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Abstract

Multilingual audio-text retrieval (ML-ATR) is001
a challenging task that aims to retrieve audio002
clips or multilingual texts from databases. How-003
ever, existing ML-ATR schemes suffer from004
inconsistencies for instance similarity match-005
ing across languages. We theoretically analyze006
the inconsistency in terms of both multilingual007
modal alignment direction error and weight er-008
ror, and propose the theoretical weight error009
upper bound for quantifying the inconsistency.010
Based on the analysis of the weight error upper011
bound, we find that the inconsistency problem012
stems from the data distribution error caused013
by random sampling of languages. We propose014
a consistent ML-ATR scheme using 1-to-k con-015
trastive learning and audio-English co-anchor016
contrastive learning, aiming to mitigate the neg-017
ative impact of data distribution error on recall018
and consistency in ML-ATR. Experimental re-019
sults on the translated AudioCaps and Clotho020
datasets show that our scheme achieves state-021
of-the-art performance on recall and consis-022
tency metrics for eight mainstream languages,023
including English. Our code will be available024
at https://github.com/ATRI-ACL/ATRI-ACL.025

1 Introduction026

In an audio-text retrieval (ATR) task, the system027

searches for matching audio clips or text captions028

in a database based on cross-modality queries029

(Elizalde et al., 2019; Koepke et al., 2022; Zhu030

et al., 2024). With the convergence of audio and031

text, ATR techniques have seen significant advance-032

ments in recent years and are widely applied in con-033

tent retrieval and multimedia information retrieval.034

However, most existing ATR systems are designed035

for monolingual retrieval, and research on multilin-036

gual audio-text retrieval (ML-ATR) remains limited037

(Yan et al., 2024). The shift to ML-ATR brings new038

challenges, particularly in dealing with high mul-039

tilingual recall and ensuring the consistency (Nie040

et al., 2024) of multilingual retrieval results.041

Figure 1: An illustration of inconsistency issue in
current ML-ATR scheme.

To the best of our knowledge, the existing main- 042

stream ML-ATR scheme has a model training pro- 043

cess as shown in Fig. 1, which pairs audio with ran- 044

domly selected linguistic text in each epoch. This 045

may not allow the model to learn the embedding 046

space of audio and multilingual texts very well, 047

which not only reduces the recall of retrieval, but 048

also makes it difficult to obtain the same retrieval 049

results for audio and multilingual text instances in 050

different languages. 051

In this paper, we theoretically analyzes the 052

causes of the inconsistency problem in ML-ATR. 053

We first visualize the inconsistency problem in 054

terms of the modal alignment direction error. The 055

alignment direction error leads to the gradient er- 056

ror, which in turn invites the model weights to fail 057

to converge to the optimal weights for multilin- 058

gual modal alignment during the training process. 059

We further heuristically derive theoretical upper 060

bounds on the weight errors to quantify the adverse 061

effects of inconsistency on the model weights. We 062

analyze the composition of the weight error upper 063

bound and conclude that the root cause of the er- 064

ror inconsistency is the data distribution error in 065

training. 066
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Based on the theoretical analysis, we propose067

a scheme to mitigate the inconsistency of ML-068

ATR, called ATRI. ATRI consists of two training069

strategies: 1-to-K Contrastive Learning (KCL) for070

the retrieval-performance-first scenario, and Audio-071

English Co-Anchor Contrastive Learning (CACL)072

for the overhead-first scenario. KCL theoretically073

eliminates the data distribution errors in each train-074

ing epoch, thus achieving state-of-the-art perfor-075

mance in recall and consistency metrics. CACL076

aligns the other languages with audio and English077

text to correct the modal alignment direction and078

reduce the data distribution error. Compared to ex-079

isting ML-ATR schemes, CACL improves retrieval080

recall and consistency while offering advantages081

in training time and GPU memory overhead over082

KCL.083

Our contributions are shown below:084

• We analyze the inconsistency in terms of an-085

alyzing the modal alignment direction error086

and weighting error, and demonstrate an up-087

per bound on the weighting error. We further088

conclude that the root cause of the inconsis-089

tency of existing ML-CLAP schemes lies in090

the distribution error of the training data.091

• We propose ATRI, which solves the incon-092

sistency problem in multilingual audio text093

retrieval by reducing the data distribution er-094

ror and correcting the modality alignment095

direction. ATRI contains the CACL and096

KCL training strategies for overhead-first and097

performance-first requirements, respectively.098

• We evaluate the proposed scheme using the099

AudioCaps and Clotho datasets translated by100

Deepseek. The results show that ATRI effec-101

tively improves recall and consistency in both102

monolingual English ATR and ML-ATR tasks,103

achieving state-of-the-art performance.104

2 Related Work105

Audio-text retrieval (ATR) (Lou et al., 2022; Xie106

et al., 2024; Xin et al., 2024) is a task that matches107

audio with text, which has seen significant advance-108

ments and widespread applications in recent years.109

The prevailing approach involves constructing a110

shared embedding space for audio and text, en-111

abling seamless feature alignment and retrieving re-112

sults based on similarity rankings. Widely adopted113

methods include CLIP-inspired (Yu et al., 2022;114

Li et al., 2022) comparative audio-text pretraining 115

(Elizalde et al., 2023; Wu et al., 2022; Guzhov et al., 116

2022) and the triplet-loss method (Mei et al., 2022), 117

both of which have achieved success in learning 118

audio-text joint embedding spaces. 119

Existing ATR methods predominantly focus on 120

English-centric monolingual tasks, with few solu- 121

tions for multilingual scenarios (Yan et al., 2024). 122

The scarcity of large-scale, accurately annotated 123

non-English audio-caption datasets has led cur- 124

rent ML-ATR methods to rely heavily on machine 125

translation (Tiedemann and Thottingal, 2020; Team 126

et al., 2022) to convert English datasets into mul- 127

tilingual versions. This translation-based strategy 128

(Cousin et al., 2023; Yan et al., 2024) has demon- 129

strated its effectiveness in enhancing datasets for 130

multilingual use, significantly improving the recall 131

performance of ATR systems. 132

However, existing ML-ATR scheme (Yan et al., 133

2024) use audio-text pairs with randomly selected 134

languages for training. As analyzed in Sect. 3, 135

the training method employed presents significant 136

challenges in achieving convergence to the optimal 137

weights. This difficulty not only exacerbates issues 138

related to inconsistent cross-language retrieval, but 139

also leads to a degradation in the retrieval perfor- 140

mance, particularly in terms of both recall and ac- 141

curacy. 142

3 Definition and Inconsistency Analysis 143

3.1 Formal Definition of ML-ATR 144

Audio-text retrieval is the task of learning cross- 145

modality alignment between audio and multilin- 146

gual text captions. Contrastive learning (Chuang 147

et al., 2020) has become the most effective method 148

for learning expressive cross-modality embedding 149

spaces. 150

Denote a dataset D = {(ai, ti1, ...tiK)}Ni=1 as 151

a multilingual audio text retrieval dataset, where 152

N denotes the size of dataset, K refers the total 153

language number in the dataset, ai denotes the au- 154

dio in i-th data, tik denotes the k-th language in 155

i-th data. Given an audio encoder fθ(·) and a mul- 156

tilingual text encoder gϕ(·), we denote the joint 157

probability distribution as: 158

p(ai, tik) =
exp (s(fθ(ai), gϕ(tik))/τ)∑N

j=1

∑K
l=1 exp (s(fθ(aj), gϕ(tjl))/τ)

, (1) 159

p(ai, ti) =
exp (s(fθ(ai), gϕ(ti))/τ)∑N

j=1 exp (s(fθ(aj), gϕ(tj))/τ)
, (2) 160
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s(·) denotes the cosine similarity between au-161

dio and text embedding. The ideal optimization162

function of learning the embedding space is163

max
θ,ϕ

N∑
i=1

K∑
k=1

p(ai, tik)E(ai,tik)[log p(ai, tik)]. (3)164

However, instead of training all the languages of165

a piece of data in an epoch, the existing ML-ATR166

scheme randomly selects the text of a language to167

do the training. For each epoch e, a set of random168

numbers Q = {q1, ....qN}, qi
R← {1, ...K}. The169

optimization function they used is formalized as:170

p′e(ai, tiqi) =
exp (s(fθ(ai), gϕ(tiqi))/τ)∑N

j=1 exp
(
s(fθ(aj), gϕ(tjqj ))/τ

) , (4)171

max
θ,ϕ

N∑
i=1

p′e(ai, tiqi)E(ai,tiqi )
[log p′e(ai, tiqi)]. (5)172

The probability distribution p′e(ai, tiqi) of their173

scheme is not the same as the original probabil-174

ity distribution p(ai, tik). This results in a model175

that does not fit the training data perfectly, making176

modality alignment ineffective, which in turn re-177

sults in reduced recall and inconsistency problems.178

Figure 2: A visual illustration of inconsistency due to
modality alignment errors.

3.2 Analysis of the Inconsistency Issue179

We first analyze the issue of inconsistency from180

the perspective of modality alignment directional181

errors. As shown in Fig. 2, an intuitive example of182

modality alignment error is illustrated. Consider183

a simple case of bilingual audio-text retrieval, let184

the embedding of an audio sample be a⃗, and the185

embeddings of the corresponding texts in two lan-186

guages be t⃗1 and t⃗2. Ideally, the audio embedding187

a⃗ should be aligned with the combined representa-188

tion of both text embeddings 1
2(t⃗1 + t⃗2) (indicated189

by the green arrow). However, in existing ML- 190

ATR schemes, the audio embedding is only aligned 191

with the text embedding of a randomly selected 192

language within each epoch. For instance, if the 193

selected language is t2, the audio embedding a⃗ 194

will be aligned solely towards t⃗2 (indicated by the 195

red arrow). The angle between the red and green 196

arrows is the modality alignment direction error, 197

which makes the audio and multilingual text modes 198

not well aligned. 199

It’s obvious that incorrect alignment introduces 200

noise to the gradient, leading to errors between the 201

model weights and their optimal values, making 202

the model’s retrieval recall and consistency metrics 203

degrade. We give a theoretical weight error upper 204

bound and analyze its composition to mitigate the 205

inconsistency problem and improve retrieval recall. 206

The detailed proof can be found in Appendix C. 207

We assume that the optimization algorithm is 208

stochastic gradient descent (SGD) (Zinkevich et al., 209

2010) to heuristically analyse the upper bound of 210

the weight error. Given that the number of training 211

steps per epoch T , the data distribution obtained by 212

randomly sampling the language according to the 213

existing ATR scheme is denoted as p′e, and the orig- 214

inal data distribution is denoted as p. w′
eT denotes 215

the model weight in the T -th step under the e-th 216

epoch trained with the data distribution p′e, whereas 217

weT denotes the weight that is trained with the data 218

distribution p. If the gradient∇wE(a,t)[log p(a, t)] 219

is λ(x,y)-Lipschitz (Béthune et al., 2023), then we 220

have the following inequality for weight error up- 221

per bound: 222

||weT −w′
eT ||

≤aT ||w(e−1)T −w′
(e−1)T ||+

η
∑
(a,t)

||p(a, t)− p′e(a, t)||
T−1∑
j=1

(ajgmax(weT−1−j)),

(6) 223

gmax(w) = max(a,t)||∇wE(a,t)[log p(a, t)]||, (7) 224

a = 1 + η
∑
(a,t)

p′e(a, t)λ(x,y). (8) 225

Note: The weight w consists of the parameter 226

θ for the audio encoder fθ and the parameter ϕ for 227

the multilingual text encoder gϕ in ML-ATR. The 228

data distributions p and p′e correspond to the Eq. 229

(2) and (4), respectively. For simplicity, we denote 230

(a, t) as all audio-text pairs in the batch of the T - 231

th step, where the text t can be in any one of the 232
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languages.
∑

(a,t) ||p(a, t)− p′e(a, t)|| denotes the233

data distribution error in the batch at step T .234

Detailed proof of Eq (6) can be found in Ap-235

pendix C. Based on Eq. (6), we have the following236

results:237

• Intuitively, the weight error ||weT − w′
eT ||238

comes from two main sources. One is the239

weight error after the (e − 1)-th epoch, i.e.240

||w′
(e−1)T − w(e−1)T ||. The other is caused241

by the probabilistic distances of the data distri-242

butions, i.e.
∑

(a,t) ||p′e(a, t)−p(a, t)||. Since243

a ≥ 1, the error from both sources increases244

with epoch and step. In addition, the weight245

error is also affected by the learning rate η, the246

number of training steps T and the maximum247

gradient gmax(weT−1−j).248

• Further expansion of Eq. (6) shows that249

the weighting error arises from the data250

distribution error of each epoch. Expand-251

ing ||w(e−1)T − w′
(e−1)T || in Eq. (6), we252

find it consist of ||w(e−2)T − w′
(e−2)T || and253

||p(a, t)− p′e−1(a, t)||. Further expanding Eq.254

(6) to the weight error in 1-th epoch, it can be255

concluded that the weight error of the existing256

ML-ATR scheme comes from the data distri-257

bution error
∑e

i=1

∑
(a,t) ||p(a, t)− p′i(a, t)||258

due to the randomly selected languages in259

each epoch. We can mitigate the inconsistency260

problem and improve the recall by reducing261

the weight error upper bound by reducing the262

data distribution error for each epoch.263

4 Proposed ML-ATR Scheme264

We propose two methods to reduce the data distribu-265

tion error during training. One is 1-to-K contrastive266

learning, which has a higher memory overhead.267

The other is audio-English co-anchor contrastive268

learning, which achieves performance close to 1-to-269

K Contrastive Learning while approximating the270

memory overhead to the existing ML-ATR scheme.271

Here are the details of the two methods.272

4.1 1-to-K Contrastive Learning273

Building on our theoretical analyses, we conclude274

that reducing data distribution error is critical for275

addressing the inconsistency problem in multilin-276

gual audio-text retrieval. To achieve this, we pro-277

pose 1-to-K Contrastive Learning (KCL), a training278

strategy that replaces random language sampling279

with the simultaneous use of all K linguistic texts280

corresponding to each audio instance. This ap- 281

proach theoretically eliminates data distribution 282

error, corrects modal alignment direction, and sig- 283

nificantly enhances both the recall and consistency 284

of retrieval performance. The loss function Latkcl 285

for the proposed 1-to-K Contrastive Learning in 286

ML-ATR is defined as follows: 287

Lkcl =
1

2NK
(La2t

kcl + Lt2a
kcl ). (9) 288

The loss functionLatkcl consists of two parts, La2tkcl 289

and Lt2akcl , and they are calculated as follows: 290

La2t
kcl = −

K∑
k=1

N∑
i=1

log
exp(s(fθ(ai), gϕ(tik))/τ)∑N
j=1 exp(s(fθ(ai), gϕ(tjk))/τ)

,

(10) 291

La2tkcl denotes the contrastive learning loss func- 292

tion from audio to multilingual text. 293

Lt2a
kcl = −

K∑
k=1

N∑
i=1

log
exp(s(gϕ(tik), fθ(ai))/τ)∑N
j=1 exp(s(gϕ(tik), fθ(aj))/τ)

,

(11) 294

Lt2akcl denotes the contrastive learning loss func- 295

tion from multilingual text to audio. 296

K is the number of languages and N is the num- 297

ber of data instances. As shown in Tab. 4, includ- 298

ing multiple multilingual texts in 1-to-K contrastive 299

learning increases GPU memory usage and train- 300

ing time. In practical ML-ATR applications, sup- 301

porting more languages amplifies these overheads 302

compared to existing schemes. 303

To address this, we further propose CACL, 304

which improves retrieval consistency and recall 305

without significantly increasing overhead. 306

4.2 Audio-English Co-Anchor Contrastive 307

Learning 308

To reduce the weighting error with as little increase 309

in training time and GPU memory consumption 310

as possible, we propose audio-English co-anchor 311

contrastive learning (CACL). During the training 312

process, each data takes its audio, English text, and 313

text in other random languages and does contrastive 314

learning with each other. 315

For each epoch, given a set of random numbers 316

Q = {q1, ...qN}, qi
R← {2, ...K}, get the triplet 317

of the training data (ai, ti1, tiqi), where ai denotes 318

i-th audio, ti1 denotes the English text, and tiqi 319

denotes the text of qi-th language. We have the 320

training loss Lcacl shown below: 321
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Lcacl =
1

6N
(Lae

cacl + Lat
cacl + Let

cacl). (12)322

The loss function Lcacl consists of three compo-323

nents Laecacl,Latcacl,Letcacl. All three components are324

based on the following general contrastive learning325

loss formulation:326

Luv
cacl =−

N∑
i=1

log
exp(s(ui, vi)/τ)∑N
j=1 exp(s(ui, vj)/τ)

−
N∑
i=1

log
exp(s(vi, ui)/τ)∑N
j=1 exp(s(vi, uj)/τ)

,

(13)327

where ui and vi represent input embeddings from328

different modalities or languages. The three com-329

ponents are defined as follows:330

• Audio-English Alignment (Laecacl):331

ui = fθ(ai) represents audio embeddings,332

and vi = gϕ(ti1) represents English text em-333

beddings.334

• Audio-Multilingual Alignment (Latcacl):335

ui = fθ(ai) represents audio embeddings,336

and vi = gϕ(tiqi) represents text embeddings337

in a randomly selected language.338

• English-Multilingual Alignment (Letcacl):339

ui = gϕ(ti1) represents English text embed-340

dings, and vi = gϕ(tiqi) represents text em-341

beddings in a randomly selected language.342

The effectiveness of audio-English CACL can343

be explained from two perspectives:344

• From the perspective of modality alignment345

(Fig. 2), the loss function Letcacl in CACL346

brings embeddings of English and other lan-347

guages closer, reducing the distance between348

the text embedding t⃗1, t⃗2 and the mean 1
2(t⃗1 +349

t⃗2) and minimizing the deviation in the modal-350

ity alignment direction of audio and text.351

• From the perspective of data distribution error352 ∑
(a,t) ||p(a, t)−p′e(a, t)|| in Eq. (6), CACL’s353

loss functions Laecacl,Latcacl ensures that the354

model learns more pairs of audio texts in an355

epoch. The text in them also contains a large356

percentage of high-quality English text. It357

makes the data distribution in CACL closer to358

the original one, and reduces the weight error359

of the model.360

Note that in CACL, the number of texts used 361

for training in each epoch does not increase with 362

the number of languages, which effectively reduces 363

both GPU memory and time overhead in ML-ATR 364

scenarios with a large number of languages. Our 365

experimental results illustrate that CACL approxi- 366

mates the training time and explicit memory over- 367

head of existing ML-ATR schemes, yet achieves 368

recall and consistency metrics close to those of 369

1-to-K comparative learning. 370

5 Experiments 371

5.1 Dataset 372

We employ the AudioCaps (Kim et al., 2019), and 373

Clotho (Drossos et al., 2020) for our experiments. 374

AudioCaps includes around 49,000 audio samples, 375

each lasting about 10 seconds. Each audio is paired 376

with a single sentence in the training set, while in 377

both the validation and test sets, each audio has five 378

associated sentences. The Clotho dataset consists 379

of 6,974 audio samples, each ranging from 15 to 30 380

seconds long and annotated with five sentences. It 381

is split into 3,839 training samples, 1,045 validation 382

samples, and 1,045 test samples. 383

Additionally, to assess our scheme’s perfor- 384

mance in the ML-ATR task, we use the Deepseek 385

(Bi et al., 2024) API to translate the text from 386

AudioCaps and Clotho into seven widely spoken 387

languages, including French (fra), German (deu), 388

Spanish (spa), Dutch (nld), Catalan (cat), Japanese 389

(jpn), and Chinese (zho). 390

5.2 Models 391

Audio Encoder: We utilize the recently proposed 392

CED-Base model (Dinkel et al., 2024), a vision 393

transformer with 86 million parameters for the Au- 394

dio Encoder. Trained on Audioset through knowl- 395

edge distillation from a large teacher ensemble, the 396

model processes 64-dimensional Mel-spectrograms 397

derived from a 16 kHz signal. It then extracts non- 398

overlapping 16 × 16 patches from the spectrogram, 399

resulting in 248 patches over a 10-second input (4 400

× 62). 401

Text Encoder: The key to multilingual audio-text 402

retrieval is the text encoder’s ability to handle texts 403

in multiple languages. In this work, we focus solely 404

on the SONAR-TE model (Duquenne et al., 2023). 405

SONAR-TE generates a single vector bottleneck 406

to encapsulate the entire text, avoiding the token- 407

level cross-attention typically employed in conven- 408

tional sequence-to-sequence machine translation 409
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models. The fixed-size text representation is de-410

rived by pooling the token-level outputs from the411

encoder. In the following sections, SONAR refers412

specifically to the text encoder.413

5.3 Setup414

We use ML-CLAP (Yan et al., 2024) as the baseline,415

which is the state-of-the-art for ML-ATR tasks. To416

have a fair comparison, the model is initialized417

using the pre-trained weights of ML-CLAP and is418

further fine-tuned on our multilingual Audiocaps419

and Clotho datasets using three training methods:420

ML-CLAP, proposed CACL, and proposed KCL.421

All models were fine-tuned for 10 epochs on a422

single A100 80GB PCIe GPU with a batch size of423

24, a learning rate of 5 × 10−6, using the Adam424

optimizer. The temperature hyperparameter τ was425

set to 0.07 for all configurations. The audio was426

sampled at 1.6× 104. We selected the model with427

the best recall performance during the fine-tuning428

period for each scheme to perform the experiments.429

5.4 Evaluation Metric430

We use the recall of rank k (R@k) and the average431

precision of rank 10 (mAP10) as the metrics for432

the retrieval performance of the model to show that433

reducing data distribution errors improves the re-434

trieval performance in each language. R@k refers435

to the fact that for a query, R@k is 1 if the target-436

value item occurs in the first k retrieved items, and437

0 otherwise. mAP10 calculates the average preci-438

sion of all the queries among the first 10 retrieved439

results. With these two metrics, we can compre-440

hensively evaluate the retrieval performance of the441

model on multilingual datasets.442

To assess the consistency of the embedding443

space across languages, we use three metrics: em-444

bedding space gap △⃗gap,k (Liang et al., 2022), av-445

erage embedding distance △⃗dis,k, mean rank vari-446

ance (MRV). The computation of △⃗gap,k, △⃗dis,k447

and MRV is shown below:448

△⃗gap,k =
1

N

N∑
i=1

gϕ(ti1)−
1

N

N∑
i=1

gϕ(tik), (14)449

△⃗dis,k =
1

N

N∑
i=1

||gϕ(ti1)− gϕ(tik)||, (15)450

MRV =
1

NK

N∑
i=1

K∑
k=1

|Rankik −Rankj |2. (16)451

△⃗gap,k and △⃗dis,k denotes the embedding space 452

gap and average embedding distance between En- 453

glish and k-th language respectively. Rankik de- 454

notes the similarity ranking of the k-th language 455

under the i-th data, and Ranki denotes the average 456

similarity ranking under the i-th data. 457

5.5 Evaluation Result of Recall and Precision 458

We present a detailed numerical comparison anal- 459

ysis of the experiment results in Tab 1, focusing 460

on the performance improvements of our proposed 461

methods, CACL and KCL, over the baseline ML- 462

CLAP across various languages and datasets. 463

5.5.1 Analysis of Evaluation Results 464

Overall, the proposed CACL and KCL consistently 465

outperform ML-CLAP across the majority of lan- 466

guages and datasets in terms of recall at 1 (R@1), 467

recall at 5 (R@5), and mean average precision at 468

the top 10 results (mAP10) for both Text-to-Audio 469

(T2A) and Audio-to-Text (A2T) tasks. Notably, 470

our proposed KCL achieves state-of-the-art perfor- 471

mance, delivering a 5% improvement in R@1 for 472

the English-oriented monolingual ATR task and 473

a 4.3% improvement in R@1 for the multilingual 474

ATR task compared to ML-CLAP. This experimen- 475

tal result corroborates our theoretical analysis of 476

the weighting error in Sect. 3. Here is the detailed 477

analysis: 478

CACL’s average metrics across languages are 479

higher than ML-CLAP, while KCL’s average met- 480

rics across languages have further improvement 481

compared to CACL. Our theoretical analyses in 482

Sect can explain this phenomenon. 3: 483

• CACL uses audio and text together as the an- 484

chor point for modality alignment in other 485

languages, which can effectively reduce the 486

data distribution error and modality alignment 487

error, thus achieving better modality align- 488

ment results and improved metrics compared 489

to ML-CLAP. 490

• Compared to CACL, which mitigates data dis- 491

tribution errors, KCL theoretically eliminates 492

these errors. As a result, KCL achieves supe- 493

rior modality alignment compared to CACL, 494

leading to further improvements in both recall 495

and precision. 496

5.5.2 Analysis of Special Situations 497

Occasional Metric Anomalies: We observed occa- 498

sional anomalies where a small proportion of KCL 499
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Table 1: Recall and precision results for baseline and our method under multilingual AudioCaps and Clotho dataset
Sc

he
m

e

Lang
AudioCaps Clotho

T2A A2T T2A A2T
R@1 R@5 mAP10 R@1 R@5 mAP10 R@1 R@5 mAP10 R@1 R@5 mAP10

M
L

-C
L

A
P

eng 47.31 80.65 61.44 64.91 90.54 38.62 25.98 54.5 38.15 34.03 61.05 21.19
fra 45.88 78.92 60.01 61.65 89.39 37.90 24.42 52.51 36.24 30.95 57.59 19.66
deu 45.60 79.49 59.93 62.65 88.76 37.88 24.08 52.61 36.40 31.62 57.40 19.39
spa 45.00 79.32 59.62 63.04 88.86 37.38 24.05 52.75 36.22 31.43 57.98 19.65
nld 45.88 79.64 59.92 62.50 90.33 37.72 23.88 51.53 35.73 31.40 57.98 19.58
cat 44.36 77.89 58.58 61.65 87.60 36.43 22.83 50.84 34.80 30.91 56.43 18.26
jpn 43.04 76.86 57.54 59.45 87.81 35.20 23.04 50.34 34.89 31.43 56.55 18.77
zho 41.70 74.72 55.74 53.67 84.76 33.38 21.65 48.84 33.53 28.41 56.14 17.26
avg 44.84 78.43 59.09 61.19 88.50 36.81 23.84 51.74 35.74 31.27 57.64 19.22

ou
rC

A
C

L

eng 49.05 82.14 63.07 66.31 91.49 39.41 26.36 55.19 38.68 34.71 61.34 21.57
fra 46.86 79.97 60.83 63.23 89.48 37.92 24.90 53.09 36.67 32.40 58.55 19.85
deu 46.21 80.08 60.62 63.13 89.91 38.14 24.51 52.86 36.52 33.36 58.07 19.49
spa 46.68 80.52 60.90 63.23 90.12 37.45 24.59 52.71 36.72 32.40 58.17 19.75
nld 47.41 80.23 61.22 63.23 90.86 37.95 24.15 51.75 36.05 32.21 58.65 19.5
cat 45.27 78.61 59.43 61.23 88.44 36.49 23.28 51.42 35.17 30.67 56.05 18.67
jpn 44.76 78.50 58.97 61.55 88.67 34.91 23.36 51.53 35.28 31.82 58.26 18.99
zho 42.01 76.02 56.23 56.40 86.65 33.93 22.50 49.42 34.01 27.69 57.59 17.48
avg 46.03 79.50 60.15 62.28 89.45 37.02 24.20 52.24 36.27 31.90 58.33 19.41

ou
rK

C
L

eng 49.68 82.44 63.34 66.59 91.34 40.52 26.67 55.46 38.97 36.34 64.13 21.36
fra 47.79 80.52 61.53 63.41 89.57 39.21 24.61 52.73 36.79 31.82 60.76 20.02
deu 47.81 80.81 61.78 63.34 89.28 39.02 24.90 53.25 37.02 33.17 59.61 19.90
spa 47.33 80.67 61.49 63.76 89.39 38.73 24.31 52.96 36.55 33.36 61.25 20.27
nld 47.92 80.76 61.70 63.55 90.52 39.14 24.53 52.51 36.61 33.55 62.30 19.98
cat 46.44 79.62 60.42 62.71 89.49 37.65 23.67 51.86 35.70 31.53 57.98 18.90
jpn 45.27 78.86 59.49 62.28 89.16 36.81 23.65 52.17 35.68 31.25 57.50 19.49
zho 42.25 76.38 56.75 57.66 87.28 34.79 23.09 49.90 34.60 30.48 56.34 17.85
avg 46.81 80.00 60.81 62.91 89.50 38.23 24.42 52.60 36.49 32.68 59.98 19.72

metrics were lower than CACL metrics, and some500

CACL metrics were lower than ML-CLAP met-501

rics. We attribute these discrepancies to noise in502

the dataset. Specifically, the weight error in Eq. (6)503

represents the difference between the current and504

optimal model weights for fitting the training data.505

If the dataset is too noisy, the optimal weights may506

not improve the test set’s performance. As a result,507

KCL and CACL, which have lower weight errors,508

may still underperform ML-CLAP on certain met-509

rics. The higher frequency of such anomalies in510

the noisier Clotho dataset, compared to Audiocaps,511

supports this explanation. Given that these anoma-512

lies are rare among the 108 evaluated metrics, we513

consider them acceptable and conclude that they514

do not impact the overall performance advantage515

of CACL and KCL in the ML-ATR task.516

Performance Gaps Across Languages: The517

lower metrics for Japanese and Chinese in Tab. 1518

are mainly due to their significant syntactic differ-519

ences from other languages, making them harder520

for the model to learn. Expanding the dataset for521

these languages could improve the model’s perfor-522

mance by providing more representative data.523

Better Replicated Performance: Compared to524

the original paper, our replicated ML-CLAP model525

achieves significant improvements across all met- 526

rics, mainly due to differences in data quality. Com- 527

pared to the SONAR-translated text used by base- 528

line, the multilingual text we translated with LLM 529

is of higher quality, which in turn can improve the 530

retrieval performance of the model. 531

5.6 Evaluation Result of Consistency 532

5.6.1 Analysis of Embedding Space 533

Consistency 534

The results of the consistency metrics embedding 535

space gap △⃗gap,k and average embedding distance 536

△⃗dis,k are shown in Tab. 2. In addition, we give a 537

visualization of the embedding space in Appendix 538

A and case analysis in Appendix B to further il- 539

lustrate the effectiveness of ATRI in solving the 540

consistency problem. 541

Smaller values of △⃗gap,k and △⃗dis,k indicate 542

better alignment of a language’s embedding space 543

with English, leading to more consistent retrieval in 544

the ML-ATR task. Compared to the baseline ML- 545

CLAP, CACL achieves an average reduction of 546

12.9% in Gap and 4.4% in Dis, while KCL reduces 547

Gap by 19.1% and Dis by 14.3%, demonstrating 548

improved cross-language retrieval consistency. 549

7



Table 2: Results of spatial differences in the embedding
of other languages and English

Sc
he

m
e

Lang
AudioCaps Clotho

E2T E2T
Gap Dis Gap Dis

M
L

-C
L

A
P

fra 0.199 0.094 0.120 0.301
deu 0.210 0.370 0.124 0.289
spa 0.147 0.290 0.117 0.284
nld 0.204 0.346 0.121 0.274
cat 0.151 0.357 0.121 0.307
jpn 0.237 0.445 0.123 0.353
zho 0.181 0.414 0.177 0.323
avg 0.189 0.330 0.129 0.304

ou
rC

A
C

L

fra 0.160 0.281 0.112 0.288
deu 0.194 0.334 0.103 0.261
spa 0.090 0.210 0.099 0.265
nld 0.172 0.325 0.106 0.255
cat 0.104 0.252 0.108 0.280
jpn 0.217 0.402 0.122 0.359
zho 0.192 0.381 0.159 0.352
avg 0.161 0.312 0.115 0.294

ou
rK

C
L

fra 0.145 0.274 0.094 0.261
deu 0.155 0.290 0.084 0.231
spa 0.081 0.192 0.084 0.230
nld 0.148 0.285 0.072 0.204
cat 0.092 0.245 0.087 0.243
jpn 0.188 0.356 0.106 0.310
zho 0.181 0.379 0.123 0.312
avg 0.141 0.288 0.092 0.255

Table 3: Results of Mean Rank Variance

Scheme AudioCaps Clotho
MRV MRV

ML-CLAP 10.38 347.34
CACL 8.71 274.87
KCL 7.52 263.15

5.6.2 Analysis of Rank Consistency550

MRV quantifies the consistency of search rank-551

ings across languages, with lower values indicating552

more consistent results across languages. Unlike553

metrics based on embedding space, MRV offers a554

more direct assessment of model consistency in the555

ML-ATR task. As shown in Tab. 3, KCL achieves556

the lowest MRV, representing a 25.9% reduction557

compared to ML-CLAP, while CACL achieves a558

22.3% reduction. This effectively shows that the559

inconsistency issue can be effectively mitigated by560

reducing the data distribution error.561

We note that the MRV metrics under the Audio-562

caps dataset are significantly lower than Clotho’s.563

This is due to the fact that the Clotho dataset is564

much noisier and more difficult to get consistent565

retrieval results across languages.566

Table 4: Evaluation results in GPU memory overheads
and time overheads

Scheme AudioCaps Clotho
GMO(MB) TO(s) GMO(MB) TO(s)

ML-CLAP 22172 3349 30912 1592
our CACL 26788 3745 31528 1714
our KCL 68256 4209 79480 1884

5.7 Evaluation Results about Training 567

Overhead 568

Tab.4 summarises the GPU memory overhead 569

(GMO) and time overhead (TO) during training 570

for three scenarios: ML-CLAP, CACL, and KCL. 571

KCL training requires simultaneous input of text 572

in eight languages, which significantly increases 573

overhead, resulting in a higher GMO of about 2.8 574

times and a 27% increase in TO compared to ML- 575

CLAP. In contrast, CACL inputs just twice as much 576

text as ML-CLAP, resulting in a modest increase of 577

about 10% in both overheads. This makes CACL 578

more suitable for scenarios that prioritize lower 579

training overheads, while KCL is more suitable for 580

applications that emphasize retrieval performance. 581

6 Conlusion 582

In this paper, we address the inconsistencies in 583

ranking results observed in existing ML-ATR 584

schemes. Through an analysis of modality align- 585

ment errors and weighting errors, we identify data 586

distribution errors during training as a key factor 587

impacting cross-lingual modality alignment, ul- 588

timately leading to retrieval inconsistencies. To 589

address this, we propose two training strategies: 590

KCL and CACL, designed for scenarios prioritiz- 591

ing retrieval performance and training overhead, 592

respectively. Experimental results demonstrate that 593

both CACL and KCL effectively enhance retrieval 594

performance and consistency in ML-ATR tasks. 595

Notably, KCL achieves state-of-the-art results in 596

both English-oriented monolingual ATR and ML- 597

ATR tasks. Furthermore, the proposed approach of 598

mitigating data distribution errors to reduce incon- 599

sistencies holds potential for broader applications, 600

including multilingual modality alignment in im- 601

age and video modalities. 602

Limitation 603

We acknowledge that the upper bound on the 604

weighting error in Eq. (6) is heuristically proven 605

for the SGD optimizer. For more complex opti- 606

mizers such as Adam, giving a direct upper bound 607

8



on the weighting error is difficult. But we provide608

proof of momentum error upper bound for Adam in609

the Appendix C.1, and show that our idea of reduc-610

ing the data distribution error is still feasible under611

the Adam optimizer by showing that momentum612

error leads to weight error.613
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A Embedding Space Visualisation743

Figure 3: Visualisation of the ML-CLAP embedding
space.

To further compare the multilingual embedding744

alignment effects of KCL and ML-CLAP, we ran-745

domly select 50 audio-text pairs from AudioCaps.746

We visualize the embedding spaces of ML-CLAP747

and KCL after TSNE dimensionality reduction, as748

Figure 4: Visualisation of the KCL embedding space.

shown in Fig. 3 and Fig. 4, respectively. In KCL, 749

text embeddings with the same semantics across 750

different languages are more compactly clustered 751

compared to ML-CLAP. This indicates that KCL 752

achieves better alignment of multilingual text em- 753

beddings, resulting in more consistent retrieval per- 754

formance across languages. 755

Figure 5: Two cases selected for analysis. The audio
text pair on the left is Case 1 and the one on the right is
Case 2.

Table 5: Retrieval similarity ranking of selected cases

Lang ML-CLAP KCL
Case 1 Case 2 Case 1 Case 2

eng 5 2 1 0
fra 4 4 1 0
deu 5 4 0 0
spa 2 7 0 0
nld 4 12 0 2
cat 5 12 0 4
jpn 8 0 0 0
zho 13 3 2 0

B Case Analysis 756

In this section, we select two audio text pairs on 757

the AudioCaps test set shown in Fig. 5 for our 758

case analysis. Tab. 5 shows the results of the re- 759

trieval rankings of audio-text pairs under the KCL 760

and ML-CLAP schemes. the retrieval rankings of 761

KCL are generally ahead of those of ML-CLAP, 762

10



and the difference in retrieval rankings across lan-763

guages is much smaller, effectively mitigating the764

inconsistency issue.765

C Proof of Weight Error Upper Bound766

We analyze the upper bound on the weighting er-767

ror heuristically based on the stochastic gradient768

descent (SGD) optimization algorithm. The fol-769

lowing is a detailed theoretical proof of the upper770

bound on the weighting error in Eq. (6).771

Proof . Based on the definition of the SGD772

optimization algorithm, we have:773

weT = weT−1 − η
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)],

w′
eT = w′

eT−1 − η
∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p(a, t)].

(17)774

||weT −w′
eT ||

=||weT−1 − η
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)]

−w′
eT−1 + η

∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p(a, t)]||

≤1||weT−1 −w′
eT−1||

+ η||
∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p(a, t)]

−
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)]||

=||weT−1 −w′
eT−1||+

+ η||
∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p(a, t)]

−
∑
(a,t)

p′e(a, t)∇weT−1E(a,t)[log p(a, t)]

+
∑
(a,t)

p′e(a, t)∇weT−1E(a,t)[log p(a, t)]

−
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)]||

≤2||weT−1 −w′
eT−1||

+ η||
∑
(a,t)

p′e(a, t)(∇w′
eT−1

E(a,t)[log p(a, t)]

−∇weT−1E(a,t)[log p(a, t)])||

+ η||
∑
(a,t)

(p′e(a, t)− p(a, t))∇weT−1E(a,t)[log p(a, t)]||

≤3(1 + η
∑
(a,t)

p′e(a, t)λ(a,t))||weT−1 −w′
eT−1||

+ ηgmax(weT−1)
∑
(a,t)

||p′e(a, t)− p(a, t)||.

(18)775

The inequality 1 and 2 hold because the Triangle776

Inequality |a + b| ≤ |a| + |b|. The inequality 3777

holds because778

gmax(weT−1) = max
(a,t)

||∇weT−1E(a,t)[log p(a, t)]||, (19) 779

and we assume that ∇w′
eT−1

E(a,t)[log p(a, t)] 780

and ∇weT−1E(a,t)[log p(a, t)] are λ(a,t)-Lipschitz, 781

Gradient trimming can be used in the code imple- 782

mentation to a certain extent to reduce the gradient 783

change in the training process, indirectly reduce the 784

excessive growth of Lipschitz constant, as far as 785

possible to meet the Lipschitz continuity condition. 786

Based on Eq. (18), let 787

a = (1 + η
∑
(a,t)

p′e(a, t)λ(a,t)), (20) 788

we have 789

||weT −w′
eT ||

≤a||weT−1 −w′
eT−1||

+ ηgmax(weT−1)
∑
(a,t)

||p′e(a, t)− p(a, t)||

≤a2||weT−2 −w′
eT−2||

+ η
∑
(a,t)

||p′e(a, t)− p(a, t)||

(gmax(weT−1) + agmax(weT−2))

≤aT ||w(e−1)T −w′
(e−1)T ||

+ η
∑
(a,t)

||p′e(a, t)− p(a, t)||(
T−1∑
j=0

ajgmax(weT−1−j))).

(21) 790

Thus Eq. (6) is proved successful. 791

C.1 Migrating to Adam Optimizer 792

We first give the parameter update computation 793

procedure for the Adam optimizer: 794

g =
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)] (22) 795

meT = β1meT−1 + (1− β1)g (23) 796

veT = β2veT−1 + (1− β2)g ◦ g (24) 797

m̂eT =
meT

1− βeT
1

(25) 798

v̂eT =
veT

1− βeT
2

(26) 799

weT = weT−1 −
η√
v̂eT

m̂eT . (27) 800

meT is the first-order momentum and veT is the 801

second-order momentum. 802
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We illustrate that the data distribution error also803

causes weight error in the Adam optimizer by ana-804

lyzing momentum. The error upper bound of the805

first-order momentum meT can be inferred as fol-806

lows:807

||meT −m′
eT ||

=||β1meT−1 − β1m
′
eT−1

− (1− β1)
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)]

+ (1− β1)
∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p′e(a, t)])||

≤||β1meT−1 − β1m
′
eT−1||

+ (1− β1)||
∑
(a,t)

p(a, t)∇weT−1E(a,t)[log p(a, t)]

−
∑
(a,t)

p′e(a, t)∇w′
eT−1

E(a,t)[log p′e(a, t)])||

≤||β1meT−1 − β1m
′
eT−1||

+ (1− β1)||
∑
(a,t)

p′e(a, t)(∇w′
eT−1

E(a,t)[log p(a, t)]

−∇weT−1E(a,t)[log p(a, t)])||

+ (1− β1)||
∑
(a,t)

(p′e(a, t)− p(a, t))∇weT−1E(a,t)[log p(a, t)]||

≤(1 + (1− β1)
∑
(a,t)

p′e(a, t)λ(a,t))||weT−1 −w′
eT−1||

+ (1− β1)gmax(weT−1)
∑
(a,t)

||p′e(a, t)− p(a, t)||.

(28)808

Eq. (28) shows that data distribution error still809

influences the upper bound on the first-order mo-810

mentum error in the Adam optimizer. Similarly, the811

second-order momentum error is also affected by812

this error. These momentum errors accumulate in813

the weight errors, which makes our theoretical error814

upper bounds applicable under the Adam optimizer815

as well.816
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