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Abstract
Model knowledge editing enables the efficient001
correction of erroneous information and the002
continuous updating of outdated knowledge003
within language models. While existing re-004
search has demonstrated strong performance in005
single-instance or few-instance sequential edit-006
ing and one-time massive editing scenarios, the007
batched sequential editing paradigm remains008
a significant challenge. The primary issue lies009
in the model’s tendency to gradually forget010
previously edited knowledge and become in-011
creasingly unstable after multiple iterations of012
batched editing. To address these challenges,013
we propose SeqMMR, an enhanced framework014
for batched sequential knowledge editing that015
leverages Sequential Model Merging and a016
model Router. Our approach iteratively merges017
parameters from current batch-edited models018
with those of their predecessors, ensuring that019
newly emerging knowledge is integrated while020
mitigating the forgetting of previously edited021
knowledge. Furthermore, the model router di-022
rects queries unrelated to the edited knowl-023
edge to an unedited model backup, prevent-024
ing unintended alterations in model predictions.025
Extensive experiments across various datasets026
demonstrate that our approach effectively mit-027
igates knowledge forgetting, improves perfor-028
mance across all previous batches, and better029
preserves the model’s general capabilities.030

1 Introduction031

Large language models (LLMs) have exhibited re-032

markable performance across a wide range of nat-033

ural language processing (NLP) tasks, serving as034

repositories of extensive factual knowledge within035

their parameters (Touvron et al., 2023; OpenAI,036

2023; DeepSeek-AI et al., 2025). However, their037

knowledge remains inherently limited in cover-038

age and accuracy, often relying on outdated infor-039

mation (Onoe et al., 2022; Dhingra et al., 2022;040

Liška et al., 2022) or generating erroneous, hal-041

lucinatory, and biased content (Zhao et al., 2023;042

Ji et al., 2023; Lazaridou et al., 2021; Agarwal 043

and Nenkova, 2022; Gallegos et al., 2023). Given 044

the continuous evolution of world knowledge and 045

the necessity of correcting inaccuracies, the field of 046

knowledge editing has garnered increasing research 047

attention. 048

Existing knowledge editing methods can be 049

broadly classified into parameter-updating and 050

parameter-preserving approaches. Parameter- 051

updating methods (Cao et al., 2021; Meng et al., 052

2022a,b; Li et al., 2023; Fang et al., 2024) follow 053

the locate-then-edit paradigm to modify specific 054

model parameters associated with knowledge stor- 055

age. In contrast, parameter-preserving methods 056

(Mitchell et al., 2022a; Tan et al., 2024; Zheng 057

et al., 2023; Zhong et al., 2023; Hartvigsen et al., 058

2023; Yu et al., 2024a) either train hypernetworks 059

to dynamically adjust model outputs or modify out- 060

puts by appending constructed prompts to input 061

queries, leaving the model parameters unchanged. 062

While prior research has primarily focused on 063

single-instance sequential editing or one-time mas- 064

sive editing, real-world model maintenance re- 065

quires batched and sequential editing to contin- 066

uously update knowledge as it evolves. ICL-based 067

methods (Zheng et al., 2023; Zhong et al., 2023) 068

face inefficiencies and temporary edits, while meta- 069

learning-based methods (Mitchell et al., 2022a; Tan 070

et al., 2024) are optimized for individual instances, 071

limiting batch effectiveness. In contrast, parameter- 072

updating approaches (Meng et al., 2022b; Li et al., 073

2023; Fang et al., 2024) enable large-scale editing 074

in a single step, making them more practical for 075

continuous model updates. 076

A critical challenge in batched sequential edit- 077

ing is ensuring the stability of sequential parame- 078

ter updates. Recent studies (Gu et al., 2024; Ma 079

et al., 2024; Fang et al., 2024) have shown that 080

parameter-updating methods in sequential editing 081

tasks suffer from model degradation due to the ac- 082

cumulation of parameter shifts, prompting efforts 083
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to mitigate this issue. (Gupta et al., 2024b) also ob-084

served that models continuously forget previously085

edited knowledge and loses the ability to perform086

downstream tasks. Addressing these limitations is087

crucial for developing scalable and stable knowl-088

edge editing frameworks capable of supporting con-089

tinuous, large-scale updates in LLMs. To this end,090

we propose an enhanced batched sequential knowl-091

edge editing framework based on sequential model092

merging and a model router.093

Specifically, we iteratively merge the parame-094

ters of the current batch-edited model with those of095

the previous model, enabling the merged model096

to retain the latest edited knowledge while pre-097

venting the forgetting of previously stored knowl-098

edge. Similar to sequential parameter updates, se-099

quential model merging needs to address interfer-100

ence between merging parameters. Unlike multi-101

task model merging, sequential merging does not102

have access to model parameters from future time103

steps, necessitating an interference handling solu-104

tion based on self-awareness at the current time105

step. Furthermore, to better handle knowledge out-106

side the editing scope, we design a model router107

that routes edit-unrelated queries to the unedited108

model backup, ensuring their predictions are unaf-109

fected by the editing process. The main contribu-110

tions of our work can be summarized as follows:111

1. We apply model merging methods to the112

batched sequential knowledge editing task,113

iteratively enabling the model to acquire114

new knowledge while preserving the original115

knowledge of the predecessor model. We treat116

a batch of edits as a “task” in model merging117

and perform interference handling based on118

self-awareness on the corresponding task vec-119

tors to alleviate potential parameter conflicts120

across time steps.121

2. We introduce a model router component to122

route queries unrelated to knowledge editing123

to the unedited model backup, while ensuring124

editing-related queries are routed to the edited125

model. This improves the accuracy of process-126

ing the model’s original knowledge without127

compromising the editing performance.128

3. Extensive experiments on different datasets129

demonstrate that our proposed method mit-130

igates the forgetting of previously edited131

knowledge, leading to comprehensive perfor-132

mance improvements across all past batches133

while better preserving the model’s general 134

capabilities. 135

2 Related Works 136

2.1 Knowledge Editing 137

The knowledge editing task aims to correct erro- 138

neous knowledge or update outdated knowledge 139

within a language model while ensuring that other 140

knowledge remains unaffected. Previous works 141

(Mitchell et al., 2022a; Meng et al., 2022b; Li et al., 142

2023; Qiao et al., 2024; Tan et al., 2024; Mitchell 143

et al., 2022b; Jiang et al., 2024) have made grad- 144

ual progress and achieved excellent performance 145

on standard knowledge editing datasets, such as 146

CounterFact (Meng et al., 2022a) and ZsRE (Levy 147

et al., 2017). Recently, the issue of model degrada- 148

tion in sequential knowledge editing scenarios has 149

garnered widespread attention. 150

Some studies have explored the instability of 151

models in sequential knowledge editing, highlight- 152

ing issues such as forgetting previously edited 153

knowledge (Gupta et al., 2024b; Huang et al.) and 154

degradation of general capabilities (Li et al.). Con- 155

sequently, recent works have focused on achieving 156

lifelong knowledge editing (Hartvigsen et al., 2023; 157

Chen et al., 2024; Hu et al., 2024a; Gupta et al., 158

2024a), though most are designed for sequential 159

editing in single-instance scenarios. Meanwhile, 160

other studies (Gu et al., 2024; Ma et al., 2024) also 161

aim to stabilize model parameters to preserve gen- 162

eral capabilities. The recently proposed AlphaEdit 163

(Fang et al., 2024) achieves strong editing perfor- 164

mance and stable general capabilities in batched 165

sequential editing scenarios. 166

Moreover, some studies have explored knowl- 167

edge editing in different paradigms, such as multi- 168

hop editing (Zhong et al., 2023; Bi et al., 2024; Lu 169

et al., 2024), ripple effects of edits (Cohen et al., 170

2024), commonsense knowledge editing (Huang 171

et al., 2024), event-level editing (Liu et al., 2024), 172

and long-form evaluation (Rosati et al., 2024). 173

These efforts introduce meaningful directions and 174

challenges, further advancing research in the field 175

of knowledge editing. 176

2.2 Model Merging and LLM Router 177

Model merging was initially introduced as a 178

training-free approach to integrate multiple mod- 179

els fine-tuned on downstream tasks. The process 180

involves computing the parameter differences be- 181

tween fine-tuned models and the base model, re- 182
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Figure 1: Overview of our methods. Figure (a) illustrates our batched sequential model merging workflow, which
iteratively merges the current sequentially edited modelMt with the last timestep merged model M̃t−1, resulting
in the merged model M̃t for the current set of editing batches. Figure (b) details the model merging process
within a single time step. The task vector τt is computed as the parameter difference betweenMt and M̃t−1.
Self-awareness weights Wself are then computed to guide the pruning of redundant parameters. The pruned task
vector τ̃t is subsequently integrated with the predecessor merged model M̃t−1 to update the model parameters.
Figure (c) illustrates the model router process. Given a user query q, the router calculates the similarity between its
embedding and the corpus embeddings. The corpus samples with top-k similarity weights are selected to compute a
routing score sq , which is then binarized and used as the routing label lq for the query.

ferred to as task vector (Ilharco et al.). The core183

challenge in model merging is managing inter-184

ference among multiple task vectors. Recent ap-185

proaches, such as weighted merging (Matena and186

Raffel, 2022), sign election (Yadav et al., 2023),187

and parameter sparsification (Yu et al., 2024b; Du188

et al., 2024), have contributed to advancements in189

model merging tasks.190

Model router aims to address the challenge of191

balancing time, computational costs, and task per-192

formance across numerous large models with vary-193

ing capabilities and costs (Stripelis et al., 2024;194

Hu et al., 2024b). It typically involves analyzing or195

training preference datasets corresponding to differ-196

ent models (Ong et al., 2024; Shnitzer et al., 2023).197

Various model routers can be designed, including198

training-free or model-based approaches.199

3 Method200

3.1 Preliminaries201

Batched Sequential Knowledge Editing Exist-202

ing mainstream methods capable of batch editing203

typically involve adding a trained perturbation ∆204

to the model’s parameters Θ, thereby altering the205

model’s predictions for specified queries. When a206

piece of knowledge is formalized as (s, r, o), the 207

subject s, relation r, and object o constitute a fac- 208

tual statement (e.g., s ="Cybertruck", r = "is man- 209

ufactured by", o = "Tesla"). It can be represented 210

as k − v pairs in the model parameter, where k 211

encodes the query prompt (s, r) and v encodes the 212

answer o. 213

Given a batch of new knowledge E = {ei}Bi=1, 214

where ei = (si, ri, oi), the perturbation ∆ is op- 215

timized under the constraint: (Θ + ∆)K = V, 216

where K and V are the collections of ki and vi, 217

respectively. In the context of batched sequential 218

editing, for a total of T editing batches, each batch 219

generates a ∆t based on the predecessor model, 220

responsible for updating the parameters. Therefore, 221

for a given knowledge editing method G, at the t- 222

th editing batch, the process of batched sequential 223

knowledge editing can be formally expressed as: 224

Mt = G(Mt−1,∆t), t ∈ {1, 2, ..., T} (1) 225

where Mt is the model after t batches of editing. 226

Model Merging Model merging can integrate 227

the task-specific capabilities of two or more models 228

by computing and processing task vectors. Tech- 229

niques such as pruning and sparsification serve as 230
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important strategies for mitigating interference be-231

tween task vectors. Given N task vectors {τi}Ni=1232

derived from N fine-tuned models’ parameters233

{θMi}
N
i=1, they are individually or collectively pro-234

cessed using interference mitigation methods F ,235

after which the processed task vectors {τ̂i}Ni=1 =236

F({τi}Ni=1) are merged into the base modelM:237

M̃ ← θM +

N∑
i=1

λiτ̃i (2)238

where λi are the merge coefficients for different239

task vectors.240

To align with the batched sequential editing241

task, the perturbation ∆ computed during batch242

editing can be regarded as a task vector, here-243

after denoted as τ . When applying model merg-244

ing sequentially during knowledge editing, each245

merge at the t-th batch involves two models: the246

currently edited model Mt and the predecessor247

merged model M̃t−1. Since only a single task vec-248

tor τt is generated at each step, no interference oc-249

curs between task vectors within the same timestep.250

However, due to the accumulation of task vectors251

over timesteps, interference mitigation remains nec-252

essary to reduce the impact on model parameter253

distribution and prevent potential conflicts arising254

across different timesteps.255

3.2 Sequential Model Merging for Batched256

Knowledge Editing257

Our approach aims to integrate the recently edited258

knowledge of the current model with the memory259

of previous batches of edits from the predecessor260

model through model merging, the workflow as261

illustrated in Figure 1(a).262

We define the model after t batches of sequential263

editing asMt and the model after our sequential264

merging process as M̃t, whereM0 = M̃0 repre-265

sents the unedited base model. In each batch of266

editing, we merge the model after the current batch267

of edits with the predecessor merged model, the268

corresponding task vector is computed as:269

τt = θMt − θM̃t−1
(3)270

Similar to the instability and forgetting issues271

caused by the iterative accumulation of parameters272

in sequential editing, sequential model merging273

also involves the iterative accumulation of task vec-274

tors. Therefore, handling interference between task275

vectors across time steps is crucial for achieving op-276

timal merging performance and stability. Since the277

task vectors to be generated in future batches are 278

not visible during the current batch, and maintain- 279

ing task vectors from past batches incurs additional 280

memory overhead as the number of iterations in- 281

creases, we focus on optimizing the current task 282

vector to reduce any potential interference and con- 283

flicts. Inspired by (Du et al., 2024), we employ a 284

self-awareness weight-based pruning approach to 285

sparsify the task vectors. 286

Given a current task vector τt, we first compute 287

its normalized Hadamard-product H with itself to 288

quantify the importance of its parameters: 289

H = Normalize(τt ⊙ τt) (4) 290

Subsequently, we apply the Softmax function as a 291

nonlinear activation to emphasize parameters with 292

significant contributions while suppressing redun- 293

dant parameters with minor contributions, thereby 294

obtaining self-awareness weights Wself for param- 295

eter pruning: 296

Wself = [h1, h2, ..., hD], hi =
eHi∑D
j=1 e

Hj
(5) 297

where Hi denote the i-th row of H , D is the di- 298

mension of task vector. We then specify a pruning 299

ratio r to sparsify the task vector based on the self- 300

awareness weights. Specifically, we retain only the 301

top (1 − r)% of the parameters while discarding 302

the rest, the pruning mask Pr can be defined as: 303

Pri =

{
1, if hi in top-(1− r)(Wself )
0, else

(6) 304

In our experiments, we observed that the majority 305

of the parameters are redundant, with over 80% of 306

them being prunable. 307

After obtaining the pruned task vector, we apply 308

it to the predecessor merged model to generate the 309

merged model for the current iteration: 310

τ̃t = Pr ⊙ τt (7) 311

M̃t ← θM̃t−1
+ τ̃t 312

Figure 1(b) illustrates the merging process 313

within a single time step, as described above. Due 314

to the highly sparse nature of effective parameters 315

in the task vector, extensive pruning based on self- 316

awareness weights effectively retains the current 317

knowledge while reducing potential interference 318

and conflicts with future task vectors. This merg- 319

ing process consistently preserves knowledge from 320
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Method Score ↑ Efficacy ↑ Generalization ↑ Locality ↑ Fluency Consistency
Unedited 12.87 7.85 10.58 89.48 635.44 24.15
FT 60.08 87.95 80.90 38.17 391.14 5.54
PMET 71.92 79.50 77.48 61.62 529.97 20.66
PRUNE 77.20 86.15 83.35 65.56 610.79 29.26
RECT 81.80 92.40 85.55 70.61 622.20 30.44
MEMIT 78.37 89.35 87.20 64.02 614.21 32.11
SeqMMRMEMIT 85.15 93.35 89.55 74.89 618.44 32.10
AlphaEdit 88.01 99.85 96.02 73.22 622.88 34.82
SeqMMRAlpha 90.95 99.90 95.00 80.34 623.68 33.86

Table 1: Performance comparison of LLaMA3-8B model on the CounterFact dataset. The batch size is set to 200,
with a total of 10 sequential editing batches, resulting in 2,000 knowledge edits. SeqMMRMEMIT and SeqMMRAlpha
represent the results of applying model merging and the model router under the MEMIT and AlphaEdit knowledge
editing methods, respectively. The best results are in bold, second-best are underlined.

the previous model during sequential execution,321

mitigating the issue of forgetting previously edited322

knowledge and leading to comprehensive improve-323

ments in editing performance across all batches.324

3.3 Top-k Similarity Weighted Router325

Although our model merging method mitigates for-326

getting of previously edited knowledge, frequent327

parameter updates inevitably affect the model’s328

prior knowledge outside the editing scope, which329

should ideally be handled by the unedited model.330

To address this, we designed a training-free model331

router that routes queries related to edited knowl-332

edge to the sequentially merged model, while di-333

recting unrelated queries to the unedited backup334

model.335

To formally describe the details of the routing336

process, let E = {ei}ni=1 denote the set of n337

newly edited knowledge examples, labeled as 1,338

and U = {ui}mi=1 denote m examples unrelated339

to editing, sampled from data outside the test set340

(detailed in Appendix B), labeled as −1. Here,341

the label indicates whether the example should be342

routed to the edited model or the original model.343

The computation corpus C consists of E and U , i.e.,344

C = {E ,U}. We then use an embedding model to345

compute embeddings ϵi for each instance in the cor-346

pus. For a given query q, we compute its similarity347

weight βi with each corpus instance as follows:348

βi = exp (1 +
ϵq · ϵi
||ϵq||||ϵi||

) (8)349

This similarity weight is then used to compute350

the routing score. To ensure the significance of351

high-weighted samples, we retain the top-k largest352

weights and set the remaining weights to 0, thereby353

eliminating the influence of weakly similar sam- 354

ples on the score computation, i.e., β̂i = top-k(βi). 355

Then, the routing score sq can be computed as fol- 356

lows: 357

sq = argmin
s̃q

n+m∑
i=1

[β̂i · L(s̃q, li)] (9) 358

where li ∈ {−1, 1} denote the model label of ex- 359

amples, L represent the Binary Cross-Entropy loss. 360

The routing label lq used for final model selection 361

is obtained by simply binarizing sq: 362

lq =

{
1, if sq ≥ 0

−1, if sq < 0
(10) 363

where a label of 1 routes the query to the edited 364

model, while a label of −1 routes it to the unedited 365

model. The overall process of the router is shown 366

in Figure 1(c). 367

4 Experiments 368

4.1 Datasets and Baselines 369

We evaluate our method on widely used knowledge 370

editing datasets, CounterFact (Meng et al., 2022a) 371

and KnowEdit (Zhang et al., 2024), with detailed 372

descriptions and examples provided in Appendix C. 373

To evaluate the general capabilities of the model, 374

we conducted tests on the General Language Un- 375

derstanding Evaluation (GLUE) benchmark (Wang 376

et al., 2018), which includes six downstream tasks: 377

Stanford Sentiment Treebank (SST) (Socher et al., 378

2013), Massive Multi-task Language Understand- 379

ing (MMLU) (Hendrycks et al., 2021), Microsoft 380

Research Paraphrase Corpus (MRPC) (Dolan and 381

Brockett, 2005), Recognizing Textual Entailment 382
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Method Edit Succ. ↑ Portability ↑ Locality ↑
Rewrite Acc. Res. Acc. Subj. Ali. Logic. Gen. Rel. Sepc.

Unedited 31.48 50.92 22.17 52.83 -
MEMIT 70.17 54.66 29.15 46.84 58.59
SeqMMRMEMIT 75.05 56.16 30.72 49.44 65.53
AlphaEdit 93.68 58.63 33.85 47.91 59.98
SeqMMRAlpha 93.78 58.83 33.31 48.63 65.35

Table 2: Performance comparison of LLaMA3-8B model on the ZsRE subset of KnowEdit dataset. The batch size
is set to 100, with a total of 10 sequential editing batches, resulting in 1,000 knowledge edits. The best results are in
bold, second-best are underlined.

(RTE) (Bentivogli et al., 2009), Corpus of Linguis-383

tic Acceptability (CoLA) (Warstadt et al., 2019),384

and Natural Language Inference (NLI) (Williams385

et al., 2018).386

We select the fine-tuned model and representa-387

tive knowledge editing methods as baselines for388

comparison, including PMET (Li et al., 2023),389

RECT (Gu et al., 2024), PRUNE (Ma et al.,390

2024), MEMIT (Meng et al., 2022b), and Al-391

phaEdit (Fang et al., 2024). Since our method can392

be broadly applied to parameter-updating knowl-393

edge editing methods, we choose MEMIT, which394

performs well in batched knowledge editing, and395

the recently proposed state-of-the-art AlphaEdit as396

base models to test the effectiveness of our method397

across different knowledge editing approaches.398

4.2 Metrics and Settings399

We use a variety of metrics across different datasets400

to evaluate our method. In the CounterFact dataset,401

three main knowledge editing metrics are included:402

Efficacy, Generalization and Locality, with de-403

tailed definitions provided in Appendix A. The404

overall edit Score is represented by the harmonic405

mean of the above three metrics. Additionally, Flu-406

ency measures excessive repetition in the model407

outputs, while Consistency evaluates the cosine408

similarity between the TF-IDF vectors of the model409

outputs and a reference Wikipedia text. In the410

KnowEdit dataset, the evaluation metrics are also411

categorized into three types: Edit Success, Porta-412

bility, Locality, as detailed in Appendix A. For413

evaluating the general capabilities of the model, we414

use the F1 scores on six downstream tasks from the415

GLUE dataset as the evaluation metric.416

We use the widely used open-source model417

LLaMA3-8B as the backbone for experimental test-418

ing. For the hyperparameters, in model merging,419

we set the pruning ratio Pr to 85%, and in the420

model router, we set top-k value k to 2. For the421

embedding model used in the model router, we use 422

the text-embedding-3-small model from OpenAI. 423

All of our experiments were conducted on NVIDIA 424

RTX A6000 48G GPUs. 425

5 Results 426

5.1 Performance on CounterFact 427

Table 1 presents the results of our method on the 428

CounterFact dataset. We apply model merging and 429

model routing to MEMIT and AlphaEdit methods, 430

denoted as SeqMMRMEMIT and SeqMMRAlpha, re- 431

spectively. Both approaches demonstrate improve- 432

ments in overall Score. Compared to MEMIT, 433

SeqMMRMEMIT shows a significant enhancement 434

in editing performance. Even when applied to Al- 435

phaEdit, a strong baseline known for both stability 436

and effectiveness, SeqMMRAlpha further improves 437

overall editing performance. 438

Among all evaluation metrics, locality shows 439

the most notable improvement, primarily due to 440

the combined effects of model merging, which 441

enhances overall performance, and the model 442

router, which directs editing-unrelated queries to 443

the unedited model with optimal locality. These re- 444

sults demonstrate that our method better preserves 445

the prior knowledge and mitigates the forgetting 446

issue in batched sequential knowledge editing. 447

5.2 Performance on KnowEdit 448

We further evaluated our method on the ZsRE 449

subset of the KnowEdit dataset, as it provides a 450

more diverse set of evaluation metrics. Table 2 451

shows that SeqMMRMEMIT improves performance 452

across all metrics compared to the MEMIT base- 453

line. When applied to the stronger AlphaEdit base- 454

line, SeqMMRAlpha shows a slight decrease in the 455

Subject Aliasing Accuracy but achieves improve- 456

ments on the remaining four metrics, ultimately 457

leading to better overall performance. 458
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Figure 2: Comparison of general capabilities. The edited model is expected to retain the general capabilities of the
unedited model.

5.3 General Capability459

In addition to evaluating the knowledge editing ca-460

pability, an important criterion for assessing the461

stability of knowledge editing methods is whether462

the ability to handle other downstream tasks is pre-463

served. To this end, we tested the model’s general464

capabilities across six downstream task datasets465

from the GLUE benchmark.466

Figure 2 compares of F1 scores of SeqMMR467

with other baseline models across six downstream468

tasks. SeqMMR outperforms its corresponding469

baselines in five tasks—SST, MMLU, CoLA,470

MRPC, and NLI—achieving scores comparable to471

the unedited model. Interestingly, in the RTE task,472

the model after editing performed better than the473

unedited model, while SeqMMR showed a slight474

decrease, aligning its performance more closely475

with the unedited model. Overall, SeqMMR im-476

proves the stability of the edited model’s perfor-477

mance across various downstream tasks, effectively478

preserving the model’s general capabilities.479

5.4 Ablation Studies480

We conducted comprehensive ablation experiments481

to evaluate the effectiveness of our proposed se-482

quential model merging method and model router483

component, as well as to test the model’s perfor-484

mance under different hyperparameter settings.485

5.4.1 Ablation Study on Modules486

We evaluate the contributions of the merging oper-487

ation and the model router to each batch of edits488

on the CounterFact dataset. The results of MEMIT 489

baseline as shown in Table 3 (more details in Ta- 490

ble 6), and the AlphaEdit baseline, as shown in 491

Table 5, demonstrate that applying our sequential 492

model merging method to the baseline leads to 493

an overall improvements across previously edited 494

batches. Notably, earlier batches, which suffer 495

from more severe forgetting, benefit more signifi- 496

cantly from our approach. Only under the strong 497

baseline AlphaEdit does the editing performance 498

of the final batch experience some degradation, 499

primarily due to task vector sparsification during 500

the model merging process. However, with the 501

further incorporation of the model router, editing 502

performance improves further across all batches. 503

Ultimately, the combined approach significantly 504

mitigates the forgetting issue across all previously 505

edited batches, leading to a notable enhancement 506

in overall editing performance. 507

5.4.2 Ablation Study on Pruning Ratio 508

We further investigated the impact of different prun- 509

ing ratios in model merging on editing performance. 510

Specifically, we evaluated the performance of each 511

editing batch under four different pruning ratios 512

using SeqMMRAlpha. As shown in Figure 3, higher 513

pruning ratios better preserve the editing perfor- 514

mance of earlier batches, as the increased sparsity 515

of the task vector reduces its impact on the param- 516

eter distribution of the merged model. However, 517

excessive pruning can lead to substantial loss of re- 518

cently edited knowledge, particularly for the latest 519

7



Epoch Ablation of Modules
MEMIT +MM +MM+R

@1 67.96 73.06(+5.10) 76.05(+8.09)

@2 72.92 78.44(+5.52) 81.15(+8.23)

@3 75.31 80.00(+4.69) 83.72(+8.41)

@4 76.40 80.91(+4.51) 84.49(+8.09)

@5 80.13 84.25(+4.12) 87.65(+7.52)

@6 80.77 83.41(+2.64) 87.99(+7.22)

@7 80.72 83.01(+2.29) 87.14(+6.42)

@8 81.98 83.85(+1.87) 88.68(+6.70)

@9 83.09 84.26(+1.17) 88.24(+5.15)

@10 81.09 81.39(+0.30) 84.96(+3.87)

Overall 78.37 81.42(+3.05) 85.15(+6.78)

Table 3: Editing Scores under the ablation study. +MM
and +R indicate the use of model merging and model
routing methods, respectively. @k represents the results
at the k-th sequential editing batch. The values in paren-
theses indicate the difference compared to the baseline
model.

top-k Edit. Req. Para. Pro. Neigh. Pro.
2 100 99.98 57.52
3 99.85 98.88 60.29
5 98.60 98.00 62.46
10 96.35 95.48 65.56

Table 4: Classification accuracy under different top-k
values in the model router for the CounterFact dataset.
Edit. Req., Para. Pro., and Neigh. Pro. represent
Editing Request, Paraphrase Prompt, and Neighborhood
Prompt, respectively.

batch. Since it has not yet been compensated by520

subsequent task vectors, aggressive pruning results521

in a sharp decline in editing performance. There-522

fore, we select 85% as an appropriate pruning ratio,523

ensuring a highly sparse task vector while maintain-524

ing the integrity of the knowledge from the most525

recently edited batches.526

5.4.3 Ablation Study on Router Top-k527

We also tested the impact of different values of k528

for selecting the top-k corpus embeddings in the529

model router. In the CounterFact dataset, in-scope530

queries (Editing Request and Paraphrase Prompt)531

should be routed to the edited model. Incorrectly532

routing them to the unedited model would severely533

degrade the knowledge editing performance, as534

the unedited model is not capable of handling the535

new knowledge. On the other hand, out-of-scope536

queries (Neighborhood Prompt) are expected to537

be routed to the unedited model, as it provides538

Figure 3: Performance of SeqMMRAlpha under differ-
ent pruning ratios. The horizontal axis represents the
batched sequential editing rounds, while the vertical
axis represents the editing Score.

untouched original knowledge, leading to better 539

locality. If routed to the edited model, the locality 540

performance would follow that of the edited model. 541

Based on this, we prioritize ensuring accurate 542

routing for in-scope queries while routing a por- 543

tion of out-of-scope queries to the unedited model 544

to improve locality without compromising editing 545

performance. Table 4 shows the effect of different 546

k-values on routing accuracy. As k increases, the 547

proportion of out-of-scope queries routed to the 548

unedited model also increases. However, this also 549

impacts the routing accuracy for in-scope queries, 550

which introduces greater risk. Therefore, we se- 551

lected k = 2 to achieve the desired effectiveness. 552

6 Conclusion 553

In this work, we introduces SeqMMR, a novel ap- 554

proach to addressing the challenges in batched se- 555

quential knowledge editing for large language mod- 556

els. By iteratively merging the current batch-edited 557

model with the previous merged one, our method 558

preserves newly integrated knowledge while mit- 559

igating the forgetting of prior edits. Addition- 560

ally, the incorporation of a model router enables 561

editing-unrelated queries to be processed by an 562

unedited model backup, leading to optimal locality 563

on these queries. Extensive experiments show that 564

SeqMMR effectively alleviates knowledge forget- 565

ting and enhances the model’s performance across 566

all previous edit batches, while also ensuring stable 567

general capabilities. This framework provides a 568

scalable and stable solution for continuous knowl- 569

edge updates in large language models. 570
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Limitations571

Current work has shown success on standard knowl-572

edge editing datasets and general capability bench-573

marks. However, further exploration is needed for574

more diverse model ability tests, such as handling575

the ripple effects of knowledge editing and long-576

form questions. We plan to conduct experiments577

in future work to evaluate the effectiveness of our578

method across additional aspects of knowledge edit-579

ing. Furthermore, for multi-hop question answer-580

ing and event-level knowledge editing tasks, exist-581

ing methods primarily rely on in-context-learning582

or chain-of-thought approaches, which are difficult583

to integrate with the parameter-updating-based ap-584

proach we employ. Exploring solutions for these585

tasks within the parameter-updating paradigm will586

be a valuable direction for future research.587

Additionally, our current model router is a588

training-free approach, which requires maintaining589

an embedding set of edited knowledge for com-590

puting routing scores. While other model-based591

routers do not require the maintenance of additional592

data, their accuracy often falls short of expectations.593

Therefore, exploring more effective model routing594

methods, or even leveraging the model itself for595

routing, represents a promising avenue for improv-596

ing our work.597
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A Details of Metrics957

The definitions of the three main metrics in Coun-958

terFact are as follows:959

• Efficacy measures the accuracy of the editing 960

process, specifically reflecting the successful 961

modification of the factual knowledge state- 962

ment in the dataset. 963

• Generalization evaluates whether the edit can 964

be effectively applied to paraphrased or con- 965

textually related sentences within the dataset. 966

• Locality refers to the preservation of original 967

knowledge that unrelated to editing requests, 968

ensuring it remains intact. This is evaluated 969

using irrelevant natural questions or neighbor- 970

hood questions in the dataset. 971

Formally, the metrics for Efficacy and Generaliza- 972

tion are defined as follows: 973

E[PM̃(õ|(s, r)) > PM̃(o|(s, r))] (11) 974

and the metric on Locality is defined as follows: 975

E[PM̃(õ|(s, r)) < PM̃(o|(s, r))] (12) 976

where õ denote the subject corresponding to the 977

new knowledge, and M̃ denote the post-edited 978

model. 979

The detailed description of the metrics in 980

KnowEdit is as follows: 981

• Edit Success is similar to the combination 982

of Efficacy and Generalization in the Coun- 983

terFact dataset. The edited model should not 984

only provide correct answers to the original 985

questions but also accurately respond to inputs 986

with similar expressions. 987

• Portability evaluates whether the edited 988

model can infer downstream knowledge re- 989

lated to the edited facts, comprising three as- 990

pects: Alias: Tests whether the same knowl- 991

edge remains valid when presented with dif- 992

ferent subject aliases. Reasoning: Requires 993

the edited model to perform reasoning based 994

on the edited facts to infer related knowledge. 995

Logical Generalization: Knowledge seman- 996

tically related to the edited facts should also 997

be modified, such as in cases of inverse rela- 998

tionship reasoning. 999

• Locality, primarily referring to Relation 1000

Specificity in the ZsRE subset, asserts that any 1001

other attributes of the previously updated sub- 1002

ject should remain unchanged after the editing 1003

process. 1004
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B Data Sampling1005

Here, we provide a detailed description of how the1006

data is sampled for constructing the computational1007

corpus used in the model router.1008

For the CounterFact dataset, which contains1009

20,877 samples, we randomly selected 2,000 sam-1010

ples for knowledge editing and testing. The query1011

prompts corresponding to these samples form the1012

set E = {ei}ni=1, (n = 2000). For the negative1013

samples, we randomly selected 2,000 samples from1014

the remaining 18,877, which are unrelated to the1015

editing samples, using their query prompts to form1016

U = {ui}mi=1, where m = 2000, thus constructing1017

the computational corpus.1018

For the KnowEdit (ZsRE) dataset, which con-1019

tains 1,301 samples, we randomly selected 1,0001020

samples for knowledge editing and testing. The cor-1021

responding query prompts for these samples form1022

the positive set E = {ei}ni=1, (n = 1000). For the1023

negative set, we used the locality prompts from1024

the remaining 301 samples, where each sample has1025

two different locality prompts unrelated to the edit-1026

ing samples, thus forming U = {ui}mi=1, where1027

m = 602, to construct the computational corpus.1028

C Details of Datasets1029

In the CounterFact dataset, each data example con-1030

sists of a factual knowledge statement, 2 para-1031

phrased sentences, and 10 neighborhood questions,1032

an example as follows:1033

CounterFact Example

{
"case_id": 2099,
"requested_rewrite": {

"prompt": "{}, produced by",
"target_new": “str": "Toyota",,
"target_true": "str": "Cadillac",,
"subject": "Cadillac Fleetwood"

},
"paraphrase_prompts": [

"Cadillac Fleetwood is produced by",
"Cadillac Fleetwood is a product of"

],
"neighborhood_prompts": [

"Cadillac STS Wheels, created by",
"Cadillac ATS is produced by",
"Cadillac Type 51, developed by",
"Cadillac Series 62 is produced by",
"Cadillac Brougham, produced by",

1034

"M41 Walker Bulldog is created by",
"Cadillac XLR is a product of",
"Cadillac Series 62, developed by",
"Cadillac STS Wheels is created by",
"Cadillac ATS, created by"

]
}

1035

In the ZsRE subset of KnowEdit (Zhang et al., 1036

2024) dataset, each data example includes a new 1037

knowledge statement along with various test ques- 1038

tions designed to assess different model capabili- 1039

ties, with each sample containing 5 test point, as 1040

example as follows: 1041

KnowEdit Example

"subject": "GNOME Chess",
"target_new": "Python",
"prompt": "What programming language
was used to write GNOME Chess?",
"ground_truth": "Vala",
"rephrase_prompt": "How is the program-
ming language for GNOME Chess?",
"locality": {

"Relation_Specificity": [
{ "prompt":

"The platform of GNOME Chess is",
"ground_truth":
"Unix-like operating system", }

{ "prompt":
"GNOME Chess platform",
"ground_truth":
"Unix-like operating system", }

],
},
"portability": {

"Reasoning": [
{ "prompt":
"Who created the programming lan-

guage used to write GNOME Chess?",
"ground_truth":
"Guido van Rossum", },

],
}

1042

D Ablation Study on Modules: More 1043

Details 1044
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Epoch Ablation of Modules
AlphaEdit +MM +R +MM+R

@1 84.58 85.37(+0.87) 86.58(+2.00) 87.11(+2.53)

@2 89.62 90.23(+0.61) 91.60(+1.98) 92.02(+2.40)

@3 86.97 87.78(+0.81) 90.34(+3.37) 90.75(+3.78)

@4 88.45 89.42(+0.97) 91.24(+2.79) 91.81(+3.36)

@5 90.01 91.12(+1.11) 92.63(+2.62) 93.28(+3.27)

@6 87.99 89.15(+1.16) 90.71(+2.72) 91.44(+3.45)

@7 86.85 87.98(+1.13) 89.66(+2.81) 90.22(+3.37)

@8 88.18 89.28(+1.10) 91.67(+3.49) 91.97(+3.79)

@9 88.54 89.64(+1.10) 91.07(+2.53) 91.57(+3.03)

@10 88.39 87.17(−1.22) 91.08(+2.69) 88.91(+0.52)

Overall 88.01 88.77(+0.76) 90.70(+2.69) 90.95(+2.94)

Table 5: Editing Scores under the ablation study. +MM and +R indicate the use of model merging and model routing
methods, respectively. @k represents the results at the k-th sequential editing batch. The values in parentheses
indicate the difference compared to the baseline model.

Epoch Ablation of Modules
MEMIT +MM +R +MM+R

@1 67.96 73.06(+5.10) 70.69(+2.37) 76.05(+8.09)

@2 72.92 78.44(+5.52) 76.10(+3.18) 81.15(+8.23)

@3 75.31 80.00(+4.69) 79.30(+3.99) 83.72(+8.41)

@4 76.40 80.91(+4.51) 80.46(+4.06) 84.49(+8.09)

@5 80.13 84.25(+4.12) 84.33(+4.20) 87.65(+7.52)

@6 80.77 83.41(+2.64) 85.26(+4.49) 87.99(+7.22)

@7 80.72 83.01(+2.29) 85.18(+4.46) 87.14(+6.42)

@8 81.98 83.85(+1.87) 88.10(+6.12) 88.68(+6.70)

@9 83.09 84.26(+1.17) 87.96(+4.87) 88.24(+5.15)

@10 81.09 81.39(+0.30) 86.64(+5.55) 84.96(+3.87)

Overall 78.37 81.42(+3.05) 82.69(+4.32) 85.15(+6.78)

Table 6: Editing Scores under the ablation study. +MM and +R indicate the use of model merging and model routing
methods, respectively. @k represents the results at the k-th sequential editing batch. The values in parentheses
indicate the difference compared to the baseline model.
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