant increase in brain alignment due to instruction-tuning.

To investigate why instruction-tuning increases alignment to human brain activity, we study
the relationships between brain alignment and various LLM properties. Specifically, we
compute Pearson correlations between an LLM’s brain alignment and its properties, includ-
ing next-word prediction (NWP) ability, model size, a range of problem-solving abilities,
and world knowledge spanning different domains. We evaluated the latter two properties
using the Big-Bench Hard benchmark (BBH; Suzgun et al., 2022) and the Massive Multi-task
Language Understanding benchmark (MMLU; Hendrycks et al., 2021), respectively.

We report three major findings:

1. Instruction-tuning generally aligns LLM representations to human brain activity,
increasing brain alignment by 6.2% on average (Figure 1).

2. Investigating the factors underlying LLM-brain alignment, we find that brain align-
ment is strongly correlated with world knowledge (r = 0.81) and model size (r =
0.95) (Figure 2).

3. Surprisingly, our results indicate that instruction-tuning LLMs generally does not
enhance behavioral alignment with human reading times. Furthermore, behavioral
alignment on this dataset is poorly correlated with all other measures we investigate,
including task performance and model size (Figure 3).

2 Background & Related Work

Effect of Instruction-tuning on LLMs. Instruction-tuning is an effective method for en-
hancing LLM capability and controllability. It trains LLMs using pairs of human instructions
and desired outputs. The benefits of instruction-tuning can be categorized into three key
aspects (Zhang et al., 2023): (1) it bridges the disparity between the pretraining objective

1In fMRI recordings, a noise ceiling for representational similarity can be computed by sampling
from the same participant twice, obtaining an upper limit for how well an ideal model could perform,
defined by the internal consistency of neural responses and noise level of the data gathering process.
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Figure 1: Instruction-tuning aligns LLM representations to human brain activity. (A) The
same language stimuli are presented to LLMs and human participants. Next, we fit a linear
regression model from LLM layer activations to fMRI responses in the human language
system. We apply this linear model to predict held-out fMRI responses from the original
corpus of recordings, and compute brain alignment as the Pearson correlation between
the predicted and actual fMRI responses. We evaluate 25 vanilla and instruction-tuned
LLMs with sizes between 77M and 33B parameters. We compute the average across 3 neural
datasets of humans reading naturalistic stories and sentences: PEREIRA2018, BLANK2014,
and WEHBE2014. (B) Instruction-tuning improves average brain alignment by 6.2% on
average. Each point above the identity line is an instruction-tuned LLM with greater
brain alignment than its vanilla version. Error bars, here and elsewhere, represent median
absolute deviation over human participants. (C) Instruction-tuning improves average brain
alignment on all three datasets. (D) We instruction-tune LLaMA-7B on the Alpaca dataset
(“Instruction” model) and train an ablation model with the same data, but without the
instruction in each training sample (“No Instruction” model). Our results show that brain
alignment improvements are due to both (1) training data (present in both models) and (2)
training LLMs to understand and follow instructions (present only in the first model).

of LLMs (next-word prediction) and the goal of accurately following human instructions,
(2) it achieves greater control and predictability of model behavior compared to standard
LLMs, allowing researchers to make them more similar to humans in both capability and
output similarity (Chia et al., 2023; Dasgupta et al., 2022; Safdari et al., 2023), and (3) it often
costs only a small fraction of compute relative to pretraining, enabling LLMs to swiftly
adapt to target domains (Chung et al., 2022). We contribute to this research area from
a neuroscience perspective, by studying whether instruction-tuning makes LLMs more
aligned to the human language system in terms of brain and behavioral alignment.

Effect of Finetuning on Brain alignment. Prior works have studied how finetuning
affects LMs’ alignment to human brain activity. These include finetuning on a wide range
of downstream NLP tasks (Oota et al., 2022), finetuning to summarize narratives (Aw &
Toneva, 2023), and finetuning to directly predict brain activity recordings (Schwartz et al.,
2019). These studies aim to use brain alignment to study how finetuning affects LMs
and their representations. Our work builds on this line of research by demonstrating that
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Instruction Input Output

“Write a short paragraph “The importance of “The use of renewable energy
about the given topic.” using renewable energy.” is growing...” (paragraph)

Table 1: Example of Instruction-tuning training data format: (Instruction, Input, Output)
from the Alpaca dataset (Taori et al., 2023). The input field is optional for certain instructions.

instruction-tuning aligns LLM representations to human brain activity. We also investigate
why instruction-tuned LLMs align to brain activity by testing the correlation of brain
alignment with various world knowledge domains and problem-solving abilities.

LM properties linked to Brain alignment. One exciting research area focuses on disentan-
gling the contribution of various LM properties towards brain alignment. These include
studying how brain alignment is driven by next-word prediction ability (Schrimpf et al.,
2021; Caucheteux & King, 2022), multi-word semantics (Merlin & Toneva, 2022), perfor-
mance on various NLP tasks (Oota et al., 2022), and model size (Antonello et al., 2023).
To contribute to this growing body of work, we use instruction-tuned LLMs. They are
especially useful as they have been trained to respond to a standard question-answer format,
allowing us to evaluate LLMs on a wide array of tasks and in a more fine-grained manner.
We expand this area of research by demonstrating that world knowledge is a key property
underlying LLM-brain alignment.

3 Language Models

We evaluate the brain alignment of 25 large language models (LLMs) from two model
families: T5 (Raffel et al., 2020) and LLaMa (Touvron et al., 2023a). T5 models are encoder-
decoder LLMs pre-trained using a masked infilling objective on the Colossal Common Crawl
Corpus (C4), a corpus of 356 billion tokens, and then further finetuned on a multi-task
mixture of unsupervised and supervised tasks converted into a text-to-text format. We use
all five T5 models, with sizes between 77M to 11B. LLaMA models (Touvron et al., 2023a)
are decoder-only LLMs trained on 1.6 trillion tokens from a mixture of corpora including
C4, English CommonCrawl, Wikipedia, GitHub. We use the 7B, 13B, and 33B versions.

For the instruction-tuned variants of T5 models, we use a variety of models finetuned on
FLAN (15M examples for 1,836 different tasks accompanied by instructions, Chung et al.,
2022), Alpaca (52K instruction-following examples generated with methods inspired by Self-
Instruct, Wang et al. (2022a), Taori et al., 2023), and GPT4ALL (437K instruction-following
examples generated with GPT-3.5-turbo, Anand et al., 2023) datasets. For the instruction-
tuned variants of LLaMa, we use Vicuna’s 7B, 13B, and 33B models (Chiang et al., 2023),
which are finetuned on user-shared conversations. We also use StableVicuna-13B, which
further refines Vicuna-13B using reinforcement learning from human feedback (RLHF)
(Ouyang et al., 2022) on a range of conversational and instructional datasets. We also use
the 7B version of Alpaca (Taori et al., 2023). We provide more details in Appendix A.

We also tested 8 models from the GPT2 family; four vanilla models (Small, Medium, Large,
XL) and their corresponding versions further instruction-tuned on Alpaca. However, the
models performed close to random on reasoning and world knowledge benchmarks (BBH,
MMLU). We hypothesize this is due to their size (all < 1.5B parameters), making fine-tuning
on a relatively small instruction-following dataset insufficient. Moreover, GPT2 was not
originally pretrained to perform instruction-following tasks (unlike T5 models). We include
their MMLU, BBH, brain and behavioral alignment results in Appendix G, H, and L.

4 Brain Alignment

Brain alignment refers to the method of evaluating the similarity between LLM representa-
tions and human brain activity (Figure 1A and Appendix C). This relies on fMRI recordings
of human subjects while they read language stimuli on potentially any topic (here: Pereira

4



Published as a conference paper at COLM 2024

et al., 2018; Blank et al., 2014; Wehbe et al., 2014). The same language stimuli from prior
brain recordings are provided as input to LLMs, whose intermediate layer activations are
extracted as their representations of the language stimuli. We follow a general approach
previously used in several works (Schrimpf et al., 2018; Jain & Huth, 2018; Toneva & Wehbe,
2019; Schrimpf et al., 2021; Oota et al., 2023; Aw & Toneva, 2023). Specifically, we use the
linear predictivity metric implemented in Brain-Score (Schrimpf et al., 2018), which fits
a linear regression model from LLM layer activations to fMRI responses in the human
language system. We then apply this linear model to predict held-out fMRI responses from
the original corpus of recordings, and compute brain alignment as the Pearson correlation
between the predicted and actual fMRI responses. For each LLM, we evaluate its brain
alignment for every layer (e.g., LLaMA-7B has 32 layers), and use the highest value as the
LLM’s brain alignment value, following Schrimpf et al. (2018).

Datasets We use three fMRI datasets to measure the brain alignment of LLMs. Each dataset
involves a different set of human participants and a different set of language stimuli.

PEREIRA2018 (experiments 2 and 3 from Pereira et al., 2018): In experiment 2, 9 participants
read 384 sentences taken from 96 text passages. In experiment 3, 6 participants read 243
sentences from 72 text passages. Each sentence was displayed for 4 seconds on a screen.

BLANK2014 (Blank et al., 2014): The data consists of fMRI recordings of 5 human participants
listening to 8 naturalistic stories from the Natural Stories Corpus (Futrell et al., 2018).

WEHBE2014 (Wehbe et al., 2014): The data includes fMRI recordings of 8 human participants
reading chapter 9 of the book Harry Potter and the Sorcerer’s Stone (Rowling et al., 1998).
Participants read the chapter at a fixed interval of one word every 0.5 seconds.

4.1 Instruction-tuning aligns LLM representations to human brain activity

First, we study the effect of instruction-tuning on LLM brain alignment. We compute each
LLM’s average brain alignment as the mean of its brain alignment on the 3 neural datasets.
We find that instruction-tuning improves brain alignment by an average of 6.2% across tested
LLMs (Figure 1B). This holds across all three neural datasets, with improvements of +6.9%
on PEREIRA2018, +8.0% improvement on BLANK2014, and +3.8% on WEHBE2014 (Figure
1C). Moreover, a smaller instruction-tuned model can attain higher brain alignment than a
larger vanilla model from the same family (e.g., Alpaca-7B v.s. LLaMa-13B, see Appendix
G). However, some of the larger models (T5-XL, LLaMA) have minimal or no increases,
possibly because the vanilla models are already close to the noise ceiling (Appendix G).

Next, to longitudinally study how instruction-tuning aligns LLM representations to brain
activity, we separately instruction-tune a LLaMA-7B model on the Stanford Alpaca instruc-
tion dataset (Taori et al., 2023) for 3 epochs. By evaluating checkpoints regularly during
training, we find that instruction-tuning progressively improves brain alignment (Figure
1D, Appendix K). We also disambiguate the effect on brain alignment of (1) the instruction-
following ability gained from instruction-tuning and (2) added training data. We fine-tune
LLaMA-7B with the same process and data, but remove the instruction from each training
sample. Brain alignment of this ablated model increases during fine-tuning but stays lower
than its instruction-following counterpart (Figure 1D), indicating that brain alignment im-
provements are due to both factors. In Appendix J, we also report preliminary results using
recent models from the Gemma (Team et al., 2024) and LLaMA-2 (Touvron et al., 2023b)
families and observe similar trends. Further, these trends hold across different similarity
metrics besides Linear predictivity, e.g., RSA and CKA (Appendix J).

4.2 Factors underlying LLM-brain alignment

To study why LLMs and human brains align in their representations, we compute the Pear-
son correlation between LLM brain alignment and various properties of LLMs: performance
on a benchmark testing various reasoning abilities (BBH; Suzgun et al., 2022), performance
on a benchmark testing world knowledge in various domains (MMLU; Hendrycks et al.,
2021), language modeling ability, and model size.
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Figure 2: World knowledge and model size are important factors underlying LLM-brain
alignment. To identify factors underlying brain alignment, we test Pearson correlations
between brain alignment and various LLM properties, such as model size, world knowledge
in various domains (MMLU benchmark), and various types of problem-solving abilities
(BBH benchmark). In the figure, insets display results on individual datasets, with stars
reflecting statistical significance (n.s. = p > 0.05, * = p < 0.05, ** = p < 0.005, etc.) (A) Brain
alignment is significantly and strongly correlated with world knowledge as evaluated by
the MMLU Overall score (r = 0.81), which reports the mean performance across all MMLU
subjects. (B) Brain alignment is significantly and strongly correlated with performance on
the world knowledge task category in BBH (r = 0.68). (C) Brain alignment is significantly
and strongly correlated with model size (logarithm of number of parameters) (r = 0.95). In
Appendix I, we provide a larger version of this figure with labels for each data point.

Benchmark, Task category Correlation (r) to Adjusted No. Avg. Model
Brain Alignment p-value tasks Accuracy

MMLU, Overall Score 0.809 < 0.0005 57 0.36
MMLU, STEM 0.792 < 0.0005 18 0.28
MMLU, Humanities 0.791 < 0.0005 13 0.34
MMLU, Social Sciences 0.807 < 0.0005 12 0.41
MMLU, Others 0.809 < 0.0005 14 0.40
BBH, Overall score 0.384 0.18 23 0.28
BBH, Algorithmic reasoning 0.194 0.56 8 0.22
BBH, Language understanding 0.163 0.59 3 0.43
BBH, World knowledge 0.679 < 0.005 5 0.36
BBH, Multilingual reasoning -0.035 0.90 1 0.19
BBH, Others 0.478 0.08 6 0.27

Table 2: Brain alignment strongly correlates with world knowledge in all subject domains
in MMLU and the world knowledge category in BBH. Brain alignment is not significantly
correlated with other problem-solving abilities in BBH (e.g., algorithmic or multilingual
reasoning). We obtain p-values after performing false discovery rate (FDR) correction.

MMLU and BBH. MMLU is designed to measure the world knowledge of LLMs across
many subject domains. It contains 57 tasks, categorized into four world knowledge sub-
ject domains: STEM, Humanities, Social Sciences, and Others (a broad category ranging
from finance to marketing to professional medicine). BBH contains 23 tasks, grouped into
four types of problem-solving: Algorithmic and Multi-Step Arithmetic Reasoning; Natural
Language Understanding; Use of World Knowledge; and Multilingual Knowledge and
Reasoning. For both benchmarks, we follow the category classifications from the original pa-
pers. We perform the evaluations using the instruct-eval repository2 with default settings
(3-shots for BBH, 5-shots for MMLU) and preset prompts. We measure the Pearson correla-
tion (and its p-value) between LLM-brain alignment and performance in each category of
MMLU and BBH. We obtain p-values after false discovery rate (FDR) correction.

2https://github.com/declare-lab/instruct-eval
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World Knowledge. We find that brain alignment is significantly and strongly correlated
with world knowledge. Brain alignment is highly correlated with the MMLU Overall score
(r = 0.81, p < 0.001, Figure 2A), which reports the mean performance across all world
knowledge subject domains on MMLU. Similarly, brain alignment is also strongly correlated
with performance on tasks in the world knowledge category of BBH (r = 0.68, p < 0.005;
Figure 2B). Notably, brain alignment is poorly correlated with all other dimensions of BBH
(see Table 2), though this could also be due to limitations of the tested models, as indicated
by their low raw performance scores on some tasks. Overall, our results provide a strong
signal that more accessible representations of world knowledge are a key factor in aligning
LLM representations to human brain activity.

Language Modeling Ability. Prior works have shown correlations between brain align-
ment and next-word prediction (NWP) ability (Caucheteux & King, 2022; Schrimpf et al.,
2021). We find similar results for correlation between brain alignment and NWP loss (r =
-0.54, p < 0.05, Appendix I). Interestingly, the strength of the correlation is weaker than that
between brain alignment and world knowledge performance (r = 0.81). This suggests that
world knowledge understanding is a better predictor of brain alignment than NWP ability.

Model Size. Finally, we find that brain alignment is significantly and strongly correlated
with model size (r = 0.95, p < 0.001, Figure 2C), as measured by the logarithm of the number
of model parameters. Schrimpf et al. (2021) observe such a pattern for language models, and
we find the pattern holds for instruction-tuned models, and models trained at a larger scale
than their study (7B+ parameters). However, model size alone does not determine brain
alignment. Our results show that smaller instruction-tuned LLMs can have greater brain
alignment than larger vanilla models. For example, LLaMA-13B obtains brain alignment of
0.220, Vicuna-13B obtains 0.229, LLaMA-33B obtains 0.227, and Vicuna-33B obtains 0.232.
Hence, Vicuna-13B has greater brain alignment than LLaMA-33B, due to instruction-tuning,
despite being less than 40% its size. We observe a similar trend in another four models:
T5-base, Flan-T5-base, T5-large, Flan-T5-large. Also, prior works showed that large random
models achieve poor brain alignment (Schrimpf et al., 2021). These results demonstrate there
are LLM properties aside from model size that contribute significantly to brain alignment.

Neural datasets. Brain alignment is strongly correlated with world knowledge and model
size on PEREIRA2018 and WEHBE2014, but less strongly correlated on BLANK2014, possibly
because BLANK2014 has fewer participants (N = 5) leading to greater noise in the results.

5 Behavioral Alignment

In the previous section, we show that instruction-tuning aligns the internal representations
of LLMs to human brain activity (Section 4.1). In this section, we explore whether instruction-
tuning also aligns LLM behavior to human behavior.

Following the approach of Schrimpf et al. (2021) implemented in the Brain-Score package
(Schrimpf et al., 2020), we measure behavioral alignment by evaluating the similarity
between LLM per-word perplexity and human per-word reading times given the same
language stimuli (Appendix D). We use the self-paced reading times dataset from Futrell
et al. (2018), consisting of the reading times of 179 human participants recorded while they
were visually presented with 10 naturalistic stories. We provide language stimuli from
this data as input to LLMs and evaluate behavioral alignment by computing the Pearson
correlation between per-word LLM perplexity and per-word human reading times.

One potential concern in the behavioral alignment methodology is that human reading time
is influenced by word length; longer words may take more time to read, even if they are
not more challenging or surprising. Following Schrimpf et al. (2021), we address this by
computing the surprisal of a multi-token word as the sum of the surprisals of its individual
tokens. Importantly, we use consistent tokenizers when comparing vanilla LLMs against
their instruction-tuned versions, thereby controlling for the effect of word length when
evaluating the impact of instruction-tuning on behavioral alignment.
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Figure 3: Instruction-tuning LLMs generally does not improve behavioral alignment
to human reading times. Furthermore, behavioral alignment correlates poorly with all
other tested measures: world knowledge, model size, and next-word prediction (NWP)
ability. To compute behavioral alignment, we use the FUTRELL2018 benchmark in Brain-
Score. The same language stimuli (naturalistic stories) are presented to LLMs and human
participants. We then compute the Pearson correlation between per-word LLM perplexity
and human reading times as the behavioral alignment. (A) Instruction-tuning does not
generally improve behavioral alignment. Furthermore, behavioral alignment is poorly and
not significantly correlated with all other measures: (B) world knowledge (p = 0.76), (C)
model size (p = 0.31), (D) NWP loss for T5 models (p = 0.54), and (E) NWP loss for LLaMA
models (p = 0.21). In Appendix M, we provide a larger, labeled version of this figure.

5.1 Instruction-tuning generally does not improve behavioral alignment

Using the same models as in Section 4, we compare the behavioral alignment of each
instruction-tuned LLM against its vanilla counterpart. Our results indicate instruction-
tuning generally does not improve behavioral alignment to human reading times (Figure 3A).
For half of the LLMs tested, it results in no change or reduced behavioral alignment. Our
results align with recent studies (Gao et al., 2023; Steuer et al., 2023) that show improving
LLM performance does not necessarily improve alignment with human reading behavior.

5.2 Factors underlying behavioral alignment

Next, we test the correlation between LLM behavioral alignment and model size, next-word
prediction ability, various reasoning abilities (measured by BBH), and world knowledge
across various domains (measured by MMLU). Contrary to our findings on the brain
alignment correlations with model size and world knowledge (Section 4.2), we find that
LLM behavioral alignment is not correlated with these factors: world knowledge (p = 0.76,
Figure 3B), model size (p = 0.31, Figure 3C), next-word prediction loss for T5 models (p =
0.54, Figure 3D), and next-word prediction loss for LLaMA models (p = 0.21, Figure 3E).

6 Discussion

6.1 Implications for NLP: Building LLMs

Using brain alignment for LLM interpretability. Prior works have used human brain
activity to interpret models (Dong & Toneva, 2023) and build more performant models
(Dapello et al., 2020; Safarani et al., 2021; Dapello et al., 2022). Instruction-tuning has
emerged as a breakthrough technique to improve LLM abilities and quality of outputs,
and allows LLMs to adapt to new tasks with minimal task-specific training. However,
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how instruction-tuning alters LLM internal representations to achieve these improvements
remains an open question. Brain activity provides a neuroscientific angle to investigate this
question. Our results show that instruction-tuning improves both performance on world
knowledge benchmarks and human brain alignment, suggesting that the mechanisms that
encode world knowledge in LLMs also align LLM representations to the human brain.

6.2 Implications for Neuroscience: Studying LLM-Human Alignment

Instruction-tuned LLMs are useful for studying LLM properties underlying brain and
behavioral alignment. To identify why LLM and human brains share representational
similarities, prior work has mostly focused on high-level properties such as model size
(Antonello et al., 2023), as well as external behaviors such as predicting missing words
(Schrimpf et al., 2021; Caucheteux & King, 2022). However, a key to understanding these
similarities is to identify internal properties of LLMs that underlie brain alignment, in-
cluding the amount of knowledge LLMs encode, e.g., factual (AlKhamissi et al., 2022) and
commonsense (Bosselut et al., 2019; Sap et al., 2020). Our work is the first to show that
we can harness instruction-tuned LLMs for this purpose. Because they have been trained
to respond to a general instruction format, we can evaluate LLMs on diverse tasks in a
fine-grained manner, allowing the study of LLM properties both internal (e.g., knowledge)
and external (e.g., behavior), and how they correlate with brain and behavioral alignment.

World knowledge shapes language comprehension and brain activity. Our results show
that world knowledge is a key factor in LLM brain alignment. LLMs demonstrating greater
world knowledge across all tested subject domains have representations more similar to
the human brain. This suggests that world knowledge influences human brain activity and
shapes the language comprehension systems in our brain.

6.3 Limitations and Future Work

Examining more dimensions of behavior. Our work and many prior works compare
LLM and human next-word surprisal on reading tasks (Wilcox et al., 2020; Schrimpf et al.,
2021; Eghbal A. Hosseini et al., 2023), which evaluates only a single behavioral dimension
for LLMs (per-word perplexity) and humans (reading times). For the models we tested,
behavioral alignment is not significantly correlated with model size, world knowledge,
or next-word prediction ability. While next-word prediction performance correlates with
alignment to human reading times across many LMs (Schrimpf et al., 2021), this trend does
not hold up in recent transformer models (Oh & Schuler, 2023), having a surprising negative
correlation with parameter count (Oh et al., 2022). In the future, we hope to evaluate LLMs
on a wider range of behavioral dimensions (e.g., van Duijn et al., 2023; Koo et al., 2023; Kauf
et al., 2024) to more holistically evaluate LLM-human behavioral alignment.

Brain alignment datasets with humans performing diverse tasks. We study brain
alignment using neural datasets of humans reading naturalistic stories and sentences in
English. It would be interesting to study brain alignment to human participants attempting
the BBH and MMLU benchmarks, but this data unfortunately does not exist. This may
explain why brain alignment is not significantly correlated with many categories of problem-
solving on BBH, e.g., algorithmic reasoning. In the future, we hope to study brain alignment
with human participants performing more diverse sets of tasks, e.g., reading computer
program code (Ivanova et al., 2020). This can identify more factors underlying LLM-brain
alignment, and provide insights into how brain activity and the human language system
may be shaped by various forms of problem-solving. Furthermore, some of the larger
models exceed the noise ceiling estimates in our neural datasets (Appendix G), highlighting
the need for more neural datasets and better ways of computing noise ceiling estimates.

7 Conclusion

We investigate whether instruction-tuning improves the alignment of LLMs to the human
language system. We evaluate 25 LLMs with parameter sizes ranging from 77 million to 33
billion, across three neural datasets of humans reading naturalistic stories and sentences.
We find that instruction-tuning generally improves the alignment of LLM representations
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to brain activity. Exploring the factors underlying LLM-brain alignment, we discover that
world knowledge and model size are key determinants of brain alignment. This suggests
that world knowledge helps shape representations in the human language system, and
highlights the importance of integrating world knowledge in developing future LLMs.

8 Reproducibility Statement

We provide our full results in Appendices G, H, and L. We consider this important as our ex-
periments may be computationally expensive to replicate. We investigated 25 LLMs, with the
largest models having 33B parameters, on many datasets: brain alignment (PEREIRA2018,
BLANK2014, WEHBE2014), behavioral alignment (FUTRELL2018), next-word prediction
(WikiText-2) and other evaluations (BBH, MMLU).

All models and code repositories used in our study are open-source and their corre-
sponding links are provided in Appendix B and F for full transparency and reproducibil-
ity. To calculate brain and behavioral alignment, we used the Brain-Score repository
(www.github.com/brain-score/language), a publicly accessible resource for conducting
these assessments. We encourage researchers interested in replicating our findings to
refer to the provided links and consult the Brain-Score repository for further details on
datasets and the evaluation process. To evaluate LLMs on BBH and MMLU, we utilize the
widely-used instruct-eval repository (https://github.com/declare-lab/instruct-eval)
with default settings.
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A Language Models: Parameter count and Number of Layers

Model Parameter Count Number of Layers

t5-small 77 M 16
flan-t5-small 77 M 16
t5-base 250 M 24
flan-t5-base 250 M 24
flan-alpaca-base 250 M 24
t5-large 800 M 48
flan-t5-large 800 M 48
flan-alpaca-large 800 M 48
t5-xl 3 B 48
flan-t5-xl 3 B 48
flan-alpaca-xl 3 B 48
flan-gpt4all-xl 3 B 48
flan-sharegpt-xl 3 B 48
flan-alpaca-gpt4-xl 3 B 48
t5-xxl 11 B 48
flan-t5-xxl 11 B 48
flan-alpaca-xxl 11 B 48

llama-7b 7 B 32
alpaca-7b 7 B 32
vicuna-7b 7 B 32
llama-13b 13 B 40
vicuna-13b 13 B 40
stable-vicuna-13b 13 B 40
llama-33b 33 B 60
vicuna-33b 33 B 60

gpt2-small 124 M 12
gpt2-small-alpaca 124 M 12
gpt2-medium 355 M 24
gpt2-medium-alpaca 355 M 24
gpt2-large 774 M 36
gpt2-large-alpaca 774 M 36
gpt2-xl 1.5 B 48
gpt2-xl-alpaca 1.5 B 48

Table 3: Parameter count and number of layers for all vanilla and instruction-tuned LLMs.
For the parameter count, “M” refers to million and “B” refers to billion. The number of
layers for T5 models is a sum of the number of encoder and decoder layers.
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B Language Models: Links to models weights

Model Link to model weights

t5-small www.huggingface.co/google/t5-v1 1-small
flan-t5-small www.huggingface.co/google/flan-t5-small
t5-base www.huggingface.co/google/t5-v1 1-base
flan-t5-base www.huggingface.co/google/flan-t5-base
flan-alpaca-base www.huggingface.co/declare-lab/flan-alpaca-base
t5-large www.huggingface.co/google/t5-v1 1-large
flan-t5-large www.huggingface.co/google/flan-t5-large
flan-alpaca-large www.huggingface.co/declare-lab/flan-alpaca-large
t5-xl www.huggingface.co/google/t5-v1 1-xl
flan-t5-xl www.huggingface.co/google/flan-t5-xl
flan-alpaca-xl www.huggingface.co/declare-lab/flan-alpaca-xl
flan-gpt4all-xl www.huggingface.co/declare-lab/flan-gpt4all-xl
flan-sharegpt-xl www.huggingface.co/declare-lab/flan-sharegpt-xl
flan-alpaca-gpt4-xl www.huggingface.co/declare-lab/flan-alpaca-gpt4-xl
t5-xxl www.huggingface.co/google/t5-v1 1-xxl
flan-t5-xxl www.huggingface.co/google/flan-t5-xxl
flan-alpaca-xxl www.huggingface.co/declare-lab/flan-alpaca-xxl

llama-7b www.github.com/facebookresearch/llama
alpaca-7b www.github.com/tatsu-lab/stanford alpaca
vicuna-7b www.huggingface.co/lmsys/vicuna-7b-v1.3
llama-13b www.github.com/facebookresearch/llama
vicuna-13b www.huggingface.co/lmsys/vicuna-13b-v1.3
stable-vicuna-13b www.huggingface.co/CarperAI/stable-vicuna-13b-delta
llama-33b www.github.com/facebookresearch/llama
vicuna-33b www.huggingface.co/lmsys/vicuna-33b-v1.3

gpt2-small https://huggingface.co/openai-community/gpt2
gpt2-small-alpaca https://huggingface.co/vicgalle/gpt2-alpaca
gpt2-medium https://huggingface.co/openai-community/gpt2-medium
gpt2-medium-alpaca https://huggingface.co/linkanjarad/GPT2-Medium-Alpaca-355m
gpt2-large https://huggingface.co/openai-community/gpt2-large
gpt2-large-alpaca https://huggingface.co/reasonwang/gpt2-large-alpaca
gpt2-xl https://huggingface.co/openai-community/gpt2-xl
gpt2-xl-alpaca https://huggingface.co/Rachneet/gpt2-xl-alpaca

Table 4: Link to model weights for all vanilla and instruction-tuned LLMs. We provide
these links for reproducibility purposes.
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C Method for computing Brain alignment

representations
1. Train linear regression

2. Test on held-out datafMRI activity

Language stimuli

Language model

Human

Pereira2018
"Beekeeping encourages the conservation
of local habitats. It is in every beekeeper's ..."

"If you were to journey to the North of England,
you would come to a valley that ..."Blank2014

Wehbe2014
"Harry had never believed he would meet a
boy he hated more than Dudley, but ..."

Figure 4: Method for computing Brain alignment, the similarity of an LLM’s internal
representations to human brain activity.

We follow a general approach for aligning LLM representations to fMRI brain activity
used in prior works (Jain & Huth, 2018; Toneva & Wehbe, 2019; Schrimpf et al., 2021). The
approaches used for the three neural datasets are similar. Hence, we explain the main details
only for WEHBE2014, followed by key differences for the other two datasets.

C.1 WEHBE2014

WEHBE2014 (Wehbe et al., 2014): The data includes fMRI recordings of 8 human participants
reading chapter 9 of the book Harry Potter and the Sorceror’s Stone (Rowling et al., 1998).
Participants read the chapter at a fixed interval of one word every 0.5 seconds. The chapter
contains 5,176 words.

LLM representations. We extract LLM representations of the text at each layer ∈ Rw×d,
where w is the number of words in the text and d is the embedding size of the LLM.

fMRI activity. Data analyses were performed on fMRI BOLD signals extracted from the
language network for all three neural datasets. fMRI activity was recorded at regular
intervals of 2 seconds, with a total of 1,351 recorded time-points (TRs, times of repetition).
We construct a stimulus-response matrix for fMRI activity ∈ RTR×vi , where TR is the
number of TRs and vi is the number of voxels in the brain of participant i.

Alignment of LLM representations to fMRI activity. We use PCA to reduce the dimension-
ality of the LLM representations to result in a matrix ∈ Rw×10. As the number of words
in the text is greater than the number of TRs, we down-sample the LLM word-level repre-
sentations to the TR rate by averaging the LLM representations to the corresponding TRs,
producing a matrix ∈ RTR×10. As the response recorded by fMRI peaks about 6 seconds
after stimulus onset, we follow prior methods by including preceding time-points for each
time-point. The final LLM representations are constructed by concatenating, for each TR, the
LLM representations corresponding to the previous 4 TRs, producing a matrix ∈ RTR×40.
This accounts for the lag in the hemodynamic response that fMRI records. Finally, we learn a
linear function, regularized by the ridge penalty, that uses the modified LLM representations
∈ RTR×40 to predict the fMRI activity of participants ∈ RTR×vi . We train the function using
4-fold cross-validation, where each fold corresponds to a separate run of fMRI collection.
We also remove 10 TRs from the LLM representations and fMRI activity from the ends of
each test run to avoid train-test overlap. To compute the brain alignment, we evaluate the
Pearson correlation (r) between the predicted fMRI activity ∈ RTR×vi and recorded fMRI
activity ∈ RTR×vi .

C.2 BLANK2014

BLANK2014 (Blank et al., 2014): The data consists of fMRI recordings of 5 human participants
listening to 8 naturalistic stories from the Natural Stories Corpus (Futrell et al., 2018).
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fMRI activity was recorded at regular intervals of 2 seconds, with a total of 1,317 TRs. We
average the BOLD signals across voxels within each language-responsive region of interest
(ROI) of each participant to increase the signal-to-noise ratio, following Schrimpf et al. (2021).
As there are 60 ROIs in total across the 5 participants, this produces a stimulus-response
matrix ∈ R1,317×60.

C.3 PEREIRA2018

PEREIRA2018 (experiments 2 and 3 from Pereira et al., 2018): In experiment 2, 9 participants
read 384 sentences taken from 96 text passages. In experiment 3, 6 participants read 243
sentences from 72 text passages. Each sentence was displayed for 4 seconds on a screen.

We average the fMRI responses for each sentence, resulting in one data point per sentence
per language-responsive voxel of each participant. For experiment 2, there are 384 sentences
and 12,195 language-responsive voxels across the participants. For experiment 3, there are
243 sentences and 8,121 language-responsive voxels across the participants. We concatenate
the fMRI responses across sentences and participants for each experiment. This produces a
stimulus-response matrix ∈ R384×12,195 for experiment 2 and a stimulus-response matrix
∈ R243×8121 for experiment 3.

D Method for computing Behavioral alignment

perplexity
for each word

reading times
for each word

Compute
Pearson correlation

Language stimuli

Language model

Human
"If you were to journey to the North of England,
you would come to a valley that ..."Futrell2018

Figure 5: Method for computing Behavioral alignment. The same language stimuli are
presented to LLMs and human participants, using the FUTRELL2018 benchmark in Brain-
Score, which contains naturalistic stories. We compute the behavioral alignment as the
Pearson correlation between LLM perplexity for each word and human reading times for
each word.

FUTRELL2018 (Futrell et al., 2018): The data consists of reading times (RTs) of 179 par-
ticipants on a total of 10,256 words across 485 sentences, taken from 10 stories from the
Natural Stories Corpus (Futrell et al., 2018). The stories were presented online to Amazon
Mechanical Turk users visually in a dashed moving window display. Participants press a
button to reveal each consecutive word. When they press the button, the most recent word
is converted back to dashes, and the next word is revealed. The time between button presses
offers an estimate of comprehension difficulty (Ehrlich & Rayner, 1981; Hale, 2001; Smith &
Levy, 2013). We construct a stimulus-response matrix of RTs ∈ R10,256×179.

We provide the same stimuli to an LLM and record its perplexity for each word, producing
an LLM perplexity matrix ∈ R10,256. We compute behavioral alignment as the Pearson
correlation between per-word LLM perplexity and human RTs. Perplexity for LLMs and
reading times for humans offer insights into comprehension difficulty (Ehrlich & Rayner,
1981; Hale, 2001; Smith & Levy, 2013), allowing us to examine whether LLMs and humans
share similarities in terms of which words and sentences they find challenging or surprising.
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E MMLU and BBH benchmarks

MMLU is designed to measure knowledge from many domains Hendrycks et al. (2021). It
contains 57 tasks, categorized by the subject domain of world knowledge tested: STEM,
Humanities, Social Sciences, and Others. The STEM category includes questions on com-
puter science, physics, mathematics, etc. The Humanities category includes questions on
philosophy, law, history, etc. The Social Sciences category includes questions on politics,
sociology, economics, geography, etc. The Others category includes questions on business
topics such as finance, accounting, as well as general knowledge of global facts.

BBH is designed to evaluate various problem-solving and reasoning abilities of LLMs
(Suzgun et al., 2022). BBH contains 23 tasks, categorized by the type of problem-solving
ability tested: (1) Algorithmic and Multi-Step Arithmetic Reasoning, (2) Natural Language
Understanding, (3) Use of World Knowledge, and (4) Multilingual Knowledge and Rea-
soning. The world knowledge category of BBH contains tasks that test for factual and
general knowledge. Tasks requiring factual knowledge include: “Sports Understanding”
and “Movie Recommendation”. Tasks requiring general knowledge include: “Causal Judge-
ment”, which tests knowledge about causal-reasoning suppositions, and “Ruin Names”,
which requires knowledge about human perception and usage of humor in the English
language.

For both benchmarks, we adopt the same category classification as used in their original
papers. We measure the performance of LLMs on BBH and MMLU using the instruct-eval
repository3 with default settings (3-shots, 5-shots respectively) and preset prompts.

F Code Repositories

We use the Brain-Score repository to evaluate brain alignment for the PEREIRA2018 and
BLANK2014 datasets, as well as behavioral alignment for the FUTRELL2018 dataset. Link:
www.github.com/brain-score/language.

We use an open-source repository to evaluate brain alignment for the WEHBE2014 dataset.
Link: www.github.com/awwkl/brain language summarization, which builds on www.github.
com/mtoneva/brain language nlp.

We use the Instruct-Eval repository to evaluate MMLU and BBH scores. Link: www.github.
com/declare-lab/instruct-eval.

We use the Stanford Alpaca repository for instruction-tuning. Link: www.github.com/
tatsu-lab/stanford alpaca).

3https://github.com/declare-lab/instruct-eval
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G Results for Brain alignment

PEREIRA2018 BLANK2014 WEHBE2014 Average

t5-small 0.166 0.168 0.071 0.135
flan-t5-small 0.202 0.178 0.079 0.153
t5-base 0.222 0.188 0.074 0.162
flan-t5-base 0.234 0.178 0.076 0.163
flan-alpaca-base 0.227 0.179 0.076 0.161
t5-large 0.270 0.082 0.071 0.141
flan-t5-large 0.311 0.104 0.080 0.165
flan-alpaca-large 0.322 0.126 0.082 0.177
t5-xl 0.285 0.192 0.072 0.183
flan-t5-xl 0.314 0.215 0.072 0.200
flan-alpaca-xl 0.312 0.209 0.075 0.199
flan-gpt4all-xl 0.300 0.206 0.078 0.195
flan-sharegpt-xl 0.323 0.211 0.070 0.201
flan-alpaca-gpt4-xl 0.302 0.205 0.073 0.193
t5-xxl 0.343 0.297 0.096 0.246
flan-t5-xxl 0.350 0.268 0.103 0.240
flan-alpaca-xxl 0.346 0.268 0.102 0.239

llama-7b 0.405 0.154 0.118 0.226
alpaca-7b 0.420 0.167 0.118 0.235
vicuna-7b 0.399 0.152 0.119 0.223
llama-13b 0.412 0.133 0.115 0.220
vicuna-13b 0.423 0.148 0.116 0.229
stable-vicuna-13b 0.415 0.144 0.115 0.225
llama-33b 0.426 0.145 0.109 0.227
vicuna-33b 0.436 0.156 0.105 0.232

gpt2-small 0.305 0.123 0.088 0.172
gpt2-small-alpaca 0.298 0.121 0.081 0.167
gpt2-medium 0.329 0.081 0.089 0.166
gpt2-medium-alpaca 0.325 0.080 0.090 0.165
gpt2-large 0.342 0.077 0.101 0.173
gpt2-large-alpaca 0.336 0.074 0.101 0.170
gpt2-xl 0.358 0.140 0.102 0.200
gpt2-xl-alpaca 0.343 0.139 0.093 0.192

Table 5: Brain alignment results for all vanilla and instruction-tuned LLMs. We provide
these results for reproducibility purposes.

PEREIRA2018 BLANK2014 WEHBE2014 Average

Noise ceiling 0.359 0.210 0.104 0.224

Table 6: Noise ceiling estimates for all 3 neural datasets. fMRI measurements inherently
include noise, i.e., fluctuations not due to neurons firing, from sources such as environmental
factors, the scanner, and movements of human participants. Consequently, a “noise ceiling”
is often computed by recording multiple samples from the same subjects for the same
stimuli, providing an upper-limit estimate of the possible correlation in fMRI activity. In
our study, we followed prior work for calculating the noise ceiling. For PEREIRA2018 and
BLANK2014, noise ceiling estimates are computed using the Brain-Score repository, with
details provided in Schrimpf et al. (2021). For WEHBE2014, noise ceiling estimates are
computed using a similar procedure.
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H Results for Next-word prediction, MMLU, BBH

WikiText-2 NWP Loss MMLU Score BBH Score

flan-t5-small 0.851 0.294 0.287
flan-t5-base 1.235 0.341 0.308
flan-alpaca-base 1.074 0.304 0.266
flan-t5-large 0.625 0.419 0.370
flan-alpaca-large 0.648 0.397 0.276
flan-t5-xl 0.650 0.493 0.402
flan-alpaca-xl 0.604 0.466 0.270
flan-gpt4all-xl 0.625 0.337 0.212
flan-sharegpt-xl 0.664 0.446 0.363
flan-alpaca-gpt4-xl 0.593 0.456 0.348
flan-t5-xxl 0.638 0.545 0.443
flan-alpaca-xxl 0.607 0.508 0.229

alpaca-7b 4.201 0.404 0.328
vicuna-7b 4.387 0.472 0.331
vicuna-13b 4.130 0.521 0.387
stable-vicuna-13b 4.623 0.495 0.380
vicuna-33b 3.940 0.590 0.426

gpt2-small-alpaca 4.193 0.270 0.273
gpt2-medium-alpaca 3.333 0.260 0.276
gpt2-large-alpaca 3.614 0.260 0.278
gpt2-xl-alpaca 3.283 0.270 0.284

Table 7: WikiText-2 NWP loss, MMLU Overall Score, and BBH Overall Score for all
instruction-tuned LLMs. Results for vanilla LLMs are not shown as they are not adapted
for the question formats in the MMLU and BBH benchmarks. Results in gray are close to
random performance. We provide these results for reproducibility purposes.

Notes on comparing next-word prediction (NWP) loss across model families. The T5
and LLaMA models belong to separate model families. We wish to caution that comparing
next-word prediction loss across different model families may not be meaningful. This
is due to several reasons related to architectural differences, training methodologies, and
objectives. (1) Architecture: T5 models have an encoder-decoder architecture while LLaMA
models have a decoder-only architecture. (2) Training Objectives: The T5 models were
trained on supervised and unsupervised tasks, while the LLaMA models were trained only
on unsupervised text (Section 3). (3) Loss computation: The loss functions for both model
families are computed differently, making it inappropriate to directly compare their loss
values. (4) Evaluation Metrics: Next-word prediction loss is just one metric, and it may not
capture the overall language understanding capabilities of a model. Hence, we additionally
evaluate these LLMs’ alignment to human brain activity, as well as their performance on
problem-solving abilities (BBH) and tasks requiring world knowledge (MMLU). In summary,
while NWP loss is a valuable metric for evaluating language models within the same family
or architecture, comparing across different model families may not be meaningful.
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I Results for Correlations of Brain Alignment with LLM properties
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Figure 6: Correlation between brain alignment and various LLM properties: (A) MMLU
benchmark overall score, (B) BBH benchmark score for world knowledge tasks, (C) number
of parameters of the model, and (D) Next-word prediction (NWP) loss.
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Statistical significance: p > 0.05 (n.s.), p < 0.05 (*), p < 0.005 (**), etc.Brain alignment LM properties
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Figure 7: Correlation between brain alignment and various LLM properties for all LLMs
(including vanilla models): (A) number of parameters of the model, and (B) Next-word
prediction (NWP) loss.

J Additional Brain Alignment results (Linear, RSA, CKA) for Gemma
and LLaMA-2 models

Pretrained models

Model Linear CKA RSA

Gemma-2B 0.76 1.94 0.63
Gemma-7B 0.90 2.25 0.62
LLaMA-2-7B 0.97 1.81 0.65
LLaMA-2-13B 1.08 2.51 0.68

Instruction-tuned models

Model Linear CKA RSA

Gemma-2B 0.72 2.44 0.70
Gemma-7B 0.94 2.55 0.72
LLaMA-2-7B 1.02 2.00 0.63
LLaMA-2-13B 1.08 2.77 0.65

Table 8: Additional Brain Alignment results (Linear, RSA, CKA) for Gemma and LLaMA-2
models. “Linear” refers to the linear predictivity metric used in the main paper, normalized
by the noise ceiling computed in Appendix G.

In Section 4, we study the representational similarity between LLMs and human brain
activity (brain alignment) using the linear predictivity similarity metric (“Linear”). This
metric involves training a linear regression model to predict fMRI brain activity based on
LLM representations. Here, we additionally validate our results using the RSA and CKA
similarity metrics (Table 8), confirming that the brain alignment results are consistent across
different similarity metrics.

In Section 4.1, we observed that instruction-tuning generally improves brain alignment for
models from the T5 and LLaMA-1 families. We further validate this trend with recently
released models from the Gemma and LLaMA-2 families (Table 8). These results hold across
various similarity metrics, including Linear predictivity, RSA, and CKA.
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K Results for Instruction-tuning LLaMA-7B on Alpaca dataset
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Figure 8: Improvements in brain alignment from instruction-tuning are due to both
additional training data, as well as training to understand and follow instructions.

Instruction model. We instruction-tune LLaMA-7B on the Stanford Alpaca dataset (Taori
et al., 2023) using the default training process, following the code in www.github.com/
tatsu-lab/stanford alpaca. In particular, the model is instruction-tuned using 52K
instruction-following examples generated through methods inspired by Self-Instruct (Wang
et al., 2022a). This model is labeled “Instruction” in Figure 8.

No instruction model (Ablation). We also train an ablation model with the same process
and training data as the default instruction-tuning, but remove the instruction portion from
each training sample. This ablation model is labeled “No instruction” in Figure 8. This
ablation experiment disentangles: (1) training data (present in both “Instruction” and “No
instruction”), from (2) training LLMs to understand and follow instructions (present only in
“Instruction”).

We use all provided training samples from the Alpaca dataset, thus ensuring that the
models are trained on the same amount of data. We observe that brain alignment of
the “No Instruction” ablation model increases during fine-tuning but stays lower than its
“Instruction” counterpart. This shows that brain alignment improvements are due to both (1)
training data (present in both models) and (2) the process of training LLMs to understand
and follow instructions (present only in the “Instruction” model).

25

www.github.com/tatsu-lab/stanford_alpaca
www.github.com/tatsu-lab/stanford_alpaca


Published as a conference paper at COLM 2024

L Results for Behavioral alignment

FUTRELL2018

t5-small 0.229
flan-t5-small 0.054
t5-base 0.333
flan-t5-base 0.152
flan-alpaca-base 0.290
t5-large 0.303
flan-t5-large 0.145
flan-alpaca-large 0.291
t5-xl 0.225
flan-t5-xl 0.113
flan-alpaca-xl 0.181
flan-gpt4all-xl 0.251
flan-sharegpt-xl 0.285
flan-alpaca-gpt4-xl 0.250
t5-xxl 0.260
flan-t5-xxl 0.274
flan-alpaca-xxl 0.267

llama-7b 0.204
alpaca-7b 0.206
vicuna-7b 0.205
llama-13b 0.184
vicuna-13b 0.184
stable-vicuna-13b 0.196
llama-33b 0.158
vicuna-33b 0.164

gpt2-small 0.367
gpt2-small-alpaca 0.335
gpt2-medium 0.350
gpt2-medium-alpaca 0.345
gpt2-large 0.331
gpt2-large-alpaca 0.338
gpt2-xl 0.318
gpt2-xl-alpaca 0.336

Table 9: Behavioral alignment results for all vanilla and instruction-tuned LLMs. We
provide these results for reproducibility purposes.

FUTRELL2018

Noise ceiling 0.858

Table 10: Noise ceiling estimates for the FUTRELL2018 reading-times dataset. Noise ceiling
estimates are computed using the Brain-Score repository, with details provided in Schrimpf
et al. (2021).
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M Results for Correlations of Behavioral Alignment with LLM
properties
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Figure 9: Correlation between behavioral alignment and various LLM properties: (A)
MMLU benchmark overall score, (B) number of parameters of the model, (C) Next-word
prediction (NWP) loss for T5 models, and (D) NWP loss for LLaMA models.
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