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ABSTRACT

While retrieval augmented generation (RAG) has been shown to enhance factual-
ity of large language model (LLM) outputs, LLMs still suffer from hallucination,
generating incorrect or irrelevant information. One common detection strategy
involves prompting the LLM again to assess whether its response is grounded in
the retrieved evidence, but this approach is costly. Alternatively, lightweight nat-
ural language inference (NLI) models for efficient grounding verification can be
used at inference time. While existing pre-trained NLI models offer potential so-
lutions, their performance remains subpar compared to larger models on realistic
RAG inputs. RAG inputs are more complex than most datasets used for training
NLI models and have characteristics specific to the underlying knowledge base,
requiring adaptation of the NLI models to a specific target domain. Additionally,
the lack of labeled instances in the target domain makes supervised domain adap-
tation, e.g., through fine-tuning, infeasible. To address these challenges, we intro-
duce Automatic Generative Domain Adaptation (Auto-GDA). Our framework en-
ables unsupervised domain adaptation through synthetic data generation. Unlike
previous methods that rely on handcrafted filtering and augmentation strategies,
Auto-GDA employs an iterative process to continuously improve the quality of
generated samples using weak labels from less efficient teacher models and dis-
crete optimization to select the most promising augmented samples. Experimental
results demonstrate the effectiveness of our approach, with models fine-tuned on
synthetic data using Auto-GDA often surpassing the performance of the teacher
model and reaching the performance level of LLMs at 10 % of their computational
cost.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly used in consequential applications. Despite their
versatility, LLMs often produce hallucinations, in which the generated information is inaccurate
or fabricated and require costly retraining to integrate new knowledge. One promising method to
mitigate these issues is retrieval augmented generation (RAG, Lewis et al.| [2020). RAG enhances
text generation by adding information from external knowledge sources to the prompt and has been
shown to reduce hallucinations in practice (Shuster et al.,|2021). Nevertheless, even when modern
LLMs are used with RAG, hallucination rates of 15% — 30% (Chen et al.| [2023a)) or more than one
hallucination per 100 output tokens can occur (Niu et al.| [2024)).

To prevent hallucinated output from being delivered to end-users, natural language inference (NLI)
models can be used to verify grounding of the generated output in the documents retrieved (Chen
et al., [2023b; [Es et al.l 2024; Tang et al.| |2024) before the output is relayed to the end-user: the
generated response must be fully grounded in the documents, i.e., it must be logically inferrable
from the documents; otherwise, it is considered ungrounded. However, as we need to check the
outputs at inference time, we require lightweight NLI models with very low latency. The cur-
rent landscape of available NLI models for verifying grounding in RAG is illustrated in Figure [1]
based on results obtained in our evaluation of correctness and inference time (see Table [3] for
full numeric results): Some recent works such as Mini-Check (Tang et al.l 2024) have developed
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lightweight models for NLI, e.g., based +
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Figure 1: Landscape of current grounding verifica-
tion models for RAG. While LLMs have the best per-
ies (e.g., Manakul et al., 2023 Tang for}r}n anqeil the}é ilnClIlr il?out ll? x highgr latenfiy. th?jn
et al., 2024) have also explored directly 1ghtweight models. In this work, we are interested in 0b-
using LLMs like GPT-4 for text entail- taining lightweight models with LLM-level performance

ment detection, their latency is about an for grounding verification through domain adaptation.

order of magnitude above the lightweight models. Taken together, these characteristics make it hard
to deploy the existing approaches in real-time industry use-cases.

The performance gap observed for realistic RAG inputs with the lightweight models may point to a
substantial domain mismatch between the NLI datasets used to train these models and the challeng-
ing, real-world data encountered at test time. We observe that inputs of NLI models in RAG are more
challenging as they comprise longer segments with multiple statements and contain more subtle un-
grounded information as the output is LLM-generated. While these characteristics are common to
RAG systems in general, each implementation still has a very individual input distribution: First,
inputs may follow a specific format due to the RAG prompt template e.g., question: <question>.
evidence: Passage 1 <evidencel >, Passage 2 <evidence2> .... Second, the documents are retrieved
from knowledge bases from a variety of different domains, which may not be represented in training
data. Prior work (Williams et al.l [2018)) confirms difficulties when NLI models are applied to data
from an unseen domain and [Hosseini et al.| (2024) shows a generalization gap of up to 20%. This
suggests that NLI models need to be adapted to their target domain for optimal performance.

Bridging this domain gap poses a significant challenge due to the inherent difficulty of adapting
models to unseen domains that is further amplified by the prohibitive costs of obtaining labeled data
from the target domain. This prevents supervised domain adaptation, e.g., through fine-tuning on
target domain data. To address this issue, we propose Automatic Generative Domain Adaptation
(Auto-GDA). Our unsupervised domain adaptation framework produces high-quality synthetic data,
which is then used to fine-tune a lightweight NLI model, adapting it to a specific domain of RAG
inputs. While training data generation by simply prompting LL.Ms has been repeatedly explored
in the literature (e.g., Saad-Falcon et al.| (2024)); [Hosseini et al.| (2024)), data quality might be fur-
ther improved through filtering and incorporating background knowledge through label-preserving
data augmentation strategies, such as round-trip translation (Chen et al., 2023b). However, speci-
fying good filters and heuristic augmentation strategies require significant manual effort. As data
augmentations can further be applied iteratively, the space of potential samples grows exponentially,
necessitating efficient search strategies. During this offline training phase, less efficient teacher mod-
els can provide additional guidance using weak labels. Auto-GDA offers a unified way to leverage
all these available tools. We thus make the following contributions:

1. We formalize the unsupervised domain adaptation problem under the availability of practi-
cal tools such as data generators, data augmentation routines, and weak teacher models.

2. We propose Automatic Generative Domain Adaptation (Auto-GDA), a principled frame-
work for unsupervised domain adaptation through synthetic data that can be instantiated
with different implementations of generation, augmentation, and weak labeling steps and
which automatically selects high-quality samples.

3. We show that our objective corresponds to an enhanced distribution matching objective but
is highly efficient to optimize.
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4. Our experiments on realistic RAG inputs highlight that our fine-tuned models using Auto-
GDA (1) often outperform their weak teacher models (2) perform almost as well as ref-
erence models fine-tuned with human-labeled data and (3) reach the level of performance
exhibited by LLMs while having almost 10x lower latency. (4) Our method further outper-
forms more classical training-based unsupervised domain adaptation techniques.

2 RELATED WORK

The problem of domain adaptation is concerned with adapting existing models to different domains.
We introduce the most closely related approaches in this section and refer the reader toRamponi &
Plankl! (2020) for further references.

Synthetic NLI Data. Related works explore synthetic data generation for NLI models. Hosseini
et al.| (2024) generate the diverse, cross-domain GNLI (General NLI) dataset synthetically in two
steps: first prompting an LLM to generate target domains, then using a prompt-tuned LLM to gen-
erate training statements. Tang et al.| (2024) generate synthetic training data for their MiniCheck
models using document-to-claim generation and claim-to-document generation. We compare to
their model in our experimental section and show that it can be further improved through domain
adaptation. [Saad-Falcon et al.| (2024)) use synthetic data to specifically improve RAG system eval-
uation. They generate synthetic in-domain data with a few-shot prompt. However, their method is
compared within RAG evaluation frameworks and not tested for NLI performance.

Synthetic Data for Domain Adaptation in NLP. While synthetic QA data generation is well-
explored (Shakeri et al.| [2020; |Ushio et al., [2022} [Yue et al., 2022} [Lee et al.| [2023), synthetic data
for NLI domain adaptation has received less attention, potentially due to the difficulty of generating
realistic and difficult samples. Wang et al| (2023a) propose an iterative synthetic data generation
scheme requiring partially labeled data. They generate initial seed data using an LLM prompt that
is iteratively refined based on errors from a model trained on human-labeled reference set. Unlike
this work, we assume very limited access to labeled data from the target domain.

Classical Unsupervised Domain Adaptation. Beyond synthetic data approaches, classical unsu-
pervised domain adaptation (UDA) techniques have also been applied in NLP.|Chen et al.| (2018); |L1
et al.[(2018)); Choudhry et al.|(2022)) have explored Domain Adversarial Neural Networks (DANN)
(Ganin et al., |2016)), which incorporate domain discriminators during pretraining to learn domain-
invariant features. [He et al.| (2020) introduce Scale-invariant-Fine-Tuning (SiFT) which extends the
Virtual Adversarial Training (VAT) framework of [Miyato et al.|(2019) and Jiang et al.|(2020) to im-
prove model robustness and generalizability. Techniques like CORAL (Sun & Saenko, [2016) align
feature distributions between source and target domains by matching their second-order statistics.
Finally, domain-adaptive pretraining (DAPT) and task-adaptive pretraining (TAPT) (Gururangan
et al., [2020; [Han & Eisenstein, 2019) involve pretraining on target domain text before fine-tuning
on labeled source data. Although these methods have shown success in tasks like sentiment analysis
and text classification, they have not been comprehensively studied in NLI.

Knowledge Distillation. We borrow the term “teacher model” from the knowledge distillation
literature (Gou et al., 2021} [Yang et al.| [2020). However, our problem differs from distillation
problems because our target dataset is unlabeled.

In this paper, we focus on the problem of systematically generating and selecting the most beneficial
synthetic samples that can be created through initial generation and iterative augmentation steps. We
do so using an efficient objective that can be interpreted as a form of distribution matching.

3 PRELIMINARIES

Domain adaptation is concerned with adapting an ML model pretrained on a source domain to make
predictions on a target domain when the underlying data distributions differ across the two domains.
The unsupervised domain adaptation problem is further complicated due to the lack of labeled data
in the target domain. This means that while features are available, there is no direct information
about the correct class labels for the target domain samples. This poses a significant challenge as
the model must learn to adapt to the new distribution without explicit guidance.
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3.1 UNSUPERVISED DOMAIN ADAPTATION FOR NLI

Data Domains. Following the common natural language inference setup, we assume data from

a source domain is available as a set of triples Ds = {(en,Cn,¥Yn)}, =1 N ES containing
evidence e € X, corresponding claims ¢ € X where X denotes a space of text sequences, and
labels y € Y. This data is used to train an initial model f : X x X — ). We use D; to denote sets
of samples and p; to denote the data density of the source distribution. Note that in a RAG use-case,
the evidence e will contain the user prompt as well as the retrieved documents. Additionally, we are
provided with a set of J unlabeled samples Dy = {(e;,¢;)},_, ; from the target domain. They
are sampled from p;, the data distribution faced at test time (e.g., the realistic RAG inputs). Our
goal is to adapt a model pretrained on ps to perform well on p;. In this work, we are focusing on
problems where J is small. This scarcity makes it challenging to accurately estimate the underlying
distribution of the target domain, which can hinder the effectiveness of traditional domain adaptation
methods that rely on a substantial amount of target data. We study the binary NLI task where
Y € {0,1}. A positive label (y=1) is only assigned if all information in the claim can be inferred
directly from the evidence; claims that are contradictory to the evidence or cannot be inferred from
the evidence are considered non-entailed (y=0).

In this work, we focus on covariate shift between the two domains: While the prior p(e, c) is
subject to change across domains, the true relation between specific features and labels, p(yle, ¢) is
consistent for the source and the target domain. For the NLI task considered here, this assumption is
sensible because the entailment relation itself does not change for different domains. Following prior
work Saad-Falcon et al.|(2024), we slightly deviate from the fully unsupervised setup by supposing
that a very small portion of the target domain can be manually labeled and used as a validation set for
hyperparameter tuning only, as is commonly done in NLI literature (Laban et al.l 2022} [Tang et al.,
2022;Zha et al.,|2023)). We show that our method works with validation sets as small as 30 samples.

Helper Tools. We extend this common setup to incorporate three additional tools that are readily
available in practice: First, we have powerful generative LLMs that we can use to generate new
samples based on the unlabeled examples using techniques such as prompt-tuning (Lester et al.,
2021)), or few-shot prompting. The generator G can be formally described as (randomized) function

G:Xx (X )F x Y — X, meaning that G takes as input a piece of evidence and a set of F' > 1
example claims (e.g., for few-shot prompting) and a desired target label. The generator G is then
tasked with producing a new claim sample that reflects the style of the provided claims and has the
specified target label. Note that we provide the F' claims without a known label, so they can either
be entailed or non-entailed w.r.t. e. Second, we can use some background knowledge of the task to
define some approximately label-preserving augmentation strategies to increase diversity, e.g., us-
ing paraphrasing models, round-trip translation or synonym replacements (Chen et al.l|2023b). This
step can be formalized as a mutation function M : X — X which takes a claim as an input and mod-
ifies it while trying to preserve its label. The label-preserving characteristics of these strategies are
imperfect, i.e., with a small probability the entailment relation will be affected by the augmentation.
Finally, we suppose a teacher model T : X x X — [0, 1], which can be applied to the data from the
source and the target domain and provides an entailment score. The teacher model performs reliably
within the source domain, but only provides a weak estimate of T'(e, ¢). The performance of this
model may be noisy because the target domain is out-of-domain for this model, and the model may
be too inefficient to be deployed in practice. We will use this model to obtain weak estimates of
the samples’ labels. We now present our framework Auto-GDA, which incorporates the three tools
G, M, T named above in a principled algorithm.

4 A PRINCIPLED FRAMEWORK FOR UNSUPERVISED DOMAIN ADAPTATION

4.1 OUTLINE OF THE FRAMEWORK

In this work, we present Auto-GDA, a framework for Automatic Generative Domain Adaptation,
that generates synthetic data points that are useful for fine-tuning a pretrained model f for the target
domain. For the data generation process to result in high fine-tuning utility it must meet several
criteria: (1) The data must be realistic and non-trivial, (2) must have high diversity, (3) the assigned
labels must be of high quality.
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Figure 2: Overview of Auto-GDA. We generate initial data using the generator GG, which are as-
signed entailment certainty scores using teacher model 7. The synthetic data is iteratively aug-
mented using M, whereas label-preservation is confirmed with 7" and entailment certainties are
updated. We finally select the top-K samples that minimize an objective function L. These steps
can be applied iteratively until the final data is used to fine-tune the model f for the target domain.

Auto-GDA is specifically designed to tackle these three challenges. As RAG outputs stem from
LLMs, we also generate realistic initial claim samples for a given evidence using LLMs. We lever-
age few-shot prompting to transfer patterns in the output to the generated samples. To preserve the
diversity of the evidence (which contains the relevant documents in the knowledge base), we gen-
erate synthetic claims sequentially for each unique piece of evidence e available in the unlabeled
target dataset D;. This has the advantage that a broad diversity of documents in the knowledge
base is represented. We propose to apply augmentations on the synthetic data to increase diversity
further. As the augmentation strategies are only approximately label-preserving, we have to keep
track of increasing label uncertainty to detect samples with low-quality labels when several data
augmentation steps are applied. We therefore equip each sample with an entailment certainty score
r, an estimate of the probability of the sample having an entailed label (y=1) which can be used to
remove samples with low-quality labels. Auto-GDA applies these steps iteratively to successively
increase data quality. In summary our framework consists of the following steps, which we describe
in more detail in the next sections:

1. Initial Generation. Generate an initial sample population DY = {(¢k, K, r,&o))}iil of
claims ¢ and labels g for the evidence e using the generator G. Use the teacher model T to
assign initial entailment certainty r(?) scores to each sample of synthetic data. This results
in each sample having a hard label 7 and a “soft” confindence score (?) for the hard label.

2. Sample Augmentation. Apply augmentations M on claims in the population Dg) to
obtain new claims with the same hard labels. Update their entailment certainties using the
teacher model again. Merge mutated samples and samples from previous iteration to form

updated population DS = {(é;, 41, rf””)}le that is of larger size L > K.
3. Sample Selection. Select the subset of samples of size K from TDSH) that minimize our
proposed enhanced distribution matching objective Ly, formally introduced in Eqn. (4).

The objective includes the unlabeled target samples D, and the certainty scores. The

selected subset becomes the next generation dataset DSH).

4. Repeat steps 2 and 3 for a fixed number of iterations or until objective L, converges.

We illustrate these steps in Figure 2] and will detail out implementation choices for each step below.

4.2 GENERATING REALISTIC INITIAL DATA

LLMs have been repeatedly used to generate synthetic data for various domains, including NLI
(Saad-Falcon et al.| |2024} Hosseini et al.,2024). In this work, we generate initial data using few-shot
prompting with the prompts provided in Appendix The prompt instructs the LLM to generate
synthetic claims ¢ = G(e, claim(D; ), §) for the evidence e, reflecting the style of example claims
from D; (claim(D; ) denoting claims from target data for the evidence e) and target label § € 0, 1.
For label § = 1, the LLM is instructed to include only grounded facts, for § = 0, some ungrounded
information should be introduced. We assign labels g according to the prompt used, resulting in
complete initial generated tuples (¢, ). We follow some related works (Puri et al., [2020; [Vu et al.,
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2021)), which have suggested generating many samples and only keeping the most confident. To
do so, the samples can be equipped with a weak estimate of the label probability using the teacher
model, e.g., another LLM or an NLI model with sophisticated pre- and postprocessing. In the binary
classification setup, we can compute initial entailment certainties as (®) = T'(e, &), which can be
interpreded as an uncalibrated and potentially noisy estimate of p(y = 1|e, ¢). We explore LLMs
for data generation and use state-of-the-art NLI models and also LLMs as teacher models 7" for
providing initial entailment certainties. Adding the entailment certainty scores (°) to the respective

tuples we obtain a set of triples P = {(¢k, K, r,&o))}iil after this step.

4.3 INCREASING DIVERSITY THROUGH LABEL-PRESERVING DATA AUGMENTATIONS

In this section, we demonstrate how

to augment the initial Synthetlc dataset e: Paris is the capital of France, a country in Europe.

(generated using the few-shot prompt- Paris has 2.1 million inhabitants.

ing strategy) for additional diversity c: Paris, capital of France, has 2.1 million inhabitants.
. Lol . i y: 1 (entailment)

while maintaining a high degree of label - .

certainty for the augmented synthetic £ i:ﬁglz o

data points. We exploit a certain de- ‘é

gree of background knowledge to de- = e entails ¢/

rive data augmentation strategies (Chen e: Pa}:is 128 the lclapitalhof France, a country in Europe.

. Paris has 2.1 million inhabitants.

et al., 2023b)" For lnSt%nce’ W? know c’: There is a capital in Europe with 2.1 million inhab-

that paraphrasing the claims while pre- itants.

serving their semantic meaning should y: 1 (entailment)

not change their entailment label. How- rewritten sample

ever, when iteratively applying para-
phrasing operations, we have to account
for an increasing probability of acciden-
tally flipping the label.

Figure 3: Intuition for our update rule for entailment
certainties: If a parent claim c is entailed by e and a
mutated claim ¢/ is entailed by its parent ¢, the mutated
claim ¢’ will be entailed by e as well.

Obtaining High-Quality Entailment Certainties. We can combine the generative models with
discriminative teacher models again to obtain weak estimates r(?) of the entailment certainty of the
augmented samples. Instead of directly computing the entailment probability using 7', we exploit
logical invariances, which allow for better estimates depicted in Figure[3} If the original claim is en-
tailed by the evidence, and if the modified claim is entailed by the original claim, the modified claim
will also be entailed by the evidence. Suppose we have obtained ¢’ = M (&) as a modification of the
synthetic claim ¢. As we already have an estimate of the entailment probability for (e, ¢), we can
reuse it and only need to compute another entailment probability for (¢, ¢’). We argue that comput-
ing this entailment probability is easier for the teacher model than directly computing T'(e, ¢’), as the
claim and the modified claim should be semantically and syntactically more similar. Paraphrasing
datasets like PAWS (Zhang et al., 2019) are common pretraining datasets, and standard NLI datasets
like MNLI (Williams et al.| |2018)) contain many similar samples due to their construction through
edits, so NLI predictions are expected to be more reliable on these pairs. Querying the teacher model
on T'(¢, &) allows us to use the following update rule for the augmented sample (e, &'):

rit (e, &) =rWD(e, &) - T(¢,¢)+ (1 —rD (e, é) - (1 —T(&¢é)). (1)

using the entailment certainty () of the original tuple (e, €) as a base. Note that some teacher mod-
els may be particularly reliable with claim-claim pairs than with evidence-claim pairs so it can be
useful to choose a different teacher model for this update than for computing initial certainty scores.

Label Invariant Augmentation Strategies: In this work, we consider three augmentation strategies
that will likely preserve entailment labels (see Appendix Appendix [C.I|for additional details):

* Partial Rephrasing with LLMs. Our first augmentation is an LLM-based rephrasing step.
Specifically, we randomly mask 20% of the words of the input sequence by replacing the
corresponding words by “_" and ask an LLM (Claude3 Haiku) to impute the gaps while
preserving the meaning.

* Complete Paraphrasing. We use a T5-based paraphrasing model [Vorobev & Kuznetsov
(2023)). We generate paraphrases for the claims using enforcing diversity using a constraint
that prevents n-grams of length greater than 5 from being regenerated.
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* Sentence Deletion. We chunk the claim into sentences and randomly delete one of them.
This should preserve the entailment relation as it only removes information. However, we
note that this augmentation may remove some of the context necessary to understand the
entire claim.

We generate several augmentations for each sample using these strategies along with an estimate
of their entailment probabilities, resulting in an enlarged sample set. Unfortunately, not all of these
samples may be of high quality. Therefore, it is crucial to select only the most promising samples.

4.4 AUTOMATIC SELECTION OF HIGH-QUALITY SAMPLES

A key component of our work involves automatically selecting the most promising samples. Intu-
itively, we are interested in finding samples that resemble target data. This includes both having
realistic features and correctly assigned labels. The data should also have a high chance of improv-

ing the final model. Provided with an augmented dataset 75((;) ={é, i, m}lL:l at iteration ¢, we are

interested in selecting a subset Q. C 75.(;) of a smaller size |Q.| = K that only contains the most
promising samples. We propose the following objective function to assign a loss to a selected subset
Q. which contains three terms for each selected sample:

Liot(Qe. f)= Y |d(éi,emmni)® + XaLDiv(rs, 5;) — MUy (&1,5) | . )
€i,0i,mi € Qe distance label correctness utility term
where d(x,x’) = ||v(x) — ¥ (x)’|| is a distance function over inputs in X’ defined via textual em-

beddings ¢, Cmin,i = argming epim(p, ) d(¢’; &) is the closest claim for evidence e from the
target dataset, and Ag4, A, are hyperparameters. LDiv : [0,1] x {0,1} — R is a function that
penalizes uncertain labels taking the certainty scores r and the hard labels g as inputs as plotted
in Figure f] We derive the exact form of the LDiv function as a divergence estimate of the condi-
tional distributions in Appendix The distance term encourages samples to be close to claims
from the target data set for the given evidence. The la-
bel correctness term penalizes samples where the en-
tailment certainties are too far apart from the target
labels and is used to discourage selection of samples
where the labels are likely to be incorrect. Addition-
ally, we encourage generation of samples where the
pretrained model f is not performing well yet by in-
cluding the cross-entropy loss of the model as a util-
ity term, Uy = CE[f(e, ¢),y] where g is the assigned
hard label of a synthetic sample.

label corr. term LDiv(r(?), ¥)
o

0 .
0.00 0.25 0.50 0.75 1.00

entailment certainty )

Theoretical Properties. Notably, Equation (2) can
be derived from first principles as an enhanced dis-
tribution matching objective. By defining parametric
distributions pg e (c, y) (representing the selected syn-  Figure 4: Modeling the label correctness
thetic data for evidence €) and peov.e(c, y) (represent-  term in Eqn.[2]as function of . When the
ing the target distribution for e we aim to imitate) the estimated entailment certainty 7 does not
objective corresponds to the divergence between these match the assigned hard label 4 this term
distributions plus the expected utility of the synthetic takes high values discouraging selection.
data. Formally,

»Ctot(Qev f) = DKL (pQ,e(Ca y)”pcov,e(cv y)) - ]E(ny)NPQ,e [Uf(c7 y)] . (3)

We derive a proposition to formalize this connection in Appendix [B]

Optimizing the objective. Optimizing the objective for a subset O, containing K synthetic samples
for evidence e with minimal loss can be done highly efficiently in three steps: (1) Computing each
samples’ contribution to the sum in L;,, (2) ranking the samples by this contribution, and (3)
greedily selecting the top-K subset of samples with the lowest contributions. Pseudocode of our
complete framework is provided in Algorithm [I] (Appendix).
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Dataset RAGTruth LFQA-Verif. SummEdits Avg., Rank
RAG-Task Summary QA QA Summary

% FLAN-TS 0.734 0.708 0.655 0.700 0.699

: BART-large 0.696 0.670 0.821 0.769 0.739

% DeBERTaV2 0.782 0.530 0.645 0.876 0.708

£ DAPTDcBERTaV2 0.746 +o00s 0.703 +ooi6 0.813 +ooos 0.837 +ooos 0.775

E SiFTpeBERT2V2 0.785 +o00s 0.566 +o000s 0.880 +o032 0.845 +0003 0.769

" CORALDpeBERTaV2 0.718 +oo001  0.677 +ooo1 0.822 +ooo1 0.853 +oom 0.768

. MiniCheck-T5 0.754 0.640 0.741 0.791 0.732

£ AlignScore 0.729 0.822 [0.904] [0.894] 0.837
Vectara-2.1 [0.805 | [0.854] 0.648 0.590 0.725

= Flan-T5 (Auto-GDA) 0.756 +o000+ 0.783 o013 0.687 +o002 0.824 +0010 0.762

2 BART (Auto-GDA) 0.813 <000 0.867 <oon  0.867 oo  0.860 +0010 0.852 (3)

“ DeBERTaV2 (Auto-GDA)  0.837 o0 0.867 <007 0.925 <oms  0.883 +oms 0.878 (2)

_ GPT-3.5 0.706 0.648 0.749 0.814 0.729

2 GPT-4o-mini 0.884 0.833 0.812 0.878 0.852 (3)
GPT-4o 0.892 0.865 0.896 0.880 0.883 (1)

Table 1: Performance comparison to baselines (ROC scores). Grouped by off-the-shelf base mod-
els trained on standard data, domain-adapted versions of the best base models using DAPT, SIFT, and
DeepCORAL, complex state-of-the-art models trained using custom datasets (Vectara, MiniCheck)
or using postprocessing (AlignScore), proprietary LLMs, and versions of the base models fine-tuned
with Auto-GDA. We highlight the teacher model that was used to assign initial label certainties (%)

in a and make three observations: (1) the Auto-GDA version of the base models always im-
proves over the vanilla versions and the versions trained with SIFT, Deep CORAL, and DAPT, (2)
our best-performing model DeBERTaV2 (Auto-GDA) outperforms its teacher model in three out of
four cases, and (3) BART and DeBERTa with Auto-GDA reach LLM-level performance.

5 EXPERIMENTAL EVALUATION

We run experiments with realistic datasets and baseline models to confirm the efficacy of Auto-GDA.

Datasets. We evaluate our approach on three dat