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Abstract

Machine learning (ML) algorithms can often differ in performance across domains.
Understanding why their performance differs is crucial for determining what types
of interventions (e.g., algorithmic or operational) are most effective at closing
the performance gaps. Aggregate decompositions express the total performance
gap as the gap due to a shift in the feature distribution p(X) plus the gap due
to a shift in the outcome’s conditional distribution p(Y |X). While this coarse
explanation is helpful for guiding root cause analyses, it provides limited details
and can only suggest coarse fixes involving all variables in an ML system. De-
tailed decompositions quantify the importance of each variable to each term in the
aggregate decomposition, which can provide a deeper understanding and suggest
more targeted interventions. Although parametric methods exist for conducting a
full hierarchical decomposition of an algorithm’s performance gap at the aggregate
and detailed levels, current nonparametric methods only cover parts of the hier-
archy; many also require knowledge of the entire causal graph. We introduce a
nonparametric hierarchical framework for explaining why the performance of an
ML algorithm differs across domains, without requiring causal knowledge. Fur-
thermore, we derive debiased, computationally-efficient estimators and statistical
inference procedures to construct confidence intervals for the explanations.

1 Introduction

The performance of an ML algorithm can differ across domains due to shifts in the data distribution.
Understanding what contributed to this performance gap can help teams choose the most effective
corrective action(s), ranging from algorithmic modifications (e.g. model retraining) to operational
fixes (e.g. updating data pipelines). Prior works have focused primarily on aggregate decompositions,
which decompose the performance gap into that due to a shift in the marginal distribution of the
input features p(X) (covariate shift [37]) and that due to a shift in the conditional distribution of the
outcome p(Y |X) (concept shift or conditional outcome shift) [5, 50, 30, 36, 16]. However, coarse
decompositions can only suggest coarse corrective actions, such as investigating data pipelines for
all features. The goal of this work is to provide a hierarchical nonparametric framework that first
decomposes a performance gap into aggregate terms and then each aggregate term into detailed terms.
This helps narrow down the features to investigate and understand how they affect the gap.

If one is willing to make the strong assumption that the expected loss of a model is a linear function
of some feature set X , the problem of obtaining aggregate and detailed decompositions drastically
simplifies. This is the key assumption underlying the Oaxaca-Blinder (OB) decomposition, one of the
most widely used frameworks in the (income and health) disparities literature [32, 3]. Given an ML
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Figure 1: (left) Proposed framework called Hierarchical Decomposition of Performance Differences
(namely, HDPD) helps to understand performance gaps of an ML algorithm between two domains. It
decomposes the overall gap (say, in classification accuracy) into gaps due to shifts in the covariate
versus outcome distribution (Aggregate). Then, it quantifies the importance of each feature to the
two components (Detailed). (right) In terms of directed acyclic graphs, aggregate decompositions
describe the effect of shift interventions, for instance, on the outcome Y distribution while keeping
all else fixed between domains. Detailed decompositions quantify how well can we explain those
shift interventions by more targeted shifts with respect to feature subsets Zs alone.

model with average loss ED[ℓ] in domains D = 0 and 1 and assuming the linear loss relationship
ED[ℓ|X] = β⊤

DX , the OB framework decomposes the performance gap at the aggregate level into
that due to a covariate shift (β⊤

0 (E1[X] − E0[X])) and that due to a conditional outcome shift
((β1 − β0)⊤E1[X]). That is, the former is due to a shift in the feature means and the latter is due
to a shift in the coefficients. At the detailed level, the aggregate terms corresponding to covariate
and conditional outcome shifts are further broken down into the contributions from each feature, i.e.
β0,j(E1[Xj ]−E0[Xj ]) and (β1,j−β0,j)E1[Xj ], respectively. Although the highly intuitive nature of
the OB framework has led to its widespread popularity, the terms are difficult to interpret under model
misspecification. As such, this work aims to define a similar hierarchical decomposition framework
for explaining ML performance disparities, without making strong parametric assumptions.

There is currently no unified, nonparametric framework that obtains aggregate and detailed decompo-
sitions. Instead, solutions have been proposed for parts of the hierarchy (see Table 1): nonparametric
methods exist for the aggregate decomposition [5, 30, 48] and, assuming the causal graph is known,
detailed decompositions of the covariate shift [40, 44, 50, 38, 4, 23]. However, the causal graph is
unlikely to be known in high-dimensional settings and, more importantly, there are no methods for
simultaneously obtaining a detailed decomposition of the conditional outcome shift. There are also
methods that do not decompose the performance gap and instead describe distribution shifts in the
variables [29] or model explanations [12, 31, 23]. However, such approaches do not quantify how
such shifts ultimately contribute to an ML performance gap. We make the following contributions.

• We introduce a unified hierarchical nonparametric framework for decomposing the performance
gap of an ML algorithm (Fig 1 left). Using the concept of partial distribution shifts, we generalize
shifts with respect to variable subgroups to encompass not only covariate shifts but also conditional
outcome shifts. We then introduce a unified scoring rule for (candidate) partial shifts, which can be
used even when the causal graph is not known.

• We derive novel debiased and asymptotically normal estimators for terms in the decomposition,
which allow us to construct confidence intervals (CIs) with asymptotically valid coverage rates.

• We demonstrate the utility of our framework in real-world examples of prediction models for
hospital readmission and insurance coverage. Code for reproducing experiments is available at
https://github.com/jjfeng/HDPD.

2 A unifying framework for explaining performance gaps

Notation. Consider a prediction algorithm f : X ⊆ Rm → [0, 1] for binary outcomes Y across
source and target domains, denoted by D = 0 and D = 1, respectively. Let the performance of
f be quantified in terms of a loss function ℓ : X × {0, 1} → R, such as the 0-1 misclassification
loss 1{f(X) ̸= Y }. Suppose variables X can be partitioned into disjoint sets W ∈ Rm1 and
Z = X \W ∈ Rm2 , where m = m1 +m2. Although our framework does not require knowing the
causal ordering between variables, the interpretation is more intuitive when W is causally upstream
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Table 1: Comparison of HDPD to prior works that decompose ML performance gaps. The distin-
guishing contribution of this work is that it unifies aggregate and detailed decompositions under a
nonparametric framework with uncertainty quantification.

Papers Aggregate
decomp.

Detailed decomp. for Does not require
causal graph

Confidence
intervals

Nonparametric

p(X)-shift p(Y |X)-shift

Zhang et al. [50] ✓ ✓ ✓
Cai et al. [5] ✓ ✓ ✓ ✓
Quintas-Martinez et al. [38] ✓ ✓ ✓ ✓
Wu et al. [48] ✓ ✓ ✓
Liu et al. [30] ✓ ✓ ✓ ✓
Dodd and Pepe [11] ✓ ✓ ✓
Oaxaca [32], Blinder [3] ✓ ✓ ✓ ✓ ✓

HDPD (this paper) ✓ ✓ ✓ ✓ ✓ ✓

of Z and Y (Fig 1 right). Variables Z can be chosen to be mediators or modifiers of the effect of
the domain shift D on Y . For instance, if Z are treatment variables and W are baseline variables,
one can interpret a covariate shift as a change in the treatment policy and an outcome shift as a
change in the treatment effect across the two environments. In absence of any causal knowledge,
another option is to choose W as the variables for which one would like the expected loss given W
to be invariant across the two environments; this can be useful to promote fairness of ML algorithms
across environments. When this invariance does not hold, the framework explains how variables Z
contribute to these differences. We refer to W as baseline variables and Z as conditional covariates.
Please refer to Appendix C for more discussion on choosing W and Z as well as a summary of
notation (Table 2).

Our proposed hierarchical decomposition of an ML performance gap is based on a stratification of
distribution shifts into aggregate and partial shifts. At the aggregate level, the joint distribution of
(W,Z, Y ) can be factorized with respect to the aggregate variable groups W,Z, and Y , i.e.

pDW(W )pDZ(Z|W )pDY(Y |W,Z), (1)

where subscripts DW, DZ and DY indicate the domain of that factor. An aggregate shift substitutes a
factor from the source domain in (1) with that from the target domain, i.e. we swap the factor from
p0 to p1. A partial shift with respect to variable subset s (or an s-partial shift) shifts a factor from the
source domain in (1) only with respect to variable subset s; we denote this by swapping a factor from
p0 to ps. (We keep the precise definition of s-partial shifts purposely vague until Section 2.2.) We
denote expectations with respect to the joint distribution (1) as EDWDZDY .

The overall performance gap between domains, Λ = E111 [ℓ(W,Z, Y )]− E000 [ℓ(W,Z, Y )] , can be
decomposed hierarchically as follows. In the Appendix D, we also discuss how this decomposition
can be interpreted causally under certain conditions.

Aggregate. At the first level of the hierarchy, the framework quantifies how aggregate shifts contribute
to the performance gap individually. This leads to the decomposition Λ = ΛW + ΛZ + ΛY, where ΛW
quantifies the impact of a shift in the baseline distribution p(W ), ΛZ quantifies the impact of a shift in
the conditional covariate distribution p(Z|W ), and ΛY quantifies the impact of a shift in the outcome
distribution p(Y |W,Z). More concretely,

ΛW = E100 [ℓ]− E000 [ℓ]

ΛZ = E110[ℓ]− E100[ℓ] = E1··
[
E·10 [ℓ |W ]− E·00 [ℓ |W ]︸ ︷︷ ︸

∆·10(W )

]
ΛY = E111[ℓ]− E110[ℓ] = E11·

[
E··1 [ℓ |W,Z]− E··0 [ℓ |W,Z]︸ ︷︷ ︸

∆··0(W,Z)

]
.

The same (or similar) aggregate decompositions have also appeared in prior works [5, 30, 15, 50, 38].

Detailed. At the detailed level, each aggregate term is further broken down into variable-level
attributions. The effect of each variable can be isolated using partial shifts. However, because
variables can interact to induce complex partial distribution shifts, we define variable importance
(VI) using the Shapley attribution framework [41, 6, 31, 17], which has the benefits of satisfying
axiomatic properties such as fairness, monotonicity, and full attribution. Thus, given a real-valued
value function v that quantifies the contribution of an s-partial shift to an aggregate shift for all
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s ⊆ {1, · · · ,m}, the attribution to variable j is the average gain in value when additionally shifting
with respect to j, i.e.

ϕj :=
1

m

∑
s⊆{1,··· ,m}\j

(
m− 1

|s|

)−1

{v(s ∪ j)− v(s)}. (2)

Interpretation. Such VI values can help ML teams identify the underlying cause(s) for a performance
gap and design targeted operational and/or algorithmic interventions. For instance, a variable with
high importance to the conditional covariate shift term ΛZ may indicate differences in the variable’s
missingness rates, prevalence, or selection bias across domains. If instead the variable is highly
important to the conditional outcome shift term ΛY, it may indicate inherent differences in the
conditional distribution (i.e. effect modification), differences in measurement error or the way
outcome is defined between domains, or omission of variables predictive of the outcome. Finally,
note that variable importances should be viewed as relative to the variables included in the framework
rather than absolute importances, as one cannot include all possible explanatory variables.

To define VI values, the key question is how to define a value function v that is applicable to
different types of s-partial shifts, even when the causal graph is not known. It turns out that the
answer is far from straightforward. The next section discusses how the value function and candidate
s-partial shifts must be defined with care.

2.1 Value of partial distribution shifts

When the true causal graph is known, prior works define an s-partial covariate shift as the substitution
of nodes s with mechanisms from the target domain and its value v(s) as the difference in the average
loss, e.g. E1s0[ℓ] − E100[ℓ] [50, 38]. However, this has a number of limitations: (i) knowing the
entire causal graph is often impractical, (ii) in the absence of such a graph, this value function is not a
proper scoring rule and can assign high values to partial shifts that contradict the true causal graph
(see Example E.1 for details), and (iii) v(s) can be high even if the shift does not induce similar shifts
in the loss as the aggregate shift.

Instead, we propose to evaluate candidate s-partial shifts by how closely they approximate aggregate
shifts, using a nonparametric extension of the traditional R2 measure. In the case of conditional
covariate shifts, an aggregate shift induces a performance difference of ∆·10(W ) in strata W while
a candidate s-partial shift induces a performance difference of ∆·s0(W ) = E·s0[ℓ|W ]− E·00[ℓ|W ].
The value of this s-partial shift is then the percent variation of ∆·10 explained by ∆·s0, i.e.

vZ(s) := 1−
E1··

[
(∆·s0(W )−∆·10(W ))

2
]

E1·· [∆2
·10(W )]

. (3)

Likewise, for conditional outcome shifts, an aggregate shift induces a performance difference of
∆··1(W,Z) in strata (W,Z) while a candidate s-partial shift induces a performance difference of
∆··s(W,Z) = E··s[ℓ|W,Z]− E··0[ℓ|W,Z]. The value of this s-partial conditional outcome shift is
then defined as the percent variation of ∆··1 explained by ∆··s, i.e.

vY(s) := 1−
E11·

[
(∆··s(W,Z)−∆··1(W,Z))

2
]

E11· [∆2
··1(W,Z)]

. (4)

This formulation of the value function in terms of R2 provides a unified way to score partial
conditional covariate and outcome shifts, does not require knowledge of the true causal graph, and is
a strictly proper scoring rule under certain conditions (see Appendix E). In general, we expect the
highest scoring candidate s-partial shifts to be those that are close to the true causal graph and induce
large shifts in the ML algorithm’s loss. Finally, we acknowledge one caveat with this framework:
because some variables must be held out to define the R2 measure, we cannot score partial shifts in
the baseline variables W . We hope to close this gap in future work.

2.2 Candidate partial distribution shifts

We now present the set of candidate partial shifts considered in this work. High-level illustrations
for the candidate partial shifts are given in Fig 1 right top; more detailed illustrations are given in
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Fig 4 of the Appendix. We emphasize that these are candidates, as the true causal graph is not known.
While there are certainly other partial shifts that one may consider, many have various disadvantages.
As such, we leave the investigation of other partial shifts to future work.

s-partial conditional covariate shift: Suppose Z−s is downstream of Zs. Then ps(z|w) :=
p1(zs|w)p0(z−s|zs, w). Wu et al. [48] considered a similar proposal.

s-partial conditional outcome shift: Shifting the conditional distribution of Y only with respect to a
variable subset Zs but not Z−s requires care. We cannot simply define ps(Y |W,Z) as a function of
only W and Zs. Such a definition would imply that an s-partial shift has a non-zero effect, even in
settings with no shift in the conditional outcome distribution (i.e. p1(Y |W,Z) ≡ p0(Y |W,Z)).
Instead, we define an s-partial outcome shift based on models commonly used in model recalibra-
tion/revision [42, 34], where the modified risk (conditional probability of Y ) is a function of the risk
in the source domain Q := q(W,Z) := p0(Y = 1|W,Z), W , and Zs. That is, we define the shift as

ps(y|z, r, w) := p1(y|zs, r, w) =
∫
p1(y|z̃−s, zs, w)p1(z̃−s|zs, q(w, zs, z̃−s) = r, w)dz̃−s (5)

By defining the shifted outcome distribution solely as a function of Q,W , and Zs, any direct
effect from Z−s to Y is eliminated and ps has the desired behavior in the setting where there is no
conditional outcome shift.

3 Estimation and statistical inference

Here we discuss estimation and statistical inference for the aggregate terms (ΛW,ΛZ, and ΛY), the value
functions vZ(s) and vY(s), and the Shapley-based detailed terms ϕZ,j and ϕY,j for j ∈ (0, · · · ,m2).
One approach is to rely on plug-in estimators, which plug in estimates of conditional means (also
called outcome models) or density ratios [43], which we collectively refer to as nuisance parameters.
For instance, one can estimate the conditional means µ·10(w) = E·10[ℓ|W ] and µ·00(w) = E·00[ℓ|W ]
using ML and take the empirical mean of µ̂·10 − µ̂·00 with respect to the target domain to get a
plug-in estimator for ΛZ = E1··[µ·10 − µ·00]. However, because estimation of the true nuisance
parameters using ML typically converge at a rate slower than n−1/2, plug-in estimators generally fail
to be consistent at a rate of n−1/2 and cannot be used to construct CIs [25].

To this end, we use the method of one-step correction from semiparametric inference to derive
debiased ML estimators [45, 7]. The core idea is to subtract the first-order bias of a plug-in estimator,
which requires characterizing the canonical gradient (or efficient influence function) of the estimand
[25]. The primary technical contribution in this section is the derivation of debiased estimators for the
detailed decompositions. (Estimation and inference for the aggregate decomposition is well-studied,
as the aggregate terms can be formulated as average causal effects.) Due to space limitations, this
section only presents estimators for the detailed decomposition of the conditional outcome shift. This
estimand is particularly interesting, as its unique structure is not amenable to standard techniques
for debiasing ML estimators. We refer the reader to the Appendix for derivations, pseudocode, and
proofs for all the estimators.

Notation. Let PD denote the expectation with respect to domain D. For ease of exposition, suppose
the number of IID observations from each domain is the same, denoted by n. We present split-sample
estimators, though the results can be readily extended using cross-fitting [7, 25]. Let the data be
randomly split into “training” and “evaluation” partitions. Let PD,n denote the empirical average in
the evaluation partition for domain D. All estimated quantities are denoted using hat notation.

3.1 Value of s-partial conditional outcome shifts

Here we describe the high-level steps for deriving a debiased estimator for vY(s), the value of a
candidate s-partial conditional outcome shift. The following section describes a computationally
efficient procedure for combining such estimates to obtain Shapley values.

Standard recipes for deriving asymptotically normal, nonparametric-efficient estimators rely on
pathwise differentiability of the estimand and analyzing its efficient influence function [25]. However,
vY(s) is not pathwise differentiable because it is a function of (5), which conditions on the source risk
q(w, z) equalling some value r. Taking the pathwise derivative of vY(s) requires taking a derivative
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of the indicator function 1{q(w, z) = r}, which generally does not exist. Given the difficulties in
deriving an asymptotically normal estimator for vY(s), we propose estimating a close alternative that
is pathwise differentiable.

The idea is to replace q in (5) with its binned variant qbin(w, z) = 1
B ⌊q(w, z)B + 1

2⌋ for some
B ∈ Z+, which discretizes outputs from q into B disjoint bins. As long as B is sufficiently high, the
binned version of the estimand, denoted vY,bin(s), is a close approximation to vY(s). (We use B = 20
in the empirical analyses, which we believe to be sufficient in practice.) The benefit of this binned
variant is that the derivative of the indicator function 1{qbin(w, z)=r} is zero almost everywhere as
long as observations with source risks exactly equal to a bin edge have measure zero. More formally,
we require the following:
Condition 3.1. Let Ξ be the set of (W,Z) such that q(W,Z) falls precisely on some bin edge and is
not equal to zero or one. The set Ξ is measure zero.

Under this condition, vY,bin(s) is pathwise differentiable and, using one-step correction, we derive a
debiased ML estimator that has the unique form of a V-statistic (this follows from the integration
over “phantom” z̃−s in (5)). We represent V-statistics using the operator P1,nP̃1,n, which takes the
average over all pairs of observations Oi with replacement, i.e. 1

n2

∑n
i=1

∑n
j=1 g(Oi, Oj) for some

function g. Calculation of this estimator and its theoretical properties are as follows.

Estimation. Using the training partition, estimate the outcome models µ··D(W,Z) = E··D[ℓ|W,Z]
for D = 0, 1, the shifted outcome model µ··s(W,Z) = E··s[ℓ|W,Z]; and the density ratio mod-
els π110(W,Z) = p1(W,Z)/p0(W,Z) and π(W,Zs, Z−s, Qbin) = p1(Z−s|W,Zs, qbin(W,Z) =
Qbin)/p1(Z−s). The outcome and density ratio models can be fit using ML-based regression models
and probabilistic classifiers [43], respectively (see Section H for details). The estimator for vY,bin(s)
is the ratio v̂Y,bin(s) = v̂numY,n(s)/v̂

den
Y,n , where the numerator and denominator are estimated using the

evaluation partition as

v̂numY,n(s) = P1,nξ̂s(W,Z)2 + 2 P1,nξ̂s(W,Z)(ℓ− µ̂··1(W,Z))

− 2 P1,nP̃1,nξ̂s(W,Zs, Z̃−s)ℓ(W,Zs, Z̃−s, Y )π̂(W,Zs, Z̃−s, Qbin)

+ 2 P1,nP̃1,nξ̂s(W,Zs, Z̃−s)µ̂··s(W,Zs, Z̃−s)π̂(W,Zs, Z̃−s, Qbin) (6)

v̂denY,n = P1,n (µ̂··1(W,Z)− µ̂··0(W,Z))2 + 2 P1,n (µ̂··1(W,Z)− µ̂··0(W,Z)) (ℓ− µ̂··1(W,Z))

− 2 P0,n (µ̂··1(W,Z)− µ̂··0(W,Z)) (ℓ− µ̂··0(W,Z))π̂110(W,Z), (7)

where ξ̂s(W,Z) = µ̂··1(W,Z)− µ̂··s(W,Z). Note that the first terms in (6) and (7) are the plug-in
estimates, followed by additional terms that correct its bias.

Inference. This estimator is asymptotically normal assuming the estimators for the nuisance parame-
ters converge at a fast enough rate, per the following theorem.
Theorem 3.2. Suppose Condition 3.1 holds. For variable subset s, suppose the density ratios
π(W,Zs, Z−s, Qbin) and π110(W,Z) are bounded; denominator in case of no shift vdenY (∅) > 0;
estimator π̂ is consistent; estimators µ̂··0, µ̂··1 and µ̂··s converge at an op(n−1/4) rate, and

P1(q̂bin − qbin)2 = op(n
−1) (8)

P1(µ··s − µ̂··s)(π − π̂) = op(n
−1/2), P0(µ··0 − µ̂··0)(π110 − π̂110) = op(n

−1/2) (9)

Then the estimator v̂Y,bin(s) is asymptotically normal centered at the estimand vY,bin(s).

Note that the product terms in (9) mean that the estimator converges to normal at n−1/2-rate even if
one of the nuisance parameters is estimated at a rate slower than n−1/2. Hence, it is multiply-robust to
nuisance model misspecification. A convergence rate of op(n−1/4) can be achieved by ML estimators
in a wide variety of conditions, and such assumptions are commonly used to construct debiased ML
estimators. The additional requirement in (8) that q̂bin converges at a op(n−1) rate is new, but fast or
even super-fast convergence rates of binned risks is achievable under suitable margin conditions [2]
such as Condition G.7 in the Appendix.

3.2 Shapley values

Calculating the exact Shapley value is computationally intractable as it involves an exponential
number of terms. However, Williamson and Feng [47] showed that calculating the exact Shapley
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Figure 2: (a) Coverage rates of 90% CIs for value of s-partial shifts for the conditional covariate (first
column) and outcome shifts (second column) across dataset sizes n. Dashed horizontal line indicates
90% coverage rate. (b) Comparison of variable importance reported by proposed method HDPD
(debiased) versus existing methods for conditional covariate and outcome shift terms.

value is unnecessary for the purposes of statistical inference. Because there is inherent uncertainty in
estimates of the value functions v(s), one only needs to sample and estimate the values for enough
variable subsets such that the uncertainty due to estimation dominates that due to subset sampling.
This leads to a drastic reduction in computation time: Williamson and Feng [47] proves that the
number of subsets one needs to sample only needs to be linear or super-linear in the total number
of observations n. Using this result, Algorithm 4 outlines a computationally efficient procedure for
estimation and inference of the detailed decomposition.

4 Simulation

We now present simulations to show that the proposed procedure achieves the desired coverage
rates (Section 4.1) and illustrate how the HDPD framework provides more intuitive explanations
of performance gaps (Section 4.2). In all empirical analyses, performance of the ML algorithm is
quantified in terms of 0-1 accuracy. Below, we briefly describe the simulation settings; full details are
provided in Section I in the Appendix.

4.1 Verifying theoretical properties

We first verify that the inference procedures for the decomposition terms have CIs with coverage close
to their nominal rate. We check the coverage of the aggregate decomposition as well as the value
of s-partial conditional covariate and partial conditional outcome shifts for s = {Z1}, {Z2}, {Z3}.
(W,Z1, Z2, Z3) are sampled from independent normal distributions with different means in source
and target, while Y is simulated from logistic regression models with different coefficients. CIs for
the debiased ML estimator converge to the nominal 90% coverage rate with increasing sample size,
whereas those for the naïve plug-in estimator do not (Fig 2a and Fig 6).

4.2 Comparing explanations

We now compare the proposed definitions for the detailed decomposition with existing methods. For
the detailed decomposition due to conditional covariate shift, the comparators are:

• MeanChange Tests for a difference in means for each feature. Defines importance as 1− p-value.
• Oaxaca-Blinder: Fits a linear model of the logit-transformed expected loss with respect to Z in

the source domain. Defines importance of Zi as its coefficient multiplied by the difference in the
means of Zi [32, 3].

• WuShift [48]: Defines importance of subset s as change in overall performance due to s-partial
conditional covariate shifts. Applies Shapley framework to obtain VIs.

7



(a) Readmission risk (General→Heart Failure) (b) Insurance coverage (NE→LA)

Figure 3: Aggregate and detailed decompositions for performance gaps of (a) a model predicting
readmission risk across patient populations and (b) a model predicting insurance coverage across US
states. A subset of VI estimates is shown; see full list in Section J in the Appendix.

For the detailed decomposition due to conditional outcome shifts, we compare against:

• ParametricChange: Fits a logistic model for Y with interaction terms between domain and Z.
Defines importance of Zi as the coefficient of its interaction term.

• ParametricAcc: Same as ParametricChange but models the 0-1 loss rather than Y .
• RandomForestAcc: Compares VI of random forest models trained on data from both domains

with input features D, Z, and W to predict the 0-1 loss.
• Oaxaca-Blinder: Fits linear models for the logit-transformed expected loss in each domain.

Defines importance of Zi as its mean in the target domain multiplied by the difference in its
coefficients across domains.

Although the proposed method may agree with these other methods on the top features in certain data
settings, we highlight important situations where the methods differ.

Conditional covariate. (Fig 2b(i)) We simulate (W,Z1) from a standard normal distribution,
Z2 from a mixture of two Gaussians whose means depend on the value of Z1 (i.e. Z1 → Z2),
and Y from a logistic regression model depending on (W,Z1, Z2). We induce a shift from the
source domain to the target domain by shifting only the distribution of Z1, so that p1(Z|W ) =
p0(Z2|Z1,W )p1(Z1|W ). Only the proposed estimator correctly recovers that Z1 is more important
than Z2, as the {1}-partial conditional covariate shift explains all the variation in performance gaps
across strata W (i.e. the corresponding R2-based value function vZ({1}) is equal to 1). The other
methods incorrectly assign higher importance to Z2. MeanChange only measures shifts but not
loss due to shifts, Oaxaca-Blinder uses a misspecified linear model, and WuShift estimates the
performance change due to hypothesized s-partial shifts but does not check if the partial shifts are
good explanations in the first place.

Conditional outcome. (Fig 2b(ii)) W and Z ∈ R4 are simulated from the same distribution in
both domains. Y is generated from a logistic regression model with coefficients for (W,Z1, · · · , Z4)
as (0.5, 0.5, 1, 0.3, 0.3) in the source and (0.5, 0.3, 1, 1.3,−0.1) in the target. Interestingly, none of
the methods have the same ranking of the features. ParametricChange identifies Z1 as having
the largest shift on the logit scale, but this does not mean that it is the most important explanation
for changes in the loss. According to our decomposition framework, Z3 is actually the most
important for explaining changes in model performance due to outcome shifts. Oaxaca-Blinder,
ParametricAcc, and RandomForestAcc have odd behavior. Oaxaca-Blinder assigns Z3 second
to the lowest importance and ParametricAcc assigns Z2 the highest importance), likely because
they misspecify the outcome models. RandomForestAcc likely ranks Z2 highly because its VI
values quantify which variables are good predictors of performance, not performance shift.

A more objective evaluation is to compare the performance of fixes based on the different explanations.
To this end, we re-fit the ML algorithm in the target domain with respect to input features Q,W ,
and the top variables Zs from each explanation. We find that model revisions based on the proposed
method achieve the highest performance gain (Table 3 in Appendix).
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5 Real-world data case studies

We now demonstrate applicability of the framework on two datasets with naturally-occurring shifts.

Hospital readmission. Using electronic health record data from the Zuckerberg San Francisco
General Hospital, we analyzed performance of a Gradient Boosted Tree (GBT) trained on the general
patient population (source) to predict 30-day readmission risk but applied to patients diagnosed with
heart failure (HF, target). Features include 4 demographic variables (W ) and 16 diagnosis codes (Z).
Each domain supplied n = 3750 observations from which we keep 20% in the evaluation partition.

Model accuracy drops from 70% to 53% in HF population. From the aggregate decompositions
(Fig 3a), we observe that the drop is mainly due to covariate shift. If one performed the standard
check to see which variables significantly changed in their mean value (MeanChange), then one
would find a significant shift in nearly every variable. Little support is offered to identify main drivers
of the performance drop. In contrast, the detailed decomposition from the proposed framework
estimates diagnoses “Drug-induced or toxic-related condition” and “Mental & substance use disorder
in remission” as having the highest estimated contributions to the conditional covariate shift, and most
other variables having little to no contribution. Upon discussion with clinicians from this hospital,
differences in the top two diagnoses may be explained by (i) substance use being a major cause of HF
at this hospital, with over eighty percent of its HF patients reporting current or prior substance use,
and (ii) substance use and mental health disorders often occurring simultaneously in this HF patient
population. Based on these findings, closing the performance gap may require a mixture of both
operational (e.g. care programs centered around substance use) and algorithmic interventions (e.g.
reweighting data with respect to the top two features). Finally, CIs from the debiased ML procedure
provide valuable information on the uncertainty of the estimates and highlight, for instance, that more
data is necessary to determine the true ordering between the top two features. In contrast, existing
methods do not provide (asymptotically valid) CIs.

ACS Public Coverage. We analyze a neural network trained to predict whether a person has public
health insurance using data from Nebraska in the American Community Survey (source, n = 3000),
applied to data from Louisiana (target, n = 6000). Baseline variables include 3 demographics (sex,
age, race), and covariates Z include 31 variables related to health conditions, employment, marital
status, citizenship status, and education.

Model accuracy drops from 84% to 66% across the two states. The main driver is the shift in the
outcome distribution per the aggregate decomposition (Fig 3b) and the most important contributor
to the outcome shift is annual income, perhaps due to differences in cost of living across the two
states. Income is significantly more important than all the other variables; the ranking between the
remaining variables is unclear. In comparing the performance of targeted model revisions, we find
that revising the model based on top variables identified by the proposed procedure leads to AUCs
that are better or as good as those based on RandomForestAcc (Table 4 in the Appendix).

6 Prior work

Describing distribution shifts. This line of work focuses on detecting and localizing which distribu-
tions shift between datasets [29, 39]. Budhathoki et al. [4] identify the main variables contributing
to a distribution shift via a Shapley framework, Kulinski and Inouye [28] fits interpretable optimal
transport maps, and Liu et al. [30] finds the region with the largest shift in the conditional out-
come distribution. However, these works do not quantify how these shifts contribute to changes in
performance, the metric of practical importance.

Explaining loss differences across subpopulations. Understanding differences in model perfor-
mance across subpopulations in a single dataset is similar to understanding differences in model
performance across datasets, but the focus is typically to find subpopulations with poor performance
rather than to explain how distribution shifts contributed to the performance change. Existing ap-
proaches include slice discovery methods [35, 22, 10, 13] and structured representations of the
subpopulation using e.g. Euclidean balls [1].

Attributing performance changes. Prior works have described similar aggregate decompositions of
the performance change into covariate and conditional outcome shift components [5, 36]. To provide
more granular explanations of performance shifts, existing works on causal attribution [50, 38] and
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mediation analysis [44] quantify the importance of shifts in each variable assuming the causal graph is
correctly specified; covariate shifts restricted to variable subsets assuming that the partial shifts follow
a particular structure [48]; and conditional shifts in each variable assuming a parametric model [11].
However, the strong assumptions made by these methods make them difficult to apply in practice,
and model misspecification can lead to unintuitive interpretations. Furthermore, such methods do not
provide hierarchical decompositions, i.e. VIs for each type of shift. Decomposition methods such
as Oaxaca-Blinder similarly make strong parametric assumptions [32, 3, 16, 14, 49, 15], which is
inappropriate for the complex data settings in ML. In addition, there is no unifying nonparametric
framework for decomposing both covariate and outcome shifts, and many methods do not output CIs,
which is important when the amount of labeled data from a given domain is limited. A summary of
how the proposed framework compares against prior works is shown in Table 1.

7 Discussion

ML algorithms regularly encounter distribution shifts in practice, leading to drops in performance.
We present a novel framework that helps ML developers and deployment teams build a more
nuanced understanding of the shifts. Compared to past work, the approach provides a nonparametric
hierarchical framework for decomposing both conditional covariate and outcome shifts, does not
require fine-grained knowledge of the causal relationship between variables, and quantifies the
uncertainty of the estimates by constructing confidence intervals. We present real-world case studies
to demonstrate how this framework can help diagnose performance drops and guide corrective actions.
This framework requires overlapping support of the covariates, which may not always be applicable
in practice. In such cases, one solution is to restrict to the common support [5].

Important extensions of this work include decompositions of more complex measures of model
performance such as AUC and analyzing other factorizations of the data distribution (e.g. label/prior
shifts [27]). For unstructured data (e.g. image and text), the current framework can be applied to
low-dimensional embeddings or by extracting interpretable concepts [26]; more work is needed to
directly analyze unstructured data. Finally, while the focus of this work is to interpret performance
gaps, future work may take this work one step further to design optimal interventions for closing the
performance gap.
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A Appendix

Contents of the Appendix are as follows.

• Table 2 collects all the notation used for reference.

• Section B discusses broader impacts of the work.

• Algorithms 1 and 4 provide the steps required for computing the aggregate and detailed decomposi-
tion respectively. Detailed decompositions require computing the value of s-partial conditional
outcome and conditional covariate shifts which is described in Algorithms 2 and 3.

• Section C discusses considerations for choosing baseline variables W and conditional covariates Z.

• Section D describes a causal interpretation of the aggregate and detailed decompositions as effects
of stochastic (or shift) interventions on a structural causal model.

• Section E explain why value functions in prior work give unintuitive attribution and that the
R2-based value functions are proper scoring rules.

• Section F describes the estimation and inference for aggregate decomposition and detailed decom-
position of conditional covariate shift.

• Section G provides the derivations of the results.

• Sections H and I describe the implementation and simulation details.

• Section J provides additional details on the two real world datasets and results.

B Broader impacts

This work presents a method for understanding failures of ML algorithms when they are deployed in
settings or populations different from the ones in development datasets. Therefore, the work can be
used to suggest ways of improving the algorithms or mitigating their harms. The method is generally
applicable to tabular data settings for any classification algorithm, hence, it can potentially be applied
across multiple domains where ML is used including medicine, finance, and online commerce.

Care must be taken while interpreting the results. As usual, assumptions underlying the decompo-
sitions such as the coarse causal ordering between the variables W,Z, and Y should be validated
through domain knowledge.

Algorithm 1 Aggregate decompositions into baseline, conditional covariate, and conditional outcome
shifts
Input: Source and target data {(W (d)

i , Z
(d)
i , Y

(d)
i )}nd

i=1 for d ∈ {0, 1}, loss function ℓ(W,Z, Y ; f).
Output: Performance change due to baseline, conditional covariate, and conditional outcome shifts

ΛW,ΛZ,ΛY.
1 Split source and target data into training Tr and evaluation Ev partitions. Let nEv be the total number

of data points in the Ev partition.

2 Fit nuisance parameters ηW, ηZ, ηY, defined in Section G.1, on the Tr partition as outlined in
Section H.1.

3 Estimate ΛW,ΛZ,ΛY using fitted nuisance parameters on the Ev partitions following the equations in
Section F.1.

4 Estimate variance of influence functions ψW(d,w, z, y; η̂N), ψZ(d,w, z, y; η̂N), and ψY(d,w, z, y; η̂N)
as defined in (23), (24), and (25), respectively.

5 Compute α-level confidence intervals as Λ̂N±z1−α/2

√
v̂ar(ψN(d,w, z, y; η̂N))/nEv for N ∈ {W, Z, Y},

where z is the inverse CDF of the standard normal distribution.
6 return Λ̂W, Λ̂Z, Λ̂Y and confidence intervals
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Table 2: Notation
Symbol Meaning

W,Z, Y Variables: Baseline, Conditional covariates, Outcome
f Prediction model being analyzed
ℓ(W,Z, Y ) or ℓ Loss function e.g. 0-1 loss
D = 0 and D = 1 Indicators for source and target domain
p0, p1 Probability density (or mass) function for the two domains D = 0, 1
ps Probability density (or mass) function when only variable subset s shifts

from source to target
EDWDZDY Expectation over the distribution pDW(W )pDZ(Z|W )pDY(Y |W,Z)
Q := q(W,Z) Source domain risk at W,Z, i.e. p0(Y = 1|W,Z)
Tr and Ev Training dataset used to fit models and evaluation dataset used to compute

decompositions
ϕZ,j and ϕY,j Shapley values for variable j in the detailed decomposition of conditional

covariate and outcome shifts
vZ(s) and vY(s) Value of a subset s for s-partial conditional covariate shift and s-partial

outcome shift
vnum· (s) and vden· (s) Numerator and denominator of the ratio defined in the value of a subset
Models µ· Outcome models for the conditional expectation of the loss across differ-

ent settings
Models π· Density ratio models for feature densities across datasets
P Notation for expectation
P0,n and P1,n sample average over source and target data in the evaluation dataset
ψ(d,w, z, y) Influence function defined in the linear approximation of an estimand,

see e.g. (22)

Algorithm 2 VALUECONDITIONALOUTCOME(S): Value for s-partial conditional outcome shift for
a subset s
Input: Training Tr and evaluation Ev partitions of source and target data, subset of variables s.
Output: Value for s-partial conditional outcome shift for subset s.

1 Fit nuisance parameters ηnumY,s , η
den
Y , defined in Sections G.3, on the Tr partitions as outlined in H.2.

2 Estimate vY(s) by v̂numY (s)/v̂denY where v̂numY (s) is estimated using (6) and v̂denY is estimated using (7)
on the Ev partition.

3 Estimate variance of influence function ψY,bin,s(d,w, z, y; η̂
num
Y,s , η̂

den
Y ) as defined in (74).

4 Compute α-level confidence interval as v̂Y(s)± z1−α/2

√
v̂ar(ψY,bin,s(d,w, z, y; η̂numY,s , η̂

den
Y ))/nEv.

5 return v̂Y(s) and confidence interval

Algorithm 3 VALUECONDITIONALCOVARIATE(S): Value for s-partial conditional covariate shift
for a subset s
Input: Training Tr and evaluation Ev partitions of source and target data, subset of variables s.
Output: Value for s-partial conditional covariate shift for subset s.

1 Fit nuisance parameters ηnumZ,s , defined in Sections G.2, on the Tr partition, as outlined in H.3.

2 Estimate vZ(s) by v̂numZ (s)/v̂numZ (∅) using (21) on the Ev partition.

3 Estimate variance of influence function ψZ,s(d,w, z, y; η̂
num
Z,s ) as defined in (41).

4 Compute α-level confidence interval as v̂Z(s)± z1−α/2

√
v̂ar(ψZ,s(d,w, z, y; η̂numZ,s ))/n

Ev.

5 return v̂Z(s) and confidence interval
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Algorithm 4 Detailed decomposition for conditional outcome and covariate shift

Input: Source and target data {(W (d)
i , Z

(d)
i , Y

(d)
i )}nd

i=1 for d ∈ {0, 1}, loss function ℓ(W,Z, Y ; f),
γ ∈ R+.

Output: Detailed decomposition for conditional outcome or covariate shift, {ϕY,j : j = 0, · · · ,m2}
or {ϕZ,j : j = 1, · · · ,m2}.

1 Split source and target data into training Tr and evaluation Ev partitions. Let nEv be the total number
of data points in the Ev partition.

2 Subsample ⌊γnEv⌋ subsets from Z = {1, · · · ,m2} with respect to Shapley weights, including ∅ and
Z , denoted s1, · · · , sk.

3 Estimate vY(s) ← VALUECONDITIONALOUTCOME(S) and vZ(s) ← VALUECONDITIONALCO-
VARIATE(S) for s ∈ s1, · · · , sk.

4 Get estimated Shapley values {ϕY,j} and {ϕZ,j} by solving constrained linear regression problems in
(7) in Williamson and Feng [47] with value functions vY(s) and vZ(s), respectively.

5 Compute confidence intervals based on the influence functions defined in Theorem 1 in Williamson
and Feng [47].

6 return Shapley values {ϕY,j : j = 0, . . . ,m2} and {ϕZ,j : j = 1, . . . ,m2} and confidence intervals

C Considerations for the choice of W and Z variables

We suppose that variables X are partitioned into baseline variables W and conditional covariates
Z. We suggest selecting Z to be the variables that may act as mediators of the environment shift
and/or variables whose associations with Y are likely to be modified by the environment shift (i.e.
effect modification). This selection can be chosen based on a high-level causal graph, where W are
variables known to be upstream of Z. For instance, if Z are treatment variables and W are baseline
variables, one can interpret a covariate shifts as a change in the treatment policy and an outcome shift
as a change in the treatment effect across the two environments.

In the absence of any prior knowledge, another option is to choose W as the variables for which
one would like the expected loss given W to be invariant across the two environments; this can be
useful to promote fairness of ML algorithms across environments. When this invariance does not
hold, the proposed framework explains how variables Z contribute to these differences, which can
inform efforts to eliminate performance gaps. This last option is similar to how variables are typically
chosen in disparity analyses [21]. For instance, to understand why income differs between males and
females controlling for age, one would set domain to D = gender, W = age, and Z as variables that
may explain this disparity (e.g. marital status, employment status).

In general, including more variables in W and Z to explain the performance difference is preferable.
Nevertheless, there are tradeoffs. For instance, including more variables in W leads to higher
variance of ∆·10(W ), so it allows one to better distinguish the relative importance of variables in
Z for explaining its variability. On the other hand, when more variables are assigned to W , the
performance gap with respect to W (∆·10(W )) is a more complex function. Thus we may have
more uncertainty in our estimate of ∆·10(W ), which may lead to wider confidence intervals for the
variable importance values.

D Causal interpretation of aggregate and detailed decompositions

Partial distribution shifts that we define in the framework can be equivalently described as stochastic
(or shift) interventions in a structural causal model (SCM) respecting a causal directed acyclic graph
(DAG) [8]. To represent an intervention on variable X , we use regime indicator σX which means
that the conditional probability distribution for X in the SCM has been updated to a new one [9].

Suppose that the source and target data (W,Z, Y ) are generated by SCMs respecting the same DAG
G in Figure 4 with no unmeasured confounders. Intervening on a variable in source SCM sets its
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Figure 4: Decomposition framework for explaining the performance gap from source to target domain,
visualized through causal directed acyclic graphs. Aggregate decompositions describe the incremental
effect of stochastic interventions on each aggregate variable’s distribution at the source with that in
the target, indicated by regime indicators σW, σZ, and σY. Detailed decompositions quantify how well
candidate partial distribution shifts explain the variability of performance gaps across strata. The
candidate partial shifts considered in this work are shown in the DAGs on the right. An s-partial
conditional covariate shift is a stochastic intervention on variable subset Zs. An s-partial conditional
outcome shift is a stochastic intervention on variable Y , in which the conditional outcome distribution
fine-tunes the risk in the source domain (indicated by the additional node Q = p0(Y = 1|W,Z))
with respect to Zs.

conditional distribution to the corresponding one in the target SCM. Under the assumption of no
unmeasured confounders, we have

p0(V ;σX) =
∏

Vi∈V \X

p0(Vi|paG(Vi);σX)
∏

Vi∈X

p1(Vi|paG(Vi)) (10)

for any variable set V where paG denotes parents in G. Therefore, the target data is obtained by
intervening on all the variables p0(W,Z, Y ;σW, σZ, σY) = p1(W,Z, Y ). Expectation E is taken over
the source distribution or its shifted version based on the specified regime indicator.

Aggregate decompositions can then be written as causal effect of intervening on W,Z, Y incremen-
tally as follows

ΛW = E[ℓ|σW]− E[ℓ]
ΛZ = E[ℓ|σW, σZ]− E[ℓ|σW]
ΛY = E[ℓ|σW, σZ, σY]− E[ℓ|σW, σZ]

Due to the factorization (10), the above are equivalent to aggregate decompositions presented in
Section 2.

For detailed decomposition of the conditional covariate shift, assume the causal DAG in Figure
4 with Zs → Z−s for variable subset s. The s-partial conditional covariate shift is represented
by p0(V ;σZs) and, under the factorization (10), is equivalent to the one considered in Section 2.2.
Thus, the performance difference ∆·s0(W ) can be equivalently written as E[ℓ|W ;σZs ]−E[ℓ|W ] and
∆·10(W ) as E[ℓ|W ;σZ]− E[ℓ|W ]. The value function is then

vZ(s) := 1−
E
[
(∆·s0(W )−∆·10(W ))

2
;σW

]
E [∆2

·10(W );σW]
.

The s-partial conditional outcome shift corresponds to a stochastic intervention that changes the
distribution of Y to (5). Denoting it as p0(V ;σY,Zs), the performance difference ∆··s(W,Z) can be
equivalently written as E[ℓ|W,Z;σY,Zs ]− E[ℓ|W,Z] and ∆··1(W,Z) as E[ℓ|W,Z;σY]− E[ℓ|W,Z].
The value function (4) is then

vY(s) := 1−
E
[
(∆··s(W,Z)−∆··1(W,Z))

2
;σW, σZ

]
E [∆2

··1(W,Z);σW, σZ]
. (11)
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E Proper scoring rules for partial distribution shift

Prior works have considered scoring rules for partial distribution shifts in terms of their change in the
average loss [48]. For instance, for conditional covariate shifts, prior works have considered scoring
rules of the form

E1s0[ℓ]− E100[ℓ] =

∫
ℓ(Y, f(Z,W )) (ps(z|w)− p0(z|w)) p1(w)dzdw. (12)

However, in the absence of a detailed causal graph, we show that this can lead to unintuitive
attributions. Consider the following counterexample. We drop W from the data example for
simplicity of exposition.
Example E.1. Consider the following data-generating process with random variables Z1 and Z2, a
real-valued outcome Y , and loss function as squared error ℓ = (f(Z1, Z2)− Y )2:

Z1 ∼ N (D + 1, 1) (13)
Z2 = |Z1| (14)
ϵ ∼ N(0, 1) (15)
Y = Z1 + Z2 + ϵ1{Z1 ≤ 0} (16)

where D = 0 and D = 1 correspond to the source and target domains, respectively. Suppose
the ML model is the optimal model for minimizing the expected loss in the source domain, i.e.
f(Z1, Z2) = Z1 + Z2. Consider the following candidate partial distribution shifts for explaining
the performance change, where Option 1 hypothesizes Z1 causes Z2 and Option 2 hypothesizes Z2

causes Z1.

(Option 1) For s = {1}, ps(Z) = p1(Z1)p0(Z2|Z1)

(Option 2) For s = {2}, ps(Z) = p1(Z2)p0(Z1|Z2)

Per the given data-generating process, the partial shift in Option 1 exactly corresponds to the true
(aggregate) dataset shift; thus we would expect it to have a higher value than Option 2. Nevertheless,
the MSE resulting from Option 2’s shift is 0.5 (the marginal distribution of Z1 under Option 2 is
symmetric around 0). In contrast, the MSE resulting from Option 1’s shift is the probability that a
standard normal variable is less than -1, which is 0.159.

In Example E.1, scoring rule (12) assigns a higher value to a partial shift that contradicts the true
causal graph than even the true aggregate shift, because the rule assumes the hypothesized dataset
shift is true. Consequently, (12) is not a proper scoring rule. In contrast, the proposed value functions
described in Section 2.1 are.

More formally, we extend the traditional definition for a proper scoring rule [18] to the context of
explaining performance changes as follows. Let a scoring function χ : O0 × O1 × Q be defined
as a function of source observation O0 = (W0, Z0, Y0), target observation O1 = (W1, Z1, Y1),
and candidate shift probability model Q. A scoring rule χ is proper with respect to the set of
distribution shift modelsF if the following holds: for any true model of the post-shift data distribution
p∗(W,Z, Y ) ∈ F , the expectation of the scoring function χ(O0, O1, p

∗) with respect to O0 ∼ p0
and O1 ∼ p∗ is always no smaller than the expectation of χ(O0, O1, p) for any p ∈ F , i.e.

Ep0,p∗ [χ(O0, O1, p
∗)] ≥ Ep0,p∗ [χ(O0, O1, p)] ∀p ∈ F (17)

Moreover, we say that χ is strictly proper if (17) holds with equality iff p = p∗.

Let FZ be the set of candidate s-partial conditional covariate shifts p·s0 and FY be the set of candidate
s-partial conditional outcome shifts p··s, i.e.

FZ = {p·s0(y, z|w) = p0(y|z, w)ps(z|w) : s ⊆ {1, · · · ,m2}}
FY = {ps(y|z, w) : s ⊆ {1, · · · ,m2}} .

Then, vZ defined in (3) is a proper scoring rule with respect to FZ, as vZ attains its largest value when
∆·s0 ≡ ∆·10, which holds when p·s0 matches the true covariate-only distribution shift model p·10.
Similarly, vY defined in (4) is a proper scoring rule with respect to FY. Moreover, these are strictly
proper scoring rules as long as the conditional expectation of the losses of candidate distribution
shifts are not adversarially aligned. That is, under the assumptions that

E·s0 [ℓ|W ] ≡ E·10 [ℓ|W ] ⇐⇒ p·s0 ≡ p·10 ∀p·s0 ∈ FZ (A.1)
E··s [ℓ|W,Z] ≡ E··1 [ℓ|W,Z] ⇐⇒ p··s ≡ p··1 ∀p··s ∈ FY (A.2)
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vZ and vY are strictly proper scoring rules with respect to FZ and FY, respectively. As the candidate
distribution shifts considered in this work are functionals of the observed distribution shift and
observed distribution shifts are unlikely to be adversarial in many real-world situations, Assumptions
(A.1) and (A.2) are likely reasonable in practice.

F Estimation and Inference

Let {(W (d)
i , Z

(d)
i , Y

(d)
i ) : i = 1, · · · , nd} denote nd independent and identically distributed (IID)

observations from the source and target domains d = 0 and 1, respectively. Let a fixed fraction of
the data be partitioned towards “training” (Tr) and the remaining to “evaluation” (Ev); let nEv be
the number of observations in the evaluation partition. Let Pd denote the expectation with respect
to domain d and Pd,n denote the empirical average over observations in partition Ev from domain
d = {0, 1}.

F.1 Aggregate decomposition

The aggregate decomposition terms can be formulated as an average treatment effect, a well-studied
estimand in causal inference, where domain D corresponds to treatment. As such, one can use
augmented inverse probability weighting (AIPW) to define debiased ML estimators of the aggregate
decomposition terms (e.g. Kang and Schafer [24]). We review estimation and inference for these
terms below.

Estimation. Using the training data, estimate outcome models µ·00(W ) = E·00[ℓ|W = w] and
µ··0(W,Z) = E[ℓ|W,Z] and density ratio models π100(W ) = p1(W )/p0(W ) and π110(W,Z) =
p1(W,Z)/p0(W,Z). The debiased ML estimators for ΛW,ΛZ,ΛY are

Λ̂W =P0,n (ℓ− µ̂·00(W )) π̂100(W ) + P1,nµ̂·00(W )− P0,nℓ

Λ̂Z =P0,n (ℓ− µ̂··0(W,Z)) π̂110(W,Z) + P1,nµ̂··0(W,Z)

− P0,n (ℓ− µ̂·00(W )) π̂100(W )− P1,nµ̂·00(W )

Λ̂Y =P1,nℓ− P0,n (ℓ− µ̂··0(W,Z)) π̂(W,Z)− P1,nµ̂0(W,Z)

Inference. Assuming the estimators for the outcome and density ratio models converge at a fast
enough rate, the AIPW estimators for the aggregate decomposition terms are asymptotically linear
and, thus, facilitate the construction of CIs.

Theorem F.1. Suppose π100 and π110 are bounded; estimators µ̂·00, π̂··0, π̂100, and π̂110 are
consistent; and

P0 (µ̂·00 − µ·00) (π̂100 − π100) = op(n
−1/2)

P0 (µ̂··0 − µ··0) (π̂110 − π110) = op(n
−1/2).

Then Λ̂W, Λ̂Z, and Λ̂Y are asymptotically linear estimators of their respective estimands.

F.2 Value of s-partial conditional covariate shifts

Estimation. Using the training partition, estimate the density ratio π1s0(zs, w) =
p1(zs, w)/p0(zs, w) and the outcome models

µ·0−s0(zs, w) = E·00[ℓ|zs, w] =
∫ ∫

ℓp0(y|w, z)p0(z−s|zs, w)dydz−s (18)

µ·10(w) = E·10[ℓ|w] (19)

µ·s0(w) = E·s0[ℓ|w] =
∫ ∫ ∫

ℓp0(y|w, z)p0(z−s|zs, w)p1(zs|w)dydz−sdzs, (20)
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in addition to the other nuisance models previously mentioned. We propose the estimator v̂Z(s) =
v̂numZ (s)/v̂denZ , where

v̂numZ (s) :=P1,n(µ̂·s0(W )− µ̂·10(W ))2

+ 2P0,n(µ̂·s0(W )− µ̂·10(W ))(ℓ− µ̂·0−s0(W,Zs))π̂1s0(W,Zs)

− 2P0,n(µ̂·s0(W )− µ̂·10(W ))(ℓ− µ̂··0(W,Z))π̂110(W,Z)

+ 2P1,n(µ̂·s0(W )− µ̂·10(W ))(µ̂·0−s0(W,Zs)− µ̂·s0(W ))

− 2P1,n(µ̂·s0(W )− µ̂·10(W ))(µ̂··0(W,Z)− µ̂·10(W ))

(21)

and v̂denZ := v̂numZ (∅).
Inference. The estimator is asymptotically normal as long as the outcome and density ratio models
are estimated at a fast enough rate defined formally as follows.

Condition F.2. For variable subset s, suppose the following holds

• P0(µ001(W )− µ01(W ))2 is bounded

• P0(µ·0−s0(Zs,W )− µ̂·0−s0(Zs,W ))(π̂1s0(Zs,W )− π1s0(Zs,W )) = op(n
−1/2)

• P0(µ··0(W,Z)− µ̂··0(W,Z))(π̂110(W,Z)− π110(W,Z)) = op(n
−1/2)

• P1(µ̂·s0(W )− µ·s0(W ))2 = op(n
−1/2)

• P1(µ̂·10(W )− µ·10(W ))2 = op(n
−1/2)

• (Positivity) p0(zs, w) > 0 and p0(w, z) > 0 almost everywhere, such that the density ratios
π1s0(w, zs) and π110(w, z) are well-defined and between (0, 1).

Theorem F.3. For variable subset s, suppose vdenZ (s) > 0 and Condition F.2 hold. Then the estimator
v̂Z(s) is asymptotically normal.

G Proofs

Notation. For all proofs, we will write P to mean expectation on the evaluation partition (and likewise
for the empirical version) for notational simplicity.

Overview of derivation strategy. We first present the general strategy for proving asymptotic
normality of the estimators for the decompositions. Details on nonparametric debiased estimation
can be found in texts such as Tsiatis [45] and Kennedy [25].

Let v(P) be a pathwise differentiable quantity that is a function of the true regular (differentiable in
quadratic mean) probability distribution P over random variable O. For instance, v in the case of
mean is defined as v(P) := Eo∼P(O)[o]. Let P̂ denote an arbitrary regular estimator of P, such as the
maximum likelihood estimator. The plug-in estimator is then defined as v(P̂).
The von-Mises expansion of the functional v (which linearizes v in analogy to the first-order Taylor
expansion), given it is pathwise differentiable, gives

v(P̂)− v(P) = −P ψ(o; P̂) +R(P̂,P). (22)

Here, the function ψ is called an influence function (or a functional gradient of v at P̂). R(P̂,P) is
a second-order remainder term. The one-step corrected estimators we consider have the form of
v(P̂) + Pnψ(o; P̂) where Pn denotes a sample average. Following the expansion above, the one-step
corrected estimator can be analyzed as follows,(

v(P̂) + Pnψ(o; P̂)
)
− v(P)

= (Pn − P)ψ(o; P̂) +R(P̂,P)

= (Pn − P)ψ(o;P) + (Pn − P)(ψ(o; P̂)− ψ(o;P)) +R(P̂,P)
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Our goal will be to analyze each of the three terms and to show that they are asymptotically negligible
at
√
n-rate, such that the one-step corrected estimator satisfies(

v(P̂) + Pnψ(o; P̂)
)
− v(P) = Pnψ(o;P) + op(n

−1/2),

where we used the property of influence functions that they have zero mean. Thus the one-step
corrected estimator is asymptotically normal with mean v(P) and variance var(ψ(o;P))/n, which
allows for the construction of CIs. In the following proofs, we present the influence functions without
derivations; see Kennedy [25] and Hines et al. [20] for strategies for deriving influence functions.

G.1 Aggregate decompositions

Let the nuisance parameters in the one-step estimators ΛW,ΛZ,ΛY be denoted by ηW =
(µ·00, π100), ηZ = (µ··0, µ·00, π110), ηY = (µ··0, π110) respectively. Denote the estimated nuisances
by η̂W, η̂Z, η̂Y. The canonical gradients for the three estimands are

ψW(d,w, z, y; ηW) = [(ℓ(w, z, y)− µ·00(w))π100(w)− ℓ(w, z, y)]
1{d = 0}
p(d = 0)

+ µ·00(w)
1{d = 1}
p(d = 1)

− ΛW (23)

ψZ(d,w, z, y; ηZ) = [(ℓ(w, z, y)− µ··0(w, z))π110(w, z)]
1{d = 0}
p(d = 0)

+ µ··0(w, z)
1{d = 1}
p(d = 1)

− [(ℓ(w, z, y)− µ·00(w))π100(w)]
1{d = 0}
p(d = 0)

+ µ·00(w)
1{d = 1}
p(d = 1)

− ΛZ

(24)

ψY(d,w, z, y; ηY) = (ℓ(w, z, y)− µ··0(w, z))
1{d = 1}
p(d = 1)

− [(ℓ(w, z, y)− µ··0(w, z))π110(w, z)]
1{d = 0}
p(d = 0)

− ΛY. (25)

Theorem G.1 (Theorem F.1). Under conditions outlined in Theorem F.1, the one-step corrected
estimators for the aggregate decomposition terms, baseline, conditional covariate, and conditional
outcome Λ̂W, Λ̂Z, and Λ̂Y, are asymptotically linear, i.e.

Λ̂N − ΛN = PnψN + op(n
−1/2) ∀N ∈ {W, Z, Y}. (26)

Proof. The estimands ΛW,ΛZ,ΛY have similarities to the standard average treatment effect (ATE)
in the causal inference literature (see [25, Example 2]. Hence, the estimators and their asymptotic
properties directly follow. For treatment T , outcome O, and confounders C, the mean outcome under
T = 1 among the population with T = 0 is identified as

ϕ =

∫
op(o|c, t = 1)p(c|t = 0)dodc (27)

and its one-step corrected estimator can be derived from the canonical gradient of ϕ, which takes the
following form after plugging in the estimates of the nuisance models:

ϕ̂n = Pn

{
1{T = 1}
Pr(T = 1)

π̂(c) (O − µ̂1(c)) +
1{T = 0}
Pr(T = 0)

µ̂1(c)

}
satisfies

ϕ̂n − ϕ = Pn

{
1{T = 1}
Pr(T = 1)

π(c) (O − µ1(c)) +
1{T = 0}
Pr(T = 0)

µ1(c)− ϕ
}
+ op(n

−1/2)

where µ1(c) = E[o|c, t = 1] and π(c) = p(c|t = 0)/p(c|t = 1) as long as the following conditions
hold:

• p(c|t = 1) > 0 almost everywhere such that the density ratios π(c) are well-defined and
bounded,
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• P1(µ̂1 − µ1)(π̂ − π) = op(n
−1/2).

We establish the estimators and their influence functions by showing that they can all be viewed as
mean outcomes of the form (27).

Baseline term ΛW. The first term E100 [ℓ(w, z, y)] is a mean outcome with respect to
p(ℓ(w, z, y)|w, d = 0)p(w|d = 1), which is the same as that in (27) but with ℓ(w, z, y) as the
outcome, w as the confounder, and d as the (flipped) treatment. The second term E000 [ℓ(w, z, y)] is
a simple average over D = 0 population whose influence function is the ℓ(w, z, y) itself.

Conditional covariate term ΛZ. First term E110 [ℓ(w, z, y)] is the mean outcome with respect
to p(ℓ(w, z, y)|w, z, d = 0)p(w, z|d = 1), where the chief difference is (w, z) is the confounder.
Second term E100 [ℓ(w, z, y)] is also a mean outcome, as discussed above.

Conditional outcome term ΛY. First term E111 [ℓ(w, z, y)] is a simple average over the D = 1
population.

G.2 Value of s-partial conditional covariate shifts

Let nuisance parameters in the one-step estimator vnumZ,s be denoted ηnumZ,s =
(µ·s0, µ·10, µ·0−s0, µ001, µ··0, π1s0, π110) and the set of estimated nuisances by η̂numZ,s . The
canonical gradient of vnumZ (s) is

ψnum
Z,s (D,W,Z, Y ; ηnumZ,s ) = (µ·s0(W )− µ·10(W ))2

1{D = 1}
Pr(D = 1)

+ 2(µ·s0(W )− µ·10(W ))(ℓ− µ·0−s0(W,Zs))π1s0(W,Zs)
1{D = 0}
Pr(D = 0)

− 2(µ·s0(W )− µ·10(W ))(ℓ− µ··0(W,Z))π110(W,Z)
1{D = 0}
Pr(D = 0)

+ 2(µ·s0(W )− µ·10(W ))(µ·0−s0(W,Zs)− µ·s0(W ))
1{D = 1}
Pr(D = 1)

− 2(µ·s0(W )− µ·10(W ))(µ··0(W,Z)− µ·10(W ))
1{D = 1}
Pr(D = 1)

− vnumZ (s). (28)

Lemma G.2. Under Condition F.2, v̂numZ (s) satisfies

v̂numZ (s)− vnumZ (s) = Pnψ
num
Z,s (D,W,Z, Y ; ηnumZ,s ) + op(n

−1/2) (29)

v̂denZ − vdenZ = Pnψ
num
Z,∅ (D,W,Z, Y ; ηnumZ,s ) + op(n

−1/2) (30)

Proof. Consider the following decomposition

v̂numZ (s)− vnumZ (s)

=(Pn − P)ψnum
Z (D,W,Z, Y ; ηnumZ,s ) (31)

+ (Pn − P)(ψnum
Z (D,W,Z, Y ; η̂numZ,s )− ψnum

Z (W,Z, Y ; ηnumZ,s )) (32)

+ P(ψnum
Z (D,W,Z, Y ; η̂numZ,s )− ψnum

Z (D,W,Z, Y ; ηnumZ,s )) (33)

We note that (32) converges to a normal distribution per CLT assuming the variance of ψnum
Z,s is finite.

The empirical process term (32) is asymptotically negligible, as the nuisance parameters ηnumZ,s are
estimated using a separate training data split from the evaluation data and [25, Lemma 1] states that

(Pn − P)(ψnum
Z,s (D,W,Z, Y ; η̂numZ,s )− ψnum

Z,s (D,W,Z, Y ; ηnumZ,s ) = op(n
−1/2)
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as long as estimators for all nuisance parameters are consistent. We now establish that the remainder
term (33) is also asymptotically negligible. Integrating with respect to Y , we have that

(33) =P 2(µ̂·s0(W )− µ̂·10(W ))×
(
(µ·0−s0(Zs,W )− µ̂·0−s0(Zs,W ))π̂1s0(W,Zs)

1{D = 0}
p(D = 0)

+ (µ̂·0−s0(Zs,W )− µ̂·s0(W ))
1{D = 1}
p(D = 1)

− (µ··0(W,Z)− µ̂··0(W,Z))π̂110(W,Z)
1{D = 0}
p(D = 0)

− (µ̂··0(W,Z)− µ̂·10(W ))
1{D = 1}
p(D = 1)

)

(34)

+ P((µ̂·s0(W )− µ̂·10(W ))2 − (µ·s0(W )− µ·10(W ))2)
1{D = 1}
p(D = 1)

(35)

=P 2(µ̂·s0(W )− µ̂·10(W ))×
(
(µ·0−s0(Zs,W )− µ̂·0−s0(Zs,W )) (π̂1s0(W,Zs)− π1s0(W,Zs))

1{D = 0}
p(D = 0)

+ (µ·0−s0(Zs,W )− µ̂·0−s0(Zs,W ))π1s0(W,Zs)
1{D = 0}
p(D = 0)

+ (µ̂·0−s0(Zs,W )− µ̂·s0(W ))
1{D = 1}
p(D = 1)

− (µ··0(W,Z)− µ̂··0(W,Z)) (π̂110(W,Z)− π110(W,Z))
1{D = 0}
p(D = 0)

− (µ··0(W,Z)− µ̂··0(W,Z))π110(W,Z)
1{D = 0}
p(D = 0)

− (µ̂··0(W,Z)− µ̂·10(W ))
1{D = 1}
p(D = 1)

)
(36)

+ P((µ̂·s0(W )− µ̂·10(W ))2 − (µ·s0(W )− µ·10(W ))2)
1{D = 1}
p(D = 1)

(37)

From convergence conditions in Condition F.2, this simplifies to

(33) =P 2(µ̂·s0(W )− µ̂·10(W ))×
(
(µ·0−s0(Zs,W )− µ̂·0−s0(Zs,W ))π1s0(W,Zs)

1{D = 0}
p(D = 0)

+ (µ̂·0−s0(Zs,W )− µ̂·s0(W ))
1{D = 1}
p(D = 1)

− (µ··0(W,Z)− µ̂··0(W,Z))π110(W,Z)
1{D = 0}
p(D = 0)

− (µ̂··0(W,Z)− µ̂·10(W ))
1{D = 1}
p(D = 1)

)
(38)

+ P((µ̂·s0(W )− µ̂·10(W ))2 − (µ·s0(W )− µ·10(W ))2)
1{D = 1}
p(D = 1)

(39)

+ op(n
−1/2), (40)

Given the true density ratios, we can further simplify the expectations over D = 0 weighted by the
density ratios in the expression above to expectations over D = 1. By definition of µ·0−s0(Zs,W ) in
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(18) and µ·s0(W ) in (20) and the definition of µ··0(W,Z) and µ·10(W ) in Section F.1, (33) simplifies
to

(33) =P1 2(µ̂·s0(W )− µ̂·10(W ))(µ·s0(W )− µ̂·s0(W ))

− P1 2(µ̂·s0(W )− µ̂·10(W ))(µ·10(W )− µ̂·10(W ))

+ P1(µ̂·s0(W )− µ̂·10(W ))2 − (µ·s0(W )− µ·10(W ))2)

+ op(n
−1/2),

which is op(n−1/2) as long as the convergence conditions in Condition F.2 hold.

As the denominator vdenZ is equal to the numerator vnumZ (∅), it follows that the one-step estimator for
the denominator v̂denZ is asymptotically linear with influence function ψnum

Z,∅ .

Proof for Theorem F.3. Combining Lemma G.2 and the Delta method [46, Theorem 3.1], the estima-
tor v̂Z(s) = v̂numZ (s)/v̂denZ is asymptotically linear

v̂numZ (s)

v̂denZ
− vnumZ (s)

vdenZ
= PnψZ,s(D,W,Z, Y ; ηnumZ,s , η

den
Z ) + op(n

−1/2),

with influence function

ψZ,s(D,W,Z, Y ; ηnumZ,s , η
den
Z,s ) =

1

vdenZ
ψnum
Z,s (D,W,Z, Y ; ηnumZ,s )−

vnumZ (s)

(vdenZ )2
ψden
Z (D,W,Z, Y ; ηdenZ ),

(41)

where ψnum
Z,s (D,W,Z, Y ; ηnumZ,s ) is defined in (28) and ψden

Z (D,W,Z, Y ; ηdenZ ) =
ψnum
Z,∅ (D,W,Z, Y ; ηnumZ,∅ ).

Accordingly, the estimator asymptotically follows the normal distribution,
√
n (v̂Z(s)− vZ(s))→d N(0, var(ψZ,s(D,W,Z, Y ; ηnumZ,s , η

den
Z,s )) (42)

G.3 Value of s-partial conditional outcome shifts

Let the nuisance parameters in vnumY,bin be denoted ηnumY,s = (Qbin, µ··1, µ··s, π) and its estimate as η̂numY,s .

We represent the one-step corrected estimator for vnumY,bin(s) as the V-statistic

v̂numY,bin(s) =P1,nP̃1,n (µ̂··1(W,Z)− µ̂··s(W,Z))
2 (43)

+ 2P1,nP̃1,n (µ̂··1(W,Z)− µ̂··s(W,Z)) (ℓ− µ··1(W,Z)) (44)

− 2P1,nP̃1,n

[ (
µ̂··1(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

)
(ℓ(W,Zs, Z̃−s, Y )− µ··s(W,Zs, Z̃−s))π(Z̃−s, Zs,W, qbin(W,Z))

]
(45)

=P1,nP̃1,nh
(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
. (46)

In more detail, the conditions in Theorem 3.2 are as follows.
Condition G.3. For variable subset s, suppose the following hold

• π(W,Zs, Z−s, Qbin) is bounded

• π̂ is consistent

• P1 (µ̂··0 − µ··0)
2
= op(n

−1/2)

• P1 (µ̂··1 − µ··1)
2
= op(n

−1/2)

• P1 (µ̂··s − µ··s)
2
= op(n

−1/2)
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• P1 (q̂bin − qbin)2 = op(n
−1)

• P1 (µ̂··s − µ··s) (π̂ − π) = op(n
−1/2).

Lemma G.4. Assuming Condition G.3 holds, v̂numY,bin is an asymptotically linear estimator for vnumY,bin,
i.e.

v̂numY,bin(s)− vnumY,bin(s) = P1,nψ
num
Y,s (D,W,Z, Y ; ηnumY,s ) + op(n

−1/2), (47)

with influence function

ψnum
Y,s

(
d,w, z, y; ηnumY,s

)
=(µ··1(w, z)− µ··s(w, z))

2

+ 2(µ··1(w, z)− µ··s(w, z)) [ℓ(w, z, y)− µ··1(w, z)]

− 2P1

[
(µ··1(w, zs, Z−s)− µ··s(w, zs, Z−s))

[ℓ (w, zs, Z−s, y))− µ··s(w, zs, Z−s)]π (Z−s, zs, w, qbin(w, z))
]

− vnumY,bin(s). (48)

Proof. Defining the symmetrized version of h in (46) as hsym(W,Z, Y, W̃ , Z̃, Ỹ ) =
h(W,Z,Y,W̃ ,Z̃,Ỹ )+h(W̃ ,Z̃,Ỹ ,W,Z,Y )

2 , we rewrite the estimator as

v̂numY,bin(s) = P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
.

Per Theorem 12.3 in [46], the Hájek projection of v̂numY,bin(s) is

ûnumY,bin(s) =

n∑
i=1

P1

[
P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
− ¯̂vnumY (s) | Xi, Yi

]
=

n∑
i=1

P1

[
hsym

(
Xi, Yi, X

(2), Y (2); η̂numY,s

)
− ¯̂vnumY (s) | Xi, Yi

]
=

n∑
i=1

hsym,1

(
Xi, Yi; η̂

num
Y,s

)
where ¯̂vnumY (s) = P1P̃1hsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
.

Consider the decomposition

v̂numY,bin(s)− vnumY,bin(s) =P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
− P1P̃1hsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; ηnumY,s

)
=P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
− P1,n

[
hsym,1

(
X,Y ; η̂numY,s

)
+ ¯̂vnumY (s)

]
(49)

+ (P1,n − P1)
(
hsym,1

(
X,Y ; η̂numY,s

)
+ ¯̂vnumY (s)− hsym,1 (X,Y )− vnumY (s)

)
(50)

+ (P1,n − P1) (hsym,1 (X,Y ) + vnumY (s)) (51)

+ P1

(
hsym,1

(
X,Y ; η̂numY,s

)
+ ¯̂vnumY (s)− hsym,1

(
X,Y ; ηnumY,s

)
− vnumY (s)

)
.

(52)

We analyze each term in turn.

Term (49): Suppose P1h
2
sym(W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s ) <∞. Via a straightforward extension of the

proof in Theorem 12.3 in van der Vaart [46], one can show that

var
(
P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

))
var

(
P1,nhsym,1

(
W,Z, Y ; η̂numY,s

)) →p 1.
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Then by Theorem 11.2 in van der Vaart [46] and Slutsky’s lemma, we have

P1,nP̃1,nhsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
−P1,n

[
hsym,1

(
W,Z, Y ; η̂numY,s

)
+ ¯̂vnumY (s)

]
= op

(
n−1/2

)
.

Term (50): We perform sample splitting to estimate the nuisance parameters and calculate the
estimator for v̂numY (s). Then by Lemma 1 in Kennedy [25], we have that

(P1,n − P1)
(
hsym,1

(
W,Z, Y ; η̂numY,s

)
+ ¯̂vnumY (s)− hsym,1

(
W,Z, Y ; ηnumY,s

)
− vnumY (s)

)
= op(n

−1/2)

as long as the estimators for the nuisance parameters are consistent.

Term (51): This term (P1,n − P1)
(
hsym,1

(
W,Z, Y ; ηnumY,s

)
+ vnumY (s)

)
=

(P1,n − P1)hsym,1

(
W,Z, Y ; ηnumY,s

)
follows an asymptotic normal distribution per CLT.

Term (52): We will show that this bias term is asymptotically negligible. For notational simplicity,
let ξ̂(W,Zs, Z−s) = µ̂··1(W,Z)− µ̂··s(W,Z).

P1P̃1

(
hsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
+ ¯̂vnumY (s)− hsym

(
W,Z, Y, W̃ , Z̃, Ỹ ; ηnumY,s

)
− vnumY (s)

)
=P1P̃1

(
h
(
W,Z, Y, W̃ , Z̃, Ỹ ; η̂numY,s

)
− h

(
W,Z, Y, W̃ , Z̃, Ỹ ; ηnumY,s

))
=P1 (µ̂··1(W,Z)− µ̂··s(W,Z))

2 − P1 (µ··1(W,Z)− µ··s(W,Z))
2

+ 2P1 (µ̂··1(W,Z)− µ̂··s(W,Z)) [µ··1(W,Z)− µ̂··1(W,Z)]

− 2P1P̃1

{(
µ̂··1(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

) [
ℓ(W,Zs, Z̃−s, Y )− µ̂··s(W,Zs, Z̃−s)

]
π̂
(
Z̃−s, Zs,W, q̂bin(W,Z)

)}
=P1 (µ̂··1(W,Z)− µ̂··s(W,Z))

2 − P1 (µ··1(W,Z)− µ··s(W,Z))
2

+ 2P1 (µ̂··1(W,Z)− µ̂··s(W,Z)) [µ··1(W,Z)− µ̂··1(W,Z)]

− 2P1P̃1ξ̂(W,Zs, Z̃−s)
[
µ··s(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

]
π̂
(
Z̃−s, Zs,W, qbin(W,Z)

)
− 2P1P̃1

{
ξ̂(W,Zs, Z̃−s)

[
ℓ(W,Zs, Z̃−s, Y )− µ̂··s(W,Zs, Z̃−s)

]
[
π̂
(
Z̃−s, Zs,W, q̂bin(W,Z)

)
− π̂

(
Z̃−s, Zs,W, qbin(W,Z)

)]}
=P1 (µ··s(W,Z)− µ̂··s(W,Z)) (µ̂··1(W,Z)− µ̂··s(W,Z) + µ··1(W,Z)− µ··s(W,Z)) (53)
+ P1 (µ̂··1(W,Z)− µ··1(W,Z)) (µ··1(W,Z)− µ··s(W,Z)− µ̂··1(W,Z) + µ̂··s(W,Z)) (54)

− 2P1P̃1ξ̂(W,Zs, Z̃−s)
[
µ··s(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

]
π̂
(
Z̃−s, Zs,W, qbin(W,Z)

)
(55)

− 2P1P̃1

{
ξ̂(W,Zs, Z̃−s)

[
ℓ(W,Zs, Z̃−s, Y )− µ̂··s(W,Zs, Z̃−s)

]
[
π̂
(
Z̃−s, Zs,W, q̂bin(W,Z)

)
− π̂

(
Z̃−s, Zs,W, qbin(W,Z)

)]}
. (56)

Note that (56) is op(n−1/2) under the assumed convergence rates for q̂bin. In addition, (54) is
op(n

−1/2), under the assumed convergence rates for µ̂··1 and µ̂··s.

27



Analyzing the remaining summands (53) + (55), we note that it simplifies as follows:

P1 (µ··s(X)− µ̂··s(X)) (µ̂··1(X)− µ̂··s(X) + µ··1(X)− µ··s(X))

− 2P1P̃1

{
ξ̂(W,Zs, Z̃−s)

[
µ··s(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

]
(
π̂
(
Z̃−s, Zs,W, qbin(W,Z))

)
− π

(
Z̃−s, Zs,W, qbin(W,Z))

))}
− 2P1P̃1ξ̂(W,Zs, Z̃−s)

[
µ··s(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

]
π
(
Z̃−s, Zs,W, qbin(W,Z))

)
=P1 (µ··s(X)− µ̂··s(X)) (µ··1(X)− µ̂··1(X)− µ··s(X) + µ̂··s(X))

− 2P1P̃1

{
ξ̂(W,Zs, Z̃−s)

[
µ··s(W,Zs, Z̃−s)− µ̂··s(W,Zs, Z̃−s)

]
[
π̂
(
Z̃−s, Zs,W, qbin(W,Z))

)
− π

(
Z̃−s, Zs,W, qbin(W,Z))

)]}
,

which is op(n−1/2), under the assumed convergence rates for µ̂··s, µ̂··1, and π̂.

Condition G.5 (Convergence conditions for v̂denY ). Suppose the following holds

• P1(µ··1 − µ··0 − (µ̂··1 − µ̂··0))
2 = op(n

−1/2)

• P0(µ··0 − µ̂··0)(π110 − π̂110) = op(n
−1/2)

• P0(µ··1 − µ··0)
2 is bounded

• (Positivity) p(w, z|d = 0) > 0 almost everywhere, such that the density ratios π110(w, z) are
well-defined and bounded.

Let the nuisance parameters in the one-step estimator vdenY be denoted by ηdenY = (µ··0, µ··1, π110)
and the set of estimated nuisances by η̂denY .

Lemma G.6. Assuming Condition G.5 holds, then v̂denY is an asymptotically linear estimator for vdenY ,
i.e.

v̂denY − vdenY = Pnψ
den
Y (D,W,Z, Y ; ηdenY ) + op(n

−1/2)

with influence function

ψden
Y (D,W,Z, Y ; ηdenY ) = (µ··1(W,Z)− µ··0(W,Z))

2 1{D = 1}
p(D = 1)

(57)

+ 2 (µ··1(W,Z)− µ··0(W,Z)) (ℓ− µ··1(W,Z))
1{D = 1}
p(D = 1)

(58)

− 2 (µ··1(W,Z)− µ··0(W,Z)) (ℓ− µ··0(W,Z))π110(W,Z)
1{D = 0}
p(D = 0)

(59)

− vdenY . (60)

Proof. Consider the following decomposition of bias in the one-step corrected estimate

v̂denY − vdenY

=(Pn − P)ψden
Y (D,W,Z, Y ; ηdenY ) (61)

+ (Pn − P)(ψden
Y (D,W,Z, Y ; η̂denY )− ψden

Y (D,W,Z, Y ; ηdenY )) (62)

+ P(ψden
Y (D,W,Z, Y ; η̂denY )− ψden

Y (D,W,Z, Y ; ηdenY )) (63)

We observe that (61) converges to a normal distribution per CLT assuming that the variance of ψden
Y

is finite. The empirical process term (62) is asymptotically negligible since the nuisance parameters
ηdenY are evaluated on an separate evaluation data split from the training data used for estimation.
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In addition assuming that the estimators for the nuisance parameters are consistent, Kennedy [25,
Lemma 1] states that

(Pn − P)(ψden
Y (D,W,Z, Y ; η̂denY )− ψden

Y (D,W,Z, Y ; ηdenY )) = op(n
−1/2).

We now show that the remainder term (63) is also asymptotically negligible. Substituting the influence
function and integrating with respect to Y , (63) becomes

(63) =P (µ̂··1(W,Z)− µ̂··0(W,Z)− (µ··1(W,Z)− µ··0(W,Z)))
2 1(D = 1)

p(D = 1)
(64)

+ 2P (µ̂··1(W,Z)− µ̂··0(W,Z)− (µ··1(W,Z)− µ··0(W,Z))) (µ··1(W,Z)− µ··0(W,Z))
1(D = 1)

p(D = 1)
(65)

+ 2P (µ̂··1(W,Z)− µ̂··0(W,Z)) (µ··1(W,Z)− µ̂··1(W,Z))
1{D = 1}
p(D = 1)

(66)

− 2P (µ̂··1(W,Z)− µ̂··0(W,Z)) (µ··0(W,Z)− µ̂··0(W,Z))π̂110(W,Z)
1{D = 0}
p(D = 0)

(67)

=P (µ̂··1(W,Z)− µ̂··0(W,Z)− (µ··1(W,Z)− µ··0(W,Z)))
2 1(D = 1)

p(D = 1)
(68)

+ 2P(µ··0(W,Z)− µ̂··0(W,Z))(µ··1(W,Z)− µ··0(W,Z))
1(D = 1)

p(D = 1)
(69)

− 2P (µ̂··1(W,Z)− µ̂··0(W,Z)) (µ··0(W,Z)− µ̂··0(W,Z))(π̂110(W,Z)− π110(W,Z))
1{D = 0}
p(D = 1)

(70)

− 2P (µ̂··1(W,Z)− µ̂··0(W,Z)) (µ··0(W,Z)− µ̂··0(W,Z))π110(W,Z)
1{D = 0}
p(D = 0)

(71)

=P (µ̂··1(W,Z)− µ̂··0(W,Z)− (µ··1(W,Z)− µ··0(W,Z)))
2 1(D = 1)

p(D = 1)
(72)

− 2P (µ̂··1(W,Z)− µ̂··0(W,Z)) (µ··0(W,Z)− µ̂··0(W,Z))(π̂110(W,Z)− π110(W,Z))
1{D = 0}
p(D = 0)

(73)

Thus the remainder term is op(n−1/2) if Condition G.5 holds.

Proof for Theorem 3.2. Combining Lemmas G.4, G.6, and the Delta method [46, Theorem 3.1], the
estimator v̂Y,bin(s) = v̂numY,bin(s)/v̂

den
Y is asymptotically linear

v̂numY,bin(s)

v̂denY
−
vnumY,bin(s)

vdenY
= PnψY,bin,s(D,W,Z, Y ; ηnumY,s , η

den
Y ) + op(n

−1/2),

with influence function

ψY,bin,s(D,W,Z, Y ; ηnumY,s , η
den
Y ) =

1

vdenY
ψnum
Y,s (D,W,Z, Y ; ηnumY,s )−

vnumY,bin(s)

(vdenY )2
ψden
Y (D,W,Z, Y ; ηdenY ),

(74)

where ψnum
Y,s and ψden

Y are defined in (48) and (60).

Accordingly, the estimator follows a normal distribution asymptotically,
√
n (v̂Y(s)− vY(s))→d N(0, var(ψY,bin,s(D,W,Z, Y ; ηnumY , ηdenY )) (75)

Remark on super-fast convergence of q̂bin. One of the conditions in Condition G.3 states that the
q̂bin converges at op(n−1) rate. While this seems restrictive, binned risk converges exponentially
under suitable margin conditions presented in Audibert and Tsybakov [2]. In particular, consider the
following margin condition which is a relaxation of Condition 3.1.
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Condition G.7. For all bin edges b except b ∈ {0, 1}, the set Ξϵ = {x : |q(x)− b| ≤ ϵ} is measure
zero for some ϵ > 0.

Suppose the function q belongs to the Hölder class Σ(β, L,Rd) for positive integer β and L > 0
(see definition in Audibert and Tsybakov [2]), the marginal law of X satisfies the strong density
assumption, and the margin condition G.7 is satisfied. Then the rate of convergence of q̂bin is
exponential, i.e.

E (q̂bin(X)− qbin(X))
2 ≤ C1 exp(−C2n) (76)

for constants C1, C2 > 0 that do not depend on n.

Remark on value of s-partial conditional outcome shift. Unlike the case of s-partial conditional
covariate shift, note that vY(∅) may be non-zero when the risk in the target domain is a recalibration
(i.e. temperature-scaling) of the risk in the source domain [34, 19]. For instance, there may be general
environmental factors such that readmission risks in the target domain are uniformly lower.

H Implementation details

Here we describe how the nuisance parameters can be estimated in each of the decompositions. In
general, density ratio models can be estimated via a standard reduction to a classification problem
where a probabilistic classifier is trained to discriminate between source and target domains [43].

Note on computation time. Shapley value computation can be parallelized over the subsets. For
high-dimensional tabular data, grouping together variables can further reduce computation time (and
increase interpretability).

H.1 Aggregate decompositions

Density ratio models. Using direct importance estimation [43], density ratio models π100(W ) and
π110(W,Z) can be estimated by fitting classifiers on the combined source and target data to predict
D = 0 or 1 from features W and (W,Z), respectively.

Outcome models. The outcome models µ·00(W ) and µ··0(W,Z) can be fit in a number of ways.
One option is to estimate the conditional distribution of the outcome (i.e. p0(Y |W ) or p0(Y |W,Z))
using binary classifiers, from which one can obtain an estimate of the conditional expectation of
the loss. Alternatively, one can estimate the conditional expectations of the loss directly by fitting
regression models.

H.2 Detailed decomposition for s-partial outcome shift

Density ratio models. The density ratio π(W,Zs, Z−s, Q) = p1(Z−s|W,Zs, q(W,Z) =
Q)/p1(Z−s) in (6) can be estimated as follows. Create a second (“phantom”) dataset of the target
domain in which Z−s is independent of Zs by permuting the original Z−s in the target domain.
Compute qbin for all observations in the original dataset and the permuted dataset. Concatenate the
original dataset from the target domain with the permuted dataset. Train a classifier to predict if an
observation is from the original versus the permuted dataset.

Outcome models. The outcome models µ··1 and µ··s(W,Z) can be similarly fit by estimating the
conditional distributions p0(Y |W,Z) and ps(Y |W,Z, qbin(W,Z)) on the target domain, and then
taking expectation of the loss.

Computing U-statistics. Calculating the double average P1,nP̃1,n in the estimator requires evaluating
all n2 pairs of data points in target domain. This can be computationally expensive, so a good
approximation is to subsample the inner average. We take 2000 subsamples. We did not see large
changes in the bias of the estimates compared to calculating the exact U-statistics.

H.3 Detailed decomposition for s-partial conditional outcome shift

Density ratio models. The ratio π1s0(W,Zs) = p1(W,Zs)/p0(W,Zs) can be similarly fit using
direct importance estimation.

Outcome models. We require the following models.
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• µ·0−s0(zs, w) = E·00[ℓ|zs, w], defined in (18), can be estimated by regressing loss against w, zs
on the source domain.

• µ·10(w) = E·10[ℓ|w], defined in (19), can be estimated by regressing µ··0(w, z) against w in the
target domain.

• µ·s0(w) = E·s0[ℓ|zs, w], defined in (20), can be estimated by regressing µ·0−s0(zs, w) against w
in the target domain.

For all models, we use cross-validation to select among model types and hyperparameters. Model
selection is important so that the convergence rate conditions for the asymptotic normality results are
met.

I Simulation details

Data generation: We generate synthetic data under two settings. For the coverage checks in
Section 4.1, all features are sampled independently from a multivariate normal distribution. The
mean of the (W,Z) in the source and target domains are (0, 2, 0.7, 3) and (0, 0, 0, 0), respectively.
The outcome in the source and target domains are simulated from a logistic regression model with
coefficients (0.3, 1, 0.5, 1) and (0.3, 0.1, 0.5, 1.4).

In the second setting for baseline comparisons in Figure 2b(ii), each feature in W ∈ R and Z ∈ R5

is sampled independently from the rest from a uniform distribution over [−1, 1). The binary outcome
Y is sampled from a logistic regression model with coefficients (0.2, 0.4, 2, 0.25, 0.1, 0.1) in source
and (0.2,−0.4, 0.8, 0.1, 0.1, 0.1) in target.

In both the settings, we analyze performance gap of logistic regression models fit on a held-out source
dataset.

Sample-splitting: We fit all models on 80% of the data points from both source and target datasets
which is the Tr partition, and keep the remaining 20% for computing the estimators which is the Ev
partition.

Model types: We use scikit-learn implementations for all models [33]. We use 3-fold cross
validation to select models. For density models, we fit random forest classifiers and logistic regression
models with polynomial features of degree 3. We clip the predicted probabilities from the density
model for π at 10−6 to avoid very large density weights. Depending on whether the target outcome
in outcome models is binary or real-valued, we fit random forest classifiers or regressors, and logistic
regression or linear regression models with ridge penalty. Specific hyperparameter ranges for the grid
search are provided in the code.

Computing time and resources: Computation for the VI estimates can be quite fast, as Shapley
value computation can be parallelized over the subsets and the number of unique variable subsets
sampled in the Shapley value approximation is often quite small. For instance, for the ACS Public
Coverage case study with 34 features, the unique subsets is 131 even when the number of sampled
subsets is 3000, and it takes around 160 seconds to estimate the value of a single variable subset. All
experiments are run on a 2.60 GHz processor with 8 CPU cores.

J Data analysis details

Synthetic. We describe accuracy of the ML algorithm after it is retrained with the top k features and
predictions from the original model (Table 3). Proposed method results in the revised model with
highest gain in accuracy and AUC. Figure 5 shows the aggregate and detailed decompositions for
the simulation setup in Section 4.1. Figure 6 shows the coverage rates of 90% CIs for the aggregate
decompositions.

Hospital readmission. Using data from the electronic health records of a large safety-net hospital in
the US, we analyzed the transferability of performance measures of a Gradient Boosted Tree (GBT)
trained to predict 30-day readmission risk for the general patient population (source) but applied
to patients diagnosed with heart failure (target). Each of the source and target datasets have 3750
observations for analyzing the performance gap. The GBT is trained on a held-out sample of 18,873
points from the general population. Features include 4 demographic variables (W ) and 16 diagnosis
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Figure 5: Sample estimates and CIs for simulation from Section 4.1. Proposed is debiased ML
estimator for HDPD.

Figure 6: Coverage rates of 90% CIs for the aggregate decomposition terms for the simulation setup
in Section 4.1.

Table 3: Accuracy and AUC for the revised model with respect to the top k = {1, 2, 3} variables
identified by different methods. Proposed method leads to a model with highest improvement in
performance, thus, reducing the performance gap. We compare against two additional baselines that
are outperformed by the proposed method: retraining a model on the target data with all features
(AUC 0.89, Acc 0.84) and retraining on a weighted source-target data where loss for each point in
source and target is weighted by a tuned parameter α and 1− α respectively (AUC 0.89, Acc 0.85).

Method AUC-1 Acc-1 AUC-2 Acc-2 AUC-3 Acc-3

ParametricChange 0.87 0.82 0.87 0.82 0.91 0.86
ParametricAcc 0.87 0.82 0.87 0.82 0.91 0.86

RandomForestAcc 0.87 0.82 0.87 0.82 0.91 0.86
OaxacaBlinder 0.87 0.82 0.87 0.82 0.87 0.82

HDPD (proposed) 0.91 0.86 0.91 0.86 0.91 0.86
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Table 4: Difference in AUCs between the revised insurance prediction model with respect to the top k
variables identified by the proposed versus RandomForestAcc procedures (Diff AUC-k = Proposed
− RandomForestAcc). 95% CIs are shown.

k Diff AUC-k Lower CI Upper CI

1 0.000 0.000 0.000
2 0.006 0.001 0.010
3 -0.002 -0.007 0.002
4 0.004 -0.002 0.008
5 -0.001 -0.006 0.003
6 -0.002 -0.008 0.003
7 0.007 0.002 0.011
8 0.006 0.001 0.010

Figure 7: Detailed decompositions for the performance gap of a model predicting hospital readmission
in HF population. Plot shows values for the full set of 16 variables.

codes (Z). While training, we reweigh samples by class weights to address class imbalance. Figure 7
shows the detailed decomposition of conditional covariate shift for the dataset.

ACS Public Coverage. We extract data from the American Community Survey (ACS) to predict
whether a person has public health insurance. The data only contains persons of age less than 65
and having an income of less than $30,000. We analyze a neural network (MLP) trained on data
from Nebraska (source) to data from Louisiana (target) given 3000 and 6000 observations from the
source and target domains, respectively. Another 3300 from source for training the model. Figure 8
shows the detailed decomposition of conditional outcome shift for the dataset. Table 4 shows the
difference in AUCs for the revised models based on top features from the proposed method versus
RandomForestAcc method.
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Figure 8: Detailed decompositions for the performance gap of a model predicting insurance coverage
prediction across two US states (NE→ LA). Plot shows values for the full set of 31 covariates.
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