
FedLEGO: Enabling Heterogenous Model Cooperation via
Brick Reassembly in Federated Learning

Jiaqi Wang
jqwang@psu.edu

The Pennsylvania State University
University Park, PA, USA

Suhan Cui
sxc6192@psu.edu

The Pennsylvania State University
University Park, PA, USA

Fenglong Ma
fenglong@psu.edu

The Pennsylvania State University
University Park, PA, USA

ABSTRACT
This paper focuses on addressing the practical yet challenging prob-
lem of model heterogeneity in federated learning, where clients pos-
sess models with different network structures. To track this problem,
we propose a novel framework called FedLEGO, which treats each
client model as a LEGO toy, reassembles it into bricks, and assem-
bles bricks back into personalized models accordingly. Moreover,
FedLEGO automatically and dynamically generates informative and
diverse personalized candidates with minimal human intervention.
Furthermore, our proposed heterogeneous model reassembly tech-
nique mitigates the adverse impact introduced by using public data
with different distributions from the client data to a certain extent. Ex-
perimental results demonstrate that FedLEGO outperforms baselines
on three datasets under both IID and Non-IID settings. Additionally,
FedLEGO effectively reduces the adverse impact of using different
public data and dynamically generates diverse personalized models
in an automated manner.

KEYWORDS
federated learning, model personalization, model heterogeneity

ACM Reference Format:
Jiaqi Wang, Suhan Cui, and Fenglong Ma. 2023. FedLEGO: Enabling Het-
erogenous Model Cooperation via Brick Reassembly in Federated Learning.
In Proceedings of ACM Conference (Conference’23). ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Federated learning (FL) aims to enable collaborative machine learn-
ing without the need to share clients’ data with others, thereby
upholding data privacy [6]. However, traditional federated learning
approaches [3, 4, 9, 12, 15, 18–20, 23, 28] typically enforce the
use of an identical model structure for all clients during training.
This constraint poses challenges in achieving personalized learning
within the FL framework. In real-world scenarios, clients such as
data centers, institutes, or companies often possess their own dis-
tinct models, which may have varying structures. Training on top
of their original models should be a better solution than deploying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’23, August 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

new ones for collaborative purposes. Therefore, a practical solu-
tion lies in fostering heterogeneous model cooperation within FL,
while preserving individual model structures. Only a few studies
have attempted to address the challenging problem of heterogeneous
model cooperation in FL [5, 8, 10, 22, 26], and most of them incor-
porate the use of a public dataset to facilitate both cooperation and
personalization [5, 8, 10, 26].

However, these approaches still face several key issues: (1) Un-
dermining personalization through consensus: Existing methods
often generate consensual side information, such as class informa-
tion [8], logits [5, 17], and label-wise representations [25], using
public data. This information is then exchanged and used to conduct
average operations on the server, resulting in a consensus represen-
tation. However, this approach poses privacy and security concerns
due to the exchange of side information [11]. Furthermore, the aver-
aging process significantly diminishes the unique characteristics of
individual local models, thereby hampering model personalization.
(2) Excessive reliance on prior knowledge for distillation-based
approaches: Distillation-based techniques, such as knowledge dis-
tillation (KD), are commonly employed for heterogeneous model
aggregation in FL [10, 21, 26]. However, these techniques neces-
sitate the predefinition of a shared model structure based on prior
knowledge [26]. Consequently, handcrafted models can heavily in-
fluence local model personalization. Additionally, a fixed shared
model structure may be insufficient for effectively guiding person-
alized learning when dealing with a large number of clients with
non-IID data. (3) Sensitivity to the choice of public datasets: Most
existing approaches use public data to obtain guidance information,
such as logits [5, 17] or a shared model [26], for local model per-
sonalization. The design of these approaches makes public data and
model personalization tightly bound together. Thus, they usually
choose the public data with the same distribution as the client data.
Therefore, using public data with different distributions from client
data will cause a significant performance drop in existing models.

We present a novel framework called FedLEGO, which aims to
achieve personalized federated learning and address the issue of
heterogeneous model cooperation (as depicted in Figure 1). The
FedLEGO framework comprises two key updates: the server update
and the client update. In particular, we approach the issue of hetero-
geneous model personalization from a model-matching optimization
perspective on the server side. To solve this problem, we introduce
a novel heterogeneous model reassembly technique to assemble
models uploaded from clients, i.e., {w1

𝑡 , · · · ,w𝐵𝑡 }, where 𝐵 is the
number of active clients in the 𝑡-the communication round. We treat
each local model as a LEGO toy and disassembly them into bricks
by layers. After that, we reassemble the bricks into new toys to ob-
tain models and we conduct similarly-based matching to distribute

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’23, August 2023, Long Beach, CA, USA None

1 2 2

31 1 2

3 3 4 4 5

Group 1

Group 2

Group K

Function-driven
Layer Grouping

Reassembly
Candidate
Generation

1 2 3 5

1 2 4 5

2 3 5

Candidate 1

Candidate 2

Candidate 3

Candidate M

Layer
Stitching

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

St
itc

h
la

ye
r

…

……

1 2 3

1 2 3 4

1 2 3 4 5

Fine Tune with
Fine Tune with

Similarity Calculation and MatchingSend to Clients
Pair 1:{ ， },

… …

Pair 2:{ ， } , , Pair B:{ ， }…

…

2 3 4

Layer-wise
Decomposition

Local Update Server Update

(Section 3.1.3)

(Section 3.1.3)(Section 3.1.2) (Section 3.1.2)

(Section 3.1.2)

(Section 3.1.1)

(Section 3.2) (Section 3.1)

Figure 1: Overview of the proposed FedLEGO. 𝐾 is the number of clusters.

models back to the clients accordingly. At the client side, we treat
the matched personalized model as a guidance mechanism for client
parameter learning using knowledge distillation1.

Our work makes the following key contributions: (1) We intro-
duce the first personalized federated learning framework based on
model reassembly, specifically designed to address the challenges
of heterogeneous model cooperation. (2) The proposed FedLEGO
framework demonstrates the ability to automatically and dynami-
cally generate personalized candidates that are both informative and
diverse, requiring minimal human intervention. (3) We present a
novel heterogeneous model reassembly technique, which effectively
mitigates the adverse impact caused by using public data with distri-
butions different from client data. (4) Experimental results show that
the FedLEGO framework achieves state-of-the-art performance on
three datasets, exhibiting superior performance under both IID and
Non-IID settings when compared to baselines employing labeled
and unlabeled public datasets.

2 RELATED WORKS
Model Heterogeneity in Federated Learning. Most existing ap-
proaches leverage public data to facilitate model training. Among
them, FedDF [10], FedKEMF [26], and FCCL [5] employ unlabeled
public data. However, FedDF trains a global model with different
settings compared to our approach. FedKEMF performs mutual
knowledge distillation learning on the server side to achieve model
personalization, requiring predefined model structures. FCCL aver-
ages the logits provided by each client and utilizes a consensus logit
as guidance during local model training. It is worth noting that the
use of logits raises concerns regarding privacy and security [11, 16].
FedMD [8] and FedGH [25] employ labeled public data. These
approaches exchange class information or representations between
the server and clients and perform aggregation to address the model
heterogeneity issue. However, similar to FCCL, these methods also
introduce privacy leakage concerns.
Neural Network Reassembly and Stitching. Conventional methods
are primarily employed in existing federated learning approaches to
obtain personalized client models, with limited exploration of model
reassembly. Additionally, there is a lack of research investigating
neural network reassembly and stitching [1, 2, 13, 14, 24] within the

1Note that the network architecture of both local model and personalized model are
known, and thus, there is no human intervention in the client update.

context of federated learning. For instance, the work presented in [1]
proposes three algorithms to merge two models within the weight
space, but it is limited to handling only two models as input. In
our setting, multiple models need to be incorporated into the model
reassembly or aggregation process. Furthermore, both [24] and [14]
focus on pre-trained models, which differ from our specific scenario.

3 METHODOLOGY
Our model FedLEGO incorporates two key updates: the server up-
date and the local update, as depicted in Figure 1. Next, we provide
the details of our model design starting with the server update.

3.1 Server Update
At communication round 𝑡 , the server will receive 𝐵 heterogeneous
client models with parameters denoted as {w1

𝑡 ,w
2
𝑡 , · · · ,w𝐵𝑡 }. As we

discussed in Section 1, traditional approaches have limitations when
applied in this context. To overcome these limitations and learn a
personalized model ŵ𝑛𝑡 that can be distributed to the corresponding
𝑛-th client, we propose a novel approach that leverages the publicly
available data D𝑝 stored on the server to find the most similar
aggregated models learned from {w1

𝑡 ,w
2
𝑡 , · · · ,w𝐵𝑡 } for w𝑛𝑡 .

3.1.1 Similarity-based Model Matching. Let 𝑔(·, ·) denote the
model aggregation function, which can automatically and dynami-
cally obtain 𝑀 aggregated model candidates as follows:

{c1𝑡 , · · · , c𝑀𝑡 } = 𝑔({w1
𝑡 ,w

2
𝑡 , · · · ,w𝐵𝑡 },D𝑝), (1)

where 𝑔(·, ·) will be detailed in Section 3.1.2, and c𝑚
𝑘

is the 𝑚-th
generated model candidate learned by 𝑔(·, ·). Note that c𝑚

𝑘
denotes

the model before network stitching. 𝑀 is the total number of can-
didates, which is not a fixed number and is estimated by 𝑔(·, ·). In
such a way, our goal is to optimize the following function:

c∗𝑡 = arg max
c𝑚𝑡 ;𝑚∈[1,𝑀]

{sim(w𝑛𝑡 , c1𝑡 ;D𝑝), · · · , sim(w𝑛𝑡 , c𝑀𝑡 ;D𝑝)}, (2)

where 𝑛 ∈ [1, 𝐵], c∗𝑡 is the best matched model for w𝑛𝑡 , which is also
denoted as ŵ𝑛𝑡 = c∗𝑡 . sim(·, ·) is the similarity function between two
models, which will be detailed in Section 3.1.3.

3.1.2 Heterogeneous Model Reassembly – 𝑔(·, ·). To opti-
mize Eq. (2), we need to obtain 𝑀 candidates using the heteroge-
nous model aggregation function 𝑔(·) in Eq. (1). To avoid the issue

FedLEGO: Enabling Heterogenous Model Cooperation via Brick Reassembly in Federated Learning Conference’23, August 2023, Long Beach, CA, USA

Table 1: Performance comparison with baselines under the heterogeneous setting.
Public
Data

Dataset MNIST SVHN CIFAR-10
Approach IID Non-IID IID Non-IID IID Non-IID

Labeled
FedMD [8] 93.08% 91.44% 81.55% 78.39% 68.22% 66.13%
FedGH [25] 94.10% 93.27% 81.94% 81.06% 72.69% 70.27%
FedLEGO 94.55% 94.41% 83.68% 83.40% 73.88% 71.74%

Unlabeled
FedKEMF [26] 93.01% 91.66% 80.41% 79.33% 67.12% 66.93%
FCCL [5] 93.62% 92.88% 82.03% 79.75% 68.77% 66.49%
FedLEGO 93.89% 93.76% 83.15% 80.24% 69.38% 68.01%

of predefined model architectures in the knowledge distillation ap-
proaches, we aim to automatically and dynamically learn the candi-
date architectures via a newly designed function 𝑔(·, ·). In particular,
we propose a decomposition-grouping-reassembly method as 𝑔(·, ·),
including layer-wise decomposition, function-driven layer grouping,
and reassembly candidate generation.

Layer-wise Decomposition. Assume that each uploaded client
model w𝑛𝑡 contains 𝐻 layers, i.e., w𝑛𝑡 = [(L𝑛

𝑡,1,𝑂
𝑛
1), · · · , (L

𝑛
𝑡,𝐻
,𝑂𝑛
𝐸
)],

where each layer L𝑛
𝑡,ℎ

is associated with an operation type 𝑂𝑛𝑒 . For
example, a plain convolutional neural network (CNN) usually has
three operations: convolution, pooling, and fully connected layers.
For different client models, 𝐻 may be different. The decomposition
step aims to obtain these layers and their corresponding operation
types.

Function-driven Layer Grouping. After decomposing layers
of client models, we group these layers based on their functional
similarities. Due to the model structure heterogeneity in our setting,
the dimension size of the output representations from layers by
feeding the public data D𝑝 to different models will be different. Thus,
measuring the similarity between a pair of layers is challenging,
which can be resolved by applying the commonly used centered
kernel alignment (CKA) technique [7]. In particular, we define the
distance metric between any pair of layers as follows:

dis(L𝑛𝑡,𝑖 , L
𝑏
𝑡,𝑗) = (CKA(X𝑛𝑡,𝑖 ,X

𝑏
𝑡,𝑖) + CKA(L𝑛𝑡,𝑖 (X

𝑛
𝑡,𝑖), L

𝑏
𝑡,𝑖 (X

𝑏
𝑡,𝑖)))

−1,
(3)

where X𝑛
𝑡,𝑖

is the input data of L𝑛
𝑡,𝑖

, and L𝑛
𝑡,𝑖
(X𝑛
𝑡,𝑖
) denotes the output

data from L𝑛
𝑡,𝑖

. This metric uses CKA(·, ·) to calculate the similarity
between both input and output data of two layers.

Based on the defined distance metric, we conduct the K-means-
style algorithm to group the layers of 𝐵 models into 𝐾 clusters. This
optimization process aims to minimize the sum of distances between
all pairs of layers, denoted as L𝑡 . The procedure can be described
as follows:

minL𝑡 = min
𝛿𝑎
𝑏,ℎ

∈{0,1}

𝐾∑︁
𝑘=1

𝐵∑︁
𝑏=1

𝐻∑︁
ℎ=1

𝛿𝑘
𝑏,ℎ

(dis(L𝑘𝑡 , L𝑏𝑡,ℎ)), (4)

where L𝑘𝑡 is the center of the 𝑘-th cluster. 𝛿𝑘
𝑏,ℎ

is the indicator. If

the ℎ-th layer of w𝑏𝑡 belongs to the 𝑘-th cluster, then 𝛿𝑘
𝑏,ℎ

= 1.

Otherwise, 𝛿𝑘
𝑏,ℎ

= 0. After the grouping process, we obtain 𝐾 layer

clusters denoted as {G1
𝑡 ,G2

𝑡 , · · · ,G𝐾𝑡 }. There are multiple layers in
each group, which have similar functions. Besides, each layer is
associated with an operation type.

Reassembly Candidate Generation. The last step for obtaining
personalized candidates {c1𝑡 , · · · , c𝑀𝑡 } is to assemble the learned
layer-wise groups {G1

𝑡 ,G2
𝑡 , · · · ,G𝐾𝑡 } based on their functions. Our

goal is to automatically generate informative and diverse candidates.

Generally, an informative candidate needs to follow the design
of handcrafted network structures. This is challenging since the
candidates are automatically generated without human interventions
and prior knowledge. To satisfy this condition, we require the layer
orders to be guaranteed following R1. For example, the 𝑖-th layer
from the 𝑛-th model, i.e., L𝑛

𝑡,𝑖
, in a candidate must be followed by

a layer with an index 𝑗 > 𝑖 from other models or itself. Besides,
the operation type also determines the quality of a model. For a
CNN model, the fully connected layer is usually used after the
convolution layer, which motivates us to design the R2 operation
order rule. To avoid computational issues and further obtain high-
quality candidates, we use the diversity principle as the filtering rule.
A diverse and informative model should contain all the operation
types, i.e., the R3 complete operation rule. Besides, the groups
{G1

𝑡 , · · · ,G𝐾𝑡 } are clustered based on their layer functions. The
requirement that layers of candidates must be from different groups
should significantly increase the diversity of model functions, which
motivates us to design the R4 diverse group rule.

3.1.3 Similarity Learning with Layer Stitching – sim(·, ·). Af-
ter obtaining a set of candidate models {c1𝑡 , · · · , c𝑀𝑡 }, to optimize
Eq. (2), we need to calculate the similary bettwen each client model
w𝑛𝑡 and all the cadidates {c1𝑡 , · · · , c𝑀𝑡 } using the public data D𝑝 .
However, this is non-trivial since c𝑚𝑡 is assembled by layers from
different client models, which is not a complete model architecture.
We have to stitch these layers together before using c𝑚𝑡 .

Layer Stitching. Assume that L𝑛
𝑡,𝑖

and L𝑏
𝑡,𝑗

are any two consec-
utive layers in the candidate model c𝑚𝑡 . Let 𝑑𝑖 denote the output
dimension of L𝑛

𝑡,𝑖
and 𝑑 𝑗 denote the input dimension of L𝑏

𝑡,𝑗
. 𝑑𝑖 is

usually not equal to 𝑑 𝑗 . To stitch these two layers, we follow existing
work [14] by adding a nonlinear activation function ReLU(·) on top
of a linear layer, i.e., ReLU(W⊤X+b), where W ∈ R𝑑𝑖×𝑑 𝑗 , b ∈ R𝑑 𝑗 ,
and X represents the output data from the first layer. In such a way,
we can obtain a stitched candidate c̃𝑚𝑡 .

Similarity Calculation. We propose to use the cosine score
cos(·, ·) to calculate the similarity between a pair of models (w𝑛𝑡 , c̃𝑚𝑡)
as follows:

sim(w𝑛𝑡 , c𝑚𝑡 ;D𝑝) = sim(w𝑛𝑡 , c̃𝑚𝑡 ;D𝑝) =
1
𝑃

𝑃∑︁
𝑝=1

cos(𝜶𝑛𝑡 (x𝑝),𝜶𝑚𝑡 (x𝑝)),

(5)
where 𝑃 denotes the number of data in the public dataset D𝑝 and
x𝑝 is the 𝑝-th data in D𝑝 . 𝜶𝑛𝑡 (x𝑝) and 𝜶𝑚𝑡 (x𝑝) are the logits output
from models w𝑛𝑡 and c̃𝑚𝑡 , respectively. To obtain the logits, we need
to finetune w𝑛𝑡 and c̃𝑚𝑡 using D𝑝 first. In our design, we can use both
labeled and unlabeled data to finetune models but with different loss
functions.

Conference’23, August 2023, Long Beach, CA, USA None
A

cc
ur

ac
y

3.54%

10.15%

5.77%

2.53%

5.63%

2.27%

6.79% 8.67%
3.92%

12.56%

5.20% 5.36%

(a) IID with labeled public dataset (b) Non-IID with labeled public dataset

4.04% 7.57%
7.05%

3.25%

7.14%

2.23%

(c) IID with unlabeled public dataset (d) Non-IID with unlabeled public dataset

9.10% 12.43%
8.33% 6.90%

4.71% 3.91%

FedLEGO FedLEGO FedLEGO FedLEGO

Figure 2: Performance changes when using different public data. FedLEGO is our proposed model.

3.2 Client Update
The obtained personalized model ŵ𝑛𝑡 (i.e., c∗𝑡 in Eq. (2)) will be dis-
tributed to the 𝑛-th client if it is selected in the next communication
round 𝑡 + 1. ŵ𝑛𝑡 is a reassembled model that carries external knowl-
edge from other clients, but its network structure is different from
the original w𝑛𝑡 . To incorporate the new knowledge without training
w𝑛𝑡 from scratch, we propose to apply knowledge distillation on the
client following [27].

Let D𝑛 = {(x𝑛
𝑖
, y𝑛
𝑖
)} denote the labeled data, where x𝑛

𝑖
is the

data feature and y𝑛
𝑖

is the coresponding ground truth vector. The
loss of training local model with knowledge distillation is defined as
follows:

J𝑛 =
1

|D𝑛 |

|D𝑛 |∑︁
𝑖=1

[
CE(w𝑛𝑡 (x𝑛𝑖), y

𝑛
𝑖) + 𝜆KL(𝜶𝑛𝑡 (x𝑛𝑖), �̂�

𝑛
𝑡 (x𝑛𝑖))

]
,

(6)
where |D𝑛 | denotes the number of data in D𝑛 , w𝑛𝑡 (x𝑛𝑖) means the
predicted label distribution, 𝜆 is a hyperparameter, KL(·, ·) is the
Kullback–Leibler divergence, and 𝜶𝑛𝑡 (x𝑛𝑖) and �̂�𝑛𝑡 (x𝑛𝑖) are the logits
from the local model w𝑛𝑡 and the downloaded personalized model
ŵ𝑛𝑡 , respevtively.

4 EXPERIMENT
4.1 Experiment Setup
We conduct experiments for the image classification task on MNIST,
SVHN, and CIFAR-10 datasets under both IID and non-IID data
distribution settings, respectively. We split the datasets into 80% for
training and 20% for testing. During training, we randomly sample
10% training data to put in the server as D𝑝 and the remaining 90%
to distribute to the clients. The training and testing datasets are ran-
domly sampled for the IID setting. For the non-IID setting, each
client randomly holds two classes of data. To test the personaliza-
tion effectiveness, we sample the testing dataset following the label
distribution as the training dataset. We compare FedLEGO with the
baselines. To make fair comparisons, we use FedMD [8] and FedGH
[25] as baselines when using the labeled public data, and FCCL [5]
and FedKEMF [26] when testing the unlabeled public data.

4.2 Experiment Evaluation
Similar to existing work [5], to test the performance with a small
number of clients, we set the client number 𝑁 = 12 and active client
number 𝐵 = 4 in each communication round. We design 4 types of
models with different structures and randomly assign each type of
model to 3 clients. The Conv operation contains convolution, max
pooling, batch normalization, and ReLU, and the FC layer contains
fully connected mapping, ReLU, and dropout. We set the number of

clusters 𝐾 = 4. Then local training epoch and the server finetuning
epoch are equal to 10 and 3, respectively. The public data and client
data are from the same dataset. Table 1 shows the experimental re-
sults for the heterogeneous setting using both labeled and unlabeled
public data. We can observe that the proposed FedLEGO achieves
state-of-the-art performance on all datasets and settings. We also find
the methods using labeled public datasets can boost the performance
compared with unlabeled public ones in general, which aligns with
our expectations and experiences.

4.3 Public Dataset Analysis
In the previous experiments, the public and client data are from the
same dataset, i.e., having the same distribution. To validate the effect
of using different public data during model learning for all baselines
and our model, we conduct experiments by choosing public data
from different datasets and report the results on the SVHN dataset.
Other experimental settings are the same as those in the scenario of
the small number of clients.

Figure 2 shows the experimental results for all approaches using
labeled and unlabeled public datasets. We can observe that replacing
the public data will make all approaches decrease performance. This
is reasonable since the data distributions between public and client
data are different. However, compared with baselines, the proposed
FedLEGO has the lowest performance drop. Even using other pub-
lic data, FedLEGO can achieve comparable or better performance
with baselines using SVHN as the public data. This advantage stems
from our model design. As described in Section 3.1.3, we keep more
information from original client models by using a simple layer as
the stitch. Besides, we aim to search for the most similar person-
alized candidate with a client model. We propose to calculate the
average logits in Eq. (5) as the criteria. To obtain the logits, we do
not need to finetune the models many times. In our experiments, we
set the number of finetuning epochs as 3. This strategy can also help
the model reduce the adverse impact of public data during model
training.

5 CONCLUSION
We propose a novel framework, named FedLEGO, for personalized
federated learning, focusing on solving the problem of heteroge-
neous model cooperation. The experimental results conducted on
three datasets, under both IID and Non-IID settings, have verified the
effectiveness of our proposed FedLEGO framework in addressing
the model heterogeneity issue in federated learning. The achieved
state-of-the-art performance serves as evidence of the efficacy and
practicality of our approach.

FedLEGO: Enabling Heterogenous Model Cooperation via Brick Reassembly in Federated Learning Conference’23, August 2023, Long Beach, CA, USA

REFERENCES
[1] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. 2022. Git

re-basin: Merging models modulo permutation symmetries. arXiv preprint
arXiv:2209.04836 (2022).

[2] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. 2021. Revisiting model
stitching to compare neural representations. Advances in neural information
processing systems 34 (2021), 225–236.

[3] Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, and Jing Jiang. 2022.
Personalized federated learning with graph. arXiv preprint arXiv:2203.00829
(2022).

[4] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An
efficient framework for clustered federated learning. Advances in Neural Informa-
tion Processing Systems 33 (2020), 19586–19597.

[5] Wenke Huang, Mang Ye, and Bo Du. 2022. Learn from others and be yourself in
heterogeneous federated learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10143–10153.

[6] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[7] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019.
Similarity of neural network representations revisited. In International Conference
on Machine Learning. PMLR, 3519–3529.

[8] Daliang Li and Junpu Wang. 2019. Fedmd: Heterogenous federated learning via
model distillation. arXiv preprint arXiv:1910.03581 (2019).

[9] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429–450.

[10] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. Advances in Neural
Information Processing Systems 33 (2020), 2351–2363.

[11] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang
Yang, and S Yu Philip. 2022. Privacy and robustness in federated learning: Attacks
and defenses. IEEE transactions on neural networks and learning systems (2022).

[12] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[13] Dang Nguyen, Trang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, and Nhat
Ho. 2023. On Cross-Layer Alignment for Model Fusion of Heterogeneous Neural
Networks. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 1–5.

[14] Zizheng Pan, Jianfei Cai, and Bohan Zhuang. 2023. Stitchable Neural Networks.
arXiv preprint arXiv:2302.06586 (2023).

[15] Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar
Sanjabi, and Lin Xiao. 2022. Federated learning with partial model personalization.
In International Conference on Machine Learning. PMLR, 17716–17758.

[16] Jiankai Sun, Xin Yang, Yuanshun Yao, Aonan Zhang, Weihao Gao, Junyuan Xie,
and Chong Wang. 2021. Vertical federated learning without revealing intersection
membership. arXiv preprint arXiv:2106.05508 (2021).

[17] Lichao Sun and Lingjuan Lyu. 2020. Federated model distillation with noise-free
differential privacy. arXiv preprint arXiv:2009.05537 (2020).

[18] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and
Chengqi Zhang. 2022. Fedproto: Federated prototype learning across heteroge-
neous clients. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 8432–8440.

[19] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. 2022.
Federated learning from pre-trained models: A contrastive learning approach.
arXiv preprint arXiv:2209.10083 (2022).

[20] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated optimiza-
tion. Advances in neural information processing systems 33 (2020), 7611–7623.

[21] Jiaqi Wang, Shenglai Zeng, Zewei Long, Yaqing Wang, Houping Xiao, and Feng-
long Ma. 2023. Knowledge-Enhanced Semi-Supervised Federated Learning for
Aggregating Heterogeneous Lightweight Clients in IoT. In Proceedings of the
2023 SIAM International Conference on Data Mining (SDM). SIAM, 496–504.

[22] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. 2022.
Communication-efficient federated learning via knowledge distillation. Nature
communications 13, 1 (2022), 2032.

[23] Yue Wu, Shuaicheng Zhang, Wenchao Yu, Yanchi Liu, Quanquan Gu, Dawei
Zhou, Haifeng Chen, and Wei Cheng. 2023. Personalized Federated Learning
under Mixture of Distributions. arXiv preprint arXiv:2305.01068 (2023).

[24] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. 2022.
Deep model reassembly. Advances in neural information processing systems 35
(2022), 25739–25753.

[25] Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. 2023. FedGH: Het-
erogeneous Federated Learning with Generalized Global Header. arXiv preprint

arXiv:2303.13137 (2023).
[26] Sixing Yu, Wei Qian, and Ali Jannesari. 2022. Resource-aware Federated

Learning using Knowledge Extraction and Multi-model Fusion. arXiv preprint
arXiv:2208.07978 (2022).

[27] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. 2018. Deep
mutual learning. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 4320–4328.

[28] Tianfei Zhou and Ender Konukoglu. 2023. FedFA: Federated Feature Augmenta-
tion. arXiv preprint arXiv:2301.12995 (2023).

	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Server Update
	3.2 Client Update

	4 Experiment
	4.1 Experiment Setup
	4.2 Experiment Evaluation
	4.3 Public Dataset Analysis

	5 Conclusion
	References
	5.1 Implementation Details

