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Abstract

In recent years, pre-trained language mod-
els (PLMs) have achieved some eye-catching
results on many natural language process-
ing (NLP) tasks. Upon that, a plethora of
knowledge-injected PLMs — assisted by exter-
nal knowledge graphs — have been proposed
to further enhance or adapt original PLMs on
specific downstream tasks. Among these ex-
citing results, we may identify some (poten-
tially) strange odd phenomena such as the im-
balance across downstream tasks, little corre-
lation between the injected knowledge and the
chosen tasks, the mismatch between knowl-
edge and sentences, etc. These phenomena
concern us about the effect of the specific in-
jected knowledge on the model while doing the
downstream task. In this work, we intend to
comprehensively revisit a series of well-known
knowledge-injected frameworks on most com-
mon benchmarks, by conducting extensive ab-
lation and control experiments that were previ-
ously mostly omitted. Coupled with dense anal-
ysis by tracking down the transfer path of the
knowledge vectors, we may draw a frustrating
conclusion that the current knowledge-injected
frameworks may have minimal effect in lever-
aging the injected knowledge. We further cast
a hypothesis to interpret the performance en-
hancement of the knowledge-injected PLMs
from a data augmentation perspective.

1 Introduction

Large-scale pre-trained language models — icon-
ically BERT(Devlin et al., 2019), GPT-3(Brown
et al., 2020), etc. — manage to encode distributed
representation through training on massive unla-
beled text corpora. These methods have contin-
uously extended the frontier of numerous NLP
tasks and established new architectural standards
in the field. One notable incremental scheme upon
the PLMs is to inject external knowledge, which
leads to the name of “knowledge-injected PLMs*.
The knowledge injection is mostly made possible
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Figure 1: Knowledge Injection Diagram.

by vectorial representation from external knowl-
edge graphs and conducted in either pre-training
or fine-tuning stages. For instance, BloBERT(Lee
et al., 2019) and SCIBERT(Beltagy et al., 2019),
pre-trained on the domain-specific corpora, dis-
play some decent improvement over the vanilla
BERT on the biomedical and scientific tasks. Sim-
ilar examples also emerged like LUKE(Yamada
et al., 2020), ERNIE(Zhang et al., 2019) and Know-
Bert(Peters et al., 2019) on tasks such as question
answering, entity typing, entity disambiguation,
etc. Further, for the low-resource domain such as
medical NLP (Lee et al., 2019; Yuan et al., 2021),
to be able to engage a deep neural network with
knowledge is conceptually indispensable.

Despite the promise, we find some slight
clues implying the odd pattern from the current
knowledge-injected frameworks. For instance, the
best performance of common entity linking tools
displays a non-trivial variance on different bench-
marking datasets — from 38.0 to 73.0 on the Macro
F1 scores (Kolitsas et al., 2018). It may lead to a
mismatch between the injecting knowledge and the
text. In what follows, for tasks like domain-specific
question answering that naturally suits the knowl-
edge injection, the models do not necessarily render
the expected performance gain (Zhang et al., 2019;
Broscheit, 2019; Whitehouse et al., 2022). In the
meantime, Zhang et al. (2021) points out that some-



times the redundant knowledge may unexpectedly
lead to a negative infusion effect on the perfor-
mance. To sum up, these results have concerned
us with the actual effect of the injected knowledge
towards feeding through the model pathway.

In this work, we may take a comprehensive re-
visiting of the grand spectrum of knowledge injec-
tion literature. To fully understand the dynamics,
we design a series of quantitative and qualitative
empirical protocols: (i)-we establish an ablation
protocol which is often omitted by prior published
papers, via injecting randomized, irrelevant, and/or
(intentional) false knowledge entities; (ii)-we track
down the effect caused by the injected knowledge
alongside the feed-forward pathway of the model.
Based upon these results on various benchmarks
and methodologies, we (frustratingly) found that
the injected knowledge has little or minimal effect
on the actual dynamics. Besides, we further con-
duct (iii)-injecting random Gaussian noise into the
model. Thereby we find: (i) the knowledge injec-
tion is not better than random injection; (ii) the
word embeddings especially the [cls] embedding
injected with different knowledge are highly simi-
lar; (iii) there is a possibility that the reason for the
prior knowledge-injected frameworks yielding per-
formance gain could be due to a data augmentation
effect similar to noising-based data augmentation
methods (Kos and Song, 2017).

Note, the goal of this paper is not to propose
a novel framework, nor do we claim to have fur-
ther pushed the boundary of knowledge injection.
Rather, through extensive and rigorous empirical
findings, we hope to alert the community to scruti-
nize the related methods. To sum up, we make the
following contribution:

* We may conclude the current schemes fail to
leverage the injected knowledge, nor to recog-
nize the relevance of the knowledge and the
text input;

* We cast a (wild) hypothesis that the injected
knowledge may work as a data augmentation
module, to explain the performance gain;

* We provide a new set of experimental proxies
as ablations for the future work, with a full
pack of code planned to be open-sourced upon
publication.

@ S @
W1 T e e ——— R

@ ‘ (z)H (s)‘ @ ‘ ®) (S>‘ %) &) @
(=) [T 1)+ +1 [+ o+ +1 +1

Intermediate Layer

| [

FCURPUNEN NN S S S R o g s—

Attention Layer ]

?.1 111 | ! [

video games opium

Figure 2: Word And Knowledge Embedding Fusion
Process Diagram.

2 Preliminary

In this work, we prepare to conduct some additional
experiments on mainstream knowledge-enhanced
models, to explore the injecting knowledge’s ef-
fect on the models. First, let us take a look at the
mainstream knowledge injection methods.

Knowledge Graph (KG) is a directed graph
G consisting of a large number of triples 7' and
T = {e,r,t}, where e, t are the head entity and
the tail entity respectively and r is the relation be-
tween e and t. KG embedding models can map
the structural information of the KG into a vector
space, such as TransE (Bordes et al., 2013).

Entity Linking is the entity alignment tool, like
TagMe (Ferragina and Scaiella, 2010a). Specifi-
cally, given a KG and text, it detects KG’s enti-
ties mentioned in the text and links them to the
correct KG entry (Broscheit, 2019). After entity
alignment, knowledge-injected models generally
consider relation r and tail entity ¢ as knowledge.
Some knowledge-injected models use aligned KG
entities as entity knowledge, such as LUKE (Ya-
mada et al., 2020).

Knowledge Representation/Embedding refers
to the embedding of the entity in the KG embedding
model or embedding trained in the pre-training
stage.

Knowledge Injection Methods aim to inject
knowledge information from KGs into PLMs, to
improve the performance of downstream tasks. Ac-
cording to the stage in which they inject knowledge,
the methods can generally be divided into two cate-
gories, pre-training or finetuning.

Many works intend to integrate external knowl-
edge base knowledge into PLMs, however, due



to the differences in downstream tasks and injec-
tion patterns, different knowledge-enhanced mod-
els may have differences in specific methods. Here,
we take ERNIE (Zhang et al., 2019) as an example
to introduce the knowledge injection methods, for
ERNIE is relatively representative in these mod-
els and many subsequent works are adjusted on its
basis.

To be specific, in finetuning, it firstly aligns men-
tions in text with the KG’s entities via entity linking.
Then, the sentence and related knowledge begin to
be fused. As shown in Figure 2, the text and the KG
entities enter the different encoders separately. Like
BERT, word embedding and knowledge embedding
enter the attention, intermediate, and output layers.

Here, we denote the i-th layer word embedding
W; as {wgl), ce wgn)}, and the i-th layer knowl-
edge embedding F; as {egl), . ,egm)}, where n,
m is the lengt{l )of sentence and entities. For a word
J

embedding w;

ding egk), they are usually fused in the intermediate

layer and the process can be summarized as

and its aligned knowledge embed-

hi = o (W% + wi9e™ 1b,),
wz(i)l = U(Wi(t)hi + bgj))» (O
egﬁ-)l = U(Wi(e>hi + bge))a

where h; is the i-th hidden state and o(+) is the

(7) é(k) are the

non-linear activation function. w;”’, €,

representation of wZ(J ) and egk) after entering the
attention layer. We exclude a comprehensive de-
scription of the specific fusion method and refer
readers Zhang et al. (2019).

For knowledge injecting in pre-training, the
model usually adds a new pre-training task based
on the Masked Language Model (MLM), which
randomly masks off the KG’s entities and lets the
model predict it.

3 Models and Datasets

In this section, we introduce chosen knowledge-
injection models, the downstream tasks, and
datasets on which its effects are evaluated.

3.1 Models

Knowledge-injected PLMs have benefited a variety
of NLP applications, especially those knowledge-
intensive ones (Wei et al., 2021). However, differ-
ent downstream tasks may require different types
and quantities of knowledge, and knowledge injec-
tion methods for different NLP applications may

vary widely. To take a comprehensive revisiting of
the main knowledge-enhanced models, we choose
the better performance knowledge-injected PLMs
as baselines according to different downstream
tasks and datasets. According to these principles,
we choose LUKE (Yamada et al., 2020), ERNIE
(Zhang et al., 2019), KnowBERT (Peters et al.,
2019), ATOMIC-BERT (Hosseini et al., 2022), K-
BERT (Liu et al., 2020) and KeBioLLM (Yuan et al.,
2021) as baselines, please refer to Appendix A.1
for more details.

3.2 Downstream tasks and Datasets

We choose the following tasks to demonstrate the
actual performance of knowledge injection meth-
ods in the additional experiments.

Named Entity Recognition (NER) is the task of
finding the corresponding span of the named entity
in the given sentence. The introduction to datasets
for NER tasks is in Appendix A.2.

Entity Typing is the task to find the correct type
of the corresponding label entities in giving a sen-
tence. Open Entity (Choi et al., 2018), commonly
used in knowledge-enhanced PLMs, has about
6000 sentences with six entity types. Each sen-
tence has five entity labels on average.

Relation Classification is the task of identify-
ing the relation between label entities in a given
sentence. TACRED (Zhang et al., 2017), is a re-
lation extraction dataset with 106,264 examples.
Examples in TACRED cover 42 relation types.

Question Answering is the task of answering
questions such as reading comprehension ques-
tions. SQuADI1.1 (Rajpurkar et al., 2016), is a
reading comprehension dataset, consisting of ques-
tions from Wikipedia articles. SQuAD 1.1 contains
107,785 question-answer pairs on 536 articles.

Word Sense Disambiguation is the task to let
the model find label words’ most suitable en-
try in the sense inventory. WiC (Pilehvar and
Camacho-Collados, 2019), is a benchmark that is
used for evaluating context-sensitive word embed-
dings. Each instance in WiC has a target word,
and the task is to identify if the occurrences of the
target word in the two contexts correspond to the
same meaning or not.

Commonsense Causal Reasoning is the task of
finding corresponding options through the causal



MedicaNER  MedicaNER  MedicaNER  FinanciaNER  FinanciaNER
setup + + + + +
MedicalKG HowNet CnDbpedia HowNet CnDbpedia
BERT (Liu et al., 2020) 92.5 - - 86.1 -
K-BERT (Liu et al., 2020) 94.2 93.3 93.8 87.3 87.4
original entities 94.00+0.18 93.51+0.15 93.48+0.26 87.49+0.08 87.37+0.19
random entities 93.89+0.33 93.52+0.22 93.55+0.25 87.35+0.19 87.46+0.11
constant entities 94.24+0.10 94.24+0.34 94.06+0.10 87.40+0.15 87.80+0.10
(a) Results of K-BERT. BERT and K-BERT come from Liu et al. (2020).
setup | BC5chem BC5dis NCBI BC2GM JNLPBA
BioBERT (Yuan et al., 2021) 92.9 84.7 89.1 83.8 79.4
KeBioLLM (Yuan et al., 2021) 93.3 86.1 89.1 85.1 82.0
original entities 93.24+0.71 87.96x£1.05 88.46+0.66 83.99+0.22 78.81%2.51
random entities 93.06£0.69 88.57+0.92 88.91+0.25 83.25+0.61 78.81+2.48
constant entities 92.93+0.70 87.55+0.45 88.72+0.73 83.22+0.27 79.17+£2.24

(b) Results of KeBioLM. BioBERT and KeBioLM come from Yuan et al. (2021).

Table 1: Results of Named Entity Recognition Task. original, random and constant entities correspond setup 1, 2

and 3 respectively.

dependencies. COPA (Roemmele et al., 2011) is
a benchmark for evaluating commonsense causal
reasoning. It consists of 1000 questions, 500 each
for the training and test sets. Each question has a
premise and two alternatives.

4 Is the Knowledge Injection Better Than
Random Injection?

In this section, we demonstrate that there is no
significant difference between knowledge injection
and random injection in different downstream tasks.
Specifically, we design a set of ablation experi-
ments with strictly controlled variables to explore
the practical effect of knowledge information.
Some believe the knowledge-enhanced models
benefit from the domain knowledge in KG or that
injecting information from KGs helps the model
make full of training data (Zhang et al., 2019; Liu
et al., 2020). However, they omit to compare the
random, irrelevant injection with normal injection.
In that case, it can judge whether this injection
action or the injected knowledge information (or a
combination of the two) enhances the model. For
this purpose, we design a new ablation experiment.

Ablation Experiment Setup. We regard linked
knowledge as proper knowledge, random and con-
stant knowledge as faulty knowledge and noise, and
evaluate the effectiveness of knowledge injection
methods by injecting different types of knowledge.
We adopt the following settings:

1. original entities refers to the original knowl-
edge injected model;

2. random entities refers to randomly selecting
one entity from the entire entity set as a new
entity input;

3. constant entities refers to choosing one en-
tity node as all entity inputs regardless of the
entities matching the text.

To ensure that the experimental results are not
affected by other factors, we try to ensure the other
experimental settings and hyperparameters are con-
sistent with baselines. To reduce the effect of ran-
dom seeds, all these experiments are run 5 times
with varying random seeds.

Main Results. We conduct new ablation experi-
ments on 5 downstream tasks. As shown in table 1
to 4, we can see that: (i) The knowledge injection
is not superior to random or constant injection, and
in some cases, the latter is even better than the
former;(ii) The performance differences of differ-
ent knowledge injections are very small, generally
within 1.0, and some are even lower than 0.1.

For the named entity recognition task, Table 1
shows the results of K-BERT and KeBioLM on
their own NER datasets under the setup of the ab-
lation experiment. In K-BERT, We conduct exper-
iments on 2 NER datasets and inject knowledge
from different KGs. And we find using constant
or randomized entities does not make the testing
performance worse. At the same time, replacing
the injected knowledge base does not change this
phenomenon, and its impact on downstream tasks
1s also small, within 0.5.



setup Open Entity TACRED

P R Fl1 P R Fl1
BERT (Zhang et al., 2019) 76.37 70.96 73.56 67.23 64.81 66.00
ERNIE (Zhang et al., 2019) 78.42 72.90 75.56 69.97 66.08 67.97
original entities 78.81£1.05  72.1540.92  75.33+0.41 | 71.09+1.62  58.15+5.88  63.79+3.60
random entities 77.85+1.13  73.124£1.07 75.37+£0.31 | 68.29+£591  58.08+5.83  63.73+£3.64
constant entities 77.48+0.49  73.28+1.11 7531+0.39 | 71.34+1.32 59.86+5.16  63.17+3.68

Table 2: Results of ERNIR on Open Entity and TACRED. BERT and ERNIE come from Zhang et al. (2019).
original, random and constant entities correspond setup 1, 2 and 3 respectively.

setup SQuAD 1.1 -

Dev Acc Dev F1 WiC

setup ‘ Dev Acc

BERT-large (Lan et al., 2019) 84.1 90.9
LUKE (Yamada et al., 2020) 86.1 92.3 original entities | 69.53+1.24
original entities 86.22+0.37  92.34+0.09 random entities | 69.25+1.09
random entities 86.15£0.15 92.39+0.11 constant entities | 69.31£1.01
constant entities 86.18+0.07  92.40+0.06

Table 4: Results of KnowBert, random and

Table 3: Results of LUKE. BERT-large and LUKE come from  constant entities correspond setup 1, 2 and 3
Lan etal. (2019) and Yamada et al. (2020). random and constant - respectively.

entities correspond setup 1, 2 and 3 respectively.

Table 2 shows the results of ERNIE on Open
Entity and TACRED. We change the batch size in
TACRED from 32 to 16. Table 3 and 4 show the re-
sults of LUKE on SQuAD 1.1 and KnowBert with
KBs (Wiki + WordNet) on WiC. And we choose
RoBERTa base as the baseline in LUKE. These
results all verify our conjecture that knowledge
injection is not better than random injection.

Discussion. These results do not match our gen-
eral impression of knowledge injection methods,
that the injected knowledge information enhances
the textual representation of the model. However,
It can partially explain some odd phenomena of
those knowledge-enhanced PLMs, such as little
correlation between the injected knowledge and
the chosen tasks. These results seem to indicate
that the injection model does not fully utilize the
injected knowledge information, however, we do
not know whether it is the reason for this knowl-
edge injection failure. In the next section, we track
down the effect caused by the injected knowledge
alongside the feed-forward pathway of the model
and try to verify our conjecture.

5 Why There Is Little Difference Between
Knowledge Injection And Random
Injection?

To find the reasons for the knowledge injection fail-
ure, we designed new analysis experiments to track
the change of knowledge information in the knowl-
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Figure 3: Schematic diagram of embedding similarity
change. In this experiment, we inject original and ran-
dom entities into ERNIE on the Open Entity test dataset.
We count the cosine similarity of [cls], mentions, and
entities embedding in the hidden layers. The similarity
in the figure is the absolute average of the 1000 data.

edge injection path. As we introduced before 1, the
knowledge representations usually are fused in the
intermediate layer of the encoder. We only need to
compare the embedding similarity with different
knowledge before and after the fusion process. Our
experimental results demonstrate that text embed-
dings with different knowledge are highly similar.

Experiment Setup. We first load the original,
random entities and constant entities data on the
trained knowledge enhanced models and print their
output at each hidden layer of the encoder. Then,
we compare the similarity among these outputs. We
adopt cosine similarity as a measure of variation in
word embeddings and entity embeddings, defined



MedicaNER  MedicaNER  MedicaNER  FinanciaNER  FinanciaNER

setup + +

+ + +
MedicalKG HowNet CnDbpedia HowNet CnDbpedia
random entities | 93.89+0.27 93.52+0.18 93.55+0.20 87.35+0.15 87.46+0.09
random noise 93.79+0.32 93.73+0.13 93.80+0.13 87.15+£0.11 87.104£0.11

(a) Results of nosie injecting to K-BERT for NER datasets.

i SQuAD 1.1 Open Entity
setup ‘ DevAcc  DevFl setup ‘ P R Fl
random entities | 86.22+0.37  92.34+0.09 random entities | 78.81x1.05 72.15£0.92  75.33+0.41
random noise 86.09+0.48 92.33+0.04 random noise 77.28+0.54  72.98+0.42 75.07+£0.06

(b) Results of nosie injecting to LUKE

(c) Results of nosie injecting to ERNIE.

Table 5: Results of Gaussian Noise.

as follows:

ST
S

2

stmilarity = —.
T

Among these similarities, we only keep similari-
ties of [cls], word embeddings related to knowl-
edge, and knowledge embeddings. After this, we
output the predictions of the same sentence with
different knowledge injected. The result validates
the previous inference in fine-grained dimensions.

Analysis. Our analytical experiments find that
word embeddings injected with different knowl-
edge are highly similar. Figure 3 shows the simi-
larity change of word and entity embeddings from
layer] to layer12. From layerl to layer5, there is
no interaction between the entity and word embed-
ding, so the similarities did not change. Starting
from layer6, the entity and word embeddings begin
to fuse, and the corresponding similarity begins
to change, but the [cls] embedding changes are
always small. After layer12, [cls] embedding
inputs into the linear layer and outputs logits.

It can be found that the similarities of [cls]
embeddings are very high in the whole process,
generally above 99.5%. In this case, it is difficult
for the model to find the difference between the
three sets of inputs. This result shows that the
model hardly obtains valuable information from
the knowledge representation.

To further verify our point of view, we output
the prediction results of the model on three sets
of experimental data. Figure 4 shows the results
of Open Entity, TACRED and FewRel (Han et al.,
2018) in ERNIE, which load the test data by in-
jecting original, random and constant entities. It
is easy to find that the model has a high proba-
bility of outputting the same result for sentences
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Figure 4: The output of injecting different knowledge.
We only count the output of data with injected knowl-
edge. The same output means the text injecting original,
random and constant entities output the same predicted
value. If there are differences between the three pre-
dicted values, it is attributed to the different outputs.

injected with different knowledge, and this data
exceeds 99.6% in TACRED. It further illustrates
that the model may not recognize the knowledge
information integrated into sentences.

6 Why Does Random Injection Still
Work?

Our previous experiments validated our inference
that the injected knowledge information may not
affect the actual performance of the model. How-
ever, in our experiments, random injection seems
still performs better than the non-injected models.
In this section, we further speculate that knowledge
injection has a data augmentation effect similar to
injecting noise.

Experiment Setup. To explore the actual effect
of the random injection, we design two related ex-
periments: a. Replace the injected knowledge with
Gaussian white noise and compare it with the re-
sults of random entities; b. Compare the overfitting



COPA

Open Entity setup
Setup ‘ P R Fi Acc
BERT 76.37 70.96 73.56 i%grll;dllér?lZERT* ;Sggfi éé
ERNIE* 77.24+£0.71  69.54+0.63  73.18+0.32 original knowledge 75.60:2.81
random knowledge | 77.02+0.36  70.78+0.54  73.76+0.18 random knowledge | 68.40+7.69

Table 6: Results of ERNIE on Open Entity. BERT comes
from Zhang et al. (2019). ERNIE* is the result of our repro-
duction Zhang et al. (2019) pre-training. random knowledge

corresponds setup 2.

degree of the model with or without knowledge
injection (including Gaussian white noise). We use
the loss and accuracy gap between the training and
validation phase as evaluation metrics for model
overfitting degrees.

Discussion. Indeed, given all the aforemen-
tioned empirical results, it is still undeniable that
knowledge-injected frameworks have a positive
outcome from the perspective of eventual perfor-
mance. To form a full-circle study, we hereby cast
a hypothesis, perhaps wild, that the injected knowl-
edge is picked by the model as a data augmentation
module.

Table 5a to 5¢ shows the comparison of injecting
random entities and Gaussian white noise in differ-
ent downstream tasks. We can see the difference
between the two is minimal, almost within 0.3 of
the F1 score. It seems to indicate that knowledge-
injected methods may work like noising-based data
augmentation methods.

We further conduct an extra set of experiments
on Open Entity, by simply injecting gaussian noises.
At the convergence point, we curate and report both
the loss gap between the training and dev set. Or-
dinarily, the larger the gap, the more overfitted the
trained model is. The result is summarized in the
text as follows: (i)-injecting original knowledge
entities, random entities, and random noises all
manage to reduce the loss gap, i.e. help allevi-
ate the overfitting; (ii)-injecting random noise has
the most notable effect from this metric, that it re-
duces the gap by over 0.01 (e.g. from 0.176 to
0.163); (iii)-through manipulating the magnitude
of the randomized knowledge vector, we see the
gap becomes smaller (but perhaps hurt the overall
performance). In that regard, this pattern points
out a resemblance of injecting knowledge with an
incorporated data augmentation module.

At last, as an empirical study, we do not intend to
make a deterministic conclusion. The hypothesis

Table 7: Results of ATOMIC-BERT on COPA.
original and random knowledge correspond setup
1 and 2 respectively. ATOMIC-BERT* is the re-
sult of our reproduction Hosseini et al. (2022).

we case — that the knowledge injection acts as
a data augmentation module — is based on their
similar performance pattern and perhaps is only one
among many other possibilities. We hope to use
this finding to motivate the community to provide
more theoretical and comprehensive evidence.

7 Knowledge Integration in Pre-training
Stage

Many knowledge-enhanced PLMs design a new
task in the pre-training phase and inject knowl-
edge through the task. To explore these impacts on
knowledge injection, we also designed a series of
new experiments. Through experiments, we found
that short-term knowledge injection (1-3 epochs)
into pre-training tasks has little effect on down-
stream tasks.

Experiment Details. Since these new tasks are
mostly based on MLM, we only keep the original
and random knowledge as an experimental setup.
The experimental setup is as follows:

1. original knowledge refers to using the original
experimental setup;

2. random knowledge refers to using random
knowledge to pre-train the model.

To investigate the impact of different new pre-
training tasks, we choose ERNIE and ATOMIC-
BERT as the research baselines. In ERNIE, we
pre-train the model under random knowledge’s
and original knowledge’s set up for one epoch
each. And the random knowledge only changes
the aligned entities of the mentions in the text. In
ATOMIC-BERT, we pre-train the model for three
epochs. Different from ERNIE, random knowledge
in ATOMIC-BERT replaces the current triple’s tail
with the other triple’s tail and converts the new
triple to text, which turns "A is B" into "A is C".



Discussion. Table 6 and 7 shows the results of the
two experiments. We can see that: (i) Short-term
new pre-training tasks (1-3 epochs) has little effect
on the performance of the knowledge-enhanced
models. Since the difference between ERNIE*
and BERT, ATOMIC-BERT* and BERT large are
very small. (ii) Breaking the pre-trained corpus’s
text structure may drastically reduce model per-
formance, however replacing the aligned entities
may not. It seems to indicate that this kind of pre-
training task does not enable the model to gain the
corresponding knowledge.

8 Related Works
8.1 Knowledge-Enhanced PLMs

Since the large-scale application of pre-trained
models in the NLP field, many works expect to
improve the downstream tasks’ performance by
integrating external knowledge. ERNIE (Zhang
et al., 2019), CokeBERT (Su et al., 2021), PELT
(Ye et al., 2022), KnowBert(Peters et al., 2019)
, KEPLER (Wang et al., 2021b), CoLAKE (Sun
et al., 2020), LUKE (Yamada et al., 2020), K-
BERT (Liu et al., 2020), K-Adapter (Wang et al.,
2021a), MoP (Meng et al., 2021), KELM (Lu et al.,
2022), ATOMIC-BERT (Hosseini et al., 2022),
SentiLARE (Ke et al., 2020), BERT-MK (He et al.,
2020), KeBioLM (Yuan et al., 2021) all propose a
new method to enhance the model output through
the external knowledge graphs.

Some works expect to introduce entity-level in-
formation to improve the performance of entity-
related tasks such as NER, entity typing, relation
classification, and machine reading comprehension
while pre-training and finetuning (Wei et al., 2021).
ERNIE (Zhang et al., 2019) interprets and imple-
ments this idea, by introducing the entities’ knowl-
edge representation via entity linking. LUKE (Ya-
mada et al., 2020) further proposes an entity-aware
self-attention mechanism and computes different
attention scores regarding words or entities. Know-
Bert(Peters et al., 2019) improves the entity linker
for entity disambiguation and recombines knowl-
edge and word representations to inject knowledge.
However, they do not fine-grained verify whether
entity knowledge enhances the model.

There are also some works integrating the rela-
tion triples or subgraphs in KGs to make the model
get more information. K-BERT (Liu et al., 2020)
converts the relation triples and context into the
sentence tree and then uses soft position and visi-

ble matrix to limit the impact of knowledge noise.
CoLAKE (Sun et al., 2020) and KELM (Lu et al.,
2022) integrate the subgraphs’ information to en-
hance the PLMs. They also omit the question of
whether injecting knowledge is helpful.

8.2 Interpretable Analysis In PLMs

Peters et al. (2019); Jiang et al. (2020); Cao et al.
(2021) have proved that pre-trained language mod-
els can acquire substantial factual knowledge via
pre-training on large-scale unlabeled data. Li et al.
(2022) further analyzes that PLMs capture fac-
tual knowledge more by the close position and
high co-occurrence. Zhang et al. (2021) points
out redundant and irrelevant knowledge injections
in knowledge-enhanced models, which lead to in-
effective knowledge injection. However, it only
analyzes the phenomenon of negative knowledge
infusion and omits other reasons that may lead to
the failure of knowledge injection.

9 Conclusion

We aim to find out if the current knowledge in-
jection framework works and explore its actual
profound mechanism. Our comprehensive experi-
ments demonstrate a frustrating conclusion that the
injected knowledge is not picked up by the model
in our expected manner. Furthermore, our analyt-
ical experiments prove that the model facilitates
little effect from the injected knowledge. Among
many possibilities, we cast a hypothesis that the
injected knowledge may act like noising-based data
augmentation methods. We need to rethink how the
knowledge-injected models work and find a proper
way to make them full of the injecting knowledge
information.
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A Appendix

A.1 Baseline Details

LUKE (Yamada et al., 2020) chooses to enhance
RoBERTa with the knowledge from Wikipedia. It
use a new pre-training task which involves predict-
ing randomly masked words and entities in a large
entity-annotated corpus retrieved from Wikipedia.
At the same time, LUKE also input wikipedia enti-
ties into the model which are based on the sentences
in finetuning for the question answering dataset
SQuADI1.1. In addition to injecting knowledge,
LUKE propose an entity-aware self-attention mech-
anism and considers the types of tokens (words or
entities) when computing attention scores (Yamada
et al., 2020).

ERNIE (Zhang et al., 2019) injects entities
knowledge from Wikipedia into BERT in pre-
training and finetuning. ERNIE first uses TAGME
(Ferragina and Scaiella, 2010b) to link entities men-
tioned in context to their corresponding entities
in KG, then injects the corresponding entities em-
bdedding into language models. Embeddings of the
corresponding entities are trained on triples from
WikiData via TransE (Zhang et al., 2019).

KnowBERT (Peters et al., 2019) integrates
knowledge from WordNet and Wikipedia into
BERT, and demonstrates improved perplexity and
ability to recall facts. KnowBERT first trains an
integrated entity linker to retrieve relevant entity
embeddings, which is used to entity disambigua-
tion. Then, the model use a Knowledge Attention
and Recontextualization (KAR) mechanism to com-
bine the knowledge representation and contextual
word representations.

ATOMIC-BERT (Hosseini et al., 2022) adds a
new pre-training corpus to integrate causal knowl-
edge of ATOMIC (Hwang et al., 2021) on the ba-
sis of the original BERT. It first converts triples
in ATOMIC knowledge graph to natural language
texts, and then pretrains model on the generated
text via MLM.
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K-BERT (Liu et al., 2020) choose CN-DBpedia,
HowNet and MedicalKG as external knowledge
base. K-BERT is devised to feed a structural tree
that is decoded from the sentence into a pretrained
language model. The construction of the structural
tree is driven by both the sentence itself together
with an external knowledge graph. However, it
inevitably brings the problem of knowledge noise.
To solve this problem, K-BERT proposed to special
a seeing layer,which make the injected triples can
only affect its corresponding subject.

KeBioLM (Yuan et al., 2021) injects entity
knowledge from UMLS (Bodenreider, 2004) by
fusing the entities in the knowledge base and men-
tions in the text in the middle layer. Firstly, it uses a
function to recognize if a span is an entity mention.
then, it links to a set of the mention’s k-nearest
entities and integrate the entity embedding and the
word embedding in the hidden layer, as the input
of the model.

A.2 Dataset Details

Finance NER ! includes 3000 financial news arti-
cles manually labeled, which contain over 65,000
name entities.

Medicine NER ? is the Clinical Named En-
tity Recognition(CNER) task that was released
in CCKS 2017. The dataset mainly extracts
medical-related entity names from electronic medi-
cal records.

BC5-chem & BC5-disease (Li et al., 2016) con-
tain 1500 PubMed abstracts that extract chemical
and disease entities respectively.

NCBI-disease (Dogan et al., 2014) includes 793
PubMed abstracts that had been detected disease
entities.

BC2GM (Smith et al., 2008) is a dataset includ-
ing 20K PubMed sentences extracting gene entities.

JNLPBA (Collier and Kim, 2004) is a dataset
includeing 2,000 PubMed abstracts that has been
identified molecular biology-related entities.

A.3 Dataset License

We only find three dataset licenses,which is as fol-
lowing.

SQuAD: CC-BY-SA 4.0

WiC: CC BY-NC 4.0

COPA: BSD 2-Clause

"https://embedding.github.io/evaluation/#extrinsic
Zhttps://biendata.net/competition/CCKS2017_2/



