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Abstract

Domain Generalization (DG) seeks to create models that can successfully generalize to new,
unseen target domains without the need for target domain data during training. Tradi-
tional approaches often rely on data augmentation or feature mixing techniques, such as
MixUp; however, these methods may fall short in capturing the essential diversity within
the feature space, resulting in limited robustness against domain shifts. In this research,
we revisit the importance of diversity in DG tasks and propose a simple yet effective
method to improve DG performance through diversity-sampling regularization. Specifi-
cally, we calculate entropy values for input data to assess their prediction uncertainty, and
use these values to guide sampling through Determinantal Point Process (DPP), which
prioritizes selecting data subsets with high diversity. By incorporating DPP-based diver-
sity sampling as a regularization strategy, our framework enhances the standard Empirical
Risk Minimization (ERM) objective, promoting the learning of domain-agnostic features
without relying on explicit data augmentation. We empirically validate the effectiveness
of our method on standard DG benchmarks, including PACS, VLCS, OfficeHome, Ter-
ralncognita, and DomainNet, and through extensive experiments show that it consistently
improves generalization to unseen domains and outperforms widely used baselines and
S.0.T.A without relying on any task-specific heuristics. Our implementation is available
at: https://github.com/lakpa-tamang9/domaingen

1 Introduction

Machine learning models have demonstrated tremendous progress across diverse applications, yet they con-
tinue to struggle when confronted with changes in data distribution. Due to the inherent nature of training
such models with independent and identical distribution (i.i.d) hypothesis, their generalization performance
on unseen test data in a heterogeneous distribution space is significantly impacted (Tamang, 2024). This
phenomenon in machine learning is termed as the Out-of-Distribution (OOD) problem, where the change
in features/covariates of the data occurs as a result of domain shift or environmental change. Figure
illustrates a domain shift problem where semantic categories like dog, horse, giraffe, and house appear across
multiple domains such as art, cartoons, photos, and sketches. Although the label space is unchanged, visual
attributes such as texture, color, and abstraction may vary significantly. This highlights two critical chal-
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Figure 1: (a) Domain shift illustration. (b) DG target accuracy comparison averaged across five benchmarks.

lenges: (i) models trained on a single domain often fail to generalize to others, and (ii) successful generaliza-
tion requires learning representations that ignore domain-specific cues while preserving label-discriminative
features. Domain Generalization (DG) (Zhou et al., [2022)) aims to address these challenges by leveraging
multiple source domains to learn representations that remain stable across changes in the environment.
The goal is to reduce reliance on domain-specific cues and instead capture features that are both label-
discriminative and domain-invariant, enabling robust generalization performance across new and previously
unseen domains.

Empirical Risk Minimization (ERM) is considered a decent baseline method to achieve rea-
sonable In-Distribution (ID) performance. However, without proper regularization, ERM tends to overfit to
domain-specific spurious correlations, leading to poor generalization to unseen domains where such correla-
tions may not hold. Another prevalent method in DG is achieved through data augmentation and synthesis
(Li et al., 2018a; Zhou et al. |2020)). These approaches perform augmentation by interpolating data points
and their labels in input space (Zhang et al 2017)), hidden manifold space (Verma et al.;[2019), and by mixing
style statistical informations (eg: mean, std) of features (Zhou et al. |2021)), or replacing random patches of
one input with another while mixing their corresponding label (Yun et al.,|2019). Such techniques are known
to expose the model to a large variety of source domain samples, intrinsically learning more domain-invariant
and hence generalizable representations. However, these methods are also prone to consuming a generous
amount of computing resources and require considerable engineering efforts to synthesize inputs to represent
domain-agnostic features. Besides, some of these methods utilize conventional augmentation methods (crop,
rescale, rotate) and patch-based synthesis, limiting their versatility across other applications.

In this paper, we propose an alternative and relatively straightforward approach to enhance DG performance
by regularizing the model to promote diverse feature learning. Our methodology comprises two steps: First,
we calculate entropy to provide an uncertainty measure of the input data. Second, we utilize this entropy
as supplementary signals to sample diverse features through Determinantal Point Process (DPP) sampling
(Kulesza et al., 2012)). DPP offers a class of precise probabilistic models for sample selection problems and
is particularly effective for addressing subset selection problems with diversity constraints, such as video
and document summarization (Launay et al, [2021). Our DPP sampling-guided regularization supports
the original training objective of the existing ERM baseline to learn a domain-agnostic classifier. Unlike
conventional data augmentation methods that achieve diversity by generating or synthesizing additional
samples, our method inherently incorporates diversity within the sampling process.

Our main contributions are summarized as follows:
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e We propose a DG method that enhances generalization across unseen domains by sampling diverse
data representations near the decision boundary using uncertainty-guided DPP sampling.

e QOur approach provides an effective form of regularization that reduces reliance on complex data
augmentation or synthesis, offering a simpler alternative to augmentation-driven DG methods.

o We demonstrate that our regularization technique is method-agnostic and can be seamlessly in-
tegrated into existing DG frameworks by augmenting their final objectives, thereby promoting its
applicability across a wide range of DG problems.

e Through empirical results, we show consistent improvements: (see Figure about +5% over the
ERM baseline, +6% over the average of popular augmentation-based DG benchmarks.
We also beat several state-of-the-art DG techniques across multiple datasets.

2 Background and Related Works

Domain Generalization: DG (Ye et al.; [2022; Xu et al., 2021; Balaji et al., 2018) has been a subject of
extensive investigation, alongside related approaches such as transfer learning and domain adaptation. A
typical approach in DG is through learning domain-invariant representations across multiple domains (Li
et al., 2018a}; |[Muandet et al., |2013|) with an assumption that all domains share common features that are
inherently agnostic and do not belong to a particular domain. Existing methods attempt to learn these
features through techniques such as invariant feature learning (Li et al., [2018b), disentanglement learning
(Zhang et all |2022)), causal inference (Mahajan et al., [2021), etc. Although the distillation of domain-
agnostic features for classification remains promising, the precise determination of which features should be
considered domain-specific remains a significant question. Similarly, a substantial portion of the literature in
DG has been realized through adversarial learning such as GANs (Poursaeed et al.,[2021)), and AutoEncoders
(Ghifary et al.,[2015) with an objective of learning universal representations. However, the majority of these
aforementioned methodologies are computationally expensive and involve complex conceptualizations. In
fact, recent research (Gulrajani & Lopez-Paz, [2020) challenges the performance of most of these models
through a simple ERM framework that has undergone careful hyper-parameter tuning. Interestingly, it has
been empirically demonstrated that a simple model such as ERM can achieve comparable results or even
outperform complex approaches when evaluated in terms of OOD accuracy. Later studies (Cha et al., 2021}
Wang et al. 2023)) have argued that, simply minimizing the empirical loss on a complex and non-convex
loss landscape is typically not sufficient to arrive at a good generalization, thereby proposing to find flat
minima on the loss landscape for improving DG performance. Despite the improvement, such a gain is
usually attributed to heuristic approximations and these methods fail to strongly utilize domain-agnostic
information.

Determinantal Point Process (DPP): DPP has proven to be an effective methodology for ensuring
diversity in a wide range of applications. Historically, DPPs have found favor in information retrieval tasks,
including text summarization (Perez-Beltrachini & Lapatay, [2021)), image selection (Kulesza & Taskar| 2011)),
recommendation systems (Chen et al., [2018; |Celis et al., |2018), and video summarization (Wilhelm et al.,
2018). Beyond these fields, DPP sampling has demonstrated utility in various computer vision challenges
including pose estimation (Kulesza & Taskar} 2010)), image processing for pixels or patches sampling (Launay!
et al [2021), transfer learning for generating diverse training subsets with enhanced transferability (Lv et al.
2022), multi-label classification (Xie et all [2017), and active learning (Biyik et al., |2019). DOMI (Leng
et al.l |2022)), which is one of the closest work to ours uses DPP as a two level sampling process however,
it necessitates features from two distinct networks and offers little to no information regarding scalability
to current DG benchmarks. Conversely, our approach can be seamlessly integrated as a straightforward
plug-and-play technique with widely used existing methods, and we demonstrate its scalability across the
current popular DG benchmarks.
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Figure 2: Comparison of decision boundaries for (a) ERM and (b) ERM with diversity regularization.
ERM alone produces a misaligned boundary with lower target accuracy (83.25%). Adding the DPP-based
diversity component yields a more robust boundary and substantially higher accuracy (94.75%), illustrating
how diversity promotes domain-agnostic generalization. Source domains are [Dom 0, Dom 1], target domain
Dom 2, with labels [C1s 0, Cls 1]. (c¢) Comparison of the classification loss curve relative to the number of
epochs.

3 The Proposed Methodology

3.1 Problem Formulation

Let X denote the input space and ) = {1,...,C} the label space for a C class classification problem. We are
given labeled samples from N source domains Dy, ..., Dy, where each domain D; contains samples (x,y) ~
Pi(X,Y). We consider a hypothesis class F defined as F = {fp | fo(x) = g(h(x)), h € H, g € G}, where h :
X — R%is a feature extractor and g : R — R is a classifier. The goal is to learn a model fo: X — R€ that
generalizes well on a previously unseen target domain Dy ~ Pr(X,Y), where Pr ¢ {P;}¥;. In other words,
the model is trained to minimize the empirical risk on source domains Rs(f) = + Zfil E(x,y)~p; [€(f(x),9)]
to obtain:

fo = arggggRs(f) (1)

with an assumption that f; properly generalizes to the target domain with true target risk given by:

Ry (f) = Eey)opr [((f (%), 9)]- (2)
Then, under the standard domain shift assumption, the target risk can be upper bounded as:
Rr(f) < Rs(f) + C({D:i}iL,, Dr),Vf € F (3)

Here, C denotes a generic domain discrepancy term that measures the distributional shift between the
collection of source domains and the target domain, and can be instantiated by any divergence or distance for
which a risk transfer bound of the form in holds (e.g., integral probability metrics (IPM) or f divergence
based measures), depending on the underlying assumptions on the data distributions, loss function, and
hypothesis class. Note that, throughout this work, we treat C abstractly and do not assume a specific
form, as our method aims to reduce domain discrepancy implicitly via representation diversity rather than
optimizing an explicit divergence.

3.2 Motivating Toy Example

We begin by motivating our problem through a simple toy example. Here, we construct a synthetic dataset
using multivariate Gaussian distributions that comprises three domains and two classes; each class containing
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200 data points. The dataset was crafted to maintain consistent covariance across all domains while altering
only the mean, hence emulating the domain shift nature in a real-world DG task, where an object’s feature
values change based on the environmental context. Figure shows the decision boundary learned by a
standard ERM model trained across two source domains. Here’s what we observe; although the model
captures some of the class separation, the boundary is misaligned with the data distribution. As a result,
substantial portion of the clusters of the target domain data are incorrectly classified, yielding a target
accuracy of only 83.25%. This reflects a common limitation of ERM: the model tends to overfit to dominant
patterns in the training set and fails to generalize well when class and domain structures overlap.

To this end, we introduce a diversity regularizer Rqi,, which we integrate into the source risk minimization
framework Eq. Specifically, instead of minimizing only the empirical source risk Rg(f), we consider the
following objective:

fi = argmin (Rs(f) + Raw). (4)

where, Rq;v is the diversity regularizer. By explicitly encouraging the model to attend to diverse samples dur-
ing training, the decision boundary becomes more robust and better aligned with the data manifold as shown
in Figure This adjustment resolves much of the mis-classification seen in the ERM, especially around
the overlapping regions of different domains. Consequently, the target accuracy increases substantially to
94.75%. Building on this motivating example, we formalize our method Diversity Sampling Regularization
(DSR). As shown in the block diagram in Figure DSR leverages predictive uncertainty followed by DPP
sampling to induce diversity constraint among feature vectors z, where z = h(x) € R% In the following
sections, we outline how DSR is incorporated into the optimization objective alongside the source risk Rg(f).

3.3 Diversity in Feature Space

There are two key arguments on how DPP supports to domain invariant feature learning. Firstly, DPP
encourages inter- and intra-domain diversity, ensuring that the selected examples span a larger volume in
feature space, covering more modes of the data distribution. Secondly, unlike random sampling, there is less
redundancy in selected features, which makes the probability of selecting the same or similar samples very
low. This can be attributed to the pivotal characteristic of DPP, which is a negative correlation between
binary variables, translating that the selection of one item reduces the probability of selecting others that
are highly similar. As shown in Figure the larger the angular spread, the more diverse the items are. We
utilize these correlations, which are determined by a kernel matrix measuring item similarity. Consequently,
more similar items are less likely to co-occur, resulting in DPPs favoring diverse subset of items.

3.4 Uncertainty-based Feature Modulation

In DG, not all samples contribute equally to improving generalization. In reality, confident predictions
often correspond to redundant or well-understood features, whereas uncertain predictions may represent
underexplored regions of the input space (Hiillermeier & Waegeman, 2021)). To exploit this, we compute
the predictive entropy u = — Zle 9. logy. for each sample based on the softmax output of the classifier
9. = softmax(g(h(x))). This entropy is then used to scale each feature vector, effectively reweighting the
feature matrix before passing for DPP sampling. We term this phenomenon as feature modulation and
represent the byproduct as modulated feature given by:

Z=12z-1u (5)

The intuition here is that uncertain samples are likely to contain more informative or ambiguous signals, and
emphasizing them encourages the model to explore diverse and non-redundant directions in feature space.
This entropy-based modulation serves two primary purposes. First, it biases learning toward instances
the model already deems informative, implicitly encouraging robustness across domains. Second, and more
critically for our method, it alters the structure of the feature space on which we perform DPP-based diversity
sampling. Empirically, we find that this strategy leads to more expressive representations and contributes
significantly to performance under domain shift.
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Figure 3: (a) Schematic block diagram of DSR method. Based on the entropy scale, the high entropy values
are prioritized for DPP sampling. (b) Diversity representation between data points. The larger the angular
spread, the higher the diversity.

3.5 Diversity Kernel with DPP

Next, to promote diverse representation during training, we construct a kernel matrix L € RB*5 over the
batch, B of the modulated feature vectors z using an RBF (Gaussian) similarity kernel.
5 =2
Lij = exp(—|zi — 7;[3) (6)

This kernel captures pairwise dissimilarities among feature vectors. In situations where two features are
exactly same, Z; = Z;, L;; — 1. However, two independent features in a batch are never exactly the same,
given they come from different input samples, which brings our L;; to span between 0 and 1.

Role of v: As the inverse bandwidth parameter, v > 0 determines the width of the RBF kernel. Since
the mini-batch comprises samples from different domains that are shifted along the covariates, we use a
data-dependent v which can capture the variances that are intrinsic to the shift dynamics. Specifically, we
use a principled, data-dependent median heuristic measure (Garreau et al., |2017; (Gretton et al., [2012) that
is computed over pairwise distances of features in a batch. Intuitively, the median value renders v to be
robust to outliers and automatically adapts to the scale of data in inadequately shifted distribution space.
Mathematically, it is represented as follows:
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1
median||Z; — Z;||3 + €

v = (7)

where € is a small positive constant that ensures numerical stability. Since the modulated features reflect
uncertainty, the diversity modeled by the DPP naturally emphasizes informative regions of the feature space.
This leads to more meaningful subset selection and loss computation, eventually improving generalization.

3.6 Reducing Domain Discrepancy through Diversity Regularizer R gy

Next, we utilize the previously obtained L, to enforce diversity in the learned feature representations via a
log-determinant regularizer:

Raiv = —logdet(L + €I), (8)

To ensure that the kernel matrix L is strictly positive definite and the log-determinant is well-defined, we
regularize it by adding a small multiple of the identity matrix I, with ¢ > 0 being a small constant. This
guarantees that all eigenvalues of L remain positive, avoiding numerical instability caused by near-zero
or negative eigenvalues. Such a regularization is commonly practiced in determinant-based objectives and
ensures that the logdet term remains finite and differentiable (Kulesza et al.| [2012)). This regularization
encourages the feature vectors to be geometrically diverse, suppressing collapse into redundant subspaces.

Proposition 1. Mazimizing log det(L 4 €I) promotes non-redundant, orthogonal features that span a high-
volume subspace, thereby improving representation robustness.

Lemma 1. (Kulesza et al., [2012) Let A1, ..., Ay be the eigenvalues of L. Then,
logdet(L 4+ €l) = Z log(X; + €),
i=1

which is mazimized when the eigenvalues are uniformly large and spread out, implying orthogonality and high
entropy in the feature distribution.

Proof sketch: Since det(L+€el) =[], (\; +¢€), maximizing its logarithm requires enlarging all eigenvalues
of L. If the spectrum collapses so that only a few eigenvalues dominate, the determinant shrinks, reflecting
concentration of variance in a low-dimensional subspace. Conversely, when eigenvalues are more uniformly
distributed and nonzero, the determinant grows, corresponding to orthogonal features that span a higher-
volume subspace. Thus, maximizing log det(L + €I) promotes diversity by penalizing redundancy among
features.

Discussion: Diverse representations reduce the overlap between features of different domains, leading to
more domain-invariant embeddings. Maximizing diversity thus implicitly aligns source domains in a shared
high-volume subspace, shrinking the discrepancy term C in the generalization bound in Eq. [3]

3.7 Interpretation of the log-det

In DPP sampling, the model is penalized if the mini-batch samples are redundant or lie in a low-dimensional
subspace. To illustrate the log-det procedure mathematically, let us consider the subset S containing two
data points x;, and x;, then the probability of sampling can be calculated as:

Li; L
Lji  Lj;
=L;L;; — LijLj; = 1 — L

P(i,j € S) xdet(Lg) =

(9)

From Egs. @ and |§|, we can deduce that, under ideal scenario if x;, and x; are dissimilar to each other,
then L;; — 0, and S will have high probability. Accordingly, the selected subset with the highest P should
contain a set of highly diverse samples.
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It is important to note that in geometric intuition, the determinant det(Lg) represents volume of the par-
allelepiped spanned by the feature vectors Z € S in the feature space E Thus, by maximizing det(Lg), the
selected subset S ensures that the feature vectors are linearly independent and spread out in representation
space. This diversity implies that our method captures a wide variety of diverse features among Z, reducing
the likelihood that the model overfits to any specific domain.

3.8 Overall Training Objective
With the regularization term formulated, DSR’s final training objective corresponding to Eq. [4] becomes as

N
1
follows: Liota = < N ZE(x,y)NDi [0(f(x),y)] +(1 — @) - Rasy where a € [0,1] balances the contribution of
i=1

ERM
the diversity term.

4 Experimental Setup

In this section, we outline the experimental setup of our method. This includes details regarding the datasets
used, training configuration, evaluation metrics and selected baseline studies for comparison. All experiments
were conducted on multiple A100 GPU servers.

4.1 Datasets

PACS: The PACS dataset (Li et al.l [2017)) comprises four distinct domains: Photo, Art Painting, Cartoon,
and Sketch. Each domain contains images categorized into seven classes: Dog, Elephant, Giraffe, Guitar,
House, Horse, and Person.

VLCS: The VLCS dataset (Fang et al., |2013)) combines four distinct image datasets: PASCAL VOC 2007
(V), LabelMe (L), Caltech-101 (C), and SUN0Q9 (S). This consolidated dataset encompass five shared cate-
gories: Bird, Car, Chair, Dog, and Person.

OfficeHome (OH): The OfficcHome dataset (Venkateswara et al. 2017), a multi-domain dataset, was
developed to facilitate research in domain adaptation and generalization. This dataset encompasses four
distinct domains: Art, Clipart, Product, and Real-World.

Terralncognita (TI): Terralncognita (Beery et al.l [2018) comprises wildlife camera trap images collected
from multiple geographical regions, referred to as "locations."

DomainNet (DN): DomainNet (Peng et all 2019) is a prominent dataset in DG, comprising six distinct
domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch.

In Table. we provide detailed information regarding the distribution of samples in each domain of the
DG datasets as discussed above. We can observe that the number of image samples in each domain vary
significantly across all datasets.

4.2 Implementation Details

We trained our method on Resnet-50 architecture using the Stochastic Gradient Descent (SGD) optimizer
for up to 100 epochs. The learning rate was set to 0.01 with a decay rate of 0.75. The value of batch size was
set to 64 and the value of a was set to 0.5 to balance the contributions of the loss term and the regularizer.
We follow the training-validation approach of (Wang & Lul 2021) where any one domain in the dataset is
reserved for testing purposes while the rest are used for training. Our method’s performance is compared
against some of the widely recognized DG baselines: ERM (Vapnik, [1998)), Mixup (Yan et al,|2020), CORAL
(Sun & Saenko, 2016), MMD (Li et al |2018bf), DANN (Li et al., 2018b), GroupDRO (Sagawa et al., 2019),

1In DPP, the determinant is viewed as an area of the parallelogram induced when a unit square is transformed by a matrix.
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Table 1: Summary of DG Benchmarks Used in the Experiments.

Dataset Domain Images Total
Art Painting 2,048
Cartoon 2,344
PACS Photo 1,670 9,991
Sketch 3,929
Caltech101 1,415
LabelMe 2,656
VLCS SUNO9 3,982 10,729
VOC2007 3,376
Art 2,427
Clipart 4,365
OfficeHome Product 4,439 15,588
Real-World 4,357
Location 100 3,381
. Location 38 9,530
Terralncognita Location 43 6.293 24,788
Location 46 5,584
Clipart 48,129
Infograph 53,201
. Painting 72,759
DomainNet Quickdraw 172,500 586,575
Real 175,327
Sketch 70,386

and S.0.T.A methods such as SWAD (Cha et al., 2021), SAGM (Wang et al., [2023), GMDG (Tan et al.,
2024)), and I3C (Zhou et al., [2025). We re-implement most of the methods and report the mean and standard
error across three random seeds.

METHODS PACS VLCS OH TI DN Avg.
ERM (Vapnik||1998) 84.90 £011  7420+015 67.30+to007 45.50+010 39.80+033 62.34
MixUp (Yan et al.||2020) 79.50 014  73.90+018  66.60£o0.21 47.30 o017  37.90£o0.02 61.04
CORAL (Sun & Saenko||2016) 82.50 £ 019  74.30+ o057 66.80+020 39.50 + 047  36.40 £ 0.49 59.9

GroupDRO (Sagawa et al.|[2019)  82.60 £0.08 71.10+ o024 63.00+ 040 39.40+0.24 3240 £o0.18 57.7

MMD (Li et al.|[2018b) 84.70 £017  75.70+o006 67.80*o019 41.80+o020 3850+040  61.7

SWAD (Cha et al.|[2021) 88.19 + 0.25 7877 016 70.50+0.13 47.50+ 019 46.40+0.13 66.27
SAGM (Wang et al.|[|2023) 86.72 + 0.22 7713 +0.14 69.26 + 0.58 48.43 + 0.51 44.60 £ 037  65.22
GMDG+ (Tan et al.|[2024) 85.60 79.20 70.70 50.20 44.60 66.06
I13Ct (Zhou et al.||2025) 87.10 79.60 70.20 49.60 45.60 66.42
DSR, (Ours) 88.12 £ 0.31 79.10 & 0.41 70.00 =014  51.41 4073 45.60 +o027 67.54
DSR; (Ours) 88.70 £ 0.09 80.31+0.14 70244031 5293 +o047 45.75+029 67.59

Table 2: DG target accuracy comparison of DSR along with popular baselines across five different benchmark
datasets. Best and second-best results are bold and underlined, respectively. The results of methods with
1 are reported from their original implementation, therefore we do not provide the standard error value for
them.

5 Experimental Evaluation

In this section, we conduct extensive experiments and analyses to evaluate the effectiveness of the proposed
method on standard DG benchmarks and to provide extensive insights into its associated parameters. For
evaluation, we use target accuracy, which is obtained by testing the model on the target domain that has no
sample overlap with the source (training) domains. Note that the results are averaged over 3 independent
trials, and represent the mean value and standard error across these runs.
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METHODS Art Color Picture Sketch Avg. Caltech1l01 LabelMe SUNO09 VOC2007  Avg.
ERM 84.10 023 80.50£0.02 94.90+o0.08 80.20+o0.11 84.90 96.40 £ o.10 62.70 £0.16  68.40 £ 0.31 69.20 £0.03  74.20
MixUp 85.10 £0.12  80.90 £0.17  94.70+020 57.30*0.090 79.50  94.60 + 0.21 62.50 £0.43  69.50 £0.08  69.00+0.01  73.90
CORAL 82.30+025 80.20+0.13  92.80 % 0.06 7490+ 034 8250 94.60 £ o0.76 62.00 £ 0.52 7150+ 030 69.20+0.71  74.30
GroupDRO 76.70 £ 0.20 78.60 =0.10  90.00 £ 0.03 85.00 £ 0.00 82.60  93.90 % 0.61 60.40 £0.30  65.90 £0.27  64.20 £ o0.21 71.10
MMD 83.50 £0.21  80.10+032 93.50+o008 81.80+o009 8470 96.30+0.02 61.70+0.03 73.80+o011 70.90+0.08 75.70
SWAD 88.59 £0.14 83.58+to0s51 97.82+o022 82.76+o016 88.19 9894+o014 63.71+0.11 74.10 £ 0.20 78.35 £ o0.22  T78.77
SAGM 86.51 £0.33 83.74+017 96.70 o027 79.93+013 86.72 9858 +o019  61.27+o0.00 72.31+013 T76.37+o015 77.13
GMDG 84.7 81.7 97.50 80.50 85.6 98.30 65.90 73.40 79.30 79.20
13C 89.20 80.60 97.70 81.40 87.10 98.80 67.50 72.10 80.20 79.60
DSR, 87.74 £ 0.23 83.75 + 0.12 97.02 + 0.51 83.97 +0.22 88.12 98.09 £ 0.10 67.42+033 74.63£0.79 76.26 £0.43 79.10
DSR; 89.26 £ 0.09 84.04+o0.02 97254012 84.25+013 8870 98.26+018 6890+o012 T7569+015 7841+o011 80.31
(a) PACS and VLCS
METHODS Art Clipart Product Real Avg. Loc38 Loc43 Loc46 Loc100 Avg.
ERM 62.20 £0.04  53.80£0.08 76.00+t0.10 77.40+0.00 67.30 46.10+0.11  53.40+o0.12 41.90+fo0.13  40.80£o0.06 45.50
MixUp 60.30 £ 0.22 53.50 £ 0.20 75.90 £ 0.31 76.60 014  66.60 44.30 £o0as  52.50*o0.19  33.50*0.00 58.90+0.23 47.30
CORAL 59.60 £o021  5590+o026 75.00+019 76.80+o017 66.80 39.20+0.37 41.60+0.61  32.20+ 051  45.00+ 039  39.50
GroupDRO 5420 +07  53.30+o012 7240%+045 72.00+034 63.00 3540+o028 42.00+f021 31.90+o033 4820+o0.16 39.40
MMD 60.70 £0.12  58.70+o0.16 75.60+to0.28 76.30+o0.21 67.80 40.40+o031 47.10+0.18 34.40+o0.18 45.10+0.14 41.80
SWAD 65.24 + 0.03 57.93+0.13 78994017 79.86+o019 70.50 36.74+021 59.79+o011 37.93+019 5555F027 47.50
SAGM 64.26 £ o078  55.92+o045 78.04 £o067 7883 +o043 69.26 45.04+0.61 57.96 032  40.26 +0.87  50.48 +o0.26  48.43
GMDG 68.90 56.20 79.90 82.00 70.70 59.80 45.30 57.10 38.20 50.20
13C 67.50 56.10 77.50 79.80 70.20 57.00 43.20 56.40 41.90 49.60
DSR, 66.05 + 0.16 56.85 + 0.26 77.40 £ o0.11 79.73 £0.03 70.00 48.22+084 55.76 £o0.06  43.63 £o0.81 58.05 £1.23 51.41
DSR; 66.19 £ 023 57.21+0.26 77.61 & 0.34 79.79 041 70.20 50.63+o059 54.90+030 45.61+041 60.59+061 52.93

(b) OfficeHome and Terralncognita

METHODS Clipart Infograph Painting Quickdraw Real Sketch Avg.
ERM 58.00 £ 0.19 16.70 £ 0.21 45.30 £ 0.43 14.20 £ 0.34 56.70 & 0.65 48.10 £ 0.18 39.80
MixUp 54.90 + 0.34 16.30 £ 0.57 43.70 £ 0.49 13.70 £ 0.65 52.70 + 0.89 46.10 £ 0.36 37.90
CORAL 57.10 £+ 0.87 14.60 + 0.37 39.80 + 0.31 10.70 £ 0.75 50.20 + 0.40 46.40 £+ 0.29 36.40
GroupDRO 46.30 +£ 0.12 15.50 £ 0.09 34.60 £+ 0.17 10.80 4 0.43 46.10 £+ 0.09 41.10 £ 0.21 32.40
MMD 57.90 £+ 0.23 16.00 £ 0.12 41.70 £ 0.34 13.00 £ 0.76 54.30 & 0.61 48.00 £ 0.37 38.50
SWAD 65.75 + 0.12 22.42 + 0.07 52.83 + 0.11 15.57 4 0.09 66.33 + 0.23 55.52 + 0.16 46.40
SAGM 64.13 + 0.31 20.56 £+ 0.21 51.16 £+ 0.56 14.22 4+ 0.51 64.06 £+ 0.39 53.47 + 0.26 44.60
GMDG 63.40 22.40 51.40 13.40 64.40 52.40 44.60
I13C 63.00 21.40 51.40 13.60 63.60 53.50 44.40
DSR2z 65.30 + 0.32 22.00 £ 0.27 52.20 £ 0.14 15.30 & 0.09 64.30 £ 0.19 54.10 + 0.61 45.60
DSRz 65.34 + 0.14 22.40 £+ 0.33 52.31 £ 0.56 15.70 £ 0.21 64.50 £+ 0.43 54.27 + 0.06 45.75

(¢) DomainNet

Table 3: A comprehensive comparison of DG performance of different methods across multiple benchmark
datasets Rows highlighted in blue represent our methods. Best and second-best results are bold and under-
lined respectively.

5.1 Performance Comparison

In Table 2] we compare the accuracies of the proposed method with popular DG benchmarks along with
recent SOTA frameworks. Here, we present two variants of our method: DSR,, and DSR;. The former
utilizes plain features, while the latter uses entropy modulated features for DPP sampling. We can see that
through simple regularization, our method provides an impressive boost to the ERM baseline, with almost
5% overall gain across the average of five different datasets. Both DSR,, and DSR; were able to outperform
most of the methods, while only coming second to SAGM and SWAD by a marginal value across OH and DN
benchmarks respectively. One thing to note here is that, SAGM and SWAD both are designed on complex
heuristics of the loss landscapes and provide little information regarding the domain features. On the other
hand, our method is complementary to the existing loss function and do not require modifying any of the
original ERM objective. In fact, we show in later section that our approach is also agnostic to most of the
models and can boost their accuracy by a comprehensive margin.

Another insight to take from Table [2] is that MixUp, a popular data augmentation technique known for
promoting diversity in the representation space, performs considerably worse than both DSR variants. We
further illustrate this difference through a t-SNE plot in Figure [4] which shows that DSR achieves more
compact inter-class separation on the target dataset compared to ERM and MixUp. The comprehensive
experimental results comparison of DSR,, and DSR; with the baselines is provided in Table [3| where we
can witness that, in some domains (Loc100 of Terralncognita), DSR brings upto 50% boost in the accuracy
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of vanilla ERM. These findings suggest that diversity-sampling regularization markedly improves the DG
performance.

(a) ERM. (b) MixUp. (c) DSR.

Figure 4: TSNE plot of a target domain of the PACS dataset. Each colored cluster represents a class. (a)
ERM (b) MixUp (c) DSR.

5.2 Model-Agnosticity of DSR

One of the key characteristics of DSR is that it is model agnostic, meaning that it can be coupled with
any other method by augmenting their training objective. We show this phenomenon in Figure [§] where
we plot the target accuracy of vanilla methods (ERM, DANN, CORAL, MMD, and GroupDRO) and their
DSR counterparts averaged across all the available domains of five DG benchmark datasets as discussed in
Section [£I] Through the bar chart, it can be clearly seen that all methods have a certain degree of gain
when they are trained with DSR. These gains starting from 1% reaching as high as up to 13% reflect the
versatility of DSR, promoting its utility among wide range of methods and frameworks.
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Figure 5: Comparison of target accuracy of five of the popular DG methods across five different benchmark
datasets when trained on a vanilla and DSR regularized setting.
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Figure 6: Analysis of features and eigenvalues after model training on the PACS dataset. (a) t-SNE plot
with z, (b) Histogram and KDE plot of eigen values using z, (c) t-SNE plot with z, (d) Histogram and KDE
plot of eigen values using z. In (a), and (c) each color represents a domain and each cluster represents a
class.

5.3 Analysis on Feature Modulation of DSR

In Section @ we presented two variants of DSR: DSR,, and DSR;: where the latter consistently provided
better DG performance across all domains of all datasets. We attribute this improvement to an effective
diversity regularizer driven by entropy-modulated features. In this section, by analyzing the feature values
and distribution of kernel eigenvalues, we clarify why this improvement persists. To better understand the
impact of entropy-based feature modulation, first we analyzed both the training feature space structures of
z and z through t-SNE visualization as shown in Figures [6a] and [6q respectively. Here, we notice two key
observations: First, z shows tightly clustered inter-class samples and the features appear more dispersed
across the embedding space. Second, the clustered features appear more domain-agnostic, with the three
domains converging toward a shared representational basis. From these findings, we deduce that modula-
tion encourages the model to exploit more orthogonal directions in the feature space, thereby preventing
redundancy in the learned representation.

Subsequently, we further substantiate this observation through an eigenvalue analysis of the kernel matrices
constructed from these features. In Figures [6b} and [6d] we plot the density of eigenvalues obtained from
these features. Here, we empirically validate Lemma [I] as the eigenvalue spectrum kernel matrix of z appear
more spread out, with a lower proportion of negligible (= 0) eigenvalues and larger support volume in the
feature space. Such a broader set of informative, non-redundant features benefits DPP sampling, reducing
over-reliance on highly confident yet redundant features, thereby improving generalization in the context of
domain shift.

5.4 Ablation Study: Effect of ~

In this ablation, we perform an experiment to assess the impact of using fixed v values on generalization
performance. We trained DSR; with static v values from the set {0.01,0.03,...,0.1}, aiming to mirror the
empirical range noted during adaptive training. We plot the line-graph of target accuracies with respect to
7 as shown in Figure [7a] where we also append the result of adaptive + at the end. Interestingly, we notice
that not a single fixed value of v leads to optimal performance. This reveals that a fixed v in DSR; fails
to capture the data-dependent nuances of the feature space. Conversely, the adaptive v designed to fit the
statistical structure of the features at each training step, promotes effective diversity regularization yielding
better target accuracy. These results support our assertion that adaptively computing -, such as through
the median of pairwise distances enhances DG performance.

5.4.1 Training on Different Alpha Values

Figure [7h] illustrates the effect of varying the hyperparameter a on target-domain accuracy across the PACS,
VLCS, and OH datasets. In the case of PACS, accuracy increases until a = 0.5, where it attains a peak
of 88.7%, before experiencing a slight decline at higher values. A similar pattern is observed for VLCS,
with performance peaking at o = 0.5 (80.5%) and remaining relatively stable at other values. The OH
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Figure 7: (a) Target accuracy on PACS dataset with static and adaptive . (b) Ablation on alpha values
for PACS dataset.

dataset also demonstrates sensitivity to «, achieving its maximum accuracy of 71.1% at o = 0.5, followed
by a decrease as « increases. Overall, the findings suggest that moderate values of o (approximately 0.5)
consistently result in optimal performance across all datasets.

5.4.2 Training with Different Kernels

Figure illustrates a kernel ablation study conducted on the PACS, VLCS, and OH datasets, comparing
the performance across different similarity kernels (Cho & Saul, 2009) such as: RBF, Cosine, Linear, and
Polynomial. The results demonstrate that, across all three datasets, the accuracies are relatively similar,
with the RBF kernel exhibiting a slight advantage, achieving 88.7% on PACS, 80.3% on VLCS, and 70.2%
on OH. These findings suggest that while the choice of kernel exerts only a minor influence, the RBF
kernel consistently yields the most notable improvements across the benchmarks. This consistent advantage
motivates our choice of RBF as the default kernel in the main experiment.
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(a) Kernel ablation on PACS, VLCS, and OH (target (b) ColoredMNIST: DG performance of DSR vs base-
accuracy). lines.

Figure 8: (a) Kernel ablation across datasets. (b) ColoredMNIST results.

5.4.3 Experiments on ColoredMNIST

In this experiment, we utilize ColoredMNIST (Arjovsky et al.l 2019), a colored adaptation of the MNIST
dataset, frequently employed as a standard benchmark for evaluating DG in the presence of controlled spuri-
ous correlations. It includes three domains characterized by different label-color correlations: +90%, +80%,
and —90%. As depicted in Figure DSR, exhibits notable performance enhancements over traditional
ERM and MixUp techniques across all domain configurations. Remarkably, DSR surpasses baseline meth-
ods by a double margin even in the highly challenging -90% setting, where the correlation is considered to be
adversarial. These results emphasize the statistical robustness of DSR in mitigating spurious features and
improving generalization across diverse and non-i.i.d. domains.
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6 Conclusion and Future Works

In this work, we emphasize the underexplored role of diversity in improving DG performance. By utilizing
entropy-based uncertainty to guide DPP sampling, we introduce a principled diversity-aware regularization
strategy that augments the standard ERM objective. Our method promotes the learning of domain-invariant
features without relying on explicit data augmentation or target domain information. Empirically, we demon-
strate that our approach not only consistently outperforms both ERM and augmentation-based baselines,
but also secures new SOTA results across most of the DG benchmark datasets. These results underscore the
effectiveness and simplicity of diversity-driven sample selection in mitigating distribution shifts and improv-
ing generalization to unseen domains. We acknowledge, however, that our current experiments are limited
by the number of source domains, and increasing this number correspondingly raises the computational
cost of DPP based sampling due to its dependence on kernel construction and determinant-based selection.
Addressing such a scalability challenge whether through approximate or low-rank DPP formulations, mini-
batch level sampling, or more efficient diversity surrogates represents a crucial direction for future research.
Overall, these results highlight the effectiveness of diversity-driven sample selection while clearly outlining
its current computational limitations and future scalability potential.
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A Appendix

A.1 Training DSR: Algorithm

The high-level implementation concept of DSR is illustrated in Appendix [I} We have implemented DSR as
an auxiliary training objective that functions on intermediate feature representations within a multi-source
DG framework. During each training iteration, mini-batches are sampled from all source domains and
aggregated. Subsequently, features extracted by the encoder are utilized to compute predictive probabilities
and their corresponding entropy. This entropy acts as a measure of model uncertainty and is employed to
modulate the feature representations, highlighting samples that are more ambiguous or likely to reside near
domain boundaries. A DPP kernel is then constructed over the modulated features, and a log-determinant
regularizer is applied to encourage diversity by penalizing redundant representations in the feature space.
The resulting diversity regularization term is optimized in conjunction with the standard classification loss
in an end-to-end manner, without necessitating explicit domain alignment or additional supervision. This
approach implicitly fosters robust and diverse representations that generalize across unseen domains.

Algorithm 1 Training DSR method

Require: {D;}Y |, model fy, parameters 6, learning rate 7, regularization weight «, epochs T iterations K

1: Initialize 0
2: for t={1,...,T} do
3 fork={1,...,K} do

Concatenate all mini-batches: B = |JB;

Generate features z = h(B), Predict logits § = g(z), and probabilities p = softmax(§)

10:  Compute entropy u=—)>__ p(©) log p(©)

11:  Perform Feature Modulation: Z =z -u

12:  Compute pairwise kernel matrix L = exp(—7||Z; — z,;||3), where v = (median||z; — Z;||3 + €)™
13:  Compute regularization term: Rai;y = — logdet(L + €I)

14:  Compute loss: Ligtal = - 2 Zfil E(x,y)~p, [€(f(x),9)] + (1 — @) - Raiv

15:  Update parameters: 6 < 0 — nVoLiotal

16: end for

4: for each D;, i € {1,...,N} do

5: Sample a mini-batch B; = {(xy;,¥i;)} 5., from D;, b e {1,...,B}
6: end for

7. end for

8:

9:

1

A.2 How Informative is Domain Sample Size and its Diversity in DSR?

As summarized in Table [T} significant imbalance in sample sizes is common across DG benchmark datasets.
Under such conditions, conventional minibatch sampling from a pooled dataset tends to disproportionately
favor domains with larger sample sizes. Since random sampling does not account for feature redundancy,
minibatches are often dominated by statistically frequent but highly correlated samples. Such a repeated
exposure to majority-style features can reinforce spurious correlations. For instance, if images from a "Photo"
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domain consistently contain a specific background that is absent in "Sketch" domain, then standard sampling
may encourage the model to rely on this background as a shortcut for prediction. Because such features
appear frequently in majority-dominated minibatches, the model overfits to domain-specific cues rather than
learning domain-invariant representations, resulting in degraded performance on unseen target domains.

In contrast, DSR operates on the pooled sample set but explicitly promotes informative and diverse sample
selection through entropy-guided DPP sampling. Instead of ensuring balanced sampling across domains,
DSR selects samples that maximize joint diversity in the learned feature space, conditioned on predictive
uncertainty. This mechanism implicitly mitigates domain imbalance: samples from underrepresented or more
challenging domains tend to exhibit higher uncertainty or contribute novel feature variations, making them
more likely to be selected by Rgiy. Importantly, domain labels themselves are not required by our method.
From the perspective of DSR, the objective is not to sample from specific domains, but to select samples
that collectively provide maximal information for learning domain-invariant representations. The key factor
is not the domain of origin, but whether the samples provide complementary, non-redundant information. In
this sense, domain diversity emerges as a byproduct of diversity in the learned representation space, rather
than as an enforced structural prior.

A.3 Cost of DPP Kernel Computation

We conducted a further analysis of the computational overhead introduced by our DPP-based diversity
regularization. Specifically, we assessed the additional time needed to compute the DPP kernel and its
log-determinant during each training iteration. The observed overheads are reported as in Table @ It is
important to note that all datasets, except DomainNet, consist of four domains, whereas DomainNet con-
tains six domains. Consequently, the computational cost scales moderately with the number of domains
involved, as the DPP kernel computation depends on the domain-wise feature dimensionality and pairwise
similarity evaluations. Despite this, the additional cost remains relatively minor indicating that the pro-
posed regularization introduces only a small and manageable overhead while enhancing model diversity and
generalization.

Table 4: Additional computational cost introduced by DPP kernel and log-determinant computation.

Dataset # Domains # Classes Time (ms)
PACS 4 7 96.1
VLCS 4 5 91.6
OfficeHome 4 65 91.3
Terralncognita 4 10 92.4
DomainNet 6 345 171.3

A.4 Effect of Increasing Batch Size

In our experiment, we explored a variety of batch sizes, specifically 4, 8, 16, 32, 64, and 128. As illustrated
in Figure. [9] there is a noticeable trend where increasing the batch size correlates with enhanced model
accuracy. This improvement can be attributed to the fact that, with more samples per batch during each
epoch, DPP is more likely to sample a wider range of diverse representations from the feature pool.

A.5 In-Domain Generalization

In Figure. we present a comparison of In-Domain (ID) accuracy with one of the most effective baselines,
SWAD (Cha et al. [2021)), from our study. To ensure a fair comparison, we used the original implementation
of SWAD to replicate their results. The results for SWAD + DSR were obtained by training their method
with DSR’s objective. It is clear that, with this synergy DSR is effective in maintaining the average ID
accuracy across all DG benchmarks. This shows that DSR not only promotes feature diversity but also
preserves the underlying representation of domain structure. Such a balanced regularization ensures that
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Figure 9: Batch size vs Accuracy comparison of PACS dataset on Resnet-50 architecture.

feature learning remains robust and generalizable, allowing the model to retain competitive ID and OOD
performance tradeoffs.
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Figure 10: Comparison of In-domain performance of SWAD+DSR and SWAD.

A.6 Comparison with Diversity Sampling Method

In this section, we compare DSR with DOMI, a closely related approach that utilizes a two-level diversity
sampling strategy for domain generalization across multiple domains. However, the original DOMI im-
plementation offers limited information on reproducibility, and its scalability to standard DG benchmarks
remains unexplored. Their experiments were confined to the MNIST dataset, so we replicated the setup
on the RotatedMNIST benchmark, where digits are rotated by 0,15,30,45,60,75 degrees to simulate multi-
domain conditions. Employing a one-domain-out validation strategy, we trained on five rotation domains
and evaluated on the remaining one. As shown in Table.[5} DSR consistently achieves higher accuracy across
all test domains, with an average accuracy of 97.41%, significantly outperforming both DOMIypyp (87.70%)
and DOMIcoRrar(89.60%). This illustrates that DSR’s DPP-based diversity sampling effectively captures
a broader and more representative range of feature variations, allowing it to surpass the existing diversity
sampling techniques on this benchmark.
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Table 5: Comparison of DSR with DOMI baselines on the RotatedMNIST dataset.

Train Domains (degrees) Test Domain (degree) Accuracy (%)

0, 15, 30, 45, 60 75 98.47
0, 15, 30, 45, 75 60 95.09
0, 15, 30, 60, 75 45 98.71
0, 15, 45, 60, 75 30 98.46
0, 30, 45, 60, 75 15 98.44
15, 30, 45, 60, 75 0 95.30
Average (DSR) - 97.41
DOMInvp - 87.70
DOMIcorAaL - 89.60

A.7 Performance Comparison Across Different Network Architectures

We assess the performance of DSR across three commonly used lightweight neural network architectures:
VGG16, ResNet-18, and ResNet-50. The hyperparameters v=0.05 and a=0.5 remain constant throughout
all experiments. As shown in Figure. [II] ResNet-50 consistently achieves the highest accuracy across all
datasets, which corresponds to its enhanced representational capacity due to its deeper layers. The figure also
underscores that different domains within each dataset exhibit significant variations in accuracy, reflecting
the inherent complexity and diversity of visual characteristics across domains. For instance, in VLCS, Caltech
yields the highest performance while LabelMe records the lowest, whereas in PACS, Picture achieves the
best results and Cartoon the weakest. Despite these differences, the relative performance trends remain
consistent across architectures, confirming that the DPP-based diversity regularization in DSR enhances
robustness and generalization without requiring additional data generation or augmentation.
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Figure 11: Accuracy comparison across five DG benchmarks using different neural network backbones.
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