
Graph Neural Networks Do Not Always Oversmooth

Bastian Epping1, Alexandre René1, Moritz Helias2,3, Michael T. Schaub1

1RWTH Aachen University, Aachen, Germany
2Department of Physics, RWTH Aachen University, Aachen, Germany

3Institute for Advanced Simulation (IAS-6), Computational and Systems Neuroscience,
Jülich Research Centre, Jülich, Germany

epping@cs.rwth-aachen.de, rene@cs.rwth-aachen.de,
m.helias@fz-juelich.de, schaub@cs.rwth-aachen.de

Abstract

Graph neural networks (GNNs) have emerged as powerful tools for processing
relational data in applications. However, GNNs suffer from the problem of over-
smoothing, the property that features of all nodes exponentially converge to the
same vector over layers, prohibiting the design of deep GNNs. In this work we
study oversmoothing in graph convolutional networks (GCNs) by using their Gaus-
sian process (GP) equivalence in the limit of infinitely many hidden features. By
generalizing methods from conventional deep neural networks (DNNs), we can
describe the distribution of features at the output layer of deep GCNs in terms
of a GP: as expected, we find that typical parameter choices from the literature
lead to oversmoothing. The theory, however, allows us to identify a new, non-
oversmoothing phase: if the initial weights of the network have sufficiently large
variance, GCNs do not oversmooth, and node features remain informative even
at large depth. We demonstrate the validity of this prediction in finite-size GCNs
by training a linear classifier on their output. Moreover, using the linearization
of the GCN GP, we generalize the concept of propagation depth of information
from DNNs to GCNs. This propagation depth diverges at the transition between
the oversmoothing and non-oversmoothing phase. We test the predictions of our
approach and find good agreement with finite-size GCNs. Initializing GCNs near
the transition to the non-oversmoothing phase, we obtain networks which are both
deep and expressive.

1 Introduction

Graph neural networks (GNNs) reach state of the art performance in diverse application domains
with relational data that can be represented on a graph, transferring the success of machine learning
to data on graphs [47, 12, 23, 7]. Despite their good performance, GNNs come with the limitation of
oversmoothing, a phenomenon where node features converge to the same state exponentially fast for
increasing depth [35, 45, 30, 2]. Consequently, only shallow networks are used in practice [19, 1]. In
contrast, it is known that the depth (i.e. the number of layers) is key to the success of deep neural
networks (DNNs) [32, 33]. While for conventional DNNs shallow networks are proven to be highly
expressive [6], in practice deep networks are much easier to train and are thus the commonly used
architectures [36]. Furthermore, in most GNN architectures each layer only exchanges information
between neighboring nodes. Deep GNNs are therefore necessary to exchange information between
nodes that are far apart in the graph [9]. In this study, we investigate oversmoothing in graph
convolutional networks (GCNs) [19].

To study the effect of depth, we consider the propagation of features through the network: given
some input x(0)

α , each intermediate layer l produces features x(l)
α which are fed to the next layer. We

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

follow the same approach that has successfully been employed in previous work to design trainable
DNNs [37]: consider two nearly identical inputs x

(0)
α and x

(0)
β and ask whether the intermediate

features x(l)
α and x

(l)
β become more or less similar as a function of depth l. In the former case, the

inputs may eventually become indistinguishable. In the latter case, the inputs become less similar
over layers: the distance between them increases over layers [32, 37] until eventually it is bounded by
the non-linearities of the network. The distance then typically converges to a fixed value determined
by the network architecture, independent of the inputs.

One can therefore identify two phases: One says that a network is regular if two inputs eventually
converge to the same value as function of l; conversely, one says that a network is chaotic if two
inputs remain distinct for all depths [24]. Neither phase is ideal for training deep networks since
in both cases all the information from the inputs is eventually lost; the typical depth at which this
happens is called the information propagation depth. However, this propagation depth diverges at
the transition between the two phases, allowing information – in principle – to propagate infinitely
deep into the network. While these results are calculated in the limit of infinitely many features in
each hidden layer, the information propagation depth has been found to be a good indicator of how
deep a network can be trained [37]. A usual approach for conventional DNNs is thus to initialize
them at the transition to chaos. Indeed, Schoenholz et al. [37] were able to use this approach to train
fully-connected, feedforward networks with hundreds of layers. Similar methods have recently been
adapted to the study of transformers, successfully predicting the best hyperparameters for training
[5].

In this work we address the oversmoothing problem of GCNs by extending the framework described
above in the limit of infinite feature dimensions from DNNs to GCNs: here the two different inputs
x
(0)
α and x

(0)
β correspond to the input features on two nodes, labeled α and β. The mixing of

information across different nodes implies that output features on node α depend on input features on
node β and vice versa. Thus it is not possible to look at the distance of x(l)

α and x
(l)
β independently

for each pair α and β as in the DNN case. Rather, one has to solve for the distance between each
distinct pair of nodes in the graph simultaneously: the one dimensional problem for DNNs thus
becomes a multidimensional problem for GCNs. However, by linearizing the multidimensional
GCN dynamics, we can generalize the notion of information propagation depth to GCNs: instead of
being a single value, we find that a given GCN architecture comes with a set of potentially different
information propagation depths, each corresponding to one eigendirection of the linearized dynamics
of the system.

This approach allows us to extend the concept of a regular and a chaotic phase to GCNs: in the
regular phase, which describes most of the GCNs studied in the current literature, distances between
node features shrink over layers and exponentially attain the same value. We therefore call this the
oversmoothing phase. On the other hand, if one increases the variance of the weights at initialization,
it is possible to transition into the chaotic phase. In this phase, distances between node features
converge to a fixed but finite distance at infinite depth. The convergence point is fully determined
by the underlying graph structure and the hyperparameters of the GCN and may differ for different
pairs of nodes. GCNs initialized in this phase thus do not suffer from oversmoothing. We find that
the convergence point is informative about the topology of the underlying graph and may be used for
node classification with GCNs of more than 1, 000 layers. Near the transition point, GCNs at large
depth offer a trade-off between feature information and information contained in the neighborhood
relation of the graph. We test the predictions of this theory and find good agreement in comparison to
finite-size GCNs applied to the contextual stochastic block model [8]. On the citation network Cora
[19] we reach the performance reported in the original work by Kipf and Welling [19] beyond 100
layers. Our approach applies to graphs with arbitrary topologies, depths, and non-linearities.

2 Related Work

Oversmoothing is a well-known challenge within the GNN literature [21, 35]. On the theoretical side,
rigorous techniques have been used to prove that oversmoothing is inevitable. The authors in [30]
show that GCNs with the ReLU non-linearity exponentially lose expressive power and only carry
information of the node degree in the infinite layer limit. While the authors notice that their upper
bound for oversmoothing does not hold for large singular values of the weight matrices, they do not

2

identify a non-oversmoothing phase in their model. These results have been extended in [2] to handle
non-linearities different from ReLU. Also graph attention networks have been proven to oversmooth
inevitably [45]. Their proof, however, makes assumptions on the weight matrices which, as we will
show, exclude networks in the chaotic, non-oversmoothing phase.

On the applied side, a variety of heuristics have been developed to mitigate oversmoothing [49, 4, 3,
22, 40, 15]. E.g., the authors in [49] introduce a normalization layer which can be added to a variety
of deep GNNs to make them trainable. Another approach is to introduce residual connections and
identity mappings, directly feeding the input to layers deep in the network [4, 46]. Other studies
suggest to train GNNs to a limited number of layers to obtain the optimal amount of smoothing
[18, 46]. The recent review [17] proposes a unified view to order existing heuristics and guide further
research. While these heuristics improve performance at large depths, they also add to the complexity
of the model and impose design choices. Our approach, on the other hand, explains why increasing
the weight variance at initialization is sufficient to prevent oversmoothing.

3 Background

3.1 Network architecture

In this paper we study a standard graph convolutional network (GCN) architecture [19] with an input
feature matrix X(0) ∈ RN×d0 , where N is the number of nodes in the graph and d0 the number of
input features. Bold symbols throughout represent vector or matrix quantities in feature space. The
structure of the graph is represented by a shift operator A ∈ RN×N . We write the features of the
network’s l-th layer as X(l) ∈ RN×dl ; they are computed recursively as

X(l) = ϕ(AX(l−1)W (l)⊤ + 1b(l)⊤) , (1)

with ϕ an elementwise non-linear activation function, b(l) an optional bias term, weight matrices
W (l) ∈ Rdl×dl−1 , and 1 ∈ RN a vector of all ones. We note that many GNN architectures studied
in the literature are unbiased, which can be recovered by setting b(l) to zero. We use a noisy linear
readout, so that the output of the network is given by

Y = AX(L)W (L+1)⊤ + 1b(L+1)⊤ + ϵ , (2)

with ϵ ∈ RN×dL+1 being independent Gaussian random variables: ϵα,i
i.i.d.∼ N (0, σ2

ro). The readout
noise ϵ is included both to promote robust outputs and to prevent numerical issues in the matrix
inversion in Equations (11) and (12). We use dL+1 to denote the dimension of outputs.

For the following it will be useful to consider the activity of individual nodes. To avoid ambiguity
in the indexing, we use lower Greek indices for nodes and upper Latin indices for layers. We thus
rewrite (1) as

x(l)
α = ϕ(h(l)

α) , (3)

h(l)
α =

∑
β

AαβW
(l)x

(l−1)
β + b(l) , (4)

yα = h(L+1)
α + ϵα , (5)

where x
(l)
α ∈ Rdl is the feature vector of node α in layer l and yα ∈ RdL+1 the network output for

node α. The values h(l)
α ∈ Rdl are linear functions of the features x(l−1)

β and represent the input
to the activation functions; we therefore refer to them as preactivations. The non-linearity ϕ(x) is
applied elementwise to the preactivations h(l)

α . While we leave ϕ(x) general for the development of
the theory, we use ϕ(x) = erf(

√
π
2 x) for the experiments in Section 4; this choice allows us to carry

out certain integrals analytically. The scaling factor in the erf is chosen such that ∂ϕ
∂x (0) = 1. We use

independent and identical Gaussian priors for all weight matrices and biases, W (l)
ij

i.i.d.∼ N (0,
σ2
w

dl
) and

b
(l)
i

i.i.d.∼ N (0, σ2
b) with W

(l)
ij and b

(l)
i being the matrix or vector entries of W (l) and b(l), respectively.

As a shift operator, we choose
A = I− g

dmax
(D −A) , (6)

3

where A is the adjacency matrix, I the identity in RN×N , Dαβ = δαβ
∑

γ Aαγ is the degree matrix
and dmax is the maximal degree. The parameter g ∈ (0, 1) allows us to weigh the off-diagonal
elements compared to the diagonal ones. By construction the shift operator is row-stochastic, which
means that it has constant sums over columns

∑
β Aαβ = 1. We will make use of this property in our

analysis in Section 4.2. The generalization to non-stochastic shift operators will be shortly addressed
later.

3.2 Gaussian process equivalence of GCNs

In a classic machine learning setting, such as classification, one draws random initial values for all
parameters and subsequently trains the parameters by optimizing the weights and biases to minimize
a loss function. This learned parameter set is then used to classify unlabeled inputs. In this paper
we take a Bayesian point of view in which the network parameters are random variables, inducing a
probability distribution over outputs which becomes Gaussian in the limit of infinitely many features.
Thus infinitely wide neural networks are equivalent to Gaussian processes (GPs) [27, 43, 34]. In the
study of DNNs this is a standard approach, yielding results which empirically hold also for finite-size
networks trained with gradient descent [37].

In previous work [28, 14, 29] it has been shown that also the GCN architecture described in Section 3.1
is equivalent to a GP in the limit of infinite feature space dimensions, dl → ∞ for all hidden layers
l = 1, . . . , L, while input and readout layer still have tunable, finitely many features. In the GP
description, all features are Gaussian random variables with zero mean and identical prior variance in
each feature dimension. The description of the GCN thus reduces to a multivariate normal,

H(l) ∼ N (0,K(l)) , (7)

where H(l) is the vector of hidden node features of layer l, H(l) = (h
(l)
0 , h

(l)
1 , . . . , h

(l)
N)⊤ under the

prior distribution of weights and biases. The covariance matrices K(l) ∈ RN×N are determined
recursively: knowing that the h

(l)
α follow a zero-mean Gaussian with covariance ⟨h(l)

δ h
(l)
γ ⟩ = K

(l)
δγ ,

we define

C
(l)
γδ =

〈
ϕ
(
h(l)
γ

)
ϕ
(
h
(l)
δ

)〉
h
(l)
γ ,h

(l)
δ

. (8)

For simplicity we use ϕ(x) = erf(
√
π
2 x) for which Equation (8) can be evaluated analytically; see

Appendix A for details. It follows from (3) that

K
(l+1)
αβ = σ2

b + σ2
w

∑
γ,δ

AαγAβδC
(l)
γδ , (9)

as shown in [28, 29].

In a semi-supervised node classification setting, we split the underlying graph into N test unlabeled
test nodes and N train labeled training nodes (N test +N train = N); we correspondingly split the
output random variable Yi ∈ RN for output dimension i into Y ⋆

i ∈ RNtest

and Y D
i ∈ RNtrain

.
Features on the test nodes are predicted by conditioning on the values of the training nodes: p

(
Y ∗
i =

y∗i | Y D
i = yDi

)
. This leads to the following posterior for the unobserved labels (see [34, 20] for

details):

Y ⋆
i ∼ N (mGP

i ,KGP) , (10)

mGP
i = K

(L+1)
⋆D (K

(L+1)
DD + Iσ2

ro)
−1Y D

i , (11)

KGP = K
(L+1)
⋆⋆ −K

(L+1)
⋆D (K

(L+1)
DD + Iσ2

ro)
−1(K

(L+1)
⋆D)⊤ . (12)

Here the ⋆ and D indices represent test and training data, respectively, i.e. KDD ∈ RNtrain×Ntrain

is the covariance matrix of outputs of all training nodes and K⋆D ∈ RNtest×Ntrain

is the covariance
between test data and training data. Finally, I is here the identity in RNtrain×Ntrain

.

3.3 Feature distance

To measure and quantify how much a given GCN instance oversmoothes we use the squared Euclidean
distance between pairs of nodes, and normalize by the number of node features dl so that the measure

4

stays finite in the GP limit dl → ∞. This allows us to quantitatively test the predictions of our
approach on the node-resolved distances of features. To summarize the amount of oversmoothing
across the GCN, we also define the measure µ(X) as the average squared Euclidean distance across
all pairs of nodes:

d(xα,xβ) =
1

dl
||xα − xβ ||22 = C ′

αα + C ′
ββ − 2C ′

αβ , (13)

µ(X) =
1

2N(N − 1)

N∑
α=1

N∑
β=α+1

d(xα,xβ) . (14)

Here C ′
αβ =

xα·xβ

dl
is the normalized scalar product. We use the notation C ′

αβ to avoid confusion
with the expectation value Cαβ defined in the GCN GP (8). In the infinite feature dimensions limit,
the quantities C ′

αβ in Equation (14) converge to the GCN GP quantities Cαβ defined by (8). In the
following sections we will therefore use the Cαβ as predictions for the C ′

αβ of finite-size GCNs. The
normalization for d(xα,xβ) and µ(X) can be interpreted as an average (squared) feature distance,
independent of the size of the graph and the number of feature dimensions.

4 Results

4.1 Propagation depths

We are interested in analyzing GCNs at large depth. We a priori assume that at infinite depth the
GCN converges to an equilibrium in which covariances are static over layers K

(l)
αβ

l→∞−−−→ Keq
αβ ,

irrespective of whether the GCN is in the oversmoothing or the chaotic phase. A posteriori we show
that this assumption indeed holds. Since the fixed point Keq is independent of the input, a GCN at
equilibrium cannot use information from the input to make predictions (although, as we will see,
in the non-oversmoothing phase it can still use the graph structure). In the following we analyze
the equilibrium covariance Keq to which GCNs with different σ2

w, σ2
b and A converge to, how they

behave near this equilibrium, and at which rate it is approached.

Close to equilibrium, the covariance matrix K(l) can be written as a perturbation around Keq
αβ :

K
(l)
αβ = Keq

αβ +∆
(l)
αβ . (15)

Under the assumption that the perturbation ∆
(l)
αβ is small, we can linearize the GCN GP

∆
(l+1)
αβ =

∑
γ,δ

Hαβ,γδ∆
(l)
γδ +O((∆(l))2) , (16)

Hαβ,γδ = σ2
w

∑
θ,ϕ

1

2
(1 + δγ,δ)AαθAβϕ

∂Cθϕ

∂Kγδ
[Keq] , (17)

where we use square brackets to denote the point around which we linearize. The factor 1
2 (1+δγ,δ) is

introduced to correctly count on- and off-diagonal elements of the covariance matrix, while the shift
operators A and the derivative ∂Cθϕ

∂Kγδ
[Keq] originate from the message passing and the non-linearity

ϕ, respectively. The latter would result in a Kronecker delta ∂Cθϕ

∂Kγδ
[Keq] = δθϕ,γδ for linear networks.

The calculation for Hαβ,γδ is done in detail in Appendix B.

A conceptually similar linearization has been done in [37] for DNNs. In the DNN case, different
inputs to the networks—which correspond to input features on different nodes here—can be treated
separately, leading to decoupling of Equation (16). The shift operator in the GCN dynamics, in
contrast, couples features on neighboring nodes – the matrix Hαβ,γδ is in general not diagonal.

We can still achieve a decoupling by interpreting Equation (16) as a matrix multiplication, if αβ and
γδ are understood as double indices, and by finding the eigendirections of the matrix H ∈ RN2×N2

.
Taking the right eigenvectors V (i)

αβ as basis vectors, we can decompose the covariance matrix ∆
(l)
αβ =∑

i ∆
(l)
i V

(i)
αβ and thus obtain the overlaps ∆(l)

i which evolve independently over layers. If the fixed

5

point Keq is attractive, all eigenvalues have absolute values smaller than one: |λi| < 1. This allows
us to define the propagation depth ξi := − 1

ln(λi)
for each eigendirection, very similar to the DNN

case [37]. In this form, the linear update equation (16) simplifies to

∆
(l+d)
i = λd

i∆
(l)
i = exp(−d/ξi)∆

(l)
i , (18)

thus decoupling the system. For details on the linearization and some properties of the transition
matrix H refer to Appendix B.

4.2 The non-oversmoothing phase of GCNs

In this section we establish the chaotic, non-oversmoothing phase of GCNs, and show that this phase
can be reached by simple tuning of the weight variance σ2

w at initialization. We start by noticing
that a GCN is at a state of zero feature distance µ(X(l)) = 0, if the covariance matrix has constant
entries, K(l)

αβ = k(l): Constant entries in K
(l)
αβ imply that all preactivations are the same, h(l)

α = h
(l)
β ,

which in turn implies C
(l)
αβ = c(l) (by Equation (8)); the latter is equivalent to features being the

same, x(l)
α = x

(l)
β . Due to our choice of the shift operator, the state of zero distance (and thus of

K
(l)
αβ = k(l)) is always a fixed point. Assuming that C(l)

αβ = c(l), we obtain

K
(l+1)
αβ = σ2

b + σ2
w

∑
γ

Aαγ︸ ︷︷ ︸
=1

∑
δ

Aβδ︸ ︷︷ ︸
=1

c(l) = k(l+1) . (19)

In an overmoothing GCN, this fixed point is also attractive, meaning that also pairs of feature
inputs x(0)

α , x(0)
β which initially have non-zero distance d(x

(0)
α ,x

(0)
β) ̸= 0 (and thus µ(X(0)) ̸= 0)

eventually converge to the point of vanishing distance. The chaotic, non-oversmoothing phase of
a GCN is determined by the condition that this point of constant covariance K

(l)
αβ = k(l) becomes

unstable. More formally, this can be written in terms of eigenvalues of the linearized dynamics as

max{|λp
i |}

?
> 1 . (20)

Here and in the following we will use the superscript p to denote that the linearization is done around
the state of constant covariance across nodes in both the oversmoothing and non-oversmoothing
phase. The propagation depth ξi := − 1

ln(λi)
diverges at the phase transition where one λi approaches

1. Intuitively speaking, Equation (20) asks whether a small perturbation from the zero distance case
diminishes (max{|λp

i |} < 1), in which case the network dynamics is regular, or grows (max{|λp
i |} >

1), in which case the network is chaotic and thus does not oversmooth. The value of max{|λp
i |}

depends on the choices of A, σ2
w and σ2

b (by the dependence of Keq on σ2
b). In the following we will

concentrate on tuning σ2
w to reach the non-oversmoothing phase.

4.2.1 Complete graph

To illustrate the implications of the analysis described above, we first consider a particularly simple
GCN on a complete graph; this allows us to calculate the condition for the transition to chaos
analytically, and gain some insight into the interesting parameter regimes. Moreover, we use this
pedagogical example to show that although the GP equivalence is only true in the limit of infinite
hidden feature dimensions, dl → ∞, our results still describe finite-size GCNs well.

For a complete graph with adjacency matrix Aαβ = 1− δαβ , our choice of shift operator A in (6)
has entries Aαβ = g

N−1 + δαβ(1− Ng
N−1). This model is a worst-case scenario for oversmoothing,

since the adjacency matrix leads to inputs that are shared across all nodes of the network. We make
the ansatz that the equilibrium covariance is of the form Keq

αβ = Keq
c + δαβ(K

eq
a − Keq

c) due to
symmetry which reduces the problem to only two variables. In this formulation we can use similar
methods as in the DNN case [37] to determine the non-oversmoothing condition on the l.h.s in (20)
(Details are given in Appendix C).

Figure 1 shows how a GCN on a complete graph can be engineered to be non-oversmoothing by simple
tuning of the weight variance σ2

w. Panel a) shows that increasing the weight variance σ2
w or decreasing

6

Figure 1: Simulations and GP prior of a GCN on a complete graph with N = 5 nodes, shift operator
Aαβ = g

N−1 + δαβ(1− Ng
N−1), vanishing bias σ2

b = 0 and ϕ(x) = erf(
√
π
2 x). a) The phase diagram

dependent on σ2
w and g. The equilibrium feature distance µ(X) obtained from computing the GCN

GP prior for L = 4, 000 layers is shown as a heatmap, the red line is the theoretical prediction for the
transition to the non-oversmoothing phase. b) Same as in a) but color coding shows whether µ(X) is
close to zero (black) or not (white) with precision 10−5. The red line again shows the theoretically
predicted phase transition. c) Feature distance µ(X(l)) for a random input X(0)

αi
i.i.d.∼ N (0, 1) as a

function of layer l. Parameters are written in the panel in matching colors and marked with color
coded crosses in the phase diagram in panel b). Feature dimension of the hidden layers is dl = 200,
crosses show the mean of 50 network realizations, solid curves the theoretical predictions.

the size of the off-diagonal elements g both shift the network towards the non-oversmoothing phase.
Both parameters also increase the equilibrium feature distance beyond the transition. The theoretical
prediction for the transition is calculated in Appendix C and shown as the red line. Panel b) confirms
the accuracy of this calculation. Larger values of g increase smoothing, and thus larger values of σ2

w
are needed to compensate. Moreover, our formalism allows us to predict the evolution of feature
distances over layers correctly, as can be confirmed in panel c). We find again that GCNs with
parameters past the transition do not oversmooth.

4.2.2 General graphs

For general graphs, the transition to the non-oversmoothing phase given by Equation (20) can be
determined numerically. As a proof of concept, we demonstrate this approach for the Contextual
Stochastic Block Model (CSBM) [8], a common synthetic model which allows generating a graph
with two communities and community-wise correlated features on the nodes. Pairs of nodes within
the same community have higher probability of being connected and have feature vectors which are
more strongly correlated, compared with pairs of nodes from different communities.

Given the underlying graph structure, we can construct the linear map H from Equation (16) and
the analytical solution for Cθϕ in Appendix A. Finding the set of eigenvalues is then a standard
task. We show the applicability of our formalism in Figure 2 by showing that GCNs degenerate to
a zero distance state state exactly when σ2

w < σ2
w,crit. Panel a) shows how this procedure correctly

predicts the transition in the given CSBM instance: The maximum feature distance between any
pair of nodes increases from zero at the point where the state K

(l)
αβ = k(l) becomes unstable. This

means that beyond this point, the GCN has feature vectors that differ across nodes and therefore
does not oversmooth. This is more explicitly shown in panels b) and c), where the equilibrium
feature distance is plotted as a heatmap. At point A (panel b)), within the oversmoothing phase, all
equilibrium feature distances are indeed zero, the network therefore converges to a state in which all
features are the same. At point B (panel c)) on the other hand, pairs of nodes exist that have finite
distance. In the latter case, one can recognize the community structure of the CSBM: the lower left
and upper right quadrants are lighter than the diagonal ones, indicating larger feature distances across
communities than within. The equilibrium state thus contains information about the graph topology.
This phenomenon is also observed in panel d), where we show the predicted feature distance averaged
for nodes within or between classes as a function of layers compared to finite-size simulations. Again,
theoretical predictions match with simulations. Thus also on more general graphs the presented
formalism predicts the transition point between the oversmoothing and the non-oversmoothing phase,
corresponding to a transition between regular and chaotic behavior.

7

1.5 2.0
2
w

0.0

0.5

1.0

A

B

a)

max (d(x , x))
maxi(| p

i |)

50 100
node

25

50

75

100

no
de

b)
d(x , x) at A

50 100
node

25

50

75

100

no
de

c)
d(x , x) at B

101 103

layer l

0.00

0.25

0.50

0.75

av
g

of
 d

(x
,x

)

d)
within class
between classes

0.0

0.2

0.4

Figure 2: The non-oversmoothing phase in a contextual stochastic block model instance with
parameters N = 100, d = 5, λ = 1. The shift operator is chosen according to (6) with g = 0.3,
and σ2

b = 0 and ϕ(x) = erf(
√
π
2 x). a) The maximum feature distance between any pair of nodes in

equilibrium obtained from computing the GCN GP prior for L = 4, 000 layers (blue) and the largest
eigenvalue of the linearized GCN GP dynamics at the zero distance state as a function of weight
variance σ2

w. The red line marks the point where maxi{|λp
i |} = 1. b) Heatmap of the equilibrium

distance matrix with entries dαβ = d(xα,xβ) (Equation (13)) at σ2
w = 1.3, marked as point A in

panel a). Colorbar shared with the plot in c). c) Same as b) but at point B with σ2
w = 2. d) Features

distances d
(l)
αβ = d(x

(l)
α ,x

(l)
β) as a function of layers for random inputs X

(0)
αi

i.i.d.∼ N (0, 1) and a
finite-size GCN with dl = 200, averaged for distances for pairs of nodes within the same community
(red) and across communities (purple).

We discuss how the assumptions on weight matrices in related theoretical work [2, 45] exclude
networks in the chaotic phase in Appendix D, explaining why the non-oversmoothing phase has
not been reported before. In Appendix E we observe how increasing the weight variance increases
the oversmoothing measure µ(X) in equilibrium also in the case of the more common shift oper-
ator proposed in the original work [19], despite the fact that this shift operator does not have the
oversmoothed fixed point in the sense of Equation (19).

4.3 Implications for performance

Lastly we want to investigate the implications of the non-oversmoothing phase on performance.
We do this by applying the GCN GP as well as a finite-size GCN to the task of node classification
in the CSBM model and measure their performance, shown in Figure 3. Panel a) shows how the
generalization error of the GCN GP changes depending on the weight variance σ2

w and the number
of layers L. In the oversmoothing phase where most GCNs in the literature are initialized (see
Appendix D), the generalization error increases significantly already after only a couple of layers.
We observe the best performance near the transition to chaos where the GCN GP stays informative
up to 100 layers. In panel b) we test the generalization error for even deeper networks. While the
generalization error increases to one (being random chance) in the oversmoothing phase, GCN GPs
in the chaotic phase stay informative even at more than a thousand layers. This can be explained
by Figure 2: For such deep networks, the dynamics are very close to the equilibrium and thus no
information of the input features X(0) is transferred to the output. The state, however, still contains
information of the network topology from the adjacency matrix, leading to better than random chance
performance. In panel c) we explicitly show the layer dependence of the generalization error for the
GCN GP at the critical point, in the oversmoothing and in the chaotic phase. Again, we see a fast
performance drop for oversmoothing networks, while in the chaotic phase and at the critical point
the GCN GP obtains good performance also at large depths, with performance peaking at L ≈ 15
layers. Tuning the weight variance thus not only prevents oversmoothing, but may also allow the
construction of GCNs with more layers and possibly better generalization performance.

In the study of deep networks, results obtained in the limit of infinite feature dimensions dl → ∞
often are also applicable for finite-size networks [32, 37]. In panel d) we conduct a preliminary
analysis for finite-size GCNs by measuring the performance of randomly initialized GCNs for which
we only train the readout layer via gradient descent. Indeed, we observe similar behavior as for the
GCN GP: Performance drops rapidly over layers in the oversmoothing phase, while performance
stays high over many layers at the critical point and in the chaotic phase and peaks at L ≈ 15 layers.

8

0 2
2
w

2
w, crit

0

25

50

75

100

la
ye

r L

a)

0 2
2
w

2
w, crit

0.25

0.50

0.75

1.00

ge
n

er
ro

r E

b)

101 103

layer L

0.5

1.0

1.5

ge
n

er
ro

r E

c) GCN GP
oversmoothing
non-oversmoothing
critical

101 103

layer L

0.5

1.0

1.5

ge
n

er
ro

r E

d) finite size GCN
oversmoothing
non-oversmoothing
critical

0.4

0.6

0.8

1.0

ge
n

er
ro

r E

Figure 3: Generalization error (mean squared error) of the Gaussian process for a CSBM with
parameters N = 20, d = 5, λ = 1, γ = 1 and µ = 4. The shift operator is defined in (6) with
g = 0.1, other parameters are σ2

b = 0, ϕ(x) = erf(
√
π
2 x) and σro = 0.01. In all panels we use

N train = 10 training nodes and N test = 10 test nodes, five training nodes from each of the two
communities. Labels are ±1 for the two communities, respectively. For all panels, we show averages
over 50 CSBM instances. a) Heatmap of the generalization error of the GCN GP dependent on number
of layers L and weight variance σ2

w. The red line shows the transition to the non-oversmoothing phase.
b) Generalization error dependent on weight variance σ2

w and depths L = 1, 4, 16, 64, 256, 1024
from turquoise to dark blue. c) Generalization error dependent on the layer for the GCN GP at the
critical line σ2

w = σ2
w,crit, in the oversmoothing phase σ2

w = σ2
w,crit − 1 and the non-oversmoothing

phase σ2
w = σ2

w,crit + 1. d) Performance of randomly initialized finite-size GCNs with dl = 200
for l = 1, . . . , L where only the linear readout layer is trained with gradient descent (details in
Appendix F) at the critical line σ2

w = σ2
w,crit, in the oversmoothing phase σ2

w = σ2
w,crit − 1 and the

non-oversmoothing phase σ2
w = σ2

w,crit + 1.

0 2
2
w

2
w, crit

0

25

50

75

la
ye

r L

a) gen error E

0 100 200
layer L

0.4

0.6

0.8
b)

accuracy
gen error

0.4

0.6

0.8

1.0

Figure 4: GCN GP performance on the Cora datset
[38]. a) Generalization error (mean squared error)
as a function of layers L and weight variance σ2

w−
σ2
w,crit. for our stochastic shift operator (6) with

g = 0.9. The value of σ2
w,crit. ≈ 1 is determined

numerically in Appendix G. b) Layer dependent
generalization error and accuracy for GCNs near
the transition σ2

w = σ2
w,crit.+0.1. Grey dashed line

shows accuracy obtained for GCNs in the original
work [19]. Numerical details in Appendix F.

Additionally, we test the performance of the
GCN GP on the real world citation network
Cora [38]. Evaluating the eigenvalue condition
(20) would be computationally expensive for
such a large dataset, therefore we find the tran-
sition by numerically evaluating the feature dis-
tance µ(X) in equilibrium and search for the
σ2
w at which this distance becomes non-zero.

This procedure results in σ2
w,crit ≈ 1 and is

presented in more detail in Appendix G. Fig-
ure 4 panel a) shows the performance of the
GCN GP dependent on the number of layers
L and weight variance σ2

w: as for the CSBM
in Figure 3 we observe that the performance
for deep GCN GPs is best near the transition
in the non-oversmoothing phase. Furthermore,
GCN GPs with more layers achieve lower gen-
eralization error. This is shown more directly
in panel b). There we observe the layer depen-
dence for GCN GPs near the transition in the
non-oversmoothing regime. Indeed, the accu-
racy increases up to a hundred layers, reaching the accuracy of finite-size GCNs stated in [19].

Near the transition, accuracy increases for up to L = 100, and the generalization error improves even
beyond this. We hypothesize that this many layers are required for high performance partly due to our
choice of the shift operator. The Cora dataset has a maximum degree dmax = 168 leading to small
off-diagonal elements for the choice of our shift operator: Recall that in Equation (6), the parameter
g is constrained to be g ∈ (0, 1). As a consequence, the off-diagonal elements of the shift operator
are Aij <

1
dmax

= 1
168 . Many convolutional layers are then needed to incorporate information from a

node’s neighbors.

One might wonder whether it is possible to initialize weights in say the oversmoothing regime, and
transition to the non-oversmoothing regime during training. We argue that this is possible in the case
of Langevin training (Appendix H).

9

5 Discussion

In this study we used the equivalence of GCNs and GPs to investigate oversmoothing, the property that
features at different nodes converge over layers to the same feature vector in an exponential manner.
By extending concepts such as the propagation depth and chaos from the study of conventional deep
feedforward neural networks [37], we are able to derive a condition to avoid oversmoothing. This
condition is phrased in terms of an eigenvalue problem of the linearized GCN GP dynamics around
the state where all features are the same: This state is stable if all eigenvalues are smaller than one,
thus the networks do oversmooth. If one eigenvalue, however, is larger than one, the state where
the features are the same on all nodes becomes unstable. While most GCNs studied in the literature
are in the oversmoothing phase [2, 45], the non-oversmoothing phase can be reached by a simple
tuning of the weight variance at initialization. An analogy can be drawn between the chaotic phase
of DNNs and the non-oversmoothing phase of GCNs. Previous theoretical works have proven that
oversmoothing is inevitable in some GNN architectures, among them GCNs; these works, however,
make crucial assumptions on the weight matrices, constraining their variances to be in what we
identify as the oversmoothing phase. Near the transition, we find GCNs which are both deep and
expressive, matching the originally reported GCN performance [19] on the Cora dataset with GCN
GPs beyond 100 layers.

Limitations. The current analysis is based on the equivalence of GCNs and GPs which strictly holds
only in the limit of infinite feature dimension. GCNs with large feature vectors (dl = 200) are
well described by the theory, as shown in Section 4. For a small number of feature dimensions,
however, we expect deviations from the asymptotic results. Throughout the main part of this work,
we assumed a row-stochastic shift operator which made the equilibrium Keq in the oversmoothing
phase particularly simple. For other shift operators, we expect qualitatively similar results while the
equilibrium Keq may look different in detail. In our preliminary experiments on the common shift
operator from [19] (Appendix E), we indeed find that increasing the weight variance increases the
distances between features also in this case. We hypothesize that this effect makes the equilibrium
more informative of the graph topology, as in the stochastic shift operator case. The choice of
non-linearity is unrestricted, but in the general case numerical integration of (8) is needed.

To determine whether a given weight variance is in the non-oversmoothing phase, one calculates
the eigenvalues of the linearized GCN GP dynamics which take the form of an N2 × N2 matrix
(see Equation (16)), this has a run time of O(N6). While this becomes computationally expensive
for large graphs, the conceptual insights of the presented analysis remain. In practical applications
with large graphs one may reduce the computational load by determining the transition point via
computation of the GCN GP prior until it is close to equilibrium. This procedure has a runtime
of O(N3Leq) where Leq is the number of layers after which the process is sufficiently close to
equilibrium. One might then do an interval search on the weight variance until the transition point is
determined with sufficient accuracy.

Oulook. Formulating GCNs with the help of GPs can be considered the leading order in the number
of feature space dimension dl when approximating finite-size GCNs. Computing corrections for
finite numbers of hidden feature dimensions would allow the characterization of feature learning in
such networks, similar as in standard deep networks [26, 48, 39]. Moreover, the generalization of
this formalism to more general shift operators and other GNN architectures [49, 4] like GATs [41]
are possible directions of future research. In the special case of GATs we expect similar results to
the GCN analyzed here, since the shift operator is constructed using a softmax and therefore also is
row-stochastic.

Acknowledgements

Funded by the European Union (ERC, HIGH-HOPeS, 101039827). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them. We also acknowledge funding by the German Research
Council (DFG) within the Collaborative Research Center “Sparsity and Singular Structures” (SfB
1481; Project A07).

10

References
[1] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical

Implications, March 2021. arXiv:2006.05205 [cs, stat].
[2] Chen Cai and Yusu Wang. A Note on Over-Smoothing for Graph Neural Networks, June 2020.

arXiv:2006.13318 [cs, stat].
[3] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and Relieving the

Over-Smoothing Problem for Graph Neural Networks from the Topological View. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(04):3438–3445, April 2020. Number: 04.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
Convolutional Networks. In Proceedings of the 37th International Conference on Machine
Learning, pages 1725–1735. PMLR, November 2020. ISSN: 2640-3498.

[5] Aditya Cowsik, Tamra Nebabu, Xiao-Liang Qi, and Surya Ganguli. Geometric Dynamics
of Signal Propagation Predict Trainability of Transformers, March 2024. arXiv:2403.02579
[cond-mat].

[6] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals and Systems, 2(4):303–314, December 1989.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[8] Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual
Stochastic Block Models. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[9] Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long Range Graph Benchmark. Advances in Neural Information
Processing Systems, 35:22326–22340, December 2022.

[10] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and
lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2020(11):113301, November 2020. Publisher: IOP Publishing and SISSA.

[11] Jean Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices. Journal of
Mathematical Physics, 6(3):440–449, March 1965.

[12] William L. Hamilton. Graph Representation Learning. Morgan & Claypool Publishers,
September 2020.

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020. Publisher: Nature
Publishing Group.

[14] Jilin Hu, Jianbing Shen, Bin Yang, and Ling Shao. Infinitely Wide Graph Convolutional
Networks: Semi-supervised Learning via Gaussian Processes, February 2020. arXiv:2002.12168
[cs, stat].

[15] Tianjin Huang, Tianlong Chen, Meng Fang, Vlado Menkovski, Jiaxu Zhao, Lu Yin, Yulong Pei,
Decebal Constantin Mocanu, Zhangyang Wang, Mykola Pechenizkiy, and Shiwei Liu. You Can
Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained GNNs
Tickets, February 2024. arXiv:2211.15335 [cs].

[16] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[17] Yufei Jin and Xingquan Zhu. ATNPA: A Unified View of Oversmoothing Alleviation in Graph
Neural Networks, May 2024. arXiv:2405.01663 [cs].

[18] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)smoothing.
Advances in Neural Information Processing Systems, 35:2268–2281, December 2022.

11

[19] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks, February 2017. arXiv:1609.02907 [cs, stat].

[20] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep Neural Networks as Gaussian Processes, March 2018.
arXiv:1711.00165 [cs, stat].

[21] Qimai Li, Zhichao Han, and Xiao-ming Wu. Deeper Insights Into Graph Convolutional
Networks for Semi-Supervised Learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), April 2018. Number: 1.

[22] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Training Matters: Unlocking
Potentials of Deeper Graph Convolutional Neural Networks, October 2022. arXiv:2008.08838
[cs, stat].

[23] Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press, September
2021. Google-Books-ID: _AVDEAAAQBAJ.

[24] L. Molgedey, J. Schuchhardt, and H. G. Schuster. Suppressing chaos in neural networks by
noise. Physical Review Letters, 69(26):3717–3719, December 1992. Publisher: American
Physical Society.

[25] Gadi Naveh, Oded Ben David, Haim Sompolinsky, and Zohar Ringel. Predicting the outputs of
finite deep neural networks trained with noisy gradients. Physical Review E, 104(6):064301,
December 2021. Publisher: American Physical Society.

[26] Gadi Naveh and Zohar Ringel. A self consistent theory of Gaussian Processes captures feature
learning effects in finite CNNs. In Advances in Neural Information Processing Systems,
volume 34, pages 21352–21364. Curran Associates, Inc., 2021.

[27] Radford M Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto,
415, 1994.

[28] Yin Cheng Ng, Nicolò Colombo, and Ricardo Silva. Bayesian Semi-supervised Learning with
Graph Gaussian Processes. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[29] Zehao Niu, Mihai Anitescu, and Jie Chen. Graph Neural Network-Inspired Kernels for Gaussian
Processes in Semi-Supervised Learning, February 2023. arXiv:2302.05828 [cs, stat].

[30] Kenta Oono and Taiji Suzuki. Graph Neural Networks Exponentially Lose Expressive Power
for Node Classification, January 2021. arXiv:1905.10947 [cs, stat].

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[32] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli.
Exponential expressivity in deep neural networks through transient chaos. In Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[33] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On
the Expressive Power of Deep Neural Networks. In Proceedings of the 34th International
Conference on Machine Learning, pages 2847–2854. PMLR, July 2017. ISSN: 2640-3498.

[34] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2006.
OCLC: ocm61285753.

[35] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A Survey on Oversmooth-
ing in Graph Neural Networks, March 2023. arXiv:2303.10993 [cs].

[36] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks, February 2014. arXiv:1312.6120 [cond-
mat, q-bio, stat].

[37] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Infor-
mation Propagation, April 2017. arXiv:1611.01232 [cs, stat].

12

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective Classification in Network Data. AI Magazine, 29(3):93–93, September 2008.
Number: 3.

[39] Inbar Seroussi, Gadi Naveh, and Zohar Ringel. Separation of scales and a thermodynamic
description of feature learning in some CNNs. Nature Communications, 14(1):908, February
2023. Number: 1 Publisher: Nature Publishing Group.

[40] Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered GNN: Or-
dering Message Passing to Deal with Heterophily and Over-smoothing, February 2023.
arXiv:2302.01524 [cs].

[41] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks, February 2018. arXiv:1710.10903 [cs, stat].

[42] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and
Paul van Mulbregt. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods, 17(3):261–272, March 2020. Publisher: Nature Publishing Group.

[43] Christopher Williams. Computing with Infinite Networks. In Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1996.

[44] Christopher K. I. Williams. Computation with Infinite Neural Networks. Neural Computation,
10(5):1203–1216, July 1998.

[45] Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying Oversmoothing in
Attention-Based Graph Neural Networks, October 2023. arXiv:2305.16102 [cs, stat].

[46] Xinyi Wu, Zhengdao Chen, William Wang, and Ali Jadbabaie. A Non-Asymptotic Analysis of
Oversmoothing in Graph Neural Networks, February 2023. arXiv:2212.10701 [cs, stat].

[47] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4–24, January 2021. Conference Name: IEEE Transactions on
Neural Networks and Learning Systems.

[48] Jacob A. Zavatone-Veth, William L. Tong, and Cengiz Pehlevan. Contrasting random and
learned features in deep Bayesian linear regression. Physical Review E, 105(6):064118, June
2022. Publisher: American Physical Society.

[49] Lingxiao Zhao and Leman Akoglu. PairNorm: Tackling Oversmoothing in GNNs, February
2020. arXiv:1909.12223 [cs, stat].

13

A Analytical solution for expectation values

To evaluate our theory, we need to compute expectation values given in the form of (8) which we
restate here for readability

C
(l)
γδ =

〈
ϕ
(
h(l)
γ

)
ϕ
(
h
(l)
δ

)〉
h
(l)
γ ,h

(l)
δ

, (21)

where h
(l)
γ and h

(l)
δ are zero mean random Gaussian variables with ⟨h(l)

γ h
(l)
δ ⟩ = K

(l)
γδ . This can be

evaluated numerically for general non-linearities ϕ(x). For simplicity, however, we choose ϕ(x) =

erf(
√
π
2 x) in our experiments where the scaling factor in the erf is chosen such that ∂ϕ

∂x (0) = 1. In
this case, the expectation value can be evaluated analytically to be

C
(l)
γδ =

2

π
arcsin

(
π
2K

(l)
γδ√

1 + π
2K

(l)
γγ

√
1 + π

2K
(l)
δδ

)
. (22)

as shown in [44].

B The linearized GP of GCNs

We start from the full GCN GP iterative map (8,(9)), which we restate here for readability

K
(l+1)
αβ =Tαβ [K

(l)] = σ2
b + σ2

w

∑
γ,δ

AαγAβδC
(l)
γδ [K

(l)] (23)

where h(l)
γ and h

(l)
δ are drawn from a 0-mean Gaussian distribution with covariance ⟨h(l)

γ h
(l)
δ ⟩ = K

(l)
γδ .

The full covariance matrix of layer l is denoted as K(l). Here, we distinguish between the iterative
maps Tαβ : RN×N → R of which there are N2, one for each pair of nodes α and β, and the entries
K

(l+1)
αβ of the covariance matrix in the layer l+1. Notice that Tαβ = Tβα due to the symmetry of the

covariance matrix. In the maps Tαβ , the covariance matrix of the previous layer only shows up in the

expectation value Cγδ =
〈
ϕ
(
h
(l)
γ

)
ϕ
(
h
(l)
δ

)〉
h
(l)
γ ,h

(l)
δ

such that the linearized dynamics around a fixed

point (being equilibrium Kfix
αβ = Keq

αβ or zero distance state Kfix
αβ = k) with K

(l)
αβ = Kfix

αβ + ∆
(l)
αβ

read

K
(l+1)
αβ = Kfix

αβ +∆
(l+1)
αβ =Tαβ [K

fix]︸ ︷︷ ︸
=Kfix

αβ

+
∑
γ<δ

∂Tαβ

∂Kγδ
[Kfix]∆

(l)
γδ +O((∆(l))2) (24)

=Kfix
αβ +

∑
γ,δ

σ2
w

∑
θ,ϕ

1

2
(1 + δγ,δ)AαθAβϕ

∂Cθϕ

∂Kγδ
[Kfix]︸ ︷︷ ︸

≡Hαβ,γδ

∆
(l)
γδ +O((∆(l))2) ,

(25)

where we restrict the sum in (24) to γ < δ since Kγδ and Kδγ are the same quantity. From (24)
follows

∆
(l+1)
αβ =

∑
γ,δ

Hαβ,γδ∆
(l)
γδ +O((∆(l))2) (26)

which is Equation (16) in the main text. While H is not symmetric in general, Hαβ,γδ ̸= Hγδ,αβ , it is
symmetric in the first and second pair of covariance indices, Hαβ,γδ = Hβα,γδ and Hαβ,γδ = Hαβ,δγ

due to symmetry of the covariance matrices, Kαβ = Kβα.

In the main text, we look for the right eigenvectors of H fulfilling

λiV
(i)
αβ =

∑
γ,δ

Hαβ,γδV
(i)
γδ . (27)

14

These are for general non-symmetric matrices not orthogonal. In order to decompose ∆(l) to overlaps
with the eigenvectors V (i)

αβ we need to find the dual vectors U (i)
αβ fulfilling∑

α,β

U
(i)
αβV

(j)
αβ =δij (28)

from which we can define

∆
(l)
i =

∑
α,β

U
(i)
αβ∆

(l)
αβ (29)

such that

∆
(l)
αβ =

∑
i

∆
(l)
i V

(i)
αβ (30)

as stated in the main text.

C Investigation of the complete graph model

In this section we analytically investigate the complete graph model as defined in the main text.
Specifically, we consider networks with the shift operator

Aαβ =
g

N − 1
+ δαβ(1−

Ng

N − 1
) (31)

and ϕ = erf(
√
πx/2). Due to the symmetry of the system we make the ansatz

Keq
αβ = Keq

a + δαβ(K
eq
c −Keq

a) , (32)

meaning that we assume constant variances Keq
a across nodes and that all pairs of nodes have the

same covariance Keq
c , reducing the system to only two unknown variables. The equilibrium is a

fixed point of the iterative map of the GCN GP. With the special choice of shift operator in (31) this
becomes

K(l+1)
a = σ2

b + gaC
(l)
a + gcC

(l)
c (33)

and

K(l)
c = σ2

b + haC
(l)
a + h′cC

(l)
c (34)

with constants

ga = (1 +
g2

N − 1
)σ2

w (35)

gc = 2(g +
g2(N − 2)

N − 1
)σ2

w (36)

ha = 2(
g

N − 1
+

g2(N − 2)

(N − 1)2
)σ2

w (37)

hc = (1 +
g2

(N − 1)2
+ 2

g2(N − 2)(N − 3)

(N − 1)2
+ 4

g(N − 2)

(N − 1)
)σ2

w (38)

and

C(l)
a = ⟨ϕ(h(l)

α)ϕ(h(l)
α)⟩ (39)

C(l)
c = ⟨ϕ(h(l)

α)ϕ(h
(l)
β)⟩ for α ̸= β . (40)

The preactivations are Gaussian distributed with zero mean and covariance ⟨h(l)
α h

(l)
β ⟩ = K

(l)
αβ . In

the oversmoothing phase, we know that µ(X) = 0 in equilibrium. We have seen in Section 4.2
that this corresponds to Keq

αβ = keq, implying for our ansatz that Keq
c = Keq

a . We will find the
transition to chaos by calculating where this state becomes unstable with regard to small perturbations.
Specifically, we define c(l) =

K(l)
c

K
(l)
a

and look for the parameter point where

1
?
>

∂c(l+1)

∂c(l)

∣∣∣
c(l)=1

. (41)

15

The authors in [37] used this approach to find the transition to chaos for DNNs. The correlation
coefficient is

c(l+1) =
K

(l+1)
c

K
(l+1)
a

=
σ2
b + haC

(l)
a + hcC

(l)
c

σ2
b + gaC

(l)
a + gcC

(l)
c

(42)

and Equation (41) thus becomes

∂c(l+1)

∂c(l)

∣∣∣
c(l)=1

=
hc

∂C(l+1)
c

∂c(l)
K

(l+1)
a − gc

∂C(l+1)
c

∂c(l)
K

(l+1)
c

(K
(l+1)
a)2

. (43)

Since we look at this equation at the perfectly correlated state c(l) = 1, we know that K(l)
a = K

(l)
c

(implying that C(l)
a = K

(l)
c) and can determine K

(l)
a as the solution of the fixed point equation

K(l+1)
a = σ2

b + (ga + gc)C
(l)
a (44)

to which the GCN GP dynamics reduce in the zero distance state (by using the fact that
∑

β Aαβ = 1

an C
(l)
αβ = c(l)). Lastly, we can calculate

∂C
(l+1)
c

∂c(l)

∣∣∣
c=1

=
∂

∂c(l)

(
2

π
arcsin

(
π
2K

(l)
a c(l)

1 + π
2K

(l)
a

))∣∣∣∣∣
c(l)=1

(45)

=
2

π

1√
1−

(π
2 K

(l)
a c(l)

1+π
2 K

(l)
a

)2 K
(l)
a

2
π +K

(l)
a

∣∣∣∣∣
c(l)=1

(46)

=
2

π

1√
1−

(
K

(l)
a

2
π+K

(l)
a

)2 K
(l)
a

2
π +K

(l)
a

, (47)

where we used the known solution for the expectation value Cc for ϕ(x) = erf(
√
πx/2) from

Appendix A. Plugging this into Equation (43) lets us calculate ∂c(l+1)

∂c(l)

∣∣∣
c(l)=1

and thus determine the
transition to the non-oversmoothing phase. This is plotted as a red line in Figure 1 panel a) and b).

D Restriction of weight matrices in related work

In this section we will show histograms of critical weight variances σ2
w,crit and discuss how the

assumptions in [2] and [45] exclude networks in the non-oversmoothing phase. Our results thus stand
in no conflict with the results of these works.

Here we want to argue that the assumptions on the weight matrices in related work constrains their
architectures to the oversmoothing phase. We start with [45] in which the authors study graph
attention networks (GATs). Although we study a standard GCN here, we hypothesize that increasing
the weight variance at initialization likewise prevents oversmoothing in other architecture, such as
the GAT in [45]. The critical assumption constraining them to the oversmoothing phase is their
assumption A3, stating that {||

∏k
l=0 |W (l)|||max}∞k=0 is bounded where ||M ||max = maxi,j |Mi,j |.

For our setting of randomly drawn weight matrices W (l)
ij

i.i.d.∼ N (0,
σ2
w

dl
) with W

(l)
ij ∈ RN×N , this

restricts us to values σ2
w ≤ 1. This can be seen by using the circular law from random matrix theory

[11]: It is known that the eigenvalues of a matrix with i.i.d. random Gaussian entries of the form
above have eigenvalues uniformly distributed in a circle around 0 in the complex plane with radius√
σ2
w in the limit dl → ∞. Thus, the maximal real part of any eigenvalue of this matrix is

√
σ2
w. Thus

we can estimate ||
∏k

l=0 |W (l)|||max ≤ c(
√
σ2
w)

k with a constant c. To enter the non-oversmoothing
phase, we need σ2

w > 1. In this case, the latter expression diverges for k → ∞, thus being excluded
by the proof in [45]. Indeed, for the CSBMs we investigated in this work, all critical weight variances
σ2
w,crit are larger than 1 as shown in Figure 5. Also in our model of the complete graph and the

CSBM investigated in Section 4.2.2 all σ2
w,crit are larger than 1, compare Figure 1 and Figure 2.

16

1.0 1.2 1.4
2
w, crit

0.0

2.5

5.0

7.5
Histogram of 2

w, crit

Figure 5: Histogram of σ2
w,crit for the 50 CSBM instances used in the experiment of Figure 3. The

point 1 is marked for comparison to related work.

The authors of [2] and [30] also study GCNs,; however they consider a different shift operator than
in this work. In both of [2] and [30] the authors find that their GCN models exponentially loose
expressive power if sλ < 1, with λ being the maximal singular value/eigenvalue of the shift operator
and s being the maximal singular value of all weight matrices. Again, the maximal singular value is
limited (dependent on λ), which in our approach translates to a limit on σ2

w. While the authors notice
that their bounds do not hold for large singular values s, they do not observe a non-oversmoothing
phase in their models.

E Non-oversmoothing GCNs with non-stochastic shift operators

Here we investigate how increasing the weight variance can mitigate oversmoothing also in the case
of the original shift operator proposed by Kipf and Welling in [19] being

AKW = (D′)−1/2A′(D′)−1/2 (48)

with A′ = I+A and D′
ij = δij

∑
k A′

ik. This shift operator AKW is not row-stochastic, therefore
the state Kαβ = k is not a fixed point for k ̸= 0, as can be seen from Equation (19). Thus we need
to differentiate between two kind of fixed points: Either, all features are zero, for which Kαβ = 0
and µ(X) = 0, or some Kαβ ̸= 0 in which case we have µ(X) > 0. Importantly, for this shift
operator, there is no intermediate case for which Kαβ = k with k ̸= 0. Consequently there is no
oversmoothing regime with respect to the measure µ(X) where node features are non-zero. For an in
depth study of this case (48), the definition of another oversmoothing measure µ′ incorporating the
different values of

∑
β(AKW)αβ for different α may be more appropriate. For our purposes, it will

suffice to analyze the shift operator (48) with the measure µ(X) from Equation (14).

Figure 6 panel a) shows how µ(X) in equilibrium increases for larger weight variances σ2
w for the

shift operator (48). For comparison, we also show the results obtained with our row-stochastic shift
operator (6). Thus we find that also for the shift operator AKW the pairwise distance between features
can be increased by increasing the weight variance σ2

w. The non-existence of an oversmoothed fixed
point except for the special case Kαβ = 0 which we argued for above is observed in panel b) and c):
The oversmoothing measure µ(X) is zero for AKW if and only if all entries of the covariance matrix
are zero, implying that all preactivations and thus also all features are zero. This is a qualitative
difference to our shift operator A for which we find equilibrium states with non-zero maxα Keq

αα but
still µ(X) = 0.

F Details of numerical experiments

To conduct our experiments we use NumPy [13], SciPy [42] (both available under a BSD-3-Clause
License) and Scikit-learn (sklearn) [31] (available under a New BSD License). The code is publicly
available under https://github.com/bepping/non-oversmoothing-gcns. For our experi-
ments with the Cora dataset, we use the readin methods from [19] which are available under a MIT
license (Copyright (c) 2016 Thomas Kipf). Computations were performed on CPUs.Requirements
for the experiments with synthetic data are (approximately):

• Figure 1: 10mins on a single core laptop.

17

https://github.com/bepping/non-oversmoothing-gcns

0.5 1.0 1.5
2
w

0.00

0.05

0.10

(X
) i

n
eq

ui
lib

riu
m

a)
row-stochastic
Kipf & Welling

0.00 0.25 0.50 0.75 1.00
max(Keq)

0.00

0.05

0.10

0.15

(X
) i

n
eq

ui
lib

riu
m

b)

0.0 0.2 0.4
max(Keq)

0.00

0.01

0.02

(X
) i

n
eq

ui
lib

riu
m

c)

Figure 6: Oversmoothing in GCN GPs with the commonly used shift operator (48) (called Kipf
& Welling in the label) and our row-stochastic shift operator (6). a) Feature distance µ(X) in
equilibrium dependent on weight variance σ2

w obtained from simulating the GCN GP priors for
Leq = 4, 000 layers. Shown are the averages (solid lines) and standard deviations (shaded areas) over
20 CSBM initializations with λ = 1, d = 5 and N = 30 nodes.b) Scatter plot of maximal variance
of all nodes maxα{Keq

αα} and feature distance µ(X) in equilibrium for the same data as in plot a). c)
Same as b) but zoomed into lower left corner.

• Figure 2: 10h on a single node on an internal CPU cluster. Most of the computation time is
needed for evaluating max(λp

i) in panel a).

• Figure 3: 2h on a single core laptop. In panel d), the last layer of finite-size GCNs is trained
with the standard settings from sklearn.linear_model.SGDRegressor().

• Figure 5: Byproduct of Figure 2.

• Figure 6: 10min on a single core laptop.

We also experimented on the real world benchmark dataset Cora [38]. This is a citation network
with 2708 nodes, representing publications, and 5429 edges, representing the citations between
them (we use undirected edges). The publications are divided into seven classes, and the task is to
predict these classes for the unlabeled nodes. Node features are of 0/1 valued vectors indicating the
absence/presence of words from a dictionary in the titles of the respective publication. The dictionary
consists of 1433 unique words. Requirements for the experiments with the Cora dataset are:

• Figure 4: 1h on a single core laptop.

• Figure 7: 15h on a single core laptop.

G Non-oversmoothing transition in the Cora dataset

For Figure 4 we numerically determined the transition to the non-oversmoothing regime for the Cora
dataset. The transition was estimated by measuring the distance µ(X) at equilibrium (i.e., after many
layers), and determining at which value of σ2

w it becomes larger than a small distance ϵ = 10−5. The
results of this experiment are shown in Figure 7. We find the critical point to be σ2

w,crit = 1 while
using a step size of δσ2

w = 0.01.

H Transitioning between regimes during training

In this section argue why we think it is possible to transition from the oversmoothing to the non-
oversmoothing regime or vice versa during training.

In the GP limit of infinitely many hidden features with a finite amount of training data, the variance
of weights of a neural network is the same before and after training. This is because weights only
change marginally in this limit, also known as the lazy training regime [16, 10]. We will use this fact
to argue that Langevin training is capable of transitioning from one regime to the other.

Langevin training is a gradient based training scheme with external noise and a decay term. The
gradient flow equation is given as

dWij

dt
= −γWij −∇Wij

L+Bij ,

18

0.9 1.0 1.1 1.2
2
w

0.0

0.1

0.2

(X
) a

t e
qu

ilib
riu

m

Figure 7: Node distance measure µ(X) at equilibrium obtained from computing the GCN GP prior
for L = 4, 000 layers as a function of σ2

w. The transition to the non-oversmoothing regime is
estimated by checking where the node distance measure is larger than ϵ = 10−5, marked as the red
line.

where Wij are the weights to be trained, L is the loss function and Bij denotes external white noise
⟨Bij(t)Bkl(s)⟩ = δi,kδj,lδ(t− s)D with strength D where δa,b and δ(a− b) denote the Kronecker
or Dirac delta, respectively. Both γ and D are parameters of this training scheme. It is known that the
distribution of weights converges to the posterior weight distribution of a neural network GP with
weight variance σ2

w = D
2γ in the infinite feature limit [25] which, as we have noticed above, is the

same as the prior distribution.

Since the Langevin distribution converges to the GP weight posterior for any initial distribution, one
can imagine an initial distribution with a variance that initializes the network in the oversmoothing
regime, while the parameters γ and D are chosen such that σ2

w = D
2γ > σ2

w,crit implying that after
training most weight realizations will be in the non-oversmoothing regime. Thus, in this case the
GCN would have transitioned from one regime to the other. While this argument is made in the limit
of infinitely many hidden features, we think that qualitatively similar results are possible for a large
but finite number of hidden feature dimensions. The transition in the reverse direction is possible by
the same argument only with the initial and the final variances exchanged.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe our approach, the model we study and discuss the contribution of
our work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are addressed in the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

20

Justification: We provide the calculations leading to our results in the main text or appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The procedures for producing the experimental results in this work are de-
scribed clearly, all necessary parameters are given in the figure captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]
Justification: While the paper provides sufficient instructions to reproduce all experimental
results in this paper, we publish our code in a git repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details for the experiments can be found in the respective figure captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In our experiments we compare mean values with theoretical prediction. The
numbers of instances used for each experiment are given in the respective figure captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resources needed to reproduce our experiments are given in
the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work presented in this paper conforms with the NeurIPS Code of Ethics
in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The work presented in this paper is of theoretical nature, we do not foresee
any direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any code or data that poses such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mention the assets we use in the appendix, cite the creators and state the
licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Background
	Network architecture
	Gaussian process equivalence of GCNs
	Feature distance

	Results
	Propagation depths
	The non-oversmoothing phase of GCNs
	Complete graph
	General graphs

	Implications for performance

	Discussion
	Analytical solution for expectation values
	The linearized GP of GCNs
	Investigation of the complete graph model
	Restriction of weight matrices in related work
	Non-oversmoothing GCNs with non-stochastic shift operators
	Details of numerical experiments
	Non-oversmoothing transition in the Cora dataset
	Transitioning between regimes during training

