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Abstract
We investigate the use of large language models
(LLMs) to simulate human responses to survey
questions, and perform uncertainty quantification
to gain reliable insights. Our approach converts
imperfect, LLM-simulated responses into confi-
dence sets for population parameters of human
responses, addressing the distribution shift be-
tween the simulated and real populations. A key
innovation lies in determining the optimal num-
ber of simulated responses: too many produce
overly narrow confidence sets with poor coverage,
while too few yield excessively loose estimates.
To resolve this, our method adaptively selects the
simulation sample size, ensuring valid average-
case coverage guarantees. It is broadly applicable
to any LLM, irrespective of its fidelity, and any
procedure for constructing confidence sets. Ad-
ditionally, the selected sample size quantifies the
degree of misalignment between the LLM and
the target human population. We illustrate our
method on real datasets and LLMs.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities in mimicking human behaviors. Recent
studies have leveraged LLMs to simulate human responses
in various domains, including economic and social science
experiments (Aher et al., 2023; Horton, 2023; Chen et al.,
2023; Bisbee et al., 2024; Huang et al., 2024; Yang et al.,
2024; Ziems et al., 2024), market research (Brand et al.,
2023; Gui & Toubia, 2023; Goli & Singh, 2024; Wang et al.,
2024), education (Zelikman et al., 2023; Lu & Wang, 2024),
and so on. The typical simulation procedure consists in
prompting an LLM with a real or fictional persona as well
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as a survey question, and collecting the LLM’s responses.
Compared to traditional survey methods that recruit and
query real people, LLM simulations offer significant ad-
vantages in terms of time and cost efficiency, enabling the
generation of large-scale synthetic responses with minimal
effort.

However, a growing body of evidence suggests that LLMs
are not perfectly aligned with the human population, and
in some cases, the misalignment can be substantial (Aher
et al., 2023; Santurkar et al., 2023). This raises critical
concerns about the reliability of insights derived from LLM-
generated data. It remains a challenge how to properly
simulate human responses using LLMs and how to account
for their imperfections when using the simulated samples to
make inference about the true human population.

We propose to address this challenge through the lens of
uncertainty quantification. Specifically, we seek to construct
confidence sets for population statistics of human responses
based on LLM-generated data. A central question in this
process is:

How many synthetic samples should be generated?

On one hand, generating too many samples risks overfitting
the synthetic distribution, which may deviate from the real
human population. On the other hand, generating too few
samples yields overly large and uninformative confidence
sets. The optimal sample size depends on the discrepancy
between the synthetic and real populations — a quantity
that is unknown in practice. This necessitates a data-driven
approach to determine the appropriate number of simulated
responses.

Main contributions. In this paper, we develop a general
framework to address these challenges. Our key contribu-
tions are as follows:

• (Formulation) We provide a rigorous mathematical
framework for uncertainty quantification in LLM-
based survey simulations.

• (Methodology) We propose a flexible methodology that
transforms simulated responses into valid confidence
sets for population parameters of human responses.
Our approach adaptively selects the simulation sample
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size based on the observed misalignment between the
LLM and human populations. It is applicable to any
LLM, regardless of its fidelity, and can be combined
with any method for confidence set construction.

Related works. Our work relates to research on assess-
ing the fidelity of LLM simulations and measuring their
alignment with real human populations. Prior studies have
explored similarity metrics between synthetic and human
distributions (Santurkar et al., 2023; He-Yueya et al., 2024;
Dominguez-Olmedo et al., 2024; Durmus et al., 2024;
Calderon et al., 2025) and Turing-type tests (Argyle et al.,
2023; Mei et al., 2024) to evaluate LLM reliability. While
these approaches provide valuable insights into LLM mis-
alignment, they do not offer methods for leveraging imper-
fect LLM simulations to draw reliable conclusions about
human populations. In contrast, our work provides a princi-
pled approach for constructing confidence sets that account
for the inherent discrepancies between LLM-generated and
human responses.

Additionally, our work connects to the line of work on
model-free statistical inference, including conformal infer-
ence (Vovk et al., 2005; Shafer & Vovk, 2008; Bates et al.,
2021; Angelopoulos et al., 2024; Kim et al., 2024) and
prediction-powered inference (Angelopoulos et al., 2023).
At a high level, these methods use labeled data from the true
distribution to calibrate imperfect point predictions from
an arbitrary black-box model and then construct valid set
estimates. Our approach follows a similar spirit. The “fea-
tures” and “labels” in our setting correspond to the survey
questions and their population statistics of human responses,
respectively. However, our labels are not directly observ-
able. As a result, the labeled calibration data needed for
these methods is not available. Moreover, for every simu-
lation sample size k, one can produce a point prediction of
the label using k synthetic responses generated by the LLM.
As the optimal sample size is not known a priori, there are
infinitely many candidate point predictions to choose from.
This makes it difficult to apply existing statistical inference
methods.

Outline. The rest of the paper is organized as follows.
Section 2 studies binary response simulation as a warm-up
example. Section 3 presents the general problem setup and
methodology. Section 4 illustrates our proposed method on
real datasets. Section 5 concludes the paper.

Notation. We use Z+ to denote the set of positive integers.
For n ∈ Z+, define [n] = {1, 2, ..., n}. For a, b ∈ R,
define a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
non-negative sequences {an}∞n=1 and {bn}∞n=1, we write
an = O(bn) if there exists C > 0 such that for all n, it
holds that an ≤ Cbn. We write an = Ω(bn) if bn = O(an).

We write an = Θ(bn) if an = O(bn) and an = Ω(bn). The
notation Bernoulli(p) denotes the Bernoulli distribution
with mean p. The notation N(µ, σ2) denotes the normal
distribution with mean µ and variance σ2.

2. Warm-up: Binary Response Simulation
To motivate our problem and methodology, we will start
with a simple setting where an LLM simulates binary re-
sponses to a survey question. In Section 3, we will present
the general problem setup and the general methodology.

2.1. Motivating Example: Educational Test

Suppose a school wants to estimate the proportion µ ∈ [0, 1]
of students that can answer a newly designed test question
correctly. It will not only provide insights into student
progress but also evaluate the question’s effectiveness in
differentiating among students with varying levels of under-
standing. Such information can guide the school in tailoring
teaching strategies to better address student needs.

The most direct approach is to give the test to n students and
collect their results y1, ..., yn ∈ {0, 1}, where yi indicates
whether student i answers the question correctly. A point
estimate for µ is the sample mean ȳ = 1

n

∑n
i=1 yi. Given

α ∈ (0, 1), we can construct a confidence interval for µ:

[
ȳ − s√

n
Φ−1

(
1− α

2

)
, ȳ +

s√
n
Φ−1

(
1− α

2

)]
, (1)

where s =
√
ȳ(1− ȳ) is the sample standard deviation,

and Φ is the cumulative distribution function (CDF) of
N(0, 1). By the Central Limit Theorem (CLT), this interval
has asymptotic coverage probability 1− α as n→ ∞. As
a different approach, one can also use Hoeffding’s concen-
tration inequality (e.g., Theorem 2.8 in (Boucheron et al.,
2013)) to construct a finite-sample confidence interval

[
ȳ −

√
log(2/α)

2n
, ȳ +

√
log(2/α)

2n

]
, (2)

which has at least (1 − α) coverage probability for every
n ∈ Z+. For simplicity, we will stick to (1) in this section.

Alternatively, the school may use an LLM to simulate stu-
dents’ responses to the question. Compared with directly
testing on real students, this approach is more time-efficient
and cost-saving. If we prompt the LLM k times with ran-
dom student profiles, then it generates k synthetic responses,
which leads to synthetic outcomes ysyn1 , ..., ysynk ∈ {0, 1}.
We may also compute the sample mean ȳsynk = 1

k

∑k
i=1 y

syn
i
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and the CLT-based confidence interval

Isyn(k) =

[
ȳsynk −

c · ssynk√
k

Φ−1
(
1− α

2

)
,

ȳsynk +
c · ssynk√

k
Φ−1

(
1− α

2

)]
, (3)

where ssynk =
√
ȳsynk (1− ȳsynk ), and c > 1 is a scaling

parameter. Such a dilation by c is necessary; without it,
whenever the LLM-generated data deviates from the stu-
dent population (even by the slightest amount), the interval
Isyn(k) may never achieve (1− α) coverage regardless of
k. We give an example in Appendix B.1.

Due to the misalignment between the LLM and students,
the distribution of the synthetic data {ysyni }ki=1 may be very
different from the true response distribution. In this case,
the sample mean ȳsyn can be a poor estimate of µ, and
Isyn(k) is generally not a valid confidence interval for µ.
In particular, as k → ∞, the interval concentrates tightly
around the synthetic mean E[ysyn1 ] and fails to cover the true
mean µ. On the other hand, when k is small, the interval
becomes too wide to be informative, even though it may
cover µ with high probability. We provide an illustration in
Figure 1.
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Figure 1. The coverage-width trade-off for the simulation sample
size k. The true distribution is Bernoulli(0.4) and the synthetic
distribution is Bernoulli(0.6). The horizontal axis is the simula-
tion sample size k. The red dotted horizontal line plots the true
mean µ = 0.4. The blue curve plots the sample mean ȳsyn

k of the
synthetic data, and the blue shaded region visualizes the confidence
interval Isyn(k), for k ∈ [40]. When k is too small (say k ≤ 6),
the interval Isyn(k) is too wide. When k is too large (say k ≥ 18),
Isyn(k) fails to cover µ.

Main insights. Our goal in this work is to develop a princi-
pled approach for choosing a good simulation sample size k̂,
so that Isyn(k̂) is a valid confidence interval for µ while hav-
ing a small width. Solving this problem has the following
important implications.

1. The choice of k̂ offers valuable information for future
simulation tasks on the appropriate number of syn-
thetic samples to generate, so as to produce reliable
confidence intervals. It also helps avoid generating
excessive samples and improves computational effi-
ciency.

2. The width of Isyn(k̂) provides an assessment of the
alignment between the LLM and the human popula-
tion. A wide confidence interval indicates high uncer-
tainty of its estimate of the true µ, and thus a large
gap between the synthetic data distribution and the true
population.

3. The sample size k̂ reflects the size of the target popula-
tion that the LLM can represent. We make an analogy
using the classical theory of parametric bootstrap. Sup-
pose a model is trained via maximum likelihood esti-
mation over k i.i.d. human samples. When performing
parametric bootstrap for uncertainty quantification, the
bootstrap sample size is usually set to be the training
sample size k. Thus, our simulation sample size k̂ re-
veals the LLM as “being made up of” k̂ people from
the population. We provide a visualization in Figure 4
of Appendix A. The larger k̂ is, the more diversity that
the LLM appears to capture. In contrast, a small k̂
could imply the peculiarity of the LLM compared to
the major population.

Remark 2.1 (Comparison with existing works). Existing
works typically measure LLM misalignment using inte-
gral probability metrics and f -divergences (Santurkar et al.,
2023; Dominguez-Olmedo et al., 2024; Durmus et al., 2024),
which do not carry operational meanings themselves and can
be hard to interpret. In contrast, our simulation sample size
k̂ provides actionable guidance and is easy to understand.

2.2. Methodology for Selecting Simulation Sample Size

We now introduce our method for choosing a good simula-
tion sample size k̂. It makes use of similar test questions
for which real students’ results are available. If such data is
available, then we can compare LLM simulations with real
students’ results on these questions, and use it to guide the
choice of k.

Specifically, we assume access to m test questions similar
to the question of interest. For example, they can come from
previous tests or a question bank. For j ∈ [m], the j-th test
question has been tested on nj real students, with test results
Dj = {yj,i}

nj

i=1. We also simulate LLM responses Dsyn
j =

{ysynj,i }Ki=1 to the j-th test question, and Dsyn = {ysyni }Ki=1 to
the test question of interest. Here K ∈ Z+ is the simulation
budget.

For each question j ∈ [m], we form confidence intervals
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similar to (3) using the synthetic data Dsyn
j , aiming to cover

the true proportion µj of students that can answer the j-th
question correctly:

Isyn
j (k) =

[
ȳsynj,k −

c · ssynj,k√
k

Φ−1
(
1− α

2

)
,

ȳsynj,k +
c · ssynj,k√

k
Φ−1

(
1− α

2

)]
, (4)

where ȳsynj,k = 1
k

∑k
i=1 y

syn
j,i is the sample mean of the first

k samples in Dsyn
j , and ssynj,k =

√
ȳsynj,k(1− ȳsynj,k) is the es-

timated standard deviation. We also set the convention
Isyn(0) = Isyn

j (0) = [0, 1], as nothing can be said about the
true parameter without data. We will pick k̂ ∈ {0, 1...,K}
such that Isyn

j (k̂) covers µj with high probability. We ex-
pect this choice of k̂ to be also good for Isyn(k), as the test
questions are similar.

Ideally, we would like to pick k such that (1− α)-coverage
is achieved empirically over the m test questions:

1

m

m∑
j=1

1{µj ̸∈ Isyn
j (k)} ≤ α. (5)

As the true {µj}mj=1 are not available, we use the real data
{Dj}mj=1 to compute the sample means ȳj = 1

nj

∑nj

i=1 yj,i
as proxies for µj . The empirical miscoverage can be ap-
proximated by

G(k) =
1

m

m∑
j=1

1{ȳj ̸∈ Isyn
j (k)}. (6)

Our criterion for selecting k is given by

k̂ = max {0 ≤ k ≤ K : G(i) ≤ α/2 ∀i ≤ k} . (7)

Note that k̂ is well-defined because G(0) = 0.

The choice of the threshold α/2 in (7) can be explained as
follows. By CLT, when nj is large, P(µj ≥ ȳj) ≈ 1/2.
Suppose µj ̸∈ Isyn

j (k), then µj is either on the left or the
right of Isyn

j (k). In the former case, ȳj is on the left of µj
with probability around 1/2, which implies ȳj ̸∈ Isyn

j (k).
Similarly, in the latter case, ȳj is on the right of µj with
probability around 1/2, and then ȳj ̸∈ Isyn

j (k). Roughly
speaking, the frequency of having ȳj ̸∈ Isyn

j (k) is at least
half of the frequency of having µj ̸∈ Isyn

j (k). In other
words, the lower bound

G(k) ≥ 1

2
· 1

m

m∑
j=1

1{µj ̸∈ Isyn
j (k)} (8)

approximately holds. Substituting (8) into (5) yields the
threshold α/2 for choosing k̂.

2.3. Theoretical Analysis

In this section, we present a theoretical analysis of our pro-
posed method. To do so, we first describe the setup in
Section 2.1 and Section 2.2 in mathematical terms.

The student population can be represented by a distribution
P over a space Z of possible student profiles, say, vectors
of background information, classes taken, grades, etc. To
simulate student responses from the LLM, synthetic student
profiles are generated from a synthetic student population
Psyn over Z , and then fed to the LLM.

We use ψ and {ψj}mj=1 to denote the test question of interest
and the m similar ones, respectively. Students’ performance
on test questions is characterized by a performance func-
tion F : a student with profile z ∈ Z answers a question
ψ correctly with probability F (z, ψ) ∈ [0, 1]. The average
student performance on the test questions ψ and {ψj}mj=1

are then µ = Ez∼PF (z, ψ) and µj = Ez∼PF (z, ψj), re-
spectively. In addition, the LLM generates synthetic stu-
dent performance from a synthetic performance function
F syn: when prompted with a synthetic profile zsyn ∈ Z ,
the LLM answers a question ψ correctly with probability
F syn(zsyn, ψ) ∈ [0, 1].

The collection of the real dataset Dj = {yj,i}
nj

i=1 can be
thought of as drawing nj i.i.d. student profiles {zj,i}

nj

i=1 ∼
P and then sampling yj,i ∼ Bernoulli(F (zj,i, ψj)) for
each i ∈ [nj ]. Similarly, the generation of the synthetic
dataset Dsyn

j = {ysynj,i }Ki=1 can be thought of as drawing
i.i.d. synthetic profiles {zsynj,i }Ki=1 ∼ Psyn and then sampling
ysynj,i ∼ Bernoulli(F syn(zsynj,i , ψj)) for each i ∈ [K]. For
Dsyn = {ysyni }Ki=1, we adopt a similar notation {zsyni }Ki=1

for the synthetic profiles. We note that when collecting real
or synthetic samples, the performance functions never ap-
pear explicitly. They are introduced only to facilitate the
problem formulation.

Finally, we assume that the test questions are drawn ran-
domly from a question bank, and that the datasets are inde-
pendent.
Assumption 2.2 (Randomly sampled questions). The ques-
tions ψ,ψ1, ..., ψm are independently sampled from a distri-
bution over a space Ψ.
Assumption 2.3 (Independent data). For each j ∈ [m],
conditioned on ψj , the datasets Dj and Dsyn

j are in-
dependent. Conditioned on ψ1, ..., ψm, the dataset tu-
ples (D1,Dsyn

1 ), ..., (Dm,Dsyn
m ) are independent. Finally,

(ψ,Dsyn) is independent of
{
(ψj ,Dj ,Dsyn

j )
}m
j=1

.

We are now ready to state the theoretical guarantee of our
approach. Its proof is deferred to Appendix B.2. We note
that the assumption P(ȳj ≤ µj | ψj) = 1/2 is a CLT
approximation and is for mathematical convenience only.
Theorem 2.4 (Coverage guarantee). Let Assumptions 2.2
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and 2.3 hold. Assume that P(ȳj ≤ µj | ψj) = 1/2 for each
j ∈ [m]. Fix α ∈ (0, 1). Then the simulation sample size k̂
defined by (7) satisfies

P
(
µ ∈ Isyn(k̂)

)
≥ 1− α−

√
2

m
.

The probability is taken with respect to the randomness of{
(ψj ,Dj ,Dsyn

j )
}m
j=1

, ψ and Dsyn.

On average, the chosen simulation sample size k̂ leads to a
confidence interval Isyn(k̂) that covers the true mean µ with
probability at least 1 − α − O(

√
1/m). As m → ∞, the

aforementioned lower bound converges to 1− α.

2.4. Sharpness of Sample Size Selection

We have seen that the chosen interval Isyn(k̂) has good
coverage properties. In this section, we complement this
result by showing that the interval is not overly conservative.
To simplify computation, we slightly modify the setting.

Example 2.5 (Gaussian performance score). Consider the
setting in Section 2.3 with the following modifications. On
a test question ψ ∈ Ψ, the performance (e.g., score) of
a real student follows a Gaussian distribution with mean
Ez∼PF (z, ψ) and variance 1, instead of a Bernoulli dis-
tribution with mean Ez∼PF (z, ψ). Similarly, the perfor-
mance of the LLM follows a Gaussian distribution with
mean Ezsyn∼PsynF syn(zsyn, ψ) and variance 1. Moreover, the
confidence intervals Isyn(k) defined in (3) and Isyn

j (k) de-
fined in (4) are changed to

Isyn(k) =

[
ȳsynk − C√

k
, ȳsynk +

C√
k

]
,

Isyn
j (k) =

[
ȳsynj,k −

C√
k
, ȳsynj,k +

C√
k

]
,

respectively, where C = 2Φ−1(1 − α/4). For simplicity,
we suppose that the real datasets have the same size: nj = n
for all j ∈ [m]. Finally, we define

∆ = sup
ψ∈Ψ

∣∣Ez∼PF (z, ψ)− Ezsyn∼PsynF syn(zsyn, ψ)
∣∣.

In Example 2.5, the quantity ∆ measures the discrepancy
between the distributions of the real students’ performance
and of the simulated students’ performance. The following
theorem presents a lower bound on the chosen simulation
sample size k̂. Its proof can be found in Appendix B.3.

Theorem 2.6 (Sharpness of chosen sample size). Consider
the setting of Example 2.5. Let k̂ be chosen by the procedure
(7). Choose δ ∈ (0, 1). There exists a constant C ′ > 0
determined by α such that when m > C ′ log(n/δ), the

following holds with probability at least 1− δ:

k̂ ≥ min

{
K, n,

(
C

5∆

)2
}
.

When this happens, the selected confidence interval Isyn(k̂)
has width O

(
max{K−1/2, n−1/2,∆}

)
.

Theorem 2.6 implies that the interval Isyn(k̂) is the shortest
possible. To see this, suppose that the simulation budget
K is large, then with high probability, Isyn(k̂) has width
O(max{∆, n−1/2}). This is the optimal width because of
the following reasons. First, in the worst case, any Isyn(k)
that covers the true mean with high probability must have
width Ω(∆) in order to address the distribution shift be-
tween the real and simulated responses. Second, as n real
human responses can identify the true mean up to an error
of O(n−1/2), then any valid Isyn(k) must also have width
Ω(n−1/2). This shows the sharpness of the chosen sample
size k̂ and the confidence interval Isyn(k̂).

3. General Setup and Methodology
In this section, we study the more general setting where sur-
vey responses and confidence sets can be multi-dimensional.

3.1. Problem Formulation

Let Z be a profile space, P a probability distribution over Z
which represents the true population, and Psyn a synthetic
distribution over Z used to generate synthetic profiles.

Let Ψ be a collection of survey questions, and Y be the
space of possible responses to the survey questions. When
a person with profile z ∈ Z is asked a survey question ψ ∈
Ψ, the person gives a response y following a distribution
Q( · | z, ψ) over Y . We are interested in the distribution of
the population’s response to the survey question ψ, which is
given by R( · | ψ) =

∫
Z Q( · | z, ψ)P(dz). In particular,

we seek to construct a confidence set for some statistic
θ(ψ) of R( · | ψ), which can be multi-dimensional, say
in Rd. Below we revisit the educational test example in
Section 2 in this framework. More examples are provided
in Appendix A.

Example 3.1 (Educational test evaluation). In the educa-
tional test evaluation example in Section 2, each z ∈ Z
is a student profile, each ψ ∈ Ψ is a test question, the
response space is Y = {0, 1}, and Q( · | z, ψ) =
Bernoulli(F (z, ψ)). The statistic θ(ψ) is the probability of
a student answering the question correctly: Ey∼R(·|ψ)[y] =
Ez∼P [F (z, ψ)].

We consider constructing the confidence set by using simu-
lated responses from an LLM. Given a profile z, a survey
question ψ and a prompt p, the LLM simulates a response
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ysyn from a distribution Qsyn( · | z, ψ, p) which aims to
mimic Q( · | z, ψ). We can generate i.i.d. synthetic pro-
files {zsyni }Ki=1 ∼ Psyn, then feed them into the LLM along
with ψ and p. The LLM then generates synthetic responses
{ysyni }Ki=1, where ysyni ∼ Qsyn( · | zsyni , ψ, p). HereK ∈ Z+

is the simulation budget.

Using the simulated samples Dsyn = {ysyni }Ki=1, we can
construct a family of candidate confidence sets such as the
one-dimensional CLT-based confidence interval (3). More
generally, the statistics literature has developed a variety
of approaches such as inverting hypothesis tests (Casella &
Berger, 2002), the bootstrap (Efron, 1979), and the empirical
likelihood ratio function (Owen, 1990). We will assume
access to a black-box procedure C that takes as input a
dataset D and outputs a confidence set C(D) ⊆ Rd. Then,
we can construct a family of confidence sets {Ssyn(k)}Kk=1

by
Ssyn(k) = C

(
{ysyni }ki=1

)
. (9)

We also set Ssyn(0) = Rd, so θ(ψ) ∈ Ssyn(0) always. We
will not impose any assumptions on the quality of the confi-
dence sets produced by C.

As the LLM may not be a faithful reflection of the true
human population, we will make use of real data to choose
a good confidence set from {Ssyn(k)}Kk=1. We assume that
we have collected real human responses from m surveys
ψ1, ..., ψm ∈ Ψ. For each j ∈ [m], we have responses
Dj = {yj,i}

nj

i=1 from nj i.i.d. surveyees {zj,i}
nj

i=1 ∼ P ,
with yj,i ∼ Q( · | zj,i, ψj).

We also simulate LLM responses to these m survey ques-
tions. For each j ∈ [m], we feed i.i.d. synthetic profiles
{zsynj,i }Ki=1 ∼ Psyn, the question ψj and the prompt p into
the LLM, which then simulates responses Dsyn

j = {ysynj,i }Ki=1

with ysynj,i ∼ Qsyn( · | zsynj,i , ψj , p). The datasets {Dj}mj=1

and {Dsyn
j }mj=1 will be used to select a confidence set from

{Ssyn(k)}Kk=1. We make the same Assumptions 2.2 and 2.3
as in Section 2.

We are now ready to formally state our problem.
Problem 3.2 (Uncertainty quantification). Given α ∈ (0, 1),
how to use {Dj}mj=1 and {Dsyn

j }mj=1 to choose k̂ ∈ [K] such
that

P
(
θ(ψ) ∈ Ssyn(k̂)

)
≈ 1− α?

3.2. General Methodology for Sample Size Selection

We now present our general methodology for Problem 3.2.
For each j ∈ [m], we form confidence sets similar to (9)
using the synthetic data Dsyn

j :

Ssyn
j (k) = C

(
{ysynj,i }

k
i=1

)
, ∀k ∈ [K]. (10)

We also set Ssyn
j (0) = Rd. We will pick k̂ ∈ {0, 1, ...,K}

such that Ssyn
j (k̂) is a good confidence interval for θ(ψj) for

each j ∈ [m]. This choice of k̂ will also be good for Ssyn(k),
thanks to the i.i.d. assumption on the survey questions.

Ideally, we would like to pick k such that (1− α) coverage
is achieved empirically over the m survey questions:

1

m

m∑
j=1

1{θ(ψj) ̸∈ Ssyn
j (k)} ≤ α. (11)

However, the population-level quantities {θ(ψj)}mj=1 are
not available, so we must approximate them by the real
data {Dj}mj=1. In Section 2, we have taken the approach
of constructing unbiased point estimates, but it does not
directly extend to the more general case.

Instead, we will use the real data {Dj}mj=1 to construct
confidence sets for {θ(ψj)}mj=1. Choose a confidence level
γ ∈ (0, 1). For each j ∈ [m], we use Dj to construct a
confidence set Sj that satisfies

P
(
θ(ψj) ∈ Sj

∣∣∣ ψj) ≥ γ. (12)

These confidence sets are easy to construct as the samples
in Dj follow the true response distribution. When θ(ψj) ∈
Sj , the condition Sj ⊆ Ssyn

j (k) is sufficient for θ(ψj) ∈
Ssyn
j (k). Equivalently, when θ(ψj) ∈ Sj , the condition
θ(ψj) ̸∈ Ssyn

j (k) must imply Sj ̸⊆ Ssyn
j (k). Thus, we take

L(k) =
1

m

m∑
j=1

1{Sj ̸⊆ Ssyn
j (k)} (13)

as a proxy for the empirical miscoverage. Since θ(ψj) ∈
Sj with probability γ, then the frequency of having Sj ̸⊆
Ssyn
j (k) is at least γ times the frequency of θ(ψj) ̸∈ Ssyn

j (k).
Roughly speaking,

L(k) ≥ γ ·

 1

m

m∑
j=1

1{θ(ψj) ̸∈ Ssyn
j (k)}

 . (14)

Combining (11) and (14) leads to the following criterion for
selecting k:

k̂ = max {0 ≤ k ≤ K : L(i) ≤ γα, ∀i ≤ k} . (15)

Note that k̂ is well-defined because L(0) = 0. The full
procedure for sample size selection is summarized in Algo-
rithm 1.

We now present the coverage guarantee for our method,
which shows that the chosen confidence set Ssyn(k̂) has
coverage probability at least 1− α−O(1/

√
m). Its proof

is deferred to Appendix B.4.
Theorem 3.3. Let Assumptions 2.2 and 2.3 hold. Fix α ∈
(0, 1). The output k̂ of Algorithm 1 satisfies

P
(
θ(ψ) ∈ Ssyn(k̂)

)
≥ 1− α− γ−1

√
1

2m
.
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Algorithm 1 Simulation Sample Size Selection
Input: Survey questions with real and simulated re-
sponses

{
(ψj ,Dj ,Dsyn

j )
}m
j=1

, prescribed miscoverage
probability α, confidence set construction procedure C,
confidence level γ, simulation budget K.

for j = 1, ...,m do
Use C and Dsyn

j to construct synthetic confidence sets
{Ssyn

j (k)}Kk=0 by (10).

Use Dj to construct a confidence set Sj satisfying (12).
end for
Define

L(k) =
1

m

m∑
j=1

1{Sj ̸⊆ Ssyn
j (k)}.

Set k̂ = max {0 ≤ k ≤ K : L(i) ≤ γα, ∀i ≤ k}.

Output: Sample size k̂ .

It is worth noting that our method achieves this coverage
without any assumptions on the qualities of the LLM and the
procedure C for confidence set construction. Nevertheless,
the size of the chosen confidence set Ssyn(k̂) depends on
these factors. If there is a large alignment gap between the
LLM and the human population, then Ssyn(k̂) will inevitably
be large.

4. Numerical Experiments
In this section, we apply our general method in Sec-
tion 3 to LLMs over real datasets. The code and data
are available at https://github.com/yw3453/uq-
llm-survey-simulation.

4.1. Experiment Setup

LLMs. We consider 8 LLMs: GPT-3.5-Turbo (gpt-
3.5-turbo), GPT-4o (gpt-4o), and GPT-4o-mini
(gpt-4o-mini) (OpenAI, 2022; 2024a;b); Claude 3.5
Haiku (claude-3-5-haiku-20241022) (Anthropic,
2024); Llama 3.1 8B (Llama-3-8B-Instruct-
Turbo) and Llama 3.3 70B (Llama-3.3-70B-
Instruct-Turbo) (Dubey et al., 2024); Mistral 7B
(Mistral-7B-Instruct-v0.3) (Jiang et al., 2023);
DeepSeek-V3 (DeepSeek-V3) (Liu et al., 2024).

Datasets. We use two datasets for survey questions, each
corresponding to one uncertainty quantification task. The
first dataset is the OpinionQA dataset (Santurkar et al.,
2023). It was built from Pew Research’s American Trends

Panel1, and contains the general US population’s responses
to survey questions spanning topics such as science, politics,
and health. After pre-processing we have 385 unique ques-
tions and 1,476,868 responses to these questions from at
least 32,864 people. These questions have 5 choices corre-
sponding to ordered sentiments which we map to sentiment
scores −1,− 1

3 , 0,
1
3 , 1. Each question has at least 400 re-

sponses. For each response, we have information on the
surveyee’s political profile, religious affiliation, educational
background, socio-economic status, etc., which we use to
generate synthetic profiles. See Appendix C.1 for more
details. We consider the task of constructing a confidence
interval for the US population’s average sentiment score for
a survey question. This is the setup in Example A.3.

The second dataset is the EEDI dataset created by (He-
Yueya et al., 2024), which was built upon the NeurIPS 2020
Education Challenge dataset (Wang et al., 2021). It consists
of students’ responses to mathematics multiple-choice ques-
tions on the Eedi online educational platform2. The dataset
contains 573 unique questions and 443,433 responses to
these questions from 2,287 students. All questions have four
choices (A, B, C, D). Out of these questions, we use ques-
tions that have at least 100 student responses. Excluding
questions with graphs or diagrams, we are left with a total
of 412 questions. For each student, we have information on
their gender, age, and socioeconomic status, which we use
to generate synthetic profiles. See Appendix C.2 for more
details. We consider the task of constructing a confidence
interval for the probability of a student answering a question
correctly. This is similar to the setup in Example 3.1.

Confidence set construction. Our method can be built
upon any arbitrary confidence set construction procedure
C. We use a construction procedure based on Hoeffding’s
concentration inequality (e.g., Theorem 2.8 in (Boucheron
et al., 2013)), as it has valid coverage guarantee for any finite
sample size. Given α ∈ (0, 1) and responses {ysyni }ki=1, we
construct the confidence interval

C
(
{ysyni }ki=1

)
=

[
ȳsynk − cM

√
log(2/α)

2k
,

ȳsynk + cM

√
log(2/α)

2k

]
, (16)

where ȳsynk = 1
k

∑k
i=1 y

syn
i is the sample mean, M > 0 is

an upper bound on the range of the responses, and c > 1 is
a scaling constant.

Hyperparameters. We consider α ∈ {0.05 · ℓ : ℓ ∈ [10]},
c =

√
2 and γ = 0.5. For the EEDI dataset, we set the

1https://www.pewresearch.org/the-
american-trends-panel/

2https://eedi.com/
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simulation budget K = 50 and take M = 1 since the
responses are binary. For the OpinionQA dataset, we set
the simulation budget K = 100 and take M = 2 since the
responses range within [−1, 1].

4.2. Experiment Procedure

We now describe our experiment procedure for applying
the method in Section 3 to each dataset. Denote the
dataset by {(ψj ,Dj)}Jj=1, where ψj is a survey question
and Dj = {yj,i}

nj

i=1 is a collection of human responses.
For each j ∈ [J ], we simulate K responses Dsyn

j from an
LLM. We then randomly split D = {(Dj ,Dsyn

j )}Jj=1 into
a training set D tr = {(Dj ,Dsyn

j )}j∈Jtr and a testing set
D te = {(Dj ,Dsyn

j )}j∈Jte , with |D tr| : |D te| = 3 : 2.

Selection of simulation sample size. We apply the ap-
proach (15) with the training set D tr to select a simulation
sample size k̂. For the confidence set Sj in (12) constructed
from the real data Dj , we use the standard CLT-based confi-
dence interval:

Sj =
[
ȳj −

sj√
nj

Φ−1

(
1 + γ

2

)
,

ȳj +
sj√
nj

Φ−1

(
1 + γ

2

)]
, (17)

where ȳj = 1
nj

∑nj

i=1 yj,i and sj =
√
ȳj(1− ȳj). Since nj

is at least 100, Sj has approximately γ coverage probability.
In Figure 5 of Appendix C.3, we provide a visualization for
the selection of k̂.

Evaluation of selected sample size. We use D te to eval-
uate the quality of the chosen simulation sample size k̂.
As the true population parameter θ(ψ) is unavailable, the
true coverage probability P

(
θ(ψ) ∈ Ssyn(k̂)

)
cannot be

computed. However, we can apply the same idea as
(13) in Section 3 to compute a proxy for the miscover-
age level. For each survey question j ∈ Jte, the se-
lected sample size k̂ leads to the synthetic confidence set
Ssyn
j (k̂) = C

(
{ysynj,i }k̂i=1

)
. We form the confidence set Sj

from real data Dj as in (17) and define

L̃(k) =
1

γ
· 1

|Jte|
∑
j∈Jte

1
{
Sj ̸⊆ Ssyn

j (k)
}
. (18)

The proof of Theorem 3.3 shows that, for every k ∈ [K]
and survey question j,

γ ·P
(
θ(ψ) ̸∈ Ssyn(k)

)
≤ P

(
Sj ̸⊆ Ssyn

j (k)
)
= γ ·E

[
L̃(k)

]
.

Thus, if E
[
L̃(k̂)

]
≤ α, then P

(
θ(ψ) ̸∈ Ssyn(k̂)

)
≤ α

must hold. To this end, we will test a hypothesis H0 :

E
[
L̃(k̂)

]
≤ α against its alternative H1 : E

[
L̃(k̂)

]
> α.

4.3. Experiment Results

For both datasets, we evaluate three metrics as α varies: the
miscoverage probability proxy (18), the selected simulation
sample size k̂, and the half-width of the synthetic confidence
interval Ssyn(k̂). We consider 100 random train-test splits
of the questions. For compactness, we present results on the
miscoverage probability proxy and k̂, and defer the results
on the half-width of the synthetic confidence interval as
well as more experiment details to Appendix D. We omit
Llama 3.1 8B for the EEDI dataset experiment because it fre-
quently failed to answer EEDI questions in required formats.
As a baseline, we also include a naı̈ve response generator
(random) that chooses an available answer uniformly at
random.

Coverage validity. In Figure 2, we present histograms
of p-values for the hypothesis test E

[
L̃(k̂)

]
≤ α against

E
[
L̃(k̂)

]
> α across various LLMs and α’s over the Opin-

ionQA and EEDI datasets. The p-values are computed using
a one-sided z-test over the 100 random splits. As can be
seen from the histograms, all p-values are reasonably large,
indicating that the hypothesis E

[
L̃(k̂)

]
≤ α cannot be re-

jected (e.g., at the 0.05 significance level) for any LLM
and α across both datasets. These experiment results verify
the theoretical guarantees in Section 3, showing that the
miscoverage rate is effectively controlled by our method.

Selected simulation sample size. In Figure 3, we plot the
average k̂ over the 100 random splits for various LLMs on
the OpinionQA and EEDI datasets, respectively. The error
bars represent 95% confidence intervals.

In general, a larger k̂ means that the LLM has a stronger
simulation power. On the OpinionQA dataset, GPT-4o has
the best performance. On the EEDI dataset, DeepSeek-V3
has the best performance, followed by GPT-4o and Claude
3.5 Haiku. Interestingly, on the OpinionQA dataset all
LLMs clearly outperform the random benchmark, while
on the EEDI dataset only DeepSeek-V3 and GPT-4o seem
to outperform the random benchmark. Moreover, LLMs
exhibit uniformly higher k̂ on the OpinionQA dataset than
on the EEDI dataset, suggesting higher fidelity in simulating
subjective opinions to social problems than in simulating
student answers to mathematics questions.

The experiment results demonstrate the importance of a
disciplined approach to using synthetic samples. The ease of
LLM-based simulation makes it tempting to generate a large
number of responses per question. However, our results
show that there is great heterogeneity in the simulation
powers of different LLMs over different datasets: the largest
k̂ is below 100, while the smallest k̂ could be in the single
digits. This means that there is real peril in using too many
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Figure 2. Histograms of p-values for the hypothesis test
E
[
L̃(k̂)

]
≤ α against E

[
L̃(k̂)

]
> α across various LLMs and α’s

over the OpinionQA dataset (top) and the EEDI dataset (bottom).

synthetic samples and being overly confident in the results.

5. Discussions
We developed a general approach for converting imperfect
LLM-based survey simulations into statistically valid confi-
dence sets for population parameters of human responses. It
identifies a simulation sample size which is useful for future
simulation tasks and which quantifies the fidelity of LLM
simulations. Numerical experiments on real datasets verified
the coverage guarantees of our approach, and revealed that
existing LLMs exhibited higher fidelity in simulating opin-
ions to social problems than in simulating student answers
to mathematics questions.

Several future directions are worth exploring. First, our
approach does not explicitly minimize the size of the predic-
tion set. A natural question is whether we can incorporate a
size minimization procedure to produce smaller confidence
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Figure 3. Average k̂ for various LLMs and α over the OpinionQA
dataset (top) and the EEDI dataset (bottom).

sets with good coverage. Second, it would be interesting to
see if our approach can be combined with debiasing meth-
ods to give more informative confidence sets. Finally, as
prompt engineering is known to have crucial effects on the
quality of LLM generations, it is worth investigating the
impacts of prompts on the selected simulation sample size
k̂, and how prompt engineering can be leveraged to improve
the fidelity of LLM simulations.
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A. Illustrations and Examples
We first present a visualization of the relation between the simulation sample size and the LLM’s simulation power in
Figure 4.

Figure 4. An interpretation of the simulation sample size k̂ as the size of human population that an LLM can represent. Generating outputs
from the LLM can be thought of as “resampling” from k̂ human samples that make up the LLM. The figure is generated by DALL-E
(Ramesh et al., 2021), and borrows ideas from the Mechanical Turk, a chess-playing machine from the 18th century with a human player
hidden inside.

Below we provide more examples for the general problem framework in Section 3. The survey responses can be real-valued
or multi-dimensional.

Example A.1 (Market research). Suppose a company is interested in learning its customers’ willingness-to-pay (WTP) for
a new product, which is the highest price a customer is willing to pay for the product. Then, each z ∈ Z can represent a
customer profile (e.g., age, gender, occupation), each survey question ψ is about a certain product, and a customer’s response
y is a noisy observation of the customer’s WTP. Then R( · | ψ) is the distribution of the customer population’s WTP. We
may take θ(ψ) as the τ -quantile of the WTP distribution R( · | ψ), for some τ ∈ (0, 1):

θ(ψ) = inf
{
q ∈ [0,∞) : Py∼R(·|ψ)(y ≤ q) ≥ τ

}
.

An LLM can be used to simulate customers’ WTP for the product.

Example A.2 (Public survey, multi-dimensional). Suppose an organization is interested in performing a public survey in
a city. Each survey question ψ is a multiple-choice question with 5 options. An example is “How often do you talk to
your neighbors?”, with 5 choices “Basically every day”, “A few times a week”, “A few times a month”, “Once a month”,
and “Less than once a month”. Every z ∈ Z is a person’s profile (e.g., age, gender, occupation), the response space Y is
the standard orthonormal basis {ei}5i=1 in R5, where y = ei indicates that a person chooses the i-th option. We can take
θ(ψ) = Ey∼Q(·|ψ)[y] ∈ R5, which summarizes the proportion of people that choose each option. An LLM can be used to
simulate people’s answers to the survey question.

Example A.3 (Public survey, one-dimensional). Consider the setup in Example A.2. When the 5 choices in a survey
question correspond to ordered sentiments, we can map them to numeric scores, say, v = (−1,− 1

3 , 0,
1
3 , 1)

⊤. Then the
statistic θ̃(ψ) = ⟨v, θ(ψ)⟩ reflects the population’s average sentiment for the survey question ψ.

B. Proofs
B.1. Failure of Exact CLT-Based Intervals under Distribution Shift

Consider a true distribution N(µ, 1) and a synthetic distribution N(µsyn, 1). Suppose we draw k i.i.d. synthetic samples
{xi}ki=1 ∼ N(µsyn, 1) and construct the standard (1− α) confidence interval for µ:

Isyn(k) =

[
x̄k −

Φ−1(1− α/2)√
k

, x̄k +
Φ−1(1− α/2)√

k

]
,

13
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where x̄k = 1
k

∑k
i=1 xi. Let ∆ = µ− µsyn, which represents the discrepancy between the true distribution and the synthetic

distribution. Then

P
(
µ ∈ Isyn(k)

)
= P

(
|x̄k − µ| ≤ Φ−1(1− α/2)√

k

)
= P

(
|
√
k(x̄k − µsyn)−

√
k(µ− µsyn)| ≤ Φ−1(1− α/2)

)
= P

(√
k∆− Φ−1(1− α/2) ≤

√
k(x̄k − µsyn) ≤

√
k∆+Φ−1(1− α/2)

)
.

Note that
√
k(x̄k − µsyn) ∼ N(0, 1). Thus, whenever ∆ ̸= 0,

P
(
µ ∈ Isyn(k)

)
< 1− α,

failing to attain (1− α) coverage probability, regardless of the sample size k.

B.2. Proof of Theorem 2.4

We will prove the following stronger guarantee.

Lemma B.1 (Conditional coverage). Consider the setting of Theorem 2.4. Let δ ∈ (0, 1). With probability at least 1− δ,

P
(
µ ∈ Isyn(k̂)

∣∣∣ k̂) ≥ 1− α−
√

2 log(1/δ)

m
. (19)

By Lemma B.1, we obtain

P
(
µ ∈ Isyn(k̂)

)
= E

[
P
(
µ ∈ Isyn(k̂)

∣∣∣ k̂)]
=

∫ ∞

0

P
(
P
(
µ ∈ Isyn(k̂)

∣∣∣ k̂) > t
)
dt

≥
∫ 1−α

0

[
1− exp

(
−m

2

(
t− (1− α)

)2)]
dt

≥ 1− α−
∫ 1−α

−∞
exp

(
−m

2

(
t− (1− α)

)2)
dt

≥ 1− α−
√

2

m
.

We will now prove Lemma B.1. Define ε =
√
2 log(1/δ)/m and a deterministic oracle sample size

k̄ = inf
{
k ∈ [K] : P

(
µ ̸∈ Isyn(k)

)
> α+ ε

}
. (20)

If k̄ = inf ∅ does not exist, then there is nothing to prove. Now suppose that k̄ ∈ [K] exists. We will prove that
with probability at least 1 − δ, it holds that G(k̄) > α/2. When this event happens, we have k̂ < k̄, which implies
P
(
µ ̸∈ Isyn(k̂)

∣∣ k̂) ≤ α+ ε and thus (19), thanks to the independence of k̂ and (ψ,Dsyn).

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and the conditional independence of
(D1,Dsyn

1 ), ..., (Dm,Dsyn
m ) given (ψ1, ..., ψm),

P

G(k̄) ≥ 1

m

m∑
j=1

P
(
ȳj ̸∈ Isyn

j (k̄)
)
−
√

log(1/δ)

2m

 ≥ 1− δ. (21)

14



Uncertainty Quantification for LLM-Based Survey Simulations

We now bound P
(
ȳj ̸∈ Isyn

j (k̄)
)
. For each j ∈ [m] and k ∈ [K],

1
{
ȳj ̸∈ Isyn

j (k)
}
≥ 1

{
ȳj < µj and µj < min Isyn

j (k)
}
+ 1

{
ȳj ≥ µj and µj > max Isyn

j (k)
}
.

By the conditional independence of Dj and Dsyn
j given ψj ,

P
(
ȳj < µj and µj < min Isyn

j (k)
)

= E
[
P
(
ȳj < µj

∣∣∣ ψj) · P(µj < min Isyn
j (k)

∣∣∣ ψj)]
= E

[
1

2
· P
(
µj < min Isyn

j (k)
∣∣∣ ψj)]

=
1

2
P
(
µj < min Isyn

j (k)
)
.

Similarly,

P
(
ȳj ≥ µj and µj > max Isyn

j (k)
)
=

1

2
P
(
µj > max Isyn

j (k)
)
.

Therefore,

P
(
ȳj ̸∈ Isyn

j (k)
)
≥ 1

2

[
P
(
µj < min Isyn

j (k)
)
+ P

(
µj > max Isyn

j (k)
)]

=
1

2
P
(
µj ̸∈ Isyn

j (k)
)
=

1

2
P
(
µ ̸∈ Isyn(k)

)
. (22)

When the event in (21) happens,

G(k̄) ≥ 1

m

m∑
j=1

P
(
ȳj ̸∈ Isyn

j (k̄)
)
−
√

log(1/δ)

2m

≥ 1

2
P
(
µ ̸∈ Isyn(k̄)

)
−
√

log(1/δ)

2m
(by (22))

>
α

2
. (by definition of k̄)

This completes the proof.

B.3. Proof of Theorem 2.6

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and a union bound, the following happens with
probability at least 1− δ:

G(k) ≤ 1

m

m∑
j=1

P
(
ȳj ̸∈ Isyn

j (k)
)
+

√
log(n/δ)

2m
, ∀k ≤ min

{
n, K,

(
C

5∆

)2}
(23)

We now show that the right hand side of (23) is at most α/2 for m large. For all j ∈ [m] and k ∈ [K],

P
(
ȳj ̸∈ Isyn

j (k)
)
= P

(
|ȳj − ȳsynj,k | >

C√
k

)
.

Since ȳj ∼ N(µj , 1/n) and ȳsynj,k ∼ N(µsyn
j , 1/k), then

ȳj − ȳsynj,k ∼ N

(
µj − µsyn

j ,
1

k
+

1

n

)
.
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When k ≤ min{n,K, ( C5∆ )2}, we have

P
(
ȳj ̸∈ Isyn

j (k)
)
≤ P

(
|(ȳj − ȳsynj,k)− (µj − µsyn

j )|+∆ >
C√
k

)

= 2Φ

(
− C/

√
k −∆√

k−1 + n−1

)
≤ 2Φ

(
− 4C/(5

√
k)√

k−1 + k−1

)
(∆ ≤ C/(5

√
k))

= 2Φ

(
− 2

√
2C

5

)
= 2Φ

(
− 4

√
2Φ−1(1− α/4)

5

)
= 2Φ

(
4
√
2Φ−1(α/4)

5

)
<
α

2
.

Let

ξ =
α

2
− 2Φ

(
4
√
2Φ−1(α/4)

5

)
,

then ξ > 0 and
P
(
ȳj /∈ Isyn

j (k)
)
≤ α

2
− ξ. (24)

When m > log(n/δ)/(2ξ2), substituting (24) into (23) yields that for all k ≤ min{n, K, ( C5∆ )2},

G(k) ≤ 1

m

m∑
j=1

P
(
ȳj ̸∈ Isyn

j (k)
)
+

√
log(n/δ)

2m

<
(α
2
− ξ
)
+ ξ =

α

2
.

When this happens, we have k̂ ≥ min{n, K, ( C5∆ )2}.

B.4. Proof of Theorem 3.3

We will prove the following stronger guarantee.
Lemma B.2 (Conditional coverage). Consider the setting of Theorem 3.3. Let δ ∈ (0, 1). With probability at least 1− δ,

P
(
θ(ψ) ∈ Ssyn(k̂)

∣∣∣ k̂) ≥ 1− α− γ−1

√
log(1/δ)

2m
. (25)

By Lemma B.1, we obtain

P
(
θ(ψ) ∈ Ssyn(k̂)

)
= E

[
P
(
θ(ψ) ∈ Ssyn(k̂)

∣∣∣ k̂)]
=

∫ ∞

0

P
(
P
(
θ(ψ) ∈ Ssyn(k̂)

∣∣∣ k̂) > t
)
dt

≥
∫ 1−α

0

[
1− exp

(
−2mγ2

(
t− (1− α)

)2)]
dt

≥ 1− α−
∫ 1−α

−∞
exp

(
−2mγ2

(
t− (1− α)

)2)
dt

= 1− α−
√
π

8
· γ−1

√
1

m

≥ 1− α− γ−1

√
1

2m
.

We now prove Lemma B.2. Define ε = γ−1
√

log(1/δ)
2m and a deterministic oracle sample size

k̄ = inf
{
k ∈ [K] : P

(
θ(ψ) ̸∈ Ssyn(k)

)
> α+ ε

}
. (26)
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If k̄ = inf ∅ does not exist, then there is nothing to prove. Now suppose k̄ ∈ [K] exists. We will prove that with probability at
least 1−δ, it holds thatL(k̄) > γα. When this event happens, we have k̂ < k̄, which implies P

(
θ(ψ) ̸∈ Ssyn(k̂)

∣∣ k̂) ≤ α+ε

and thus (25), thanks to the independence of k̂ and (ψ,Dsyn).

By Hoeffding’s inequality (e.g., Theorem 2.8 in (Boucheron et al., 2013)) and the conditional independence of
(D1,Dsyn

1 ), ..., (Dm,Dsyn
m ) given (ψ1, ..., ψm),

P

L(k̄) ≥ 1

m

m∑
j=1

P
(
Sj ̸⊆ Ssyn

j (k̄)
)
−
√

log(1/δ)

2m

 ≥ 1− δ. (27)

We now bound P
(
Sj ̸⊆ Ssyn

j (k̄)
)
. For each j ∈ [m] and j ∈ [K],

1
{
Sj ̸⊆ Ssyn

j (k)
}
≥ 1

{
θ(ψj) ∈ Sj and θ(ψj) ̸∈ Ssyn

j (k)
}
.

By the conditional independence of Dj and Dsyn
j given ψj ,

P
(
Sj ̸⊆ Ssyn

j (k)
)
≥ E

[
P
(
θ(ψj) ∈ Sj and θ(ψj) ̸∈ Ssyn

j (k)
∣∣∣ ψj)]

= E
[
P
(
θ(ψj) ∈ Sj

∣∣∣ ψj) · P(θ(ψj) ̸∈ Ssyn
j (k)

∣∣∣ ψj)]
≥ E

[
γ · P

(
θ(ψj) ̸∈ Ssyn

j (k)
∣∣∣ ψj)]

= γ · P
(
θ(ψj) ̸∈ Ssyn

j (k)
)

= γ · P
(
θ(ψ) ̸∈ Ssyn(k)

)
. (28)

Therefore, when the event in (27) happens,

L(k̄) ≥ 1

m

m∑
j=1

P
(
Sj ̸⊆ Ssyn

j (k̄)
)
−
√

log(1/δ)

2m

≥ γ · P
(
θ(ψ) ̸∈ Ssyn(k̄)

)
−
√

log(1/δ)

2m
(by (28))

> γα. (by definition of k̄)

This completes the proof.

C. Details of Numerical Experiments
C.1. The OpinionQA Dataset

Selection of survey questions. The original dataset is categorized into topics such as health, crime/security, and political
issues. Ideally, we would want to consider questions from the same category to ensure that they are similar enough. However,
the category with the most questions has fewer than 200 questions. We thus consider pooling all questions. The dataset has
1,442 survey questions in total, which is too large for our computational resources. We selected a subset of questions as
follows. First, while the number of choices ranges from 2 to 19, most questions have 5 choices. To give a fair comparison
and for simplicity, we only consider questions with 5 choices. Second, not all questions have choices that can be clearly
ordered in sentiments, such as the following one:

Who do you think has the most responsibility to reduce the amount of made-up news and information? 1. The
government, 2. Technology companies, 3. The public, 4. The news media, 5. None of these, 6. Refused.

We asked GPT-4o to determine if a question’s choices can be ordered in sentiments and we keep those that have GPT-4o’s
affirmative answer. This leaves us with 546 questions. To compensate for the loss of similarity by pooling questions across
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various topics and to further reduce our computational cost, we selected 400 questions that are “most similar” to each
other by embedding the question statements using OpenAI’s text-embedding-3-small, calculating the mean, and
selecting the 400 questions with the smallest Euclidean distance to the mean. Out of these 400 questions, 15 questions have
various issues with their choices by manual inspection, so we exclude them. This leaves us with 385 questions. All these
questions happen to have at least 400 responses.

Example questions. The questions in the OpinionQA dataset span a wide range of topics, including health, crime/security,
and political issues. Some example questions are as follows:

• How much, if at all, do you think wages and incomes are contributing to your opinion about how the economy is doing?

1. A great deal 2. A fair amount 3. Not too much 4. Not at all 5. Refused

• Regardless of whether you would want to move, how likely is it that you will move to a different community at some
point in the future?

1. Very likely 2. Somewhat likely 3. Not too likely 4. Not at all likely 5. Refused

• How much, if anything, would you be willing to change about how you live and work to help reduce the effects of global
climate change? Would you be willing to make:

1. A lot of changes 2. Some changes 3. Only a few changes 4. No changes at all 5. Refused

Profiles. Excluding surveyees with missing information, each of the 385 questions we consider has at least 400 responses.
Since there was no information on the surveyees’ identification, by dropping repeated profiles we can only say that there are
at least 32,864 surveyees. Each surveyee is described by 12 features. Their corresponding categories are listed in Table 1.

Table 1. Categories of surveyees’ features in the OpinionQA dataset.
Feature Options

US citizenship ‘Yes’, ‘No’
Region ‘Northeast’, ‘Midwest’, ‘South’, ‘West’

Sex ‘Male’, ‘Female’
Age ‘18-29’, ‘30-49’, ‘50-64’, ‘65+’

Marital
status

‘Married’, ‘Divorced’, ‘Separated’,
‘Widowed’, ‘Never been married’

Race ‘White’, ‘Black’, ‘Asian’, ‘Hispanic’, ‘Other’

Educational
background

‘Less than high school’, ‘High school graduate’,
‘Some college, no degree’, ‘Associate’s degree’,

‘College graduate/some postgrad’, ‘Postgraduate’

Income
‘Less than $30,000’, ‘$30,000-$50,000’, ‘$50,000-$75,000’,

‘$75,000-$100,000’, ‘$100,000 or more’

Religious
affiliation

‘Protestant’, ‘Roman Catholic’, ‘Mormon’, ‘Orthodox’,
‘Jewish’, ‘Muslim’, ‘Buddhist’, ‘Hindu’,

‘Atheist’, ‘Agnostic’, ‘Other’, ‘Nothing in particular’
Religious
attendance

‘More than once a week’, ‘Once a week’, ‘Once or twice a month’,
‘A few times a year’, ‘Seldom’, ‘Never’

Political party ‘Republican’, ‘Democrat’, ‘Independent’, ‘Other’
Political
ideology

‘Very conservative’, ‘Conservative’,
‘Moderate’, ‘Liberal’, ‘Very liberal’
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Synthetic response generation. We generate synthetic profiles by bootstrapping the 32,864 unique real profiles. We then
generate synthetic answers by prompting LLMs to pretend that they are a surveyee with the synthetic profile and answer the
question. An example prompt is as follows:

Pretend that you reside in the US and you are a US citizen from the West region of the country. You are female,
your age is between 18 and 29, and you are single. In terms of race, you are white. In terms of education, you
attended college but did not graduate. Your annual income is less than $30,000. Religion-wise, you do not belong
to any particular religion, and you never attend religious services. Politically, you are affiliated with a political
party that is not Democratic or Republican, and you consider your political ideology to be liberal. Please answer
the following question:

How much, if at all, do you think what happens to black people in the country overall affects what happens in your
own life? [‘1. A lot’, ‘2. Some’, ‘3. Not much’, ‘4. Not at all’, ‘5. Refused’].

Please provide your answer choice (a single number from 1 to 5) in double square brackets.

In our experiments, LLMs usually directly gave answers in the required format, e.g., ‘[[2]]’.

C.2. The EEDI Dataset

Example questions. Some example questions from the EEDI dataset are as follows:

• What number belongs in the box? □+ 7 = 2

A) 9 B) -5 C) -6 D) 5

• If you multiply a square number by 9, you get a square number. Is this statement:

A) always true B) sometimes true C) never true D) impossible to say

• Which calculation is equal to −20?

A) 2× (−2)− (−4)× 4 B) − 28− (−4)× 2 C) (−5)⊤2 + 5 D) (−42)÷ (−2) + 1

Profile distribution. Excluding students with missing information which take up less than 10% of the total population,
there are 2,111 students who answered at least one of the 412 questions. Each student is described by three features: gender,
age, and whether or not they are eligible for free school meals or premium pupil. Gender is represented by 1 or 2, where 1
corresponds to female and 2 corresponds to male. The students’ ages are rounded to integers from 11 and 14. Whether or
not a student is eligible for free school meals is represented by 0 or 1, where 0 corresponds to not eligible and 1 corresponds
to eligible. The distribution of these students’ features is presented in Table 2.

Table 2. Summary statistics of students’ features in the EEDI dataset.
min max mean median standard deviation

Gender 1 2 1.4988 1 0.5001
Age 11 14 11.2776 11 0.4696

Premium Pupil 0 1 0.2842 0 0.4512

Synthetic response generation. For each question, we generate synthetic profiles by sampling with replacement from the
real profiles. We then generate synthetic answers by prompting LLMs to pretend that they are a student with the synthetic
profile and answer the question. We adapted the prompt from (He-Yueya et al., 2024) with slight modifications to reduce
computational cost. An example prompt featuring an 11-year-old boy who is not eligible for free school meals is as follows:

Pretend that you are an 11-year-old student. Your gender is male. You are not eligible for free school meals or
pupil premium due to being relatively financially advantaged. Given your characteristics, is it likely that you
would be able to solve the following problem?
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Problem: [Insert question here]

If yes, put the final answer choice (a single letter) in double square brackets. If you are likely to struggle with this
problem, put a plausible incorrect answer choice (a single letter) in double square brackets.

An example answer from GTP-4o when given the second example question above is as follows:

As an 11-year-old student, I might have learned about square numbers and multiplication in school. However, the
problem may be a bit tricky if I haven’t thought about how multiplying square numbers by other numbers can also
result in square numbers. I might not immediately realize that 9 is actually a square number itself (3 squared),
which makes this property more evident.

Considering this, I could find the reasoning challenging and decide based on a misconception. I might go with
a plausible incorrect answer choice like [[B]] because I might think that it’s only sometimes possible without
realizing the full mathematical principle involved.

C.3. Visualization of Simulation Sample Size Selection

In Figure 5, we visualize the process of selecting the simulation sample size k̂: it is the first k at which {L(k)}Kk=1 up-crosses
the threshold γα.
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Figure 5. Visualization of simulation sample size selection for the OpinionQA dataset. Here α = 0.1, γ = 0.5, K = 100, c =
√
2 and

M = 2. The red dotted horizontal line is threshold γα = 0.05. The blue curve represents {L(k)}Kk=1. Our approach chooses k̂ as the
point at which the blue line first up-crosses the red threshold: k̂ = 57.

D. Additional Experiment Results
In this section, we provide additional experiment results for three performance metrics: the miscoverage probability proxy
L̃(k̂) as defined in (18), the selected simulation sample size k̂, and the half-width of the synthetic confidence interval
Ssyn(k̂).
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D.1. Miscoverage Probability Proxy

In Table 3 and Table 4, we present the p-values for the hypothesis test E
[
L̃(k̂)

]
≤ α against E

[
L̃(k̂)

]
> α for various LLMs

and α over the OpinionQA and EEDI datasets, respectively. In Table 5 and Table 6, we present the means and standard
errors of L̃(k̂) as defined by (18) over 100 random splits. They complement Figure 2.

Table 3. p-values for the hypothesis test E
[
L̃(k̂)

]
≤ α against E

[
L̃(k̂)

]
> α for various LLMs and α over the OpinionQA dataset. Note

that the α values specify the experiment configuration and are not the significance levels of the hypothesis test.
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

GPT-3.5-turbo 0.0618 0.1293 0.1996 0.2245 0.6981 0.3460 0.3387 0.2591 0.7846 0.8430
GPT-4o-mini 0.1619 0.1642 0.0658 0.2352 0.4741 0.4363 0.2000 0.1150 0.5717 0.3812

GPT-4o 0.3679 0.3218 0.4910 0.2243 0.5837 0.4379 0.2329 0.3388 0.9686 0.9226
Claude 3.5 Haiku 0.3857 0.5889 0.5945 0.4558 0.7030 0.6029 0.7370 0.8853 0.9922 0.9791

Llama-3-8B 0.7571 0.4376 0.2609 0.6072 0.5689 0.4178 0.7018 0.6132 0.7391 0.5169
Llama 3.3 70B 0.5505 0.6519 0.7687 0.5936 0.7055 0.7207 0.6050 0.3530 0.6973 0.5274

Mistral 7B 0.6249 0.0505 0.0517 0.0333 0.6473 0.5988 0.5394 0.2119 0.3380 0.3426
DeepSeek-V3 0.0686 0.0969 0.0841 0.1513 0.5075 0.2257 0.1678 0.2638 0.3457 0.3024

Random 0.7779 0.6214 0.7527 0.6586 0.9570 0.9903 0.9321 0.7984 0.9259 0.9783

Table 4. p-values for the hypothesis test E
[
L̃(k̂)

]
≤ α against E

[
L̃(k̂)

]
> α for various LLMs and α over the EEDI dataset. Note that

the α values specify the experiment configuration and are not the significance levels of the hypothesis test.
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

GPT-3.5-turbo 0.9988 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GPT-4o-mini 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GPT-4o 0.1832 0.5820 0.9998 0.9732 0.9938 0.9807 0.9292 0.8259 0.9757 0.9922
Claude 3.5 Haiku 0.8656 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Llama 3.3 70B 0.9575 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mistral 7B 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DeepSeek-V3 0.9444 0.9789 0.9789 0.9981 1.0000 0.9992 1.0000 1.0000 1.0000 1.0000
Random 0.9800 1.0000 1.0000 0.9997 0.9954 0.9895 0.9979 0.9997 0.9920 0.9990

Table 5. Means and standard errors of L̃(k̂) over 100 random splits for various LLMs and α over the OpinionQA dataset.
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

GPT-3.5
-turbo

0.0547
(0.003)

0.1051
(0.0045)

0.1549
(0.0059)

0.2051
(0.0067)

0.2461
(0.0075)

0.3032
(0.0082)

0.3536
(0.0087)

0.4056
(0.0086)

0.4432
(0.0086)

0.4909
(0.009)

GPT-4o
-mini

0.0535
(0.0036)

0.1052
(0.0053)

0.1588
(0.0059)

0.2052
(0.0072)

0.2505
(0.008)

0.3014
(0.0089)

0.3574
(0.0088)

0.4104
(0.0087)

0.4484
(0.0086)

0.5027
(0.009)

GPT-4o
0.051

(0.0031)
0.1022

(0.0048)
0.1501

(0.0058)
0.2049

(0.0065)
0.2486

(0.0068)
0.3012

(0.0075)
0.3555

(0.0075)
0.4031

(0.0075)
0.4361

(0.0075)
0.489

(0.0078)
Claude-3-5

-Haiku
0.051

(0.0036)
0.0988

(0.0052)
0.1484

(0.0065)
0.2008
(0.007)

0.246
(0.0076)

0.2979
(0.008)

0.3448
(0.0082)

0.3899
(0.0084)

0.4284
(0.0089)

0.4813
(0.0092)

Llama-3-8B 0.0481
(0.0028)

0.1006
(0.0041)

0.1536
(0.0057)

0.1982
(0.0067)

0.2487
(0.0075)

0.3017
(0.0081)

0.3452
(0.0091)

0.3974
(0.009)

0.4442
(0.0091)

0.4996
(0.0092)

Llama-3.3
-70B

0.0496
(0.0031)

0.0983
(0.0043)

0.1458
(0.0057)

0.1984
(0.0066)

0.2464
(0.0067)

0.2955
(0.0078)

0.3479
(0.0078)

0.4032
(0.0086)

0.4453
(0.009)

0.4994
(0.0094)

Mistral-7B 0.049
(0.0033)

0.1075
(0.0046)

0.1586
(0.0053)

0.21
(0.0055)

0.2478
(0.0058)

0.2983
(0.0067)

0.3492
(0.0079)

0.4065
(0.0081)

0.4536
(0.0087)

0.5035
(0.0087)

DeepSeek-V3 0.0549
(0.0033)

0.106
(0.0046)

0.1571
(0.0052)

0.2062
(0.006)

0.2499
(0.0069)

0.3051
(0.0067)

0.3579
(0.0082)

0.4053
(0.0084)

0.4535
(0.0088)

0.5049
(0.0095)

Random 0.0478
(0.0029)

0.0986
(0.0046)

0.1462
(0.0055)

0.1975
(0.006)

0.2403
(0.0057)

0.2844
(0.0067)

0.3412
(0.0059)

0.3948
(0.0062)

0.4401
(0.0068)

0.4853
(0.0073)
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Table 6. Means and standard errors of L̃(k̂) over 100 random splits for various LLMs and α over the EEDI dataset.
α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

GPT-3.5
-turbo

0.0401
(0.0033)

0.0882
(0.0025)

0.1122
(0.0057)

0.1401
(0.0044)

0.2067
(0.0038)

0.26
(0.0051)

0.308
(0.0088)

0.2806
(0.0114)

0.3655
(0.0116)

0.3925
(0.0104)

GPT-4o
-mini

0.035
(0.0033)

0.0773
(0.0026)

0.1155
(0.0066)

0.1463
(0.006)

0.2074
(0.0055)

0.2425
(0.0037)

0.2909
(0.0043)

0.3395
(0.0108)

0.3417
(0.0117)

0.3747
(0.0109)

GPT-4o
0.0528

(0.0032)
0.099

(0.0047)
0.1365

(0.0039)
0.1891

(0.0057)
0.2313

(0.0075)
0.283

(0.0082)
0.3383
(0.008)

0.3931
(0.0074)

0.4342
(0.008)

0.4805
(0.0081)

Claude-3-5
-Haiku

0.0461
(0.0036)

0.0833
(0.0044)

0.1234
(0.0046)

0.1618
(0.0055)

0.1993
(0.0072)

0.2577
(0.008)

0.2772
(0.008)

0.3326
(0.0081)

0.3948
(0.0089)

0.4327
(0.0081)

Llama-3.3
-70B

0.0444
(0.0033)

0.0785
(0.0031)

0.1261
(0.0055)

0.1355
(0.0059)

0.2096
(0.0054)

0.2564
(0.0051)

0.2998
(0.0059)

0.348
(0.0061)

0.3988
(0.0085)

0.4235
(0.0133)

Mistral-7B 0.0366
(0.0033)

0.0829
(0.0043)

0.1064
(0.003)

0.1621
(0.0031)

0.2074
(0.008)

0.2447
(0.0098)

0.2716
(0.0108)

0.2858
(0.0055)

0.3337
(0.0043)

0.391
(0.005)

DeepSeek-V3 0.045
(0.0032)

0.0913
(0.0043)

0.1399
(0.005)

0.1835
(0.0057)

0.2153
(0.0068)

0.2777
(0.0071)

0.3223
(0.0067)

0.3667
(0.0069)

0.4166
(0.0075)

0.46
(0.0073)

Random 0.0446
(0.0026)

0.0645
(0.0038)

0.1235
(0.0064)

0.1812
(0.0055)

0.2338
(0.0062)

0.2851
(0.0065)

0.3299
(0.007)

0.3702
(0.0086)

0.4302
(0.0082)

0.4731
(0.0087)

D.2. Selected Simulation Sample Size

In Table 7 and Table 8, we present the detailed results for the selected simulation sample size k̂. They complement Figure 3.

Table 7. Average k̂ (with 95% margin of error in parentheses) for various LLMs and various α over the OpinionQA dataset. GPT-4o has
the largest k̂ on average.

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
GPT-3.5
-turbo

36.65
(1.064)

44.03
(0.9373)

44.62
(0.4879)

44.22
(0.4263)

43.59
(0.4794)

43.21
(0.5823)

43.44
(0.7403)

44.75
(0.7367)

45.22
(0.6492)

45.91
(0.5296)

GPT-4o
-mini

26.85
(0.7517)

33.68
(0.8189)

37.37
(0.5871)

37.56
(0.4058)

37.08
(0.5025)

38.4
(0.6345)

40.09
(0.6149)

41.36
(0.5745)

41.6
(0.4671)

41.51
(0.5328)

GPT-4o
54.1

(1.7862)
62.19

(1.2286)
65.35

(1.0516)
68.77

(0.9885)
69.58

(1.1095)
74.29

(1.5015)
81.83

(1.6431)
88.7

(1.5013)
89.37

(1.2831)
91.86

(1.2268)
Claude-3-5

-Haiku
35.75

(1.0428)
40.7

(0.7842)
42.46

(0.7336)
44.74

(0.6872)
45.07

(0.6561)
46.27

(0.6464)
47.79

(0.7881)
49.84

(0.8488)
50.37

(0.7415)
51.34

(0.6819)

Llama-3-8B 28.81
(0.6264)

31.93
(0.7149)

34.35
(0.4828)

34.83
(0.5382)

35.13
(0.6855)

37.3
(0.5248)

38.1
(0.5491)

38.9
(0.6747)

40.5
(0.8084)

44.25
(0.8016)

Llama-3.3
-70B

46.3
(0.6921)

47.67
(0.5339)

46.39
(0.5331)

48.12
(1.0276)

53.49
(1.2524)

56.21
(0.8797)

57.45
(0.7294)

58.04
(0.7947)

58.62
(1.0285)

61.8
(1.0627)

Mistral-7B 30.81
(0.2566)

33.47
(0.8928)

39.47
(0.8815)

44.59
(0.8935)

47.53
(0.8622)

52.43
(1.0825)

56.34
(1.0113)

58.43
(0.9535)

60.29
(1.1178)

64.85
(1.2481)

DeepSeek-V3
37.59

(1.4767)
46.75
(0.79)

46.66
(0.4771)

45.1
(0.6201)

46.03
(0.5657)

47.77
(0.6135)

47.76
(0.4606)

47.61
(0.48)

47.92
(0.6989)

49.51
(0.7031)

Random
17.09

(0.3761)
18.07

(0.4402)
19.33

(0.3361)
19.83

(0.4046)
19.85

(0.3261)
20.36

(0.3227)
20.01

(0.3191)
19.92

(0.2849)
19.93

(0.2662)
20.4

(0.2252)
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Table 8. Average k̂ (with 95% margin of error in parentheses) for various LLMs and various α over the EEDI dataset. DeepSeek-V3 has
the largest k̂ on average.

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
GPT-3.5
-turbo

5.68
(0.1033)

5.89
(0.0613)

5.19
(0.0769)

5.03
(0.0334)

4.99
(0.0195)

4.94
(0.0465)

4.71
(0.0889)

4.17
(0.0736)

4.29
(0.0889)

4.13
(0.0659)

GPT-4o
-mini

6.26
(0.086)

5.94
(0.0465)

5.44
(0.0973)

5.14
(0.068)

5.06
(0.0465)

5.0
(0)

4.99
(0.0195)

4.6
(0.096)

4.25
(0.0849)

4.15
(0.07)

GPT-4o
8.04

(0.1438)
7.82

(0.1672)
8.31

(0.1853)
8.1

(0.116)
7.81

(0.1609)
7.83

(0.152)
7.84

(0.1459)
7.93

(0.1308)
7.9

(0.1224)
8.17

(0.1178)
Claude-3-5

-Haiku
7.57

(0.1337)
7.42

(0.0967)
7.05

(0.0802)
6.82

(0.0849)
6.59

(0.0964)
6.47

(0.1017)
6.15

(0.07)
6.15

(0.07)
6.12

(0.0889)
6.04

(0.0674)
Llama-3.3

-70B
6.19

(0.0863)
5.94

(0.0542)
5.6

(0.096)
5.09

(0.0561)
5.05

(0.0427)
5.0

(0.0277)
5.0

(0.0392)
4.92

(0.0532)
4.83

(0.0736)
4.54

(0.0977)

Mistral-7B
5.48

(0.0979)
5.2

(0.0877)
5.01

(0.0195)
4.97

(0.0334)
4.68

(0.0914)
4.52

(0.0979)
4.29

(0.0889)
4.02

(0.0274)
4.0
(0)

4.0
(0)

DeepSeek-V3
10.35

(0.1695)
10.51

(0.1628)
10.76

(0.1841)
10.92

(0.1954)
11.21

(0.1551)
11.53

(0.1504)
11.67

(0.1594)
11.8

(0.1518)
11.88

(0.1337)
11.66

(0.1364)

Random
8.02

(0.1239)
7.06

(0.0465)
6.64

(0.1127)
6.92

(0.1198)
7.06

(0.1435)
7.53

(0.1223)
7.69

(0.1405)
7.49

(0.1828)
7.56

(0.1475)
7.59

(0.1361)

D.3. Half-Width of Confidence Interval

In Figure 6, Table 9, Figure 7 and Table 10, we present the detailed experiment results for the half-width of the synthetic
confidence interval Ssyn(k̂).

0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sy
nt

he
tic

 C
I w

id
th

gpt-3.5-turbo
gpt-4o-mini
gpt-4o
claude-3-5-haiku
Llama-3-8B
Llama-3.3-70B
Mistral-7B
DeepSeek-V3
random

Figure 6. Confidence interval half-width for various LLMs and α over the OpinionQA dataset.
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Table 9. Average half-width (with 95% margin of error in parentheses) of the synthetic confidence interval for various LLMs and α over
the OpinionQA dataset. GPT-4o has the shortest confidence interval on average.

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
GPT-3.5
-turbo

0.6401
(0.0099)

0.5241
(0.0058)

0.4825
(0.0027)

0.4568
(0.0021)

0.4373
(0.0024)

0.4198
(0.0027)

0.4017
(0.0033)

0.3803
(0.0031)

0.364
(0.0026)

0.348
(0.002)

GPT-4o
-mini

0.7465
(0.0097)

0.5999
(0.0072)

0.5279
(0.0043)

0.4958
(0.0027)

0.4745
(0.0032)

0.4457
(0.0037)

0.418
(0.0032)

0.3953
(0.0028)

0.3792
(0.0022)

0.3661
(0.0024)

GPT-4o
0.528

(0.009)
0.4405

(0.0041)
0.3991

(0.0031)
0.3667

(0.0025)
0.3466

(0.0026)
0.3208

(0.0031)
0.293

(0.0029)
0.2702

(0.0024)
0.2589

(0.0018)
0.2461

(0.0017)
Claude-3-5

-Haiku
0.6478

(0.0095)
0.5446

(0.0052)
0.4954

(0.0041)
0.4548

(0.0035)
0.4305

(0.0031)
0.4057

(0.0028)
0.383

(0.0031)
0.3604

(0.0031)
0.3449

(0.0026)
0.3292

(0.0023)

Llama-3-8B 0.7189
(0.0078)

0.6156
(0.0069)

0.5503
(0.0038)

0.5154
(0.0038)

0.4884
(0.0047)

0.4519
(0.0032)

0.4286
(0.0028)

0.4079
(0.0032)

0.3852
(0.0036)

0.3552
(0.0034)

Llama-3.3
-70B

0.5658
(0.0045)

0.502
(0.0029)

0.4732
(0.0026)

0.4393
(0.0044)

0.3965
(0.0048)

0.3683
(0.0029)

0.3489
(0.0023)

0.3336
(0.0022)

0.32
(0.0028)

0.3004
(0.0025)

Mistral-7B
0.6925

(0.0028)
0.6024
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Figure 7. Confidence interval half-width for various LLMs and α over the EEDI dataset.
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Table 10. Average half-width (with 95% margin of error in parentheses) of the synthetic confidence interval for various LLMs and α over
the EEDI dataset. DeepSeek-V3 has the shortest confidence interval on average.

α 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
GPT-3.5
-turbo

0.8085
(0.0075)

0.714
(0.0041)

0.7078
(0.0048)

0.6768
(0.002)

0.6457
(0.0015)

0.6203
(0.0034)

0.6106
(0.0062)

0.6229
(0.0049)

0.592
(0.0057)

0.5806
(0.0041)

GPT-4o
-mini

0.769
(0.005)

0.7107
(0.0031)

0.6922
(0.0061)

0.6703
(0.004)

0.6415
(0.0026)

0.616
(0)

0.5911
(0.0014)

0.5941
(0.0064)

0.5945
(0.0055)

0.5794
(0.0043)

GPT-4o
0.6794

(0.0059)
0.6215

(0.0062)
0.5613

(0.0068)
0.5343

(0.0039)
0.5181

(0.0052)
0.494

(0.0047)
0.4731

(0.0043)
0.4517

(0.0036)
0.4355

(0.0033)
0.4128
(0.003)

Claude-3-5
-Haiku

0.7001
(0.0059)

0.6364
(0.0041)

0.6069
(0.0035)

0.582
(0.0038)

0.5629
(0.0042)

0.5428
(0.0042)

0.533
(0.0028)

0.5122
(0.0027)

0.4947
(0.0036)

0.4797
(0.0027)

Llama-3.3
-70B

0.7734
(0.0052)

0.7108
(0.0036)

0.6821
(0.006)

0.6733
(0.0033)

0.6421
(0.0024)

0.6162
(0.0018)

0.5908
(0.0024)

0.5727
(0.0036)

0.5572
(0.0047)

0.5551
(0.0061)

Mistral-7B
0.823

(0.0073)
0.761

(0.0062)
0.7191

(0.0012)
0.681

(0.0027)
0.6693
(0.007)

0.6509
(0.0071)

0.6399
(0.0062)

0.633
(0.0018)

0.6107
(0)

0.5887
(0)

DeepSeek-V3
0.5984

(0.0045)
0.5351
(0.004)

0.4921
(0.0043)

0.4607
(0.0042)

0.4315
(0.0031)

0.4063
(0.0027)

0.3872
(0.0029)

0.3699
(0.0025)

0.3548
(0.002)

0.3453
(0.0021)

Random
0.6799

(0.0056)
0.6517
(0.002)

0.6263
(0.0053)

0.5786
(0.0052)

0.545
(0.0058)

0.5032
(0.0041)

0.4779
(0.0049)

0.4665
(0.0061)

0.4459
(0.0045)

0.4287
(0.0039)
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