
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IDENTIFICATION OF TASK AFFINITY FOR MULTI-TASK
LEARNING BASED ON DIVERGENCE OF TASK DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-task learning (MTL) can significantly improve performance by training
shared models for related tasks. However, due to the risk of negative transfer
between mismatched tasks, the effectiveness of MTL hinges on identifying which
tasks should be learned together. In this paper, we show that for tabular datasets,
this affinity between a pair of tasks can be predicted based on static features that
characterize the relationship between the datasets of these tasks. Specifically, we
show that we can train a regression model for predicting pairwise task affinity
based on computationally efficient features, requiring ground-truth affinity values
for only a small, random sample of task pairs to generalize across all possible
pairs. We demonstrate on three benchmark tabular datasets that our proposed
approach can predict affinity more accurately at lower computational cost than
existing methods for identifying task affinity, which treat task data as black boxes
and require training-based signals. Our work provides a practical and scalable
solution to task grouping for MTL, enabling its effective application to tabular
datasets with large numbers of tasks.

1 INTRODUCTION

Multi-task learning (MTL) aims to improve generalization by exploiting shared structure across
similar tasks. However, its success critically depends on which tasks are learned together, as poorly
chosen groups of tasks can lead to negative transfer. Despite the broad use of MTL across domains,
principled methods for selecting task groups remain underexplored. The core challenge reduces to
identifying affinity between tasks: how likely a given pair of tasks are to benefit from joint training.

Recent efforts have sought to open the black box of MTL and characterize task relationships. Data-
driven methods such as Linear Surrogate (Li et al., 2023), GRAD-TAE (Li et al., 2024), and MT-
GNet (Song et al., 2022) learn predictors of MTL performance for groups, but they require expensive
ground-truth supervision from training large numbers of MTL models. HOA (Standley et al., 2020)
exhaustively measures MTL performance for all pairs of tasks, while TAG (Fifty et al., 2021) esti-
mates affinities by repeatedly probing gradients in a single all-task MTL model. Although insightful
and effective, these approaches are computationally demanding, often requiring joint training across
many task groups to generate supervision labels, and they scale poorly to large sets of tasks.

Other lines of work focus on identifying the characteristics of datasets that correlate with task affin-
ity, e.g., distributional similarity (Ben-David & Borbely, 2008) or single-task predictors of MTL
affinity (Bingel & Søgaard, 2017). However, these methods stop short of directly predicting MTL
performance and do not provide scalable mechanisms for grouping large sets of tasks.

In this paper, we propose a practical and scalable framework for predicting pairwise MTL perfor-
mance using features that capture the structural and statistical relationships between tabular tasks.
We construct pairwise feature vectors from tabular dataset statistics, input-space geometry, and rep-
resentation similarity—many of which can be precomputed per task and reused across pairings—
substantially reducing computational cost. We then train a regression model on a small, random
sample of task pairs with ground-truth MTL gains—often orders of magnitude lower than required
by prior methods—that generalizes to all remaining pairs without exhaustive joint training.

Our approach avoids the combinatorial cost of training on all task pairs, enables scalable and in-
expensive estimation of pairwise affinities even for large sets of tasks, and provides interpretable,
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data-driven predictions that can be integrated into downstream task-grouping methods. We validate
our approach on three widely used tabular MTL benchmarks, demonstrating that it accurately pre-
dicts task-pair affinity with only a small number of training pairs. Furthermore, we show that these
predictions can guide task-grouping methods to efficiently identify high-performing task groups,
providing a lightweight and practical alternative to resource-intensive prior approaches.

2 PROBLEM FORMULATION

We consider a set of n tasks, denoted by T = {t1, t2, . . . , tn}. Each task t ∈ T is associated
with a dataset Dt = {(x(i)

t , y
(i)
t )}|Dt|

i=1 , where x
(i)
t ∈ Rp and y

(i)
t denote the input vector and target

label, respectively. We assume a common input dimension p across all tasks. For a model with
parameters θ, the prediction performance on task t is measured by a loss function:

Lt(Dt; θ) =
1

|Dt|

|Dt|∑
i=1

ℓt
(
ŷt(x

(i)
t ; θ), y

(i)
t

)
,

where ℓt(·, ·) is the task-specific positive loss (e.g., MSE or cross-entropy) and ŷt(·; θ) denotes
model predictions for task t. A task group is defined as a subset G ⊆ T , which may contain
between 1 and n tasks. A multi-task learning (MTL) algorithm jointly trains a model with shared
parameters θGMTL across all tasks in G by minimizing the average training loss:

θGMTL = argmin
θ

1

|G|
∑
t∈G

Lt(Dt; θ). (1)

Similarly, θtSTL denotes the parameters of the single-task model (STL) trained independently for t:

θtSTL = argmin
θ

Lt(Dt; θ). (2)

Task Affinity We measure task affinity in terms of MTL gain: the relative improvement in a task’s
loss when trained jointly with another task compared to training it independently. For a task pair
G = {ti, tj} with a trained MTL model θ{ti,tj}MTL , the observed MTL gain for ti is

gaintj→ti =
Lti(Dti ; θ

ti
STL)− Lti(Dti ; θ

{ti,tj}
MTL )

Lti(Dti ; θ
ti
STL)

. (3)

A positive value indicates that joint training with tj improves ti’s performance (positive transfer),
while a negative value indicates degradation (negative transfer). This definition naturally generalizes
to larger groups by replacing {ti, tj} with G.

Objective: Predicting Pairwise MTL Gains Our goal is to predict pairwise task-affinity (i.e.,
MTL gains) using statistical features that characterize the datasets of the tasks and their relation-
ships, without performing exhaustive joint training over all task pairs. Formally, for any pair of tasks
{ti, tj} with datasets Dti and Dtj , we seek to estimate gains gaintj→ti and gainti→tj , as defined
in Equation (3), which quantify the relative improvement (or degradation) in one task’s loss when
trained jointly with the other. We assume access to ground-truth gains for a small subset of task
pairs Gtrain ⊂

(T
2

)
, for which we perform joint MTL training. The objective is to learn a predictive

model that generalizes to unseen pairs in Gtest =
(T
2

)
\Gtrain, thereby enabling scalable estimation of

pairwise MTL gains.

3 AFFINITY PREDICTION WITH TASK-RELATION FEATURES

Exhaustively training MTL models for all
(
n
2

)
task pairs is computationally prohibitive. So, our goal

is to understand whether the pairwise MTL gain, as defined in Equation (3), can be predicted based
on statistical features that characterize the relationships between the datasets of tasks ti and tj . Our
approach proceeds in two stages: (i) design of task-relation features ϕi,j that capture structural and
statistical relationships between Dti and Dtj , and (ii) supervised learning of a regression function
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f(ϕi,j ;ω) that maps these features to estimated gains. This design ensures computational tractabil-
ity: rather than performing MTL training for every possible pair of tasks (which scales quadratically
with the number of tasks), we collect ground-truth gains only for a small subset of task pairs and
rely on a predictive model to generalize to unseen pairs. To capture relationships between datasets of
tasks, we extract a diverse set of features quantifying statistical and structural differences, including
relative dataset sizes and various distributional distances. Each feature vector ϕi,j = ϕ(Dti , Dtj )
is thus computable from the task datasets directly, without performing any MTL training. The pre-
dictive function f(ϕi,j ;ω) is trained on a limited set of ground-truth pairwise gains Gtrain and can
efficiently estimate gains for all remaining task pairs in Gtest =

(T
2

)
\ Gtrain.

While prior work has explored task affinities in transfer learning and MTL (Bingel & Søgaard,
2017; Standley et al., 2020), these studies either rely on task-specific heuristics or require repeated
model evaluations across task subsets, limiting scalability. In contrast, our approach systematically
considers a broader set of features between task pairs that capture various aspects of dataset sim-
ilarity and enable scalable prediction of pairwise MTL gains without exhaustive training, making
it applicable to larger sets of tasks.

Hypothesis We hypothesize that tasks with more similar data distributions are more likely to yield
positive gains under joint training. The intuition is that similar input patterns imply shared un-
derlying structures or decision boundaries, making shared representation learning more effective.
To capture this, we leverage both statistical and structural features—such as dataset size and class
imbalance—to quantify task relatedness. Our central insight is that if two tasks appear similar in
terms of their data distribution, they are more likely to benefit from being learned together.

3.1 DESIGNING TASK-RELATION FEATURES

To enable predictive modeling of MTL gains, we construct a comprehensive set of features that
quantify the relationship between pairs of tasks using their datasets. As usual, we assume that for
each task, the training and test sets are drawn from the same distribution. When computing task-
relation features, we use both the training and test data to capture the overall structure of the task.
For features that describe the label distribution, we compute them using only the training data to
avoid leakage. Below, we describe the categories of task-relation features used in our study.

Features based on Dataset Size Basic structural information about the datasets provides a first-
order characterization of task similarity. We record the total size of the combined dataset as well as
the relative size of each task:

Data-Size = |Dti |+ |Dtj |, Data-Ratio =
|Dt|

|Dti |+ |Dtj |
, t ∈ {ti, tj}. (4)

To account for imbalance, we also compute the normalized difference in size, which reflects whether
one dataset dominates the MTL training:

Size-Gap =
| |Dti | − |Dtj | |
|Dti |+ |Dtj |

. (5)

Distance- and Distribution-Based Features To quantify structural and distributional differences
between tasks, we compute several statistics based on pairwise distances between samples. For each
task t, we define the average intra-task pairwise distance:

dt = Ex,x′∼Dt

[
∥x− x′∥

]
, (6)

where x, x′ ∈ Rp are two independent samples drawn from Dt and ∥ · ∥ denotes the standard
Euclidean (L2) norm in the p-dimensional input space. For large datasets, dt is estimated from
a random subset of sample pairs to stay computationally tractable. Given two tasks ti and tj , we
compute the cross-task distance, measuring how far samples from the two tasks lie from each other:

d(ti+tj) = Ex∼Dti
, x′∼Dtj

[
∥x− x′∥

]
. (7)

Normalized versions of these distance measures (e.g.,
|dti

−dtj
|

dti
+dtj

or
d(ti+tj)√
dti

dtj

) provide scale-invariant

indicators of similarity in these metrics. We also compute the energy distance, a statistical measure

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of dissimilarity between two input distributions. It is based on pairwise distances among samples
across and within the two datasets. Energy distance between the input distributions of ti and tj is:

Energy-Distance = 2d(ti+tj) − dti − dtj , (8)

where larger values indicate greater dissimilarity between input distributions. To capture differences
in central tendency, we also compute the euclidean distance between feature-wise means:

Feature-Mean Gap = ∥µti − µtj∥, (9)

where µt = Ex∼Dt
[x] is the mean feature vector for task t. This metric reflects whether the datasets

are centered around similar regions in the input space. Larger distances suggest different average
behavior in the input features. Together, these features summarize both the spread (variance), relative
positioning, and overall divergence of the two datasets in input space.

Representation-Based Features We further assess task similarity in terms of their raw or trans-
formed feature representations. In contrast to the distance-based features described earlier, which
rely on Euclidean norms, here we replace the distance metric with an angular measure of alignment.
Specifically, we compute the average cosine similarity between samples from two tasks:

Cosine-Sim = Ex∼Dti
, x′∼Dtj

[
⟨x, x′⟩

∥x∥ · ∥x′∥

]
. (10)

Here x and x′ denote samples from Dti and Dtj , respectively. Principal component analysis
(PCA) provides another view: we compute the top-k principal components for each Dt and measure
their alignment by averaging the absolute cosine similarity of the corresponding components:

PCA-Align =
1

k

k∑
ℓ=1

|⟨u(i)
ℓ , u

(j)
ℓ ⟩|, (11)

where u
(i)
ℓ and u

(j)
ℓ are the ℓ-th principal components of Dti and Dtj , respectively. The absolute

value |.| removes the sign ambiguity of PCA directions (since principal components are defined
only up to a sign flip), making the measure invariant to direction reversals. We also consider a rank-
based divergence measure, where for each feature k ∈ {1, . . . , p}, we pool the values from both
tasks, assign ranks, and compute the difference in mean ranks between tasks. The overall divergence
is the average absolute rank gap across features:

Rank-Div =
1

p

p∑
k=1

∣∣r̄(k)ti − r̄
(k)
tj

∣∣, (12)

where r̄
(k)
t denotes the mean rank of feature k for taskt. The absolute value |.| captures the mag-

nitude of divergence, ignoring which task has higher or lower average rank. This metric reflects
whether the relative ordering of samples differs systematically between tasks.

Graph-Based Features We quantify how much the two datasets are interwoven in feature space
by measuring their topological overlap. To measure this, first we construct a k-nearest neighbor
(KNN) graph on the combined data Dti ∪Dtj , where each point is connected to its k closest points
(in Euclidean distance, with k chosen as a small constant such as 5 or 10). We then compute the
cross-link ratio, the fraction of edges that connect samples from different tasks, where a higher
ratio indicates stronger intermingling of the two datasets in feature space:

Cross-Link =
Number of cross-task edges

Total KNN edges
. (13)

3.2 PREDICTIVE MODELING OF PAIRWISE MTL GAINS

Given access to ground-truth MTL gains for a subset of task pairs Gtrain, we adopt a data-driven ap-
proach to predict pairwise MTL gains using the features introduced in the previous section. For each
task pair, we first compute a pairwise feature vector ϕi,j , which encodes the relationship between the
datasets of the two tasks. Our goal is to learn a regression model that predicts MTL gain based on
these task-pair features, providing an efficient alternative to exhaustively training for all task pairs.

4
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Polynomial Regression To capture higher-order interactions between features, we expand each
feature vector using second-degree polynomial terms, denoted Φ(ϕi,j). We then fit a regularized
regression model that minimizes the following objective over all labeled training pairs:

min
ω

∑
{ti,tj}∈Gtrain

(
gainti→tj − ω⊤Φ(ϕi,j)

)2
+ λ∥ω∥22, (14)

where gainti→tj denotes the ground-truth MTL gain for task tj when trained with ti, Φ(ϕi,j) is
the quadratic feature expansion, and λ is the ℓ2 regularization coefficient. While a linear variant
provides a simpler and more interpretable baseline, the quadratic model better captures feature in-
teractions and consistently achieves higher prediction accuracy (Appendix A.3). We therefore adopt
the quadratic model as our default predictor.

4 EXPERIMENTS AND RESULTS

We evaluate our approach on three benchmark MTL datasets. We begin with an analysis of the
proposed task-relation features, and then provide a comparison to baseline prediction approaches.

4.1 EXPERIMENTAL FRAMEWORK

Benchmark Datasets We demonstrate our approach on three benchmark tabular datasets, which
have been widely used in multi-task learning studies (Zhang & Yang, 2021). Table 1 summarizes
these benchmark datasets, with additional details in Appendix A.1. School (Bakker & Heskes,
2003; Han & Zhang, 2015) involves predicting student exam scores across 139 schools, each treated
as a separate task, using both school- and student-level features. Chemical (MHC-I) (Jacob et al.,
2008; Zhou & Zhao, 2015) involves predicting peptide–molecule binding affinities for 35 molecules,
each treated as a task. Landmine (Xue et al., 2007; Jawanpuria et al., 2015) contains data from 29
landmine fields, each treated as a task, with the goal of classifying whether a sample corresponds to a
landmine. In all three benchmarks, each task has its own distinct set of data. We provide descriptive
statistics for each benchmark dataset in Appendix A.1, which help to contextualize differences in
task relationships and MTL performance across the three benchmarks.

Table 1: Benchmark tabular datasets and their characteristics.

Dataset Task Type Loss Metric #Tasks Dataset Size (|Dt|)
Avg. Min. Max.

School Regression Mean Squared Error (MSE) |T | = 139 110 22 251
Chemical Classification Binary Cross-Entropy |T | = 35 435 22 2,368
Landmine Classification Binary Cross-Entropy |T | = 29 511 445 690

MTL Model Architecture and Hyperparameter Search For all three benchmarks, we employ
feed-forward neural networks for both STL and MTL. Note that the design of the MTL architectures
is not a vital component of our contribution. In fact, our goal is orthogonal to the performance of
specific MTL architectures and methods, and our pairwise MTL gain prediction approach can be
applied to and potentially benefit a wide range of MTL methods. For each benchmark, we perform
a separate hyperparameter search on selected task groups to identify suitable architectures. STL
models are trained first to establish task baselines, followed by MTL training on all task pairs

(|T |
2

)
(9591 pairs for School, 595 for Chemical, 406 for Landmine) to obtain ground-truth pairwise gains.
For training the gain predictor, we randomly sample 10–50% of task pairs as the labeled training set
and reserve the remaining > 50% for testing, ensuring evaluation on unseen task pairs. Finally, we
train higher-order task groups to assess the effectiveness of predicting gains for group selection.

4.2 ANALYSIS OF TASK-RELATION FEATURES

A central question in our framework is which task-relation features are most informative for pre-
dicting pairwise MTL gains. To investigate this, we first evaluate the predictive power of individual
features, quantifying how well each correlates with observed MTL gains. This highlights both strong
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predictors and those that are redundant or noisy. Based on these results, we then construct a com-
pact feature subset that balances predictive power with interpretability and avoids collinearity. The
selected subset forms the basis for all subsequent modeling experiments.

4.2.1 PREDICTIVE POWER OF INDIVIDUAL FEATURES

We train a quadratic regression model using each feature in isolation and measure R2 between
the predicted and observed MTL gains. We also provide a detailed analysis of the correlation be-
tween features and MTL gains in Appendix A.2.2; here, we provide results based only on pre-
dictive performance R2. Size-related features (Data-Size, Data-Ratio, Size-Gap) exhibit
strong predictive power, particularly for Chemical and Landmine, highlighting the importance of
data availability and balance between tasks. Distributional measures such as Energy Distance
and Feature-Mean Gap consistently provide useful signal across all benchmarks, underscor-
ing the crucial role of similarity between data distributions. Representation-based features (e.g.,
Cosine Similarity, PCA Alignment) are weak predictors on their own, though Rank
Divergence achieves moderate utility in Chemical and Landmine. Finally, graph-derived fea-
ture Cross-Link exhibits strong predictive power in Landmine but inconsistent elsewhere.

0.00 0.01

Data-Size
Data-Ratio
Size-Gap

d(ti+tj)

|dti
− dtj

| ÷ dti
+ dtj

|dti
− dtj

| ÷
√

dti
· dtj

d(ti+tj)
÷ dti

+ dtj

d(ti+tj)
÷

√
dti

· dtj

Energy Distance
Feature-Mean Gap

Cosine-Sim
PCA-Align
Rank-Div

Cross-Link

R2
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School (n = 139)

0.00 0.05 0.10 0.15 0.20

R2

Chemical (n = 35)

0.00 0.10 0.20

R2

Landmine (n = 29)

Figure 1: Predictive power of each task-relation feature in isolation, based on quadratic regression of pairwise
MTL gain. Each bar represents the R2 value between the predicted and true value of pairwise MTL gain.

While predictive power varies across the benchmarks, features reflecting dataset size imbalance and
distributional divergence are consistently informative. This suggests that our predictors can serve as
lightweight estimators of MTL affinity, especially when combined into a broader feature set.

4.2.2 SELECTED SUBSET OF FEATURES

Guided by these correlation and prediction results, we curate a compact subset of task-relation
features, which balances interpretability and predictive accuracy. The final selection includes:
Data-Size, Data-Ratio, Normalized Distances (|dti − dtj | ÷

√
dti · dtj , d(ti+tj) ÷√

dti · dtj ), Energy Distance, Feature-Mean Gap, and Rank Divergence. These
features span key axes of task-pair variation: data availability and balance, distance-based simi-
larity, distributional divergence, and structural alignment. We excluded features that are redundant
or have weak predictive power (e.g., PCA-Align, Cosine-Sim, Cross-Link). Our selected
subset of features provides a compact but informative basis for regression modeling of MTL gains.

4.3 ANALYSIS OF PREDICTION PERFORMANCE

We evaluate our feature-based prediction approach in terms of both predictive accuracy and compu-
tational efficiency, comparing it to recent baselines for estimating pairwise task affinities. TAG (Fifty
et al., 2021) estimates affinities from a single MTL model by calculating inter-task influence scores,
requiring n additional forward and backward passes per update. We replicate this by training one
joint model per dataset and aggregating influence scores across the training iterations. GRAD-
TAE (Li et al., 2024) projects task gradients from a baseline MTL run and fits logistic regressions
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on randomly sampled task subsets. We reproduce this by sampling 2,000 task subsets, estimating
their performance, and defining affinity between task pair {ti, tj} based on the average loss across
subsets where both tasks co-occur. We evaluate both baselines in terms of correlation with ground-
truth pairwise MTL gains. We provide comparisons with additional baselines in Appendix A.5.

4.3.1 PREDICTIVE ACCURACY

We first compare the predictive accuracy of our feature-based approach against TAG and GRAD-
TAE, across the School, Chemical, and Landmine benchmarks. As shown in Table 2, our models
consistently achieve higher correlation between predicted affinities and actual MTL gains across all
benchmarks. On School, which is particularly challenging to predict, our approach clearly outper-
forms the baselines. On Chemical, our approach achieves 0.50 correlation, substantially outper-
forming GRAD-TAE (0.15). On Landmine, our approach reaches 0.58, well above TAG (0.34) and
GRAD-TAE (−0.26). These results highlight the effectiveness of our feature-based prediction over
training-intensive baselines.

Table 2: Comparison between methods for pairwise MTL gain predictions in terms of predictive accuracy,
measured as correlation between predicted pairwise affinity and actual MTL gain for each benchmark dataset.

Correlation between Prediction and Actual MTL Gain
Inter-Task Affinity GRAD-TAE Feature-Based

Dataset (Fifty et al. (2021)) (Li et al. (2024)) Quadratic (Ours.)

School +0.002 ± 0.00 -0.002 ± 0.00 +0.13± 0.02
Chemical +0.06 ± 0.04 +0.15± 0.00 +0.50± 0.03
Landmine +0.34 ± 0.02 -0.26± 0.00 +0.58± 0.03

4.3.2 COMPUTATIONAL EFFICIENCY

We next compare runtime efficiency across the same set of baselines. TAG requires one complete
MTL training plus n extra forward and backward passes per gradient update to compute the n × n
affinity matrix. GRAD-TAE requires M complete MTL trainings, O(n) gradient computations and
storage, and m logistic regressions on sampled subsets. This scaling incurs substantial overhead:
increasing M from 1 to 5 nearly quintuples runtime with only marginal accuracy gains.

Our approach avoids this bottleneck. After collecting ground-truth MTL gains for a small subset
of task pairs, the remaining steps—computing pairwise statistics, training a lightweight predictor,
and inferring affinities for all other pairs—are efficient and scale gracefully. Crucially, while the
initial collection of ground truths does incur substantial cost, it scales only with the number of pairs
sampled. As shown in Figure 2, increasing the number of training pairs steadily improves prediction
accuracy (R2), while runtime grows at a much slower rate compared to GRAD-TAE.

10 30 50 70 90
0

0.01

0.02

0.03

Train Time (minutes)

R2

School

10 40 70 100 130
0

0.1

0.2

0.3

Train Time (minutes)

Chemical

5 10 15 20 25
0.1

0.2

0.3

0.4

Train Time (minutes)

Landmine

Figure 2: Prediction performance (R2 ) of our approach vs. training time, with shaded bands indicating the
interquartile range (25th–75th percentile). Training set Gtrain comprises 10–50% of all task pairs.

As shown in Figure 3, this design yields the best trade-off between runtime and accuracy. With
using only 25% of all pairs as training data, our method achieves 0.13 correlation in 18 minutes
on School, outperforming TAG (89 minutes, −0.01 correlation) and GRAD-TAE (8–39 minutes,
negative correlation); on Chemical, we attain 0.50 in 29 minutes vs. GRAD-TAE over 91 minutes
for weaker accuracy; on Landmine, we attain 0.58 in 5.6 minutes, outperforming both baselines.
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Figure 3: Correlation between the predicted and actual MTL gains (± std.) and runtime of various prediction
methods. For each benchmark dataset, our method is trained with 25% of all possible pairs (|Gtrain| = 0.25

(
n
2

)
).

Overall, these results demonstrate that our framework provides a favorable balance between runtime
and predictive accuracy.

4.3.3 PRACTICAL UTILITY IN DOWNSTREAM SELECTION OF TASK GROUPS

To evaluate the practical utility of our predicted pairwise MTL gains, we use them to select task
groups. While exhaustive or branch-and-bound search could, in principle, identify globally optimal
task groups (i.e., maximizing predicted gains), these methods are infeasible for our large task sets,
where the number of candidate groups grows combinatorially (e.g., tens of thousands per bench-
mark). This motivates the use of scalable search heuristics: beam search and SDP-based clustering.
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TAG (Fifty et al., 2021) GRAD-TAE (Li et al., 2024) Ours

Figure 4: Comparison between prediction methods (TAG, GRAD-TAE, and ours) when predictions are used for
group selection with beam search, evaluated in terms of the average per-task MTL gain of the selected groups.

Beam Search We adopt the beam-search heuristic used by MTGNet (Song et al., 2022), which
explores multiple promising groups (i.e., beams) in parallel instead of greedily committing to a
single path, with the beam size controlling the tradeoff between thoroughness and cost. To estimate
MTL gains for groups of three or more tasks, we aggregate pairwise MTL gain predictions in a
group by averaging the predicted gains from all other tasks in a group, similar to Standley et al.
(2020) and Fifty et al. (2021) (details in Appendix A.6). At each step of the beam search, the top-
scoring candidate groups (i.e., groups with highest predicted MTL gains) are expanded by adding
new tasks, scored using predicted gains, and pruned to retain only the best candidates (School: 52K,
Chemical: 26K, Landmine: 52K candidate groups). The beam search iterates until the search budget
is exhausted. Once the search is finished, we perform MTL training to obtain ground-truth gains for
the selected task groups. Figure 4 shows that our prediction approach consistently leads to high-
performing groups in terms of MTL gains, outperforming baseline prediction approaches across all
benchmarks datasets, despite the modest cost of training our pairwise MTL gain predictor.

SDP-Based Clustering We also apply semidefinite programming (SDP) for task clustering, which
we adopt from Li et al. (2024). A square affinity matrix is constructed from predicted pairwise MTL
gains (using our approach) or from task-affinity measures (using TAG (Fifty et al., 2021) or GRAD-
TAE (Li et al., 2024)). The SDP-based grouping method produces a continuous matrix maximizing
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Table 3: Comparison between prediction methods when predictions are used for group selection with SDP,
evaluated in terms of total task loss with the selected groups (single-task learning (STL) included for reference).

Total Loss (± Std. Dev.) with Optimal Number of Groups k
TAG (Fifty et al., 2021) GRAD-TAE (Li et al., 2024) Ours

Dataset STL Loss Loss k Loss k Loss k

School 131.47 130.30 ± 0.20 3 130.74 ± 0.30 4 130.19 ± 0.21 3
Chemical 22.98 21.64 ± 0.19 6 20.05 ± 0.66 15 20.73 ± 0.29 2
Landmine 6.09 6.25 ± 0.15 15 6.15 ± 0.16 15 5.70 ± 0.12 4

overall similarity under normalization and positivity constraints. Soft assignments are then rounded
to form discrete clusters, yielding the desired number of task groups. We have experimented with
various numbers of clusters for group selection and report the total loss of all tasks with the optimal
number in Table 3 (lower total loss is better). Across all three benchmarks, SDP-based grouping
achieves competitive performance with our predicted affinities compared to TAG and GRAD-TAE,
outperforming these baselines on School and Landmine and remaining competitive on Chemical.

5 RELATED WORK

Understanding task relationships to maximize positive transfer and minimize interference is a core
challenge in multi-task learning. Early studies (Caruana, 1997; Argyriou et al., 2008) showed that
jointly training tasks with shared structure can improve generalization. Subsequent research has ex-
amined task relatedness more broadly, including zero-shot transfer (Pal & Balasubramanian, 2019),
representation learning (Dwivedi & Roig, 2019), and information-theoretic perspectives (Achille
et al., 2021; Zhuang et al., 2020). Surveys (Zhang & Yang, 2021; Ruder, 2017) provide overviews
of task relationships modeling strategies, including shared feature representations, low-rank param-
eterizations, and task clustering.

Foundational theoretical work of Ben-David & Borbely (2008) formalizes task relatedness through
similarity of data-generating distributions, providing generalization guarantees but leaving practical
estimation in high dimensions unresolved. Other studies, such as Bingel & Søgaard (2017), analyze
task characteristics that correlate with transferability in specific domains (NLP) but do not directly
predict pairwise MTL gains. More recent methods shift focus on estimating task-affinities to group
tasks prior to MTL training. Many rely on fully data-driven affinity estimation: for instance, Stand-
ley et al. (2020) train all task pairs to measure gains, which are then aggregated to predict the benefits
of larger groups; MTGNet (Song et al., 2022) and Linear Surrogate models (Li et al., 2023) follow
a similar paradigm, requiring extensive MTL training to generalize to unseen groups. Alternatively,
some approaches estimate task relatedness via shared feature extractor for all tasks (Shiri & Sun,
2022), or gradient similarity (Yu et al., 2020) or by measuring the effect of gradient updates on each
task during MTL training (Fifty et al., 2021), which involves n additional forward/backward passes
per step. GRAD-TAE (Li et al., 2024) instead fine-tunes hyperparameters on random groups to infer
performance. Though effective, these methods remain computationally expensive due to repeated
MTL training or multiple gradient computations and do not scale well to large task collections.

In contrast, we propose a feature-based approach for predicting pairwise MTL gains with mini-
mal training cost. Using statistical, distributional, and representation-level features, our approach
enables scalable task-group selection and operationalizes the intuition that tasks with similar data
distributions are more likely to benefit from joint training.

6 CONCLUSION

We introduced a framework for predicting pairwise MTL gains for tabular datasets accurately and
efficiently based on static features of task data. By quantifying divergence in task data through
informative task-relation features, our method identifies task affinities with superior accuracy and
minimal supervision. Experiments across multiple benchmarks show that it outperforms baselines
in terms of predictive accuracy while substantially reducing runtime, demonstrating the potential of
feature-driven affinity prediction for scalable and automated task-grouping for MTL.

9
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

Dataset Preparation and Statistics: To ensure fair comparisons in MTL performance, we equalize
task dataset sizes, Dt across benchmarks. Since tasks vary in training set size (Table 1), we repeat
samples so that each task matches the maximum size, preventing biased updates and improving
generalization. For the Chemical dataset, we additionally balance positive and negative samples
(Jacob et al., 2008).

Summary of Dataset Statistics: To better understand the differences in task behavior, we also in-
vestigate label variance, standard deviation, and within-task input distance for the benchmarks and
summarize the key statistical properties in Table 4. The School dataset shows moderate label vari-
ability and a diverse input space. Chemical dataset exhibits uniform label difficulty with tightly
clustered features, while Landmine has low label spread and moderately diverse inputs. These char-
acteristics help contextualize differences in task behavior and model performance across datasets.

Table 4: Summery of dataset statistics for pairwise MTL gain prediction study using feature based on task
characteristics: label variability and within-task input distance for tasks from the three benchmark datasets.

Dataset Variance (σ2) Std Dev(σ) Within-Task Observation
(Labels) (Labels) Distance

School 0.88± 0.29 0.93± 0.15 1.52± 0.24 Moderate label variability, diverse input space
Chemical 0.25 0.50 0.09± 0.02 Uniform label difficulty, tightly clustered features
Landmine 0.06± 0.01 0.24± 0.03 1.13± 0.09 Low label spread, input moderately diverse

Model Architecture: In our experiments with single-task and multi-task learning on the three
benchmark datasets, we employ feed-forward neural network (NN) models. Note that the specific
MTL architectures are not a vital component to our contribution. In fact, our goal is orthogonal
to the performance of specific MTL methods, and our pairwise MTL gain prediction approach can
be applied to and potentially benefit a wide range of MTL methods. We conduct a random neural
architecture search on randomly chosen task groups from each of the three benchmark datasets to
select the MTL architectures. We initialize the randomized architecture search with separate task-
specific layers and some shared layers among all the tasks. We explore variations in the number of
hidden layers, number of neurons per layer, and learning rates to minimize overall loss across the
tasks. We finally select the architecture that balances predictive accuracy and model complexity.
The best architecture discovered during the search for each benchmark is adopted as the final MTL
architecture.

Table 5: Training configuration for benchmark datasets.

Dataset Shared Layers Neurons per Layer Learning Rate α Batch Size Other Settings

School 3 [20, 10, 32] 0.005 64
Num. of epochs = 1000

Early stopping = 50

Chemical 2 [32, 16] 0.001 264
Num. of epochs = 1000

Early stopping = 50

Landmine 2 [64, 32] 0.001 64
Num. of epochs = 1000

Early stopping = 50

Implementation and Training: We implement neural network prediction models using Keras with
TensorFlow Abadi et al. (2016), minimizing either mean squared error (School) or binary cross-
entropy (Chemical and Landmine) with the Adam optimizer Kingma & Ba (2014).
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A.2 ADDITIONAL ANALYSIS

A.2.1 DISTRIBUTION OF GROUND-TRUTH PAIRWISE MTL GAINS

Before training predictive models, we visualize the empirical distribution of pairwise MTL gains for
each dataset. Figure 5 shows histograms of the ground-truth MTL gains for the three benchmark
datasets: School, Chemical, and Landmine. To remove extreme outliers and better visualize the core
structure, we clip the values between the 0.5th and 99.5th percentiles of each dataset prior to plotting.
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Figure 5: Histograms of Pairwise MTL Gains (Ground-Truth Values) for School, Chemical, and Landmine
datasets

Across all datasets, we observe a mix of positive and negative MTL gains:

• School: Among 19,182 values (2 gains per 9,591 pairs), 44% are positive (8,422) and 56%
negative (10,760), suggesting a slight dominance of negative transfer.

• Chemical: Distribution is mildly right-skewed, with 614 positive and 576 negative gains,
consistent with the dataset’s uniform task difficulty.

• Landmine: 344 positive vs. 468 negative gains, indicating a relatively balanced distribution
with strong task incompatibilities in some pairs.

These observed gain distributions motivate the need for a robust predictive model that can distinguish
between helpful and harmful task pairings before actual training.

A.2.2 CORRELATION ANALYSIS BETWEEN TASK-RELATION FEATURES AND MTL GAINS

We analyze the Pearson correlations between individual features and observed pairwise MTL gains
across School, Chemical, and Landmine datasets. In School, correlations are generally weak (all be-
low 0.1 in magnitude), consistent with its moderate label variability and relatively homogeneous task
structure—no single feature strongly explains transfer patterns. In contrast, Chemical and Landmine
exhibit more distinctive trends:

• Data Quantity and Balance: In Chemical, size-driven features such as Data-Size
(0.45) and Data-Ratio (0.16) show moderate positive correlations with gains, sug-
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Figure 6: Correlation between task-characteristic features and actual MTL gains across three benchmark
datasets.

gesting that task pairs with balanced and sufficiently large data are more likely to bene-
fit from MTL. In contrast, these features are weak or negative in Landmine (−0.40 for
Data-Ratio), reflecting domain heterogeneity and noise sensitivity.

• Distance and Distribution Properties: Distance-based features exhibit consistent nega-
tive correlations in Landmine, with values as low as −0.31 (normalized inter-task
distance, d(ti+tj) ÷ (dti + dtj )), indicating that greater dissimilarity in input struc-
ture often predicts reduced transferability. Energy Distance and Feature-Mean
Gap also align negatively across datasets, reinforcing the role of distributional mismatch
in driving negative transfer.

• Representation and Graph Features: Representation-based features such as
Cosine-Sim and PCA-Align have weaker, inconsistent correlations, though they are
positive in Landmine. The graph-inspired Cross-Link feature shows strong positive
correlation in Landmine (0.34) but negligible signal in School and Chemical.

Overall, these results suggest that while no single feature is universally predictive, dataset bal-
ance and distributional divergence are among the most reliable indicators—supporting our use of
a learned model that can combine multiple signals.

A.3 MODEL VARIANTS FOR MTL GAIN PREDICTION: LINEAR VS QUADRATIC REGRESSION

To further examine the effectiveness of our predictive framework, we conducted supplementary
experiments comparing alternative modeling choices. Table 6 reports results for two variants trained
on the final feature subset: a standard linear regression model and a quadratic regression model with
ridge regularization. Performance is measured using R2 scores and Pearson correlation between
predicted and ground-truth MTL gains. Each model is trained on 25% of randomly selected task
pairs, and results are averaged over multiple random subsets.

Table 6: Comparison of predictive accuracy across model variants for pairwise MTL gain prediction. Re-
ported are mean ± std of R2 scores and Pearson correlations between predicted and ground-truth gains.

Dataset
Feature-Based Prediction Approach

Linear Regression Quadratic Regression
R2 Correlation R2 Correlation

School 0.01± 0.00 0.10± 0.01 0.02± 0.01 0.13± 0.03
Chemical 0.20± 0.04 0.45± 0.05 0.22± 0.05 0.50± 0.03
Landmine 0.30± 0.02 0.56± 0.01 0.34± 0.03 0.58± 0.03

Across all three benchmarks, the quadratic model consistently outperforms its linear counterpart,
with the largest gains observed in the Chemical and Landmine datasets. These findings validate
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both our feature selection and modeling strategy, demonstrating that a compact, intuitive feature set
combined with a regularized quadratic regression model can effectively approximate pairwise MTL
gains.

A.4 RUNTIME-DETAILS OF DIFFERENT METHODS

Table 7 compares the runtime and predictive quality (correlation with observed MTL gains) of our
proposed pairwise gain predictor against two strong baselines, TAG (Fifty et al., 2021) and Grad-
TAE (Li et al., 2024), across the three benchmark datasets. The results highlight two key advantages
of our approach:

Table 7: Correlation and Runtime between predicted pairwise affinity and actual pairwise MTL gains for dif-
ferent methods. Time for TAG includes a baseline MTL training with inter-task affinity estimation throughout
the training. Time for Grad-TAE includes M full Baseline MTL training, plus O(n) gradient evaluations and
solving logistic regression m times where m indicates the number of random subsets selected.

Dataset
TAG GRAD-TAE Ours (|Gtrain| = 0.25 ∗

(
n
2

)
)

Time Correlation M=1 M=5 Time CorrelationTime Correlation. Time Correlation.

School 89.14 +0.002 ± 0.00 7.78 +0.005 ± 0.00 38.91 -0.002 ± 0.00 17.98 +0.13 ± 0.02
Chemical 13.05 +0.06 ± 0.04 18.23 +0.08 ± 0.01 91.17 +0.15 ± 0.00 28.88 +0.52 ± 0.02
Landmine 10.15 +0.34 ± 0.02 4.96 -0.23 ± 0.01 24.80 -0.23 ± 0.01 5.61 +0.58 ± 0.05

First, our method achieves substantially higher predictive accuracy across all datasets. For example,
it reaches a correlation of +0.52 on Chemical and +0.58 on Landmine, outperforming TAG by large
margins (+0.06 and +0.34, respectively) and significantly improving over Grad-TAE, which fails
to produce meaningful correlation and can even result in negative values (e.g., −0.23 on Landmine).

Second, our method provides a favorable trade-off between runtime and prediction quality. While
TAG requires full MTL training with inter-task affinity computation throughout (e.g., 89.14 min-
utes on School), and Grad-TAE with M = 5 scales linearly with the number of baseline trainings
(reaching 91.17 minutes on Chemical), our approach only requires partial pairwise training (25% of
all pairs) and converges in markedly less time (e.g., 17.98 minutes on School and 5.61 minutes on
Landmine).

Overall, these demonstrate that our predictor not only delivers the strongest correlation with true
pairwise gains but also does so with lower or competitive runtime, making it a more scalable and
practical choice for large-scale multi-task learning settings.

Data-Efficiency of Our Approach Additionally, Figure 7 shows how prediction performance of
our proposed approach improves as we increase the number of training pairs used for learning the
gain predictor. Across all three datasets—School, Chemical, and Landmine—we observe a clear
upward trend: as more pairs are incorporated, the correlation between predicted and observed MTL
gains consistently increases, with diminishing returns as the training set approaches 50% of all
available pairs.
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Figure 7: Prediction performance of our approach (correlation between predicted and actual MTL gains) vs.
number of pairs used for training the predictor (|Gtrain|), with shaded bands indicating the interquartile range
(25th–75th percentile). Training set Gtrain comprises 10–50% of all task pairs.

This result demonstrates that the proposed predictor is data-efficient: even with a small fraction
of available task pairs (5–10%), it achieves meaningful correlation (e.g., 0.10 for School, 0.45 for
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Chemical, 0.48 for Landmine). As training coverage grows, prediction quality steadily improves,
eventually saturating around 30–40% of pairs. These findings highlight the benefit of collecting
more labeled pairs for training but also show that reliable performance can be achieved without
exhaustively evaluating every pair. This makes our approach practical for real-world MTL settings,
where the total number of task pairs grows quadratically with the number of tasks and exhaustive
evaluation is infeasible.

A.5 COMPARISON WITH OTHER BASELINE

A.5.1 LINEAR SURROGATE MODELS FOR PAIRWISE GAIN PREDICTION

To compare our approach with additional baselines, we implemented a linear surrogate model (Li
et al., 2023) that takes as input a binary task-presence vector (indicating which tasks are included
in the group) and directly regresses on the observed multi-task learning (MTL) gains. The model is
evaluated on only pairs, allowing for a fair comparison with our feature-based pairwise MTL gain
predictor.

Table 8: Performance summary of Linear Surrogate (Li et al., 2023) baseline: Overall metrics refer to the
model evaluated on predictions for all tasks jointly, while per-task metrics report the mean and standard devia-
tion across predictions for individual tasks.

Dataset Training Runtime (minutes) Overall (for all tasks) Avg. Per-task Metrics
Groups (Prepare Gtrain) R2 Corr. Corr (± std) R2 (± std)

School
50 25.6 0.165 0.42 0.003 ± 0.08 -0.86 ± 3.435

100 51.2 0.167 0.42 0.007 ± 0.08 -0.80 ± 3.508
200 102.4 0.152 0.40 0.014 ± 0.08 -0.83 ± 3.728

Chemical
30 161.7 -3.718 0.14 0.02 ± 0.18 -5.54 ± 7.233

100 539.0 very neg 0.12 0.09 ± 0.20 -1.2e30 ± 2.9e30
200 1078.0 very neg 0.04 0.16 ± 0.25 -2.1e29 ± 1.2e30

Landmine
30 18.5 -1.5 0.30 0.09 ± 0.20 -1.74 ± 1.931

100 61.7 -9.9e26 0.05 0.17 ± 0.21 -1.8e27 ± 9.6e27
200 123.4 -9.8e28 -0.07 0.24 ± 0.20 -6.1e29 ± 1.7e30

Table 8 summarizes the model’s performance across different training set sizes. Per-task metrics
report the mean and standard deviation for each task individually, whereas overall metrics aggregate
predictions across all tasks. Differences between these metrics arise because tasks with very low
variance or poorly predicted outcomes can disproportionately affect per-task R2, while the overall
metric smooths these effects. Similarly, per-task correlations are specific to a single task, whereas
overall correlation is computed across a mixture of tasks with different scales, which can “average
out” and lead to higher values.

For the School dataset, the linear surrogate achieves slightly higher correlation and R2 than our
feature-based predictor, although the cost in terms of runtime is much higher. However, this per-
formance does not generalize: for Chemical and Landmine, the surrogate model drastically overfits,
producing near-zero or negative correlation values and extremely large (sometimes negative) R2

scores — clear indications of instability and non-identifiability. This behavior demonstrates that the
high-dimensional 0-1 input encoding does not capture meaningful similarity information for pair-
wise transfer prediction, rendering the problem non-identifiable under a purely linear mapping.

These results emphasize the necessity of feature engineering and inductive bias in predicting MTL
gains: without carefully designed inter-task features, as used in our method, the learning problem
becomes ill-posed and prone to memorization rather than generalization.

A.6 DOWNSTREAM GROUP-SELECTION USING PREDICTED PAIRWISE MTL GAINS

Beam Search for Task Group Selection. Beam search is a heuristic strategy that explores several
promising partial solutions in parallel instead of committing to a single greedy path. The application
of beam search follows two steps: we first aggregate the pairwise predictions to estimate group-
level MTL gains for sets of three or more tasks. To estimate the potential performance of larger task
groups (with three or more tasks), we build upon previous work by Standley et al. (2020) and Fifty
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et al. (2021), which propose Higher-Order Affinity (HOA) aggregation techniques. In particular, for
a given task group G and a task ti ∈ G, we compute the group-to-task MTL gain by averaging the
pairwise predicted affinities from all other tasks in the group to ti:

ˆgainG→ti =
1

|G| − 1

∑
tj∈G,j ̸=i

ˆgaintj→ti (15)

This yields a group-level prediction vector ˆgainG = { ˆgainG→t : t ∈ G}, which we interpret as the
predicted MTL gain values for the task group G. Once we have the group-level predictions, we apply
the beam search algorithm on the candidate set of task-groups. At each step, the beam search keeps
the top-scoring candidate groups (the beam), expands them by adding new tasks, scores the resulting
groups using predicted gains, and prunes back to retain only the best candidates. This process repeats
until the search budget is exhausted, after which the group with the highest estimated total MTL
gain is selected. Beam size controls the tradeoff between accuracy and computational cost, allowing
flexible adjustment. We adopt the grouping selection algorithm from MTGNet (Song et al., 2022),
and refer readers to the original paper for a more detailed explanation.

Spectral SDP-Based Clustering for Task Grouping. To form task groups, we first construct a
square affinity matrix that captures pairwise relationships between all tasks. The n×n affinity matrix
can be obtained using predictions made by our approach, or from any alternative task-similarity
method such as TAG (Fifty et al., 2021) or GRADTAE (Li et al., 2024).

We then solve a semidefinite programming (SDP) relaxation that seeks a matrix representation of
task assignments which maximizes overall similarity while satisfying normalization and positivity
constraints. The solution to this optimization problem is a continuous matrix indicating soft group
memberships. Finally, we convert this soft solution into discrete task groups by applying a rounding
procedure based on a similarity threshold. This produces exactly the desired number of task clusters.
The group-selection procedure is adopted from prior work on SDP-based clustering (Li et al., 2024),
and alternative solvers or rounding strategies could be used without changing the overall framework.
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