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Abstract

In recent years, pre-trained language mod-001
els (PLMs) have achieved some eye-catching002
results on many natural language process-003
ing (NLP) tasks. Upon that, a plethora of004
knowledge-injected PLMs — assisted by exter-005
nal knowledge graphs — have been proposed006
to further enhance or adapt original PLMs on007
specific downstream tasks. Among these ex-008
citing results, we may identify some (poten-009
tially) strange odd phenomena such as the im-010
balance across downstream tasks, little corre-011
lation between the injected knowledge and the012
chosen tasks, the mismatch between knowl-013
edge and sentences, etc. These phenomena014
concern us about the effect of the specific in-015
jected knowledge on the model while doing the016
downstream task. In this work, we intend to017
comprehensively revisit a series of well-known018
knowledge-injected frameworks on most com-019
mon benchmarks, by conducting extensive ab-020
lation and control experiments that were previ-021
ously mostly omitted. Coupled with dense anal-022
ysis by tracking down the transfer path of the023
knowledge vectors, we may draw a frustrating024
conclusion that the current knowledge-injected025
frameworks may have minimal effect in lever-026
aging the injected knowledge. We further cast027
a hypothesis to interpret the performance en-028
hancement of the knowledge-injected PLMs029
from a data augmentation perspective.030

1 Introduction031

Large-scale pre-trained language models — icon-032

ically BERT(Devlin et al., 2019), GPT-3(Brown033

et al., 2020), etc. — manage to encode distributed034

representation through training on massive unla-035

beled text corpora. These methods have contin-036

uously extended the frontier of numerous NLP037

tasks and established new architectural standards038

in the field. One notable incremental scheme upon039

the PLMs is to inject external knowledge, which040

leads to the name of “knowledge-injected PLMs“.041

The knowledge injection is mostly made possible042
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Figure 1: Knowledge Injection Diagram.

by vectorial representation from external knowl- 043

edge graphs and conducted in either pre-training 044

or fine-tuning stages. For instance, BioBERT(Lee 045

et al., 2019) and SCIBERT(Beltagy et al., 2019), 046

pre-trained on the domain-specific corpora, dis- 047

play some decent improvement over the vanilla 048

BERT on the biomedical and scientific tasks. Sim- 049

ilar examples also emerged like LUKE(Yamada 050

et al., 2020), ERNIE(Zhang et al., 2019) and Know- 051

Bert(Peters et al., 2019) on tasks such as question 052

answering, entity typing, entity disambiguation, 053

etc. Further, for the low-resource domain such as 054

medical NLP (Lee et al., 2019; Yuan et al., 2021), 055

to be able to engage a deep neural network with 056

knowledge is conceptually indispensable. 057

Despite the promise, we find some slight 058

clues implying the odd pattern from the current 059

knowledge-injected frameworks. For instance, the 060

best performance of common entity linking tools 061

displays a non-trivial variance on different bench- 062

marking datasets — from 38.0 to 73.0 on the Macro 063

F1 scores (Kolitsas et al., 2018). It may lead to a 064

mismatch between the injecting knowledge and the 065

text. In what follows, for tasks like domain-specific 066

question answering that naturally suits the knowl- 067

edge injection, the models do not necessarily render 068

the expected performance gain (Zhang et al., 2019; 069

Broscheit, 2019; Whitehouse et al., 2022). In the 070

meantime, Zhang et al. (2021) points out that some- 071
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times the redundant knowledge may unexpectedly072

lead to a negative infusion effect on the perfor-073

mance. To sum up, these results have concerned074

us with the actual effect of the injected knowledge075

towards feeding through the model pathway.076

In this work, we may take a comprehensive re-077

visiting of the grand spectrum of knowledge injec-078

tion literature. To fully understand the dynamics,079

we design a series of quantitative and qualitative080

empirical protocols: (i)-we establish an ablation081

protocol which is often omitted by prior published082

papers, via injecting randomized, irrelevant, and/or083

(intentional) false knowledge entities; (ii)-we track084

down the effect caused by the injected knowledge085

alongside the feed-forward pathway of the model.086

Based upon these results on various benchmarks087

and methodologies, we (frustratingly) found that088

the injected knowledge has little or minimal effect089

on the actual dynamics. Besides, we further con-090

duct (iii)-injecting random Gaussian noise into the091

model. Thereby we find: (i) the knowledge injec-092

tion is not better than random injection; (ii) the093

word embeddings especially the [cls] embedding094

injected with different knowledge are highly simi-095

lar; (iii) there is a possibility that the reason for the096

prior knowledge-injected frameworks yielding per-097

formance gain could be due to a data augmentation098

effect similar to noising-based data augmentation099

methods (Kos and Song, 2017).100

Note, the goal of this paper is not to propose101

a novel framework, nor do we claim to have fur-102

ther pushed the boundary of knowledge injection.103

Rather, through extensive and rigorous empirical104

findings, we hope to alert the community to scruti-105

nize the related methods. To sum up, we make the106

following contribution:107

• We may conclude the current schemes fail to108

leverage the injected knowledge, nor to recog-109

nize the relevance of the knowledge and the110

text input;111

• We cast a (wild) hypothesis that the injected112

knowledge may work as a data augmentation113

module, to explain the performance gain;114

• We provide a new set of experimental proxies115

as ablations for the future work, with a full116

pack of code planned to be open-sourced upon117

publication.118
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Figure 2: Word And Knowledge Embedding Fusion
Process Diagram.

2 Preliminary 119

In this work, we prepare to conduct some additional 120

experiments on mainstream knowledge-enhanced 121

models, to explore the injecting knowledge’s ef- 122

fect on the models. First, let us take a look at the 123

mainstream knowledge injection methods. 124

Knowledge Graph (KG) is a directed graph 125

G consisting of a large number of triples T and 126

T = {e, r, t}, where e, t are the head entity and 127

the tail entity respectively and r is the relation be- 128

tween e and t. KG embedding models can map 129

the structural information of the KG into a vector 130

space, such as TransE (Bordes et al., 2013). 131

Entity Linking is the entity alignment tool, like 132

TagMe (Ferragina and Scaiella, 2010a). Specifi- 133

cally, given a KG and text, it detects KG’s enti- 134

ties mentioned in the text and links them to the 135

correct KG entry (Broscheit, 2019). After entity 136

alignment, knowledge-injected models generally 137

consider relation r and tail entity t as knowledge. 138

Some knowledge-injected models use aligned KG 139

entities as entity knowledge, such as LUKE (Ya- 140

mada et al., 2020). 141

Knowledge Representation/Embedding refers 142

to the embedding of the entity in the KG embedding 143

model or embedding trained in the pre-training 144

stage. 145

Knowledge Injection Methods aim to inject 146

knowledge information from KGs into PLMs, to 147

improve the performance of downstream tasks. Ac- 148

cording to the stage in which they inject knowledge, 149

the methods can generally be divided into two cate- 150

gories, pre-training or finetuning. 151

Many works intend to integrate external knowl- 152

edge base knowledge into PLMs, however, due 153
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to the differences in downstream tasks and injec-154

tion patterns, different knowledge-enhanced mod-155

els may have differences in specific methods. Here,156

we take ERNIE (Zhang et al., 2019) as an example157

to introduce the knowledge injection methods, for158

ERNIE is relatively representative in these mod-159

els and many subsequent works are adjusted on its160

basis.161

To be specific, in finetuning, it firstly aligns men-162

tions in text with the KG’s entities via entity linking.163

Then, the sentence and related knowledge begin to164

be fused. As shown in Figure 2, the text and the KG165

entities enter the different encoders separately. Like166

BERT, word embedding and knowledge embedding167

enter the attention, intermediate, and output layers.168

Here, we denote the i-th layer word embedding169

Wi as {w(1)
i , . . . , w

(n)
i }, and the i-th layer knowl-170

edge embedding Ei as {e(1)i , . . . , e
(m)
i }, where n,171

m is the length of sentence and entities. For a word172

embedding w
(j)
i and its aligned knowledge embed-173

ding e
(k)
i , they are usually fused in the intermediate174

layer and the process can be summarized as175

hi = σ(W
(t)
i w̃

(j)
i +W

(e)
i ẽ

(k)
i + bi),

w
(j)
i+1 = σ(W

(t)
i hi + b

(j)
i ),

e
(k)
i+1 = σ(W

(e)
i hi + b

(e)
i ),

(1)176

where hi is the i-th hidden state and σ(·) is the177

non-linear activation function. w̃
(j)
i , ẽ(k)i are the178

representation of w(j)
i and e

(k)
i after entering the179

attention layer. We exclude a comprehensive de-180

scription of the specific fusion method and refer181

readers Zhang et al. (2019).182

For knowledge injecting in pre-training, the183

model usually adds a new pre-training task based184

on the Masked Language Model (MLM), which185

randomly masks off the KG’s entities and lets the186

model predict it.187

3 Models and Datasets188

In this section, we introduce chosen knowledge-189

injection models, the downstream tasks, and190

datasets on which its effects are evaluated.191

3.1 Models192

Knowledge-injected PLMs have benefited a variety193

of NLP applications, especially those knowledge-194

intensive ones (Wei et al., 2021). However, differ-195

ent downstream tasks may require different types196

and quantities of knowledge, and knowledge injec-197

tion methods for different NLP applications may198

vary widely. To take a comprehensive revisiting of 199

the main knowledge-enhanced models, we choose 200

the better performance knowledge-injected PLMs 201

as baselines according to different downstream 202

tasks and datasets. According to these principles, 203

we choose LUKE (Yamada et al., 2020), ERNIE 204

(Zhang et al., 2019), KnowBERT (Peters et al., 205

2019), ATOMIC-BERT (Hosseini et al., 2022), K- 206

BERT (Liu et al., 2020) and KeBioLM (Yuan et al., 207

2021) as baselines, please refer to Appendix A.1 208

for more details. 209

3.2 Downstream tasks and Datasets 210

We choose the following tasks to demonstrate the 211

actual performance of knowledge injection meth- 212

ods in the additional experiments. 213

Named Entity Recognition (NER) is the task of 214

finding the corresponding span of the named entity 215

in the given sentence. The introduction to datasets 216

for NER tasks is in Appendix A.2. 217

Entity Typing is the task to find the correct type 218

of the corresponding label entities in giving a sen- 219

tence. Open Entity (Choi et al., 2018), commonly 220

used in knowledge-enhanced PLMs, has about 221

6000 sentences with six entity types. Each sen- 222

tence has five entity labels on average. 223

Relation Classification is the task of identify- 224

ing the relation between label entities in a given 225

sentence. TACRED (Zhang et al., 2017), is a re- 226

lation extraction dataset with 106,264 examples. 227

Examples in TACRED cover 42 relation types. 228

Question Answering is the task of answering 229

questions such as reading comprehension ques- 230

tions. SQuAD1.1 (Rajpurkar et al., 2016), is a 231

reading comprehension dataset, consisting of ques- 232

tions from Wikipedia articles. SQuAD 1.1 contains 233

107,785 question-answer pairs on 536 articles. 234

Word Sense Disambiguation is the task to let 235

the model find label words’ most suitable en- 236

try in the sense inventory. WiC (Pilehvar and 237

Camacho-Collados, 2019), is a benchmark that is 238

used for evaluating context-sensitive word embed- 239

dings. Each instance in WiC has a target word, 240

and the task is to identify if the occurrences of the 241

target word in the two contexts correspond to the 242

same meaning or not. 243

Commonsense Causal Reasoning is the task of 244

finding corresponding options through the causal 245
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setup
MedicalNER

+
MedicalKG

MedicalNER
+

HowNet

MedicalNER
+

CnDbpedia

FinancialNER
+

HowNet

FinancialNER
+

CnDbpedia

BERT (Liu et al., 2020) 92.5 - - 86.1 -
K-BERT (Liu et al., 2020) 94.2 93.3 93.8 87.3 87.4

original entities 94.00±0.18 93.51±0.15 93.48+0.26 87.49±0.08 87.37±0.19
random entities 93.89±0.33 93.52±0.22 93.55±0.25 87.35±0.19 87.46±0.11
constant entities 94.24±0.10 94.24±0.34 94.06±0.10 87.40±0.15 87.80±0.10

(a) Results of K-BERT. BERT and K-BERT come from Liu et al. (2020).

setup BC5chem BC5dis NCBI BC2GM JNLPBA

BioBERT (Yuan et al., 2021) 92.9 84.7 89.1 83.8 79.4
KeBioLM (Yuan et al., 2021) 93.3 86.1 89.1 85.1 82.0

original entities 93.24±0.71 87.96±1.05 88.46±0.66 83.99±0.22 78.81±2.51
random entities 93.06±0.69 88.57±0.92 88.91±0.25 83.25±0.61 78.81±2.48
constant entities 92.93±0.70 87.55±0.45 88.72±0.73 83.22±0.27 79.17±2.24

(b) Results of KeBioLM. BioBERT and KeBioLM come from Yuan et al. (2021).

Table 1: Results of Named Entity Recognition Task. original, random and constant entities correspond setup 1, 2
and 3 respectively.

dependencies. COPA (Roemmele et al., 2011) is246

a benchmark for evaluating commonsense causal247

reasoning. It consists of 1000 questions, 500 each248

for the training and test sets. Each question has a249

premise and two alternatives.250

4 Is the Knowledge Injection Better Than251

Random Injection?252

In this section, we demonstrate that there is no253

significant difference between knowledge injection254

and random injection in different downstream tasks.255

Specifically, we design a set of ablation experi-256

ments with strictly controlled variables to explore257

the practical effect of knowledge information.258

Some believe the knowledge-enhanced models259

benefit from the domain knowledge in KG or that260

injecting information from KGs helps the model261

make full of training data (Zhang et al., 2019; Liu262

et al., 2020). However, they omit to compare the263

random, irrelevant injection with normal injection.264

In that case, it can judge whether this injection265

action or the injected knowledge information (or a266

combination of the two) enhances the model. For267

this purpose, we design a new ablation experiment.268

Ablation Experiment Setup. We regard linked269

knowledge as proper knowledge, random and con-270

stant knowledge as faulty knowledge and noise, and271

evaluate the effectiveness of knowledge injection272

methods by injecting different types of knowledge.273

We adopt the following settings:274

1. original entities refers to the original knowl-275

edge injected model;276

2. random entities refers to randomly selecting 277

one entity from the entire entity set as a new 278

entity input; 279

3. constant entities refers to choosing one en- 280

tity node as all entity inputs regardless of the 281

entities matching the text. 282

To ensure that the experimental results are not 283

affected by other factors, we try to ensure the other 284

experimental settings and hyperparameters are con- 285

sistent with baselines. To reduce the effect of ran- 286

dom seeds, all these experiments are run 5 times 287

with varying random seeds. 288

Main Results. We conduct new ablation experi- 289

ments on 5 downstream tasks. As shown in table 1 290

to 4, we can see that: (i) The knowledge injection 291

is not superior to random or constant injection, and 292

in some cases, the latter is even better than the 293

former;(ii) The performance differences of differ- 294

ent knowledge injections are very small, generally 295

within 1.0, and some are even lower than 0.1. 296

For the named entity recognition task, Table 1 297

shows the results of K-BERT and KeBioLM on 298

their own NER datasets under the setup of the ab- 299

lation experiment. In K-BERT, We conduct exper- 300

iments on 2 NER datasets and inject knowledge 301

from different KGs. And we find using constant 302

or randomized entities does not make the testing 303

performance worse. At the same time, replacing 304

the injected knowledge base does not change this 305

phenomenon, and its impact on downstream tasks 306

is also small, within 0.5. 307
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setup Open Entity TACRED
P R F1 P R F1

BERT (Zhang et al., 2019) 76.37 70.96 73.56 67.23 64.81 66.00
ERNIE (Zhang et al., 2019) 78.42 72.90 75.56 69.97 66.08 67.97
original entities 78.81±1.05 72.15±0.92 75.33±0.41 71.09±1.62 58.15±5.88 63.79±3.60
random entities 77.85±1.13 73.12±1.07 75.37±0.31 68.29±5.91 58.08±5.83 63.73±3.64
constant entities 77.48±0.49 73.28±1.11 75.31±0.39 71.34±1.32 59.86±5.16 63.17±3.68

Table 2: Results of ERNIR on Open Entity and TACRED. BERT and ERNIE come from Zhang et al. (2019).
original, random and constant entities correspond setup 1, 2 and 3 respectively.

setup SQuAD 1.1
Dev Acc Dev F1

BERT-large (Lan et al., 2019) 84.1 90.9
LUKE (Yamada et al., 2020) 86.1 92.3
original entities 86.22±0.37 92.34±0.09
random entities 86.15±0.15 92.39±0.11
constant entities 86.18±0.07 92.40±0.06

Table 3: Results of LUKE. BERT-large and LUKE come from
Lan et al. (2019) and Yamada et al. (2020). random and constant
entities correspond setup 1, 2 and 3 respectively.

setup WiC
Dev Acc

original entities 69.53±1.24
random entities 69.25±1.09
constant entities 69.31±1.01

Table 4: Results of KnowBert, random and
constant entities correspond setup 1, 2 and 3
respectively.

Table 2 shows the results of ERNIE on Open308

Entity and TACRED. We change the batch size in309

TACRED from 32 to 16. Table 3 and 4 show the re-310

sults of LUKE on SQuAD 1.1 and KnowBert with311

KBs (Wiki + WordNet) on WiC. And we choose312

RoBERTa base as the baseline in LUKE. These313

results all verify our conjecture that knowledge314

injection is not better than random injection.315

Discussion. These results do not match our gen-316

eral impression of knowledge injection methods,317

that the injected knowledge information enhances318

the textual representation of the model. However,319

It can partially explain some odd phenomena of320

those knowledge-enhanced PLMs, such as little321

correlation between the injected knowledge and322

the chosen tasks. These results seem to indicate323

that the injection model does not fully utilize the324

injected knowledge information, however, we do325

not know whether it is the reason for this knowl-326

edge injection failure. In the next section, we track327

down the effect caused by the injected knowledge328

alongside the feed-forward pathway of the model329

and try to verify our conjecture.330

5 Why There Is Little Difference Between331

Knowledge Injection And Random332

Injection?333

To find the reasons for the knowledge injection fail-334

ure, we designed new analysis experiments to track335

the change of knowledge information in the knowl-336
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120%
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Figure 3: Schematic diagram of embedding similarity
change. In this experiment, we inject original and ran-
dom entities into ERNIE on the Open Entity test dataset.
We count the cosine similarity of [cls], mentions, and
entities embedding in the hidden layers. The similarity
in the figure is the absolute average of the 1000 data.

edge injection path. As we introduced before 1, the 337

knowledge representations usually are fused in the 338

intermediate layer of the encoder. We only need to 339

compare the embedding similarity with different 340

knowledge before and after the fusion process. Our 341

experimental results demonstrate that text embed- 342

dings with different knowledge are highly similar. 343

Experiment Setup. We first load the original, 344

random entities and constant entities data on the 345

trained knowledge enhanced models and print their 346

output at each hidden layer of the encoder. Then, 347

we compare the similarity among these outputs. We 348

adopt cosine similarity as a measure of variation in 349

word embeddings and entity embeddings, defined 350
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setup
MedicalNER

+
MedicalKG

MedicalNER
+

HowNet

MedicalNER
+

CnDbpedia

FinancialNER
+

HowNet

FinancialNER
+

CnDbpedia

random entities 93.89±0.27 93.52±0.18 93.55±0.20 87.35±0.15 87.46±0.09
random noise 93.79±0.32 93.73±0.13 93.80±0.13 87.15±0.11 87.10±0.11

(a) Results of nosie injecting to K-BERT for NER datasets.

setup SQuAD 1.1
Dev Acc Dev F1

random entities 86.22±0.37 92.34±0.09
random noise 86.09±0.48 92.33±0.04

(b) Results of nosie injecting to LUKE

setup Open Entity
P R F1

random entities 78.81±1.05 72.15±0.92 75.33±0.41
random noise 77.28±0.54 72.98±0.42 75.07±0.06

(c) Results of nosie injecting to ERNIE.

Table 5: Results of Gaussian Noise.

as follows:351

similarity =
a⃗ · b⃗
|⃗a||⃗b|

. (2)352

Among these similarities, we only keep similari-353

ties of [cls], word embeddings related to knowl-354

edge, and knowledge embeddings. After this, we355

output the predictions of the same sentence with356

different knowledge injected. The result validates357

the previous inference in fine-grained dimensions.358

Analysis. Our analytical experiments find that359

word embeddings injected with different knowl-360

edge are highly similar. Figure 3 shows the simi-361

larity change of word and entity embeddings from362

layer1 to layer12. From layer1 to layer5, there is363

no interaction between the entity and word embed-364

ding, so the similarities did not change. Starting365

from layer6, the entity and word embeddings begin366

to fuse, and the corresponding similarity begins367

to change, but the [cls] embedding changes are368

always small. After layer12, [cls] embedding369

inputs into the linear layer and outputs logits.370

It can be found that the similarities of [cls]371

embeddings are very high in the whole process,372

generally above 99.5%. In this case, it is difficult373

for the model to find the difference between the374

three sets of inputs. This result shows that the375

model hardly obtains valuable information from376

the knowledge representation.377

To further verify our point of view, we output378

the prediction results of the model on three sets379

of experimental data. Figure 4 shows the results380

of Open Entity, TACRED and FewRel (Han et al.,381

2018) in ERNIE, which load the test data by in-382

jecting original, random and constant entities. It383

is easy to find that the model has a high proba-384

bility of outputting the same result for sentences385
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Open Entity TACRED FewRel

same output different output

Figure 4: The output of injecting different knowledge.
We only count the output of data with injected knowl-
edge. The same output means the text injecting original,
random and constant entities output the same predicted
value. If there are differences between the three pre-
dicted values, it is attributed to the different outputs.

injected with different knowledge, and this data 386

exceeds 99.6% in TACRED. It further illustrates 387

that the model may not recognize the knowledge 388

information integrated into sentences. 389

6 Why Does Random Injection Still 390

Work? 391

Our previous experiments validated our inference 392

that the injected knowledge information may not 393

affect the actual performance of the model. How- 394

ever, in our experiments, random injection seems 395

still performs better than the non-injected models. 396

In this section, we further speculate that knowledge 397

injection has a data augmentation effect similar to 398

injecting noise. 399

Experiment Setup. To explore the actual effect 400

of the random injection, we design two related ex- 401

periments: a. Replace the injected knowledge with 402

Gaussian white noise and compare it with the re- 403

sults of random entities; b. Compare the overfitting 404
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Setup Open Entity
P R F1

BERT 76.37 70.96 73.56
ERNIE* 77.24±0.71 69.54±0.63 73.18±0.32
random knowledge 77.02±0.36 70.78±0.54 73.76±0.18

Table 6: Results of ERNIE on Open Entity. BERT comes
from Zhang et al. (2019). ERNIE* is the result of our repro-
duction Zhang et al. (2019) pre-training. random knowledge
corresponds setup 2.

setup COPA
Acc

BERT large 78.60±1.11
ATOMIC-BERT* 78.84±1.62
original knowledge 75.60±2.81
random knowledge 68.40±7.69

Table 7: Results of ATOMIC-BERT on COPA.
original and random knowledge correspond setup
1 and 2 respectively. ATOMIC-BERT* is the re-
sult of our reproduction Hosseini et al. (2022).

degree of the model with or without knowledge405

injection (including Gaussian white noise). We use406

the loss and accuracy gap between the training and407

validation phase as evaluation metrics for model408

overfitting degrees.409

Discussion. Indeed, given all the aforemen-410

tioned empirical results, it is still undeniable that411

knowledge-injected frameworks have a positive412

outcome from the perspective of eventual perfor-413

mance. To form a full-circle study, we hereby cast414

a hypothesis, perhaps wild, that the injected knowl-415

edge is picked by the model as a data augmentation416

module.417

Table 5a to 5c shows the comparison of injecting418

random entities and Gaussian white noise in differ-419

ent downstream tasks. We can see the difference420

between the two is minimal, almost within 0.3 of421

the F1 score. It seems to indicate that knowledge-422

injected methods may work like noising-based data423

augmentation methods.424

We further conduct an extra set of experiments425

on Open Entity, by simply injecting gaussian noises.426

At the convergence point, we curate and report both427

the loss gap between the training and dev set. Or-428

dinarily, the larger the gap, the more overfitted the429

trained model is. The result is summarized in the430

text as follows: (i)-injecting original knowledge431

entities, random entities, and random noises all432

manage to reduce the loss gap, i.e. help allevi-433

ate the overfitting; (ii)-injecting random noise has434

the most notable effect from this metric, that it re-435

duces the gap by over 0.01 (e.g. from 0.176 to436

0.163); (iii)-through manipulating the magnitude437

of the randomized knowledge vector, we see the438

gap becomes smaller (but perhaps hurt the overall439

performance). In that regard, this pattern points440

out a resemblance of injecting knowledge with an441

incorporated data augmentation module.442

At last, as an empirical study, we do not intend to443

make a deterministic conclusion. The hypothesis444

we case — that the knowledge injection acts as 445

a data augmentation module — is based on their 446

similar performance pattern and perhaps is only one 447

among many other possibilities. We hope to use 448

this finding to motivate the community to provide 449

more theoretical and comprehensive evidence. 450

7 Knowledge Integration in Pre-training 451

Stage 452

Many knowledge-enhanced PLMs design a new 453

task in the pre-training phase and inject knowl- 454

edge through the task. To explore these impacts on 455

knowledge injection, we also designed a series of 456

new experiments. Through experiments, we found 457

that short-term knowledge injection (1-3 epochs) 458

into pre-training tasks has little effect on down- 459

stream tasks. 460

Experiment Details. Since these new tasks are 461

mostly based on MLM, we only keep the original 462

and random knowledge as an experimental setup. 463

The experimental setup is as follows: 464

1. original knowledge refers to using the original 465

experimental setup; 466

2. random knowledge refers to using random 467

knowledge to pre-train the model. 468

To investigate the impact of different new pre- 469

training tasks, we choose ERNIE and ATOMIC- 470

BERT as the research baselines. In ERNIE, we 471

pre-train the model under random knowledge’s 472

and original knowledge’s set up for one epoch 473

each. And the random knowledge only changes 474

the aligned entities of the mentions in the text. In 475

ATOMIC-BERT, we pre-train the model for three 476

epochs. Different from ERNIE, random knowledge 477

in ATOMIC-BERT replaces the current triple’s tail 478

with the other triple’s tail and converts the new 479

triple to text, which turns "A is B" into "A is C". 480

7



Discussion. Table 6 and 7 shows the results of the481

two experiments. We can see that: (i) Short-term482

new pre-training tasks (1-3 epochs) has little effect483

on the performance of the knowledge-enhanced484

models. Since the difference between ERNIE*485

and BERT, ATOMIC-BERT* and BERT large are486

very small. (ii) Breaking the pre-trained corpus’s487

text structure may drastically reduce model per-488

formance, however replacing the aligned entities489

may not. It seems to indicate that this kind of pre-490

training task does not enable the model to gain the491

corresponding knowledge.492

8 Related Works493

8.1 Knowledge-Enhanced PLMs494

Since the large-scale application of pre-trained495

models in the NLP field, many works expect to496

improve the downstream tasks’ performance by497

integrating external knowledge. ERNIE (Zhang498

et al., 2019), CokeBERT (Su et al., 2021), PELT499

(Ye et al., 2022), KnowBert(Peters et al., 2019)500

, KEPLER (Wang et al., 2021b), CoLAKE (Sun501

et al., 2020), LUKE (Yamada et al., 2020), K-502

BERT (Liu et al., 2020), K-Adapter (Wang et al.,503

2021a), MoP (Meng et al., 2021), KELM (Lu et al.,504

2022), ATOMIC-BERT (Hosseini et al., 2022),505

SentiLARE (Ke et al., 2020), BERT-MK (He et al.,506

2020), KeBioLM (Yuan et al., 2021) all propose a507

new method to enhance the model output through508

the external knowledge graphs.509

Some works expect to introduce entity-level in-510

formation to improve the performance of entity-511

related tasks such as NER, entity typing, relation512

classification, and machine reading comprehension513

while pre-training and finetuning (Wei et al., 2021).514

ERNIE (Zhang et al., 2019) interprets and imple-515

ments this idea, by introducing the entities’ knowl-516

edge representation via entity linking. LUKE (Ya-517

mada et al., 2020) further proposes an entity-aware518

self-attention mechanism and computes different519

attention scores regarding words or entities. Know-520

Bert(Peters et al., 2019) improves the entity linker521

for entity disambiguation and recombines knowl-522

edge and word representations to inject knowledge.523

However, they do not fine-grained verify whether524

entity knowledge enhances the model.525

There are also some works integrating the rela-526

tion triples or subgraphs in KGs to make the model527

get more information. K-BERT (Liu et al., 2020)528

converts the relation triples and context into the529

sentence tree and then uses soft position and visi-530

ble matrix to limit the impact of knowledge noise. 531

CoLAKE (Sun et al., 2020) and KELM (Lu et al., 532

2022) integrate the subgraphs’ information to en- 533

hance the PLMs. They also omit the question of 534

whether injecting knowledge is helpful. 535

8.2 Interpretable Analysis In PLMs 536

Peters et al. (2019); Jiang et al. (2020); Cao et al. 537

(2021) have proved that pre-trained language mod- 538

els can acquire substantial factual knowledge via 539

pre-training on large-scale unlabeled data. Li et al. 540

(2022) further analyzes that PLMs capture fac- 541

tual knowledge more by the close position and 542

high co-occurrence. Zhang et al. (2021) points 543

out redundant and irrelevant knowledge injections 544

in knowledge-enhanced models, which lead to in- 545

effective knowledge injection. However, it only 546

analyzes the phenomenon of negative knowledge 547

infusion and omits other reasons that may lead to 548

the failure of knowledge injection. 549

9 Conclusion 550

We aim to find out if the current knowledge in- 551

jection framework works and explore its actual 552

profound mechanism. Our comprehensive experi- 553

ments demonstrate a frustrating conclusion that the 554

injected knowledge is not picked up by the model 555

in our expected manner. Furthermore, our analyt- 556

ical experiments prove that the model facilitates 557

little effect from the injected knowledge. Among 558

many possibilities, we cast a hypothesis that the 559

injected knowledge may act like noising-based data 560

augmentation methods. We need to rethink how the 561

knowledge-injected models work and find a proper 562

way to make them full of the injecting knowledge 563

information. 564
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A Appendix809

A.1 Baseline Details810

LUKE (Yamada et al., 2020) chooses to enhance811

RoBERTa with the knowledge from Wikipedia. It812

use a new pre-training task which involves predict-813

ing randomly masked words and entities in a large814

entity-annotated corpus retrieved from Wikipedia.815

At the same time, LUKE also input wikipedia enti-816

ties into the model which are based on the sentences817

in finetuning for the question answering dataset818

SQuAD1.1. In addition to injecting knowledge,819

LUKE propose an entity-aware self-attention mech-820

anism and considers the types of tokens (words or821

entities) when computing attention scores (Yamada822

et al., 2020).823

ERNIE (Zhang et al., 2019) injects entities824

knowledge from Wikipedia into BERT in pre-825

training and finetuning. ERNIE first uses TAGME826

(Ferragina and Scaiella, 2010b) to link entities men-827

tioned in context to their corresponding entities828

in KG, then injects the corresponding entities em-829

bdedding into language models. Embeddings of the830

corresponding entities are trained on triples from831

WikiData via TransE (Zhang et al., 2019).832

KnowBERT (Peters et al., 2019) integrates833

knowledge from WordNet and Wikipedia into834

BERT, and demonstrates improved perplexity and835

ability to recall facts. KnowBERT first trains an836

integrated entity linker to retrieve relevant entity837

embeddings, which is used to entity disambigua-838

tion. Then, the model use a Knowledge Attention839

and Recontextualization (KAR) mechanism to com-840

bine the knowledge representation and contextual841

word representations.842

ATOMIC-BERT (Hosseini et al., 2022) adds a843

new pre-training corpus to integrate causal knowl-844

edge of ATOMIC (Hwang et al., 2021) on the ba-845

sis of the original BERT. It first converts triples846

in ATOMIC knowledge graph to natural language847

texts, and then pretrains model on the generated848

text via MLM.849

K-BERT (Liu et al., 2020) choose CN-DBpedia, 850

HowNet and MedicalKG as external knowledge 851

base. K-BERT is devised to feed a structural tree 852

that is decoded from the sentence into a pretrained 853

language model. The construction of the structural 854

tree is driven by both the sentence itself together 855

with an external knowledge graph. However, it 856

inevitably brings the problem of knowledge noise. 857

To solve this problem, K-BERT proposed to special 858

a seeing layer,which make the injected triples can 859

only affect its corresponding subject. 860

KeBioLM (Yuan et al., 2021) injects entity 861

knowledge from UMLS (Bodenreider, 2004) by 862

fusing the entities in the knowledge base and men- 863

tions in the text in the middle layer. Firstly, it uses a 864

function to recognize if a span is an entity mention. 865

then, it links to a set of the mention’s k-nearest 866

entities and integrate the entity embedding and the 867

word embedding in the hidden layer, as the input 868

of the model. 869

A.2 Dataset Details 870

Finance NER 1 includes 3000 financial news arti- 871

cles manually labeled, which contain over 65,000 872

name entities. 873

Medicine NER 2 is the Clinical Named En- 874

tity Recognition(CNER) task that was released 875

in CCKS 2017. The dataset mainly extracts 876

medical-related entity names from electronic medi- 877

cal records. 878

BC5-chem & BC5-disease (Li et al., 2016) con- 879

tain 1500 PubMed abstracts that extract chemical 880

and disease entities respectively. 881

NCBI-disease (Doğan et al., 2014) includes 793 882

PubMed abstracts that had been detected disease 883

entities. 884

BC2GM (Smith et al., 2008) is a dataset includ- 885

ing 20K PubMed sentences extracting gene entities. 886

JNLPBA (Collier and Kim, 2004) is a dataset 887

includeing 2,000 PubMed abstracts that has been 888

identified molecular biology-related entities. 889

A.3 Dataset License 890

We only find three dataset licenses,which is as fol- 891

lowing. 892

SQuAD: CC-BY-SA 4.0 893

WiC: CC BY-NC 4.0 894

COPA: BSD 2-Clause 895

1https://embedding.github.io/evaluation/#extrinsic
2https://biendata.net/competition/CCKS2017_2/
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