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Abstract 
The brain achieves complex information processing and 
cognitive functions leveraging synaptic learning 
mechanisms that are local, asynchronous, online and 
Hebbian in nature. Our work here investigates a neural 
network model with localized Hebbian plasticity that can 
perform associative memory and multilayer representation 
learning. This functionality is achieved with a brain-like 
modular hybrid architecture combining feedforward and 
recurrent processing pathways. We evaluate the model on 
the MNIST and F-MNIST datasets and propose that several 
aspects of the model are attractive for machine learning and 
brain-like neuromorphic hardware design. 

1.  Introduction 

Learning in the brain is largely due to the aggregate result 
of changes in the efficacies of trillions of synaptic 
connections spread across the brain. This change in 
synaptic efficacies is governed by asynchronous activity- 
and experience-dependent mechanisms that are 
spatiotemporally local to the synapse and, at least in part, 
due to Hebbian plasticity, i.e., based on the coactivation of 
pre- and post-synaptic neuronal activities. Hence, large-
scale neural networks with localized learning might hold 
the key to developing powerful brain-like algorithms 
performing complex information processing and cognitive 
functions paralleling the brain. Chief among them is the 
ability to build internal representations of sensory data and 
use these representations for computations such as memory 
processing and decision making.  

The feedforward pathways along the sensory cortex 
extracts hierarchical internal representations from sensory 
data in a predominantly unsupervised manner. This 
property has been adopted in deep neural networks with the 
use of backprop based stochastic gradient descent 
algorithms and has met enormous success on pattern 

recognition tasks with complex real-world data [1–4]. 
Since straightforward implementation of backprop is not 
biologically plausible, there has been growing interest in 
recent years in more brain-plausible localized plasticity 
rules for learning representations [5–13]. 

While feedforward connections with their long-range 
projections from one cortical area to the next in the 
hierarchy are prominent, it is the recurrent connections 
local to each area that is ubiquitous in the neocortex [14–
16]. It is estimated that 80% of the synapses made on 
cortical excitatory neurons are recurrent and less than 10% 
are feedforward, even in early sensory cortical areas [15, 
17]. It thus seems apparent that such extensive recurrent 
circuitry in the cortex has a significant computational role 
that has not yet been captured by deep feedforward neural 
networks. It is unclear what role such numerous recurrent 
connections lend in terms of cortical information 
processing. One prominent theory is that they perform 
associative memory, where assemblies of coactive neurons 
(called a cell assembly) act as internal mental 
representations of memory objects [18–23], allowing 
several crucial brain computations such as pattern 
completion, prototype extraction, figure-ground 
segmentation, Gestalt perception, etc. Several theoretical 
studies have shown that recurrently connected neuron-like 
binary units with symmetric connectivity can implement 
attractor dynamics: the network is guaranteed to converge 
to attractor states corresponding to local energy minima 
[18]. Learning memories in such networks typically 
follows some form of Hebbian plasticity. Early artificial 
neural network models, such as Boltzmann machines built 
on such work but have since fallen out of favor with more 
recent deep learning architectures [24, 25]. In 
computational neuroscience, however, attractor networks 
have continued to offer mechanistic explanations for many 
complex cognitive functions and provide a source of rich 
network dynamics [26–30]. 
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The main contribution of this work is to demonstrate that a 
neural network model with modular architecture and fully 
online localized Hebbian form of synaptic and structural 
plasticity is sufficient for learning sparse distributed multi-
layer representations in an unsupervised manner and use 
the learned representations for associative memory 
processing. We approached this by building the network in 
two connection motifs: multi-layer feedforward 
architecture, and shallow feedforward network coupled 
with recurrent associative memory. We evaluated our 
model on the MNIST and Fashion MNIST (F-MNIST) 
benchmarks.  

2.  Model description 

2.1  Modular architecture 

The network is based on the BCPNN (Bayesian 
Confidence Propagation Neural Network) model of 
neocortical information processing (Lansner & Ekeberg, 
1989; Lansner & Holst, 1996; Lundqvist et al., 2006; 
Ravichandran et al., 2020; Sandberg et al., 2002; Tully et 
al., 2014). BCPNN converts probabilistic inference into 
localized computations in terms of neural and synaptic 
operations [31, 32, 36]. The architecture derives from the 
discrete columnar organization of the neocortex of large 
mammalian brains, which posits that the neocortex 
constitutes many identical hypercolumns modules (Fig. 
1A), each of which in turn comprises many minicolumns 
[37, 38]. The hypercolumn module is defined by local 
competition [38, 39] and shared receptive field within its 
constituted minicolumns (implemented by local inhibitory 
neurons in the neocortex). The minicolumn comprises 
around 80-100 tightly interconnected neurons having 
functionally similar response properties [37, 38, 40]. 

Our multilayer network consists of an input layer and three 
hidden layers connected in a feedforward architecture (Fig. 
1C). The associative memory network consists of one input 
layer and one hidden layer, with feedforward connections 
from input to hidden layer, and recurrent connections 
within the hidden layer (Fig. 1B). We model this hidden 
layer with two laminae L4 (granular layer) and L2/3 
(supragranular). The L4 units receive the feedforward 
connections from the input layer and the L2/3 units receive 
recurrent connections from other L2/3 units in the hidden 
layer and the L4 units within the same minicolumn.  

2.2  Soft-winner-takes-all activation 

When source units (indexed by 𝑖) send connections to a 
target unit (index by 𝑗), the activity propagation rule is: 

𝑠! = 𝑏! + ' 𝜋" 	𝑤"! 	𝑐"!
"	∈	%&'

, 

𝜋! =
exp	(𝑠!)

∑ exp	(𝑠()(	∈	)*+,&'-.
 

where s! is the total input received by the 𝑗-th target unit, 
𝑏! , 𝑤"! , 	𝑐"! ,	 are the bias, weight and, connectivity 
parameters respectively. The activation 𝜋! is calculated by 
a softmax non-linear activation function that implements a 
soft-winner-takes-all competition between the 
minicolumns within each hypercolumn and creates sparse 
activity [39]. 

2.3  Localized learning 

The synaptic plasticity in our model uses local traces of co-
activation of pre- and post- synaptic units to compute 
Bayesian weights. The learning step involves 
incrementally updating three 𝑝-traces: probability of pre-
synaptic activity, 𝑝", probability of post-synaptic activity, 
𝑝!, and joint probability of pre-synaptic and post-synaptic 
activities, 𝑝"!, as follows: 

𝑝" 	≔ (1 − 𝛼)	𝑝" + 𝛼	𝜋" , 

𝑝! ∶= (1 − 𝛼)	𝑝! + 	𝛼	𝜋! , 

𝑝"! ∶= (1 − 𝛼)	𝑝"! + 𝛼	𝜋" 	𝜋! , 

where 𝛼 is the learning rate. The bias and weight 
parameters are computed from the 𝑝-traces as follows: 

𝑏! = log		𝑝! ,  
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Figure 1: A. Schematic of one hypercolumn module showing 
one constituent minicolumn under local competition within the 
hypercolumn and receiving connections from source 
minicolumns. Network schematic for B. hybrid associative 
memory network, and C. multi-layer feedforward network with 
each layer constituting many hypercolumn modules. 
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As a crucial departure from traditional backprop-based 
DNNs, the learning rule above is online, localized, 
correlative, and Hebbian. This learning rule along with the 
softmax activation function was shown to be implementing 
a discrete mixture model with the learning update fitting 
the parameters of the model and the activation function 
computing the posterior probability of the mixture 
components conditioned on the input [9]. 

2.4  Localized rewiring 

Structural plasticity in the brain is the rewiring mechanism 
that changes the connectivity structure of the network by 
removing existing synaptic connections and creating new 
ones [41–45]. This continuous synaptic rewiring is, at least 
in part, an experience-dependent and activity-dependent 
process [42, 43]. The rewiring mechanism adaptively finds 
efficient sparse connectivity between the layers modeling 
structural plasticity in the brain. This mechanism uses the 
𝑝-traces locally available at each synapse to maximize a 
mutual information score and updates the sparse binary 
connectivity matrix 𝑐"! accordingly [9]. The activation, 
learning, and rewiring mechanisms are applicable to both 
recurrent and feedforward components. 

2.5  Implementation and experimental setup 

The input layer had 784 hypercolumns (number of pixels 
in MNIST and F-MNIST) with 2 minicolumns each (binary 
coding). All the hidden layers had 100 hypercolumns (𝐻 =
100) and 100 minicolumns each (𝑀 = 100). The 
connectivity was set by fixing the number of incoming 
hypercolumn connections per target layer (fan-in). This 
was set to 25 for the input to hidden layer connections and 
to 10 for hidden-to-hidden layer connections. All the 
training was through online incremental (not batch) 
updates and the learning rate 𝛼 was set to 1e-4. For the 
multilayer network, learning was carried out across all the 
layers simultaneously through 10 epochs of training data. 
For the associative memory network, feedforward 
connections were trained first for 5 epochs, followed by 5 
epochs of recurrent connections learning. The recurrent 
attractor was run for 𝑇 = 20 timesteps.  

We implemented a custom C++ implementation of the 
network with CUDA acceleration to leverage the 
asynchronous and localized nature of the computations in 
terms of model parallelism. To this end, we ran each layer’s 
computations (activation, learning, and rewiring) on one 
GPU while transferring only the layer activities to the 
subsequent layer (MPI asynchronous data transfers), which 
greatly sped up our computations. We ran the simulation 
on NVIDIA A100 GPUs. 

 

3.  Results 

3.1  Associative memory extracts prototypes and 
renders representations robust to distortions  

To visualize the attractor representation, we set the input 
layer to the test samples, drove the feedforward 
connections to hidden layer, ran the recurrent attractor 
network, and back projected (top down) the hidden 
representations to the input layer using the same weights as 
feedforward connectivity. We observed that the recurrent 
attractors converged in a few steps, and their reconstruction 
corresponded to prototypical digits (not shown).  

We examined if the recurrent attractor network added value 
to the feedforward-driven representations when tested on 
severely distorted samples. For this, we first created a 
distorted version of the MNIST dataset (examples shown 
in Fig. 2A) following the work of George et al., (2017). In 
particular, we introduced nine different distortions (Fig. 2A 
rows) and controlled the level of distortion with a distortion 
level parameter ranging from 0.1 (minimum distortion) to 
1.0 (maximum distortion) in steps of 0.1 (Fig. 2A 
columns). Then we tested the network (trained beforehand 
on the undistorted MNIST data) with these distorted 
samples to comparatively study the recurrent network 
attractor activations and their corresponding input 
reconstructions. Except for high distortion levels (0.5 or 
higher), the attractor network was very robust to the 
distortions, and the reconstructed images showed that they 
converged to the prototypical digits and most of the 

Figure 2: Robustness to distortion. A. Samples from the distorted 
MNIST dataset, with 9 distortion types (rows) and varying 
distortion levels (columns). B. Examples of digits “3” (left) and 
“5” (right) under all distortion types (distortion level = 0.3), and 
the input reconstruction after convergence of the recurrent layer. 
For most cases, the attractor reaches the prototype pattern while 
removing all distortions. C. Classification performance for 
different distortion levels comparing feedforward-driven and 
recurrent attractor representations. D. Classification 
performance for all distortion types with distortion level at 0.3 
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distortions were removed upon attractor convergence. Fig 
2B shows examples of two digits under all distortion types 
(distortion level of 0.3) and the reconstructions of the 
corresponding attractor activations. To quantify the 
network’s robustness to input distortions in the pattern 
recognition context, we used a linear classifier, which was 
trained on feedforward-driven activations. We then 
compared the classification accuracy from five random 
trials obtained for recurrent attractor representations and 
the feedforward-driven hidden representations on the 
distorted MNIST dataset (Fig. 2C and 2D). We found that 
the recurrent attractor representations performed better 
compared to feedforward-driven representations on all 
distortion levels greater than 0.1 (Fig. 2C). We also 
examined the performance across the different distortion 
types and the recurrent attractor representations turned out 
more resilient in most cases (Fig. 2D). Further 
investigation is needed to understand why feedforward-
driven representations scored higher on three distortion 
types: “Grid”, “Deletion”, and “Open”. Both feedforward-
driven and recurrent attractor representations are the result 
of unsupervised learning, so the distortion resistance 
provided by the recurrent component is achieved without 
any access to data labels. 

3.2  Feedforward multilayer network extracts 
hierarchical representations 

For evaluating the multilayer network, we trained the 
network on MNIST and F-MNIST data and used a linear 
classifier to classify the labels from representations from 
each layer in the network (Fig. 3). We saw that, in both 
datasets, the accuracy improved significantly from layer 0 
(raw data) to layer 1, and from layer 1 to layer 2, with a 
small drop in performance from layer 2 to layer 3 (still 
higher than layer 0).  

We then plotted the receptive fields learned by the 
structural plasticity mechanism across layers 1, 2 and, 3 
(Fig. 4C, 4B and, 4A respectively) for 24 randomly chosen 
hypercolumns when trained on MNIST data. Given that the 
connections were randomly initialized, structural plasticity 
formed contiguous local patches in the image space across 
all layers, with layers higher in the hierarchy showing 
progressively larger receptive fields. Next, we visualized 
the response properties of individual minicolumns (24 
randomly chosen within the same hypercolumn with 

shared receptive fields) by plotting the input image that 
evoked the most activity (Fig. 4F, 4E and, 4D 
respectively). We observed that layer 1 minicolumns are 
activated by small edges of different orientations, while 
layers 2 and layer 3 progressively are activated by larger 
regions of the image resembling whole digits.   

4.  Conclusions 

The direction we pursued here integrated various 
architectural and functional details from neurobiology, 
especially from the mammalian neocortex: unsupervised 
learning, Hebbian synaptic plasticity, Hebbian structural 
plasticity, sparse distributed activities, sparse connectivity, 
columnar and laminar cortical architecture, etc., into an 
abstract neural network model. The hybrid architecture 
showed how the integration of recurrent attractors 
networks with feedforward networks can avoid 
interference between memory pattern that is commonly 
observed in flat attractor networks (without any hidden 
layers) and render the representations robust to severe 
distortions. Our multilayer network demonstrated a 
functioning prototype of hierarchical learning without 
requiring any label information or global backprop signal. 

Our modular architecture accompanied with the localized 
learning and rewiring mechanisms derive from the 
powerful computational primitives of the canonical 
neocortical circuits [37, 38] that, we believe, need to be 
understood for building brain-like algorithms as well as for 
exploring the perceptual and cognitive functions of the 

Figure 3: Performance of a linear classifier trained on the 
internal representations from each layer in the multilayer 
network for MNIST (left) and F-MNIST (right) datasets. 

Figure 4: Receptive fields of layers 1, 2 and, 3 (C, B and A 
respectively) formed by the structural plasticity mechanism 
shows localized contiguous patches with progressively larger 
sizes. The input data sample that evoked the highest activity of 
various minicolumns within the same hypercolumn in layer 1, 
2 and, 3 (F, E and D respectively) shows diverse response 
profiles suitable for hierarchical feature detection. 
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cortex. An additional advantage of such networks equipped 
with brain-like algorithms is that they allow for 
straightforward conversion into spiking neural networks 
that enable efficient event-driven communication and low-
power neuromorphic hardware [47–49] 
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