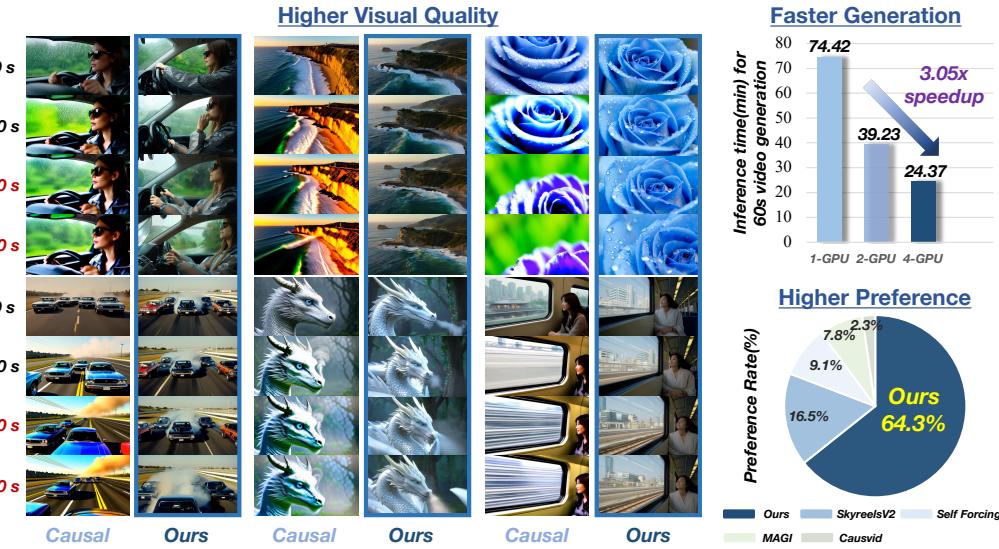


MACRO-FROM-MICRO PLANNING FOR HIGH-QUALITY AND PARALLELIZED AUTOREGRESSIVE LONG VIDEO GENERATION

006 **Anonymous authors**

007 Paper under double-blind review



029 Figure 1: We propose *Macro-from-Micro Planning* (MMPL), a paradigm for long-video generation
030 that achieves higher visual quality, faster speed, and stronger user preference than existing methods.
031 Snapshots at 0s, 10s, 20s, and 30s (left) show robustness against temporal drift—semantic shifts,
032 color changes, and structural artifacts—while quantitative results highlight accelerated multi-GPU
033 inference (top-right) and dominant user preference (bottom-right).

ABSTRACT

037 Current autoregressive diffusion models excel at video generation but are gener-
038 ally limited to short temporal durations. Our theoretical analysis indicates that
039 the autoregressive modeling typically suffers from temporal drift caused by error
040 accumulation and hinders parallelization in long video synthesis. To address these
041 limitations, we propose a novel planning-then-populating framework centered on
042 Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches
043 a global storyline for the entire video through two hierarchical stages: *Micro Plan-*
044 *ning* and *Macro Planning*. Specifically, *Micro Planning* predicts a sparse set of
045 future keyframes within each short video segment, offering motion and appear-
046 ance priors to guide high-quality video segment generation. *Macro Planning* ex-
047 tends the in-segment keyframes planning across the entire video through an au-
048 toregressive chain of micro plans, ensuring long-term consistency across video
049 segments. Subsequently, MMPL-based *Content Populating* generates all inter-
050 mediate frames in parallel across segments, enabling efficient parallelization of
051 autoregressive generation. The parallelization is further optimized by *Adaptive*
052 *Workload Scheduling* for balanced GPU execution and accelerated autoregressive
053 video generation. Extensive experiments confirm that our method outperforms
054 existing long video generation models in quality and stability. Generated videos
055 and comparison results are in the [Anonymous Demo page](#).

054
055
056
057
1 INTRODUCTION058
059
060
061
Long video generation is crucial for applications such as movie production (Polyak et al., 2024;
Zhao et al., 2025), virtual reality (Wu et al., 2025a;b), and digital human creation (Hu, 2024; Xiang
et al., 2025; Zhang et al., 2025; Zhu et al., 2024). Despite significant advances in video synthesis,
creating extended sequences with both temporal coherence and computational efficiency remains
challenging (Ning et al., 2024).062
063
064
065
066
Conventional diffusion-based methods (Peebles & Xie, 2023; Wang et al., 2025a; Chen et al., 2024b;
2023; Gupta et al., 2024; Ma et al., 2025) have achieved remarkable quality by jointly optimizing
all frames via bidirectional attention. However, this global optimization necessitates the simultaneous
generation of the entire sequence, introducing significant latency and rendering these methods
impractical for real-time or interactive scenarios.068
069
070
071
072
073
074
075
076
077
078
Autoregressive (AR) models (Wang et al., 2025b; Pang et al., 2025; He et al., 2024) offer an ef-
fective alternative by sequentially generating images or frames. This incremental strategy enables
users to start viewing immediately after the initial frames are available, greatly reducing latency.
Furthermore, AR models impose fewer constraints on video duration and facilitate interactive user
control. Representative AR methods such as VideoGPT (Yan et al., 2021), LBD (Yu et al., 2024),
and CogVideo (Hong et al., 2023) adopt a next-frame prediction paradigm based on discrete tokeniz-
ers, substantially lowering latency compared to diffusion-based approaches. However, their reliance
on discrete tokenization inherently leads to quantization artifacts, reducing visual fidelity. Hybrid
AR-diffusion methods (Sun et al., 2025; Chen et al., 2024a; Song et al., 2025) merge autoregres-
sive generation with continuous diffusion processes to overcome these limitations. By integrating
diffusion into the autoregressive framework, these methods avoid discrete codebooks, effectively
addressing quantization-induced degradation and significantly improving output quality.079
080
081
082
083
084
085
Nevertheless, both AR and AR-diffusion methods suffer from error accumulation. Since each frame
depends explicitly on previously generated frames, errors from early frames compound and magnify
over subsequent predictions, causing long-term degradation and temporary drift. Moreover, existing
autoregressive approaches remain strictly sequential, inherently preventing parallel generation and
thus limiting computational efficiency and scalability. These fundamental challenges motivate the
question: *How can AR models move beyond naive autoregressive modeling to enable high-quality
and parallelized long-video synthesis?*086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
Analogous to the workflow of professional filmmakers, long video creation naturally benefits from a
hierarchical *plan-then-populate* paradigm. In a typical movie production, the process does not pro-
ceed by shooting every frame in chronological order. Instead, the production team first develops a
Macro Plan, a rough storyboard that captures the overall structure and key moments of the film. This
Macro Plan consists of multiple Micro Plans, each representing an individual scene or shot. With this
setup, different scenes can be filmed in parallel according to their Micro Plans, much like multiple
crews shooting on separate sets at the same time. The Macro Plan then coordinates and assembles all
these pieces into a coherent long movie. Such hierarchical planning improves the efficiency of film
production while ensuring that the final movie remains seamless and coherent. Building on this in-
sight, we first perform a systematic analysis of error accumulation in AR and Non-AR video genera-
tion, revealing the fundamental mechanisms that drive long-term drift. Guided by these findings, we
propose a novel plan-then-populate framework centered on Macro-from-Micro Planning (MMPL)
for scalable, high-quality long video generation. MMPL operates via two complementary planning
levels: *Micro Planning* efficiently predicts multiple keyframes of each segment simultaneously from
its initial frame, capturing detailed local trajectories; *Macro Planning* autoregressively chains these
segments by initializing each segment S from the last keyframe of segment $S - 1$, thus ensuring
global narrative coherence across the entire video. Once all keyframes are established, MMPL-
based Content Populating concurrently synthesizes intermediate frames between keyframes within
each segment, adhering to boundary constraints and eliminating sequential frame dependencies. To
further optimize pipeline efficiency, we introduce an adaptive workload scheduling strategy that dy-
namically allocates GPU resources. This approach significantly reduces the overall generation time
to approximately one-third of the original, without relying on distillation-based acceleration, while
preserving high visual fidelity.107
Overall, our work delivers the following contributions:

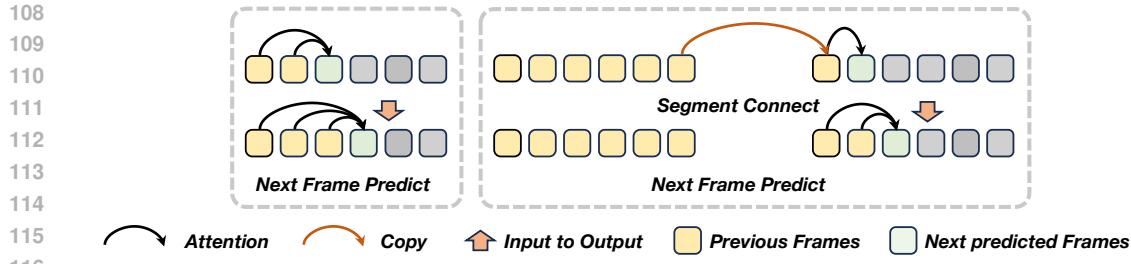


Figure 2: Existing AR methods generate frames sequentially in a step-by-step manner, inevitably causing error accumulation (as shown in Figure 1) and prohibiting parallel generation.

- We propose *Macro-from-Micro*, a hierarchical autoregressive planning method that forms coherent global storylines across segments of the entire video, while drastically reducing temporal error accumulation in long-video generation.
- We propose MMPL-based Content Populating, which synthesizes frames for multiple segments in parallel under the guidance of pre-planned keyframes, breaking the intrinsic sequential bottleneck of conventional autoregressive pipelines.
- We further design an adaptive multi-GPU workload scheduling strategy that balances segment generation across devices, substantially reducing wall-clock time for long-video synthesis.

2 RELATED WORK

Bidirectional Diffusion Models for Video Generation. Diffusion models have emerged as a dominant approach for high-quality visual synthesis, benefiting from their scalability and superior generative capabilities (Rombach et al., 2022; Dhariwal & Nichol, 2021). In video generation, existing diffusion architectures primarily rely on bidirectional attention mechanisms to jointly denoise all frames within a sequence (Guo et al., 2024; Ho et al., 2022; Blattmann et al., 2023; Huang et al., 2025b; Zhang et al., 2024). While this enables high-fidelity outputs, the requirement to concurrently generate entire sequences prohibits streaming or incremental video generation, resulting in significant inference latency and hindering applications involving long video generation.

Causal Autoregressive Models for Video Generation. Autoregressive (AR) models (Sun et al., 2025; Chen et al., 2024a; Song et al., 2025; Deng et al., 2025; Gao et al., 2024; Li et al., 2025) provide an alternative by sequentially generating video frames or spatiotemporal tokens, conditioning each new frame on previously generated content as shown in Figure 2. This causal generation paradigm naturally supports streaming outputs and substantially reduces initial latency. However, the sequential dependency between frames inherently introduces error accumulation. As prediction chains grow longer, these errors compound, resulting in temporal drift and degraded visual coherence, especially noticeable in extended video sequences.

Methods for Long Video Generation. Long video synthesis poses unique challenges due to cumulative errors and computational bottlenecks inherent in autoregressive inference. Recent efforts, such as CausVid (Yin et al., 2025) and Self Forcing (SF) (Huang et al., 2025a), address these challenges by introducing methods like *Diffusion Forcing* and *Self Forcing*, aimed at reducing the mismatch between training and inference dynamics. Although these techniques partially alleviate drift through recursive conditioning and short-step diffusion, they remain susceptible to significant error propagation when generating videos exceeding approximately 30 seconds.

Planning Prediction. A closely related work, FramePack-Plan (Zhang & Agrawala, 2025), mitigates error accumulation via step-wise frame jumping, and compresses context to extend video length. In contrast, our Macro-from-Micro framework introduces three key innovations. First, we adopt a two-level hierarchical planning scheme: a Micro Plan predicts segment-level keyframes, and a Macro Plan, composed of overlapping Micro Plans, forms a coherent global storyline through autoregressive scheduling. Second, each Micro Plan produces all pre-planned keyframes for its segment in a single forward pass conditioned only on the initial frame, drastically compressing the autoregressive chain. Finally, once the Macro Plan is obtained, the remaining content within all segments is synthesized in parallel, achieving high throughput while preserving temporal coherence.

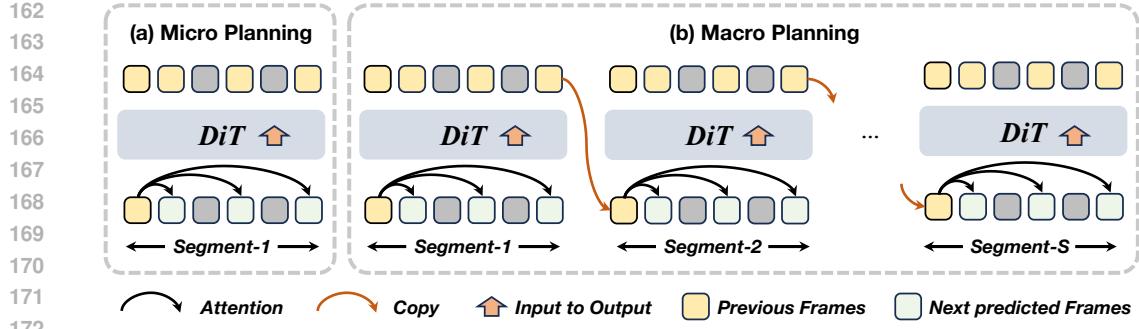


Figure 3: Overall framework of Macro-from-Micro Planning. Our method operates on two planning levels: (1) **Micro Planning**, which predicts a sequence of future frames inside its own segment to mitigate local error accumulation, and (2) Macro Planning, formed as an Autoregressive Chain of Micro Plans, where the planning frames of the first segment autoregressively generate the planning frames of subsequent segments, ensuring long-horizon temporal consistency.

3 METHOD

3.1 MACRO-FROM-MICRO PLANNING

Motivated by the analysis in the supplementary material, we observe that autoregressive models accumulate errors proportionally to the number of propagation steps, whereas non-autoregressive models decouple errors from the step count through joint optimization. To exploit the complementary strengths of both paradigms, we introduce *Macro-from-Micro Planning (MMPL)*, a unified planning method comprising two key components: *Micro-Planning* and *Macro-Planning*.

Micro Planning. Micro Planning \mathcal{M}_s constructs a short temporal storyline for the s -th segment with N frames by predicting a small set of key frames, denoted as $\mathcal{P}_{\mathcal{M}_s}$, that act as stable anchors for subsequent content synthesis. This sparse set of *pre-planning frames*, $\{x_s^{t_a}, x_s^{t_b}, x_s^{t_c}\}$, is jointly predicted from the initial frame x_s^1 . This process can be expressed as:

$$p(\mathcal{P}_{\mathcal{M}_s} | x_s^1) = p(x_s^{t_a}, x_s^{t_b}, x_s^{t_c} | x_s^1). \quad (1)$$

Where $t_a = 2$ denotes the early neighbor of the initial frame, $t_b = N/2$ serves as the global midpoint, and $t_c = N$ marks the terminal frame of the sequence. These *pre-planning frames* are jointly optimized while conditioned solely on the initial frame x_s^1 , rendering their mutual drift with x_s^1 negligible. Moreover, since all frames are jointly optimized from the initial frame x_s^1 , their residual errors are mutually constrained and remain negligible, preventing the cumulative drift characteristic of sequential autoregressive generation. This design ensures temporal coherence within each segment and establishes a stable, drift-resistant foundation for the subsequent populating process.

Macro Planning. While Micro Planning provides a segment-level temporal storyline, it remains limited in capturing global dependencies across the entire video. To achieve long-range coherence, we extend Micro Planning into *Macro Planning*, denoted as \mathcal{M}^+ . Macro Planning constructs a global storyline for the entire long video by sequentially chaining overlapping Micro Plannings across video segments. Concretely, the terminal pre-planning frames of one segment serve as the initial conditions for the next, thereby linking local plans into a coherent long-horizon structure, which can be regarded as a segment-level autoregressive process over the video timeline. Let the full video of frame length T be partitioned into S short segments, with the initial frame of the s -th segment denoted as x_s^1 . Let the set of predicted planning frames produced by Macro Planning be denoted as $\mathcal{P}_{\mathcal{M}^+}$. This process can be expressed as:

$$p(\mathcal{P}_{\mathcal{M}^+} | x_1^1) = \prod_{s=1}^S p(\mathcal{P}_{\mathcal{M}_s} | x_s^1), \quad x_{s+1}^1 := x_s^{t_c}, \quad \mathcal{P}_{\mathcal{M}^+} := \bigcup_{s=1}^S \mathcal{P}_{\mathcal{M}_s}. \quad (2)$$

where \mathcal{M}_s represents the Micro Planning for the s -th segment. By hierarchically chaining these segment-level plans, Macro Planning transforms the original frame-by-frame long-range autoregressive dependency into a segment-wise sequence of sparse planning dependencies. This restructuring

preserves global temporal coherence by ensuring a consistent storyline across segments and suppresses temporary drift, effectively reducing the error accumulation scale from the T -frame level of conventional autoregressive generation to the S -segment level under our framework, where $S \ll T$.

However, when linking Micro Plannings through an autoregressive chain, directly reusing the tail latent tokens of the preceding segment as the prefix for the next often leads to boundary flickering and color shifts across segment transitions. This issue stems from a distribution mismatch. The first latent frame fundamentally differs from the others: it represents only the initial image, while subsequent frames incorporate temporally compressed information, resulting in inconsistent statistics across frames. Therefore, inspired by CausVid (Yin et al., 2025), we introduce a drift-resilient re-encoding and decoding strategy to stabilize inter-segment transitions. Specifically, as shown in Figure 4, we first concatenate the initial latent token of the preceding segment with its terminal planning tokens and feed the sequence into the VAE decoder for video reconstruction. However, since VAE decoding requires each token to condition on strictly contiguous temporal prefixes, any temporal discontinuity in the input sequence leads to pronounced color shifts and boundary artifacts. To mitigate this issue, we duplicate the terminal planning tokens once and insert the copy between the initial latent token and the original terminal planning tokens, forming a temporally contiguous latent sequence for decoding. After reconstruction, we re-encode the second copy of the terminal planning tokens and use the resulting latents as the initial tokens for the next segment’s Micro Planning. This design enforces both statistical and temporal consistency in the latent space, effectively suppressing color shifts and boundary flickering, and achieving smooth, stable inter-segment transitions.

3.2 MMPL-BASED CONTENT POPULATING

Following Sec. 3.1, the Micro Plan \mathcal{M}_s naturally partitions each video segment into two *sub-segments*, bounded by consecutive planning frames, e.g., $[x_s^{t_a}, x_s^{t_b}]$ and $[x_s^{t_b}, x_s^{t_c}]$. To synthesize the complete segment by populating the remaining frames under the constraints of these planning frames, we introduce MMPL-based Content Populating. Specifically, Micro Planning generates three types of planning frames: *early*, *midpoint*, and *terminal*. Inspired by early methods that generate videos conditioned on the first and last frames, we divide the Content Populating process into two stages, as shown in Figure 5. In the first stage, we populate the interval by using the initial and early planning frames as the head and the midpoint planning frames as the tail, synthesizing the intermediate content. In the second stage, we extend the populated sequence by taking all frames between the initial frame and the midpoint planning frames as the new head and the terminal frames as the tail, thereby generating the remaining content. This process can be expressed as:

$$p(\mathcal{C}_s \mid \mathcal{P}_{\mathcal{M}_s}) = p(x_s^{t_a+1:t_b-1} \mid x_s^{1:t_a}, x_s^{t_b}) \cdot p(x_s^{t_b+1:t_c-1} \mid x_s^{1:t_b}, x_s^{t_c}), \quad (3)$$

where \mathcal{C}_s corresponds to the content frames to be synthesized in the s -th segment. The variables $x_s^{t_a}$, $x_s^{t_b}$, and $x_s^{t_c}$ denote the early, midpoint, and terminal planning frames of segment s , respectively. The notation $x_s^{1:t_a}$ and $x_s^{1:t_b}$ indicates that the generation of each sub-segment is conditioned not only on its boundary planning frames but also on all preceding frames in the same segment. Accordingly, the intermediate frames within the two sub-segments, denoted as $x_s^{t_a+1:t_b-1}$ and $x_s^{t_b+1:t_c-1}$, represent the remaining content to be populated.

Specially, the factorization in Eq. 3 explicitly demonstrates that content population within each sub-segment depends exclusively on its corresponding planning frames. Consequently, multiple sub-segments can be independently optimized in parallel, provided their internal planning frames have been generated. Furthermore, leveraging multiple GPUs, the proposed MMPL-based Content Populating can distribute segment-wise optimization across different devices, enabling concurrent execution. This parallelization significantly enhances computational efficiency, facilitating highly efficient long-video synthesis.

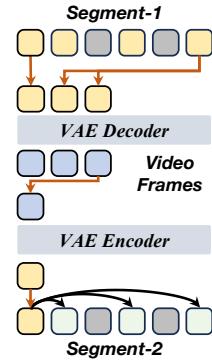


Figure 4: Our Re-Encoding and Decoding Strategy.

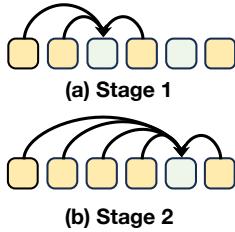


Figure 5: Two Stages of our MMPL-based Content Populating.

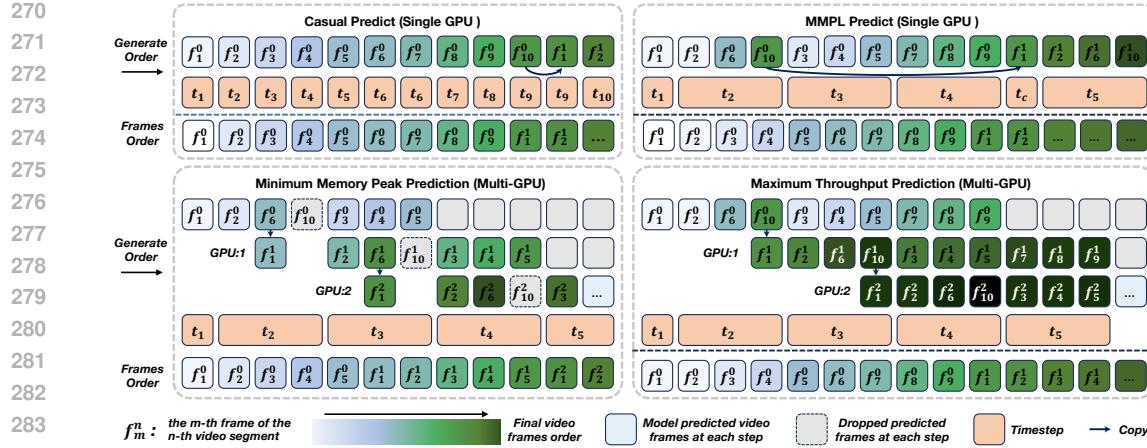


Figure 6: Multi-GPU parallel inference via adaptive workload scheduling. Given the initial frame f_1^0 , segment 0 first generates its planning frames f_2^0, f_6^0 , and f_{10}^0 . These planning frames then guide the content population of the intermediate frames f_3^0, f_4^0 , and f_5^0 . While segment 0 is still populating these frames, segment 1 can immediately start its Micro Planning by taking f_{10}^0 as the initial frame f_1^1 and generating its own planning frames f_2^1, f_6^1 , and f_{10}^1 . This staged execution enables overlapping planning and populating across segments, maximizing multi-GPU parallelism. Here, each t_i denotes an inference step in the diffusion sampling process.

3.3 ADAPTIVE WORKLOAD SCHEDULING

As discussed in Sec. 3.2, the content populating of different segments can be executed in parallel across multiple GPUs. However, this approach suffers from a key limitation: parallelization cannot start until the planning frames of all segments have been fully generated, introducing an inevitable prefix delay that degrades the overall pipeline throughput. To further improve generation efficiency, we propose an *adaptive workload scheduling* strategy, which dynamically adjusts the execution order of Micro Planning, Macro Planning, and Content Populating to maximize parallelism. Specifically, Macro Planning is constructed as an autoregressive chain of segment-level Micro Plannings, which naturally enforces a strict generation order of planning frames across segments. This property allows us to initiate the Content Populating of an earlier segment as soon as its planning frames are available, without waiting for the planning frames of all subsequent segments to finish. To illustrate the workload scheduling, consider a case where we set $t_a = 2, t_b = 6$, and $t_c = 10$ to evenly cover the temporal span. As shown in Figure 6, the planning frames of the current segment, generated via *Micro Planning* ($x_s^{t_b}$ or $x_s^{t_c}$), immediately serve as the initial frame x_{s+1}^1 for the subsequent segment. This allows the next segment to start its own *Micro Planning* while the current segment is still performing *Content Populating* to generate $x_s^{t_a+1:t_b-1}$. This staged independence naturally enables segment-parallel generation, as formally expressed in Eq. (4):

$$\begin{aligned} \text{Segment } s: \quad & x_s^{t_a+1:t_b-1} \sim p_\theta(x \mid x_s^1, x_s^{t_a}, x_s^{t_b}), \\ \text{Segment } s+1: \quad & \{x_{s+1}^1, x_{s+1}^{t_b}, x_{s+1}^{t_c}\} \sim p_\theta(x \mid x_{s+1}^1), \quad x_{s+1}^1 \in \{x_s^{t_b}, x_s^{t_c}\}. \end{aligned} \quad (4)$$

Here, the initial frame x_{s+1}^1 of the next segment can be selected either as $x_s^{t_b}$ or $x_s^{t_c}$. This selection directly determines the parallel execution strategy and leads to two distinct modes:

(1) Minimum Memory Peak Prediction. When $x_s^{t_b}$ is used as x_{s+1}^1 , intermediate frames $x_s^{t_b+1} : x_s^{t_c-1}$ are skipped, bypassing the region with the deepest temporal context and highest generation latency. This mode minimizes peak memory usage and reduces per-segment latency but introduces frame reuse between segments, slightly reducing overall throughput.

(2) Maximum Throughput Prediction. When $x_s^{t_c}$ is used as x_{s+1}^1 , all intermediate frames are generated sequentially within the segment, eliminating inter-segment redundancy and achieving maximal pipeline efficiency, at the cost of higher per-segment computation.

These two execution strategies offer a trade-off between local memory/latency and global throughput, allowing flexible deployment choices.

Table 1: Evaluation metrics for the other baselines and MMPL. The first five metrics are automatically computed by VBench, while the last three are obtained through human evaluation.

Model	VBench-long Evaluation					Human Evaluation		
	Subject Consistency	Background Consistency	Motion Smoothness	Aesthetic Quality	Imaging Quality	Text-Visual Alignment	Content Consistency	Color Shift
<i>Causal</i>								
FIFO (Kim et al., 2024)	0.956	0.960	0.949	0.588	0.603	-	-	-
<i>Distilled Causal</i>								
CausVid((Yin et al., 2025))	0.969	0.980	0.981	<u>0.606</u>	<u>0.661</u>	34.7	33.0	25.0
SF (Huang et al., 2025a)	0.967	0.958	0.980	<u>0.593</u>	0.689	<u>52.0</u>	46.1	50.5
<i>DF Causal</i>								
SkyReels (Chen et al., 2025)	0.956	0.966	<u>0.991</u>	0.600	0.581	47.9	<u>51.4</u>	<u>51.3</u>
MAGI-1 (Teng et al., 2025)	<u>0.979</u>	<u>0.970</u>	<u>0.991</u>	0.604	0.612	34.7	40.4	39.5
<i>Planning</i>								
MMPL-1.3B	0.980	<u>0.970</u>	0.987	<u>0.600</u>	<u>0.665</u>	-	-	-
MMPL-14B	0.980	0.968	0.992	0.628	0.661	80.0	79.2	83.1

4 EXPERIMENTS

Baselines. We compare our model against representative open-source video generation systems of comparable scale, including FIFO (Kim et al., 2024), SkyReelsV2 (Chen et al., 2025), MAGI (Teng et al., 2025), CausVid (Yin et al., 2025), and Self Forcing (Huang et al., 2025a). All methods are evaluated under a unified sliding-window protocol, where each fixed-length segment (e.g., 5 s) is causally conditioned on the final frames of the preceding segment. We adopt SkyReels-V2-14B and MAGI-4.5B as our primary baselines, while CausVid and Self Forcing (1.3B, distilled from 14B teachers) serve as high-fidelity autoregressive representatives.

Training Details. We implement *MMPL* on both the 1.3B and 14B variants of Wan2.1-T2V (Wang et al., 2025a), a DiT-based (Peebles & Xie, 2023) Flow Matching model originally built for 5-second videos. To support long-horizon modeling, we adopt FlexAttention (Dong et al., 2024) for scalable training and FlashAttention-v3 (Dao et al., 2022) for fast inference. The model is fine-tuned on 50k curated high-quality videos at 832×480 resolution, ensuring diverse and clean data for stable optimization. Training runs for 8,000 iterations on 32 H100 GPUs with AdamW at a 1×10^{-5} learning rate. For hierarchical planning, we set $t_a = 2, 3$, $t_b = 10, 11, 12$, and $t_c = 19, 20$, corresponding to early, midpoint, and late planning frames guiding segment-wise generation. Additional hyperparameters and ablation settings are provided in the supplementary material.

Evaluation. We evaluate on the VBench-long benchmark (Zheng et al., 2025), which assesses subject and background consistency, motion smoothness, aesthetic quality, and imaging quality, jointly reflecting temporal stability and perceptual fidelity. For the main study, we generate 30s videos from 120 randomly sampled MovieGen (Polyak et al., 2024) prompts on a single H100 GPU. To complement these quantitative metrics, we also conduct a user study: for each baseline, 19 videos of about 30s are generated using the first 19 MovieGen prompts, and 29 participants perform pairwise comparisons, selecting the video that better matches the prompt in terms of visual quality and semantic fidelity. This combination of objective metrics and human judgments provides a rigorous evaluation of both numerical performance and perceptual quality. Details of the user study are provided in the supplementary material.

Quantitative Results. As shown in Table 1, both our 1.3B and 14B models achieve strong overall performance on VBench-long, with the 14B model excelling in subject consistency 0.980, motion smoothness 0.992, and aesthetic quality 0.628, while maintaining competitive imaging quality 0.661 and only slightly lower background consistency 0.968 than CausVid and MAGI-1. However, VBench metrics, particularly subject and background consistency, tend to favor less dynamic scenes and cannot fully capture the perceptual complexity of long video generation. To address this limitation, we conducted a human study by generating 19 diverse 30-second videos per method, spanning humans, vehicles, and natural landscapes. Thirty participants rated each video on text-visual alignment, content consistency, and long-sequence color stability. Our method achieved the highest scores in all three dimensions: 80.0 for text-visual alignment, 79.2 for content consistency, and 83.1 for color stability, substantially outperforming other baselines. Besides, as illustrated in Figure 1, our method is consistently preferred in human evaluations, confirming its perceptual advantage.

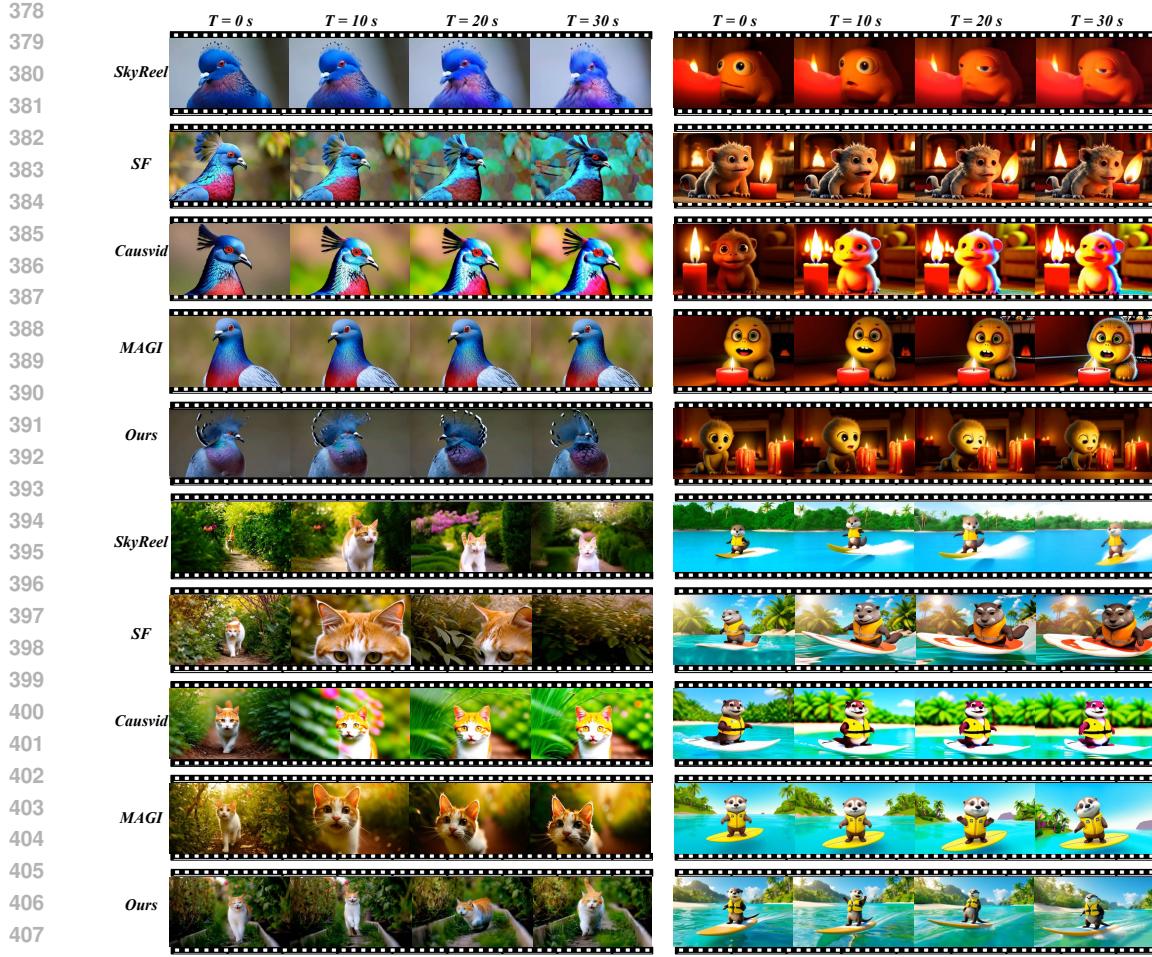


Figure 7: Qualitative comparisons. We visualize videos generated by Macro-from-Micro against those by MAGI, SkyReels-V2, Self Forcing, and CausVid.

Qualitative Results. As illustrated in Figure 7, AR baselines exhibit severe temporal drift, caused by error accumulation during long-video generation. Over the course of 30-second sequences, these models progressively lose visual fidelity, with artifacts such as blurring, fading, and noticeable color drift becoming increasingly pronounced. The degradation often compounds in dynamic scenes, where motion discontinuities and geometric distortions further undermine temporal coherence. In contrast, our approach sustains high visual quality across the entire sequence, demonstrating strong robustness to motion drift and color distortion. It consistently surpasses CausVid and Self Forcing, and further achieves superior performance to SkyReels-V2 and MAGI-1 under challenging long-horizon conditions, highlighting its effectiveness for stable and high-fidelity long video synthesis.

Parallel Inference Efficiency. To highlight the practical advantages of Macro-from-Micro Planning, we compare its standard inference with the parallelized variant. The parallel strategy achieves substantial speedups without compromising generation quality. As illustrated in Figure 1, our method significantly reduces generation time for 60-second videos, demon-

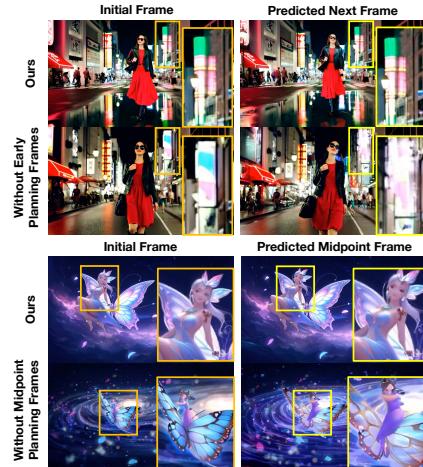


Figure 8: Qualitative comparisons of different MMPL variants.

432 Table 2: Ablation studies on planning setups.

Variant	VBench				
	Subj.	Back.	Mot.	Aes.	Img.
<i>Planning Setup</i>					
w/o early planning	0.972	0.964	0.991	0.610	0.640
w/o midpoint planning	0.977	0.968	0.992	0.618	0.637
Full	0.980	0.968	0.992	0.628	0.661

433 Table 3: Ablation studies on training strategies.

Variant	VBench				
	Subj.	Back.	Mot.	Aes.	Img.
<i>Training Strategy</i>					
Freeze	0.838	0.923	0.973	0.484	0.503
Only Q.K	0.970	0.962	0.987	0.612	0.647
Only Self-Attention	0.980	0.968	0.992	0.628	0.661

434 strating strong scalability and suitability for real-time deployment. Notably, using only two GPUs
435 halves the inference time, and thanks to the pipeline design, four GPUs further reduce the genera-
436 tion time to roughly one-third of the original. These results confirm that our approach effectively
437 balances throughput and quality, and its hardware efficiency makes it highly amenable to large-scale
438 video synthesis applications.

439 **Ablations on Micro-Planning Frame Placement.** The placement of Planning frames within each
440 segment during *Micro Planning* is pivotal for MMPL, shaping temporal and structural consistency.
441 We validate this via an ablation with three variants: (i) without early frames (omit frames near
442 the start); (ii) without the midpoint frame (remove the central anchor); and (iii) the full MMPL
443 that retains all Planning frames. As shown in Table 2, the full configuration leads across all met-
444 rics. Qualitatively (Figure 8), it yields smoother transitions and more stable long-horizon content,
445 whereas the ablated variants exhibit discontinuities or noticeable jumps around the missing frames.

446 **Ablations on Model Training Strategy.** We compare three update policies for the video generation
447 model: Freeze freezes all parameters; Only Q.K updates only the self-attention query and key pro-
448 jections; Only Self-Attention updates Q, K, V and the attention output, while feed-forward layers
449 and embeddings remain frozen. As shown in Table 3, updating the whole self-attention yields the
450 best scores across all metrics. Training only Q.K is lighter but slightly weaker. Freezing performs
451 worst and shows larger temporal drift and inconsistency.

452 Performance on Short-Horizon Generation.

453 Although MMPL is primarily designed for
454 long-horizon video synthesis, it also improves
455 short-horizon generation quality. We compare
456 MMPL with the strong baseline Wan-2.1-14B
457 on 5-second clips using VBench metrics. As
458 shown in Table 4, MMPL achieves slightly
459 higher perceptual scores across subject consis-
460 tency, background consistency, motion smoothness,
461 and aesthetics, demonstrating that our planning
462 mechanism benefits both short- and long-range video generation.

463 5 EXTENDED EXPERIMENTAL ANALYSIS

464 Although VBench provides a widely adopted protocol for benchmarking video generation models,
465 its global and frame-wise metrics are not always sensitive to localized or long-horizon degradations.
466 To provide a more complete understanding of MMPL’s behavior on long sequences, we introduce
467 complementary evaluations that capture both color drift and temporal distribution consistency.

468 **Color-Shift Metrics** We additionally measure long-range color stability using frame-to-frame hue
469 statistics. Specifically, we compute the H-channel L1 distance and H-channel correlation between
470 the first and last frame of each 30-second video, providing a direct estimate of global color drift. As
471 shown in Table 5, MMPL achieves the smallest drift and highest hue consistency among all methods.

472 **Long-Video Consistency via JEPA Metrics** To evaluate temporal coherence over extended hori-
473 zons, we adopt the JEPA-based metrics (Balestriero et al., 2025). Although JEPA was originally
474 designed to estimate dataset-level distributions, it can be naturally repurposed for long video analysis
475 by treating a single video as a dataset and each frame as a data sample. Under this reinterpretation,
476 taking the first frame as the reference distributional center allows the JEPA score standard deviation
477 to quantify temporal drift, while the first–last frame score difference measures the accumulated bias
478 over time. Table 6 shows that MMPL achieves the most stable temporal distribution, exhibiting both
479 the lowest JEPA variance and the smallest long-range frame discrepancy.

480 Table 4: Comparison on 5-second videos.

Model	Subj.	Back.	Mot.	Aes.	Img.
Wan-2.1	0.980	0.970	0.988	0.600	0.671
MMPL	0.984	0.971	0.993	0.629	0.663

486
487
488
Table 5: Color-shift metrics computed between
the first and last frames.

Variant	H-channel L1 Distance ↓	H-channel Correlation ↑
CausVid	0.711	0.598
Self-Forcing	1.152	0.162
FramePack	0.445	0.881
MMPL	0.306	0.927

489
490
491
492
493
Table 6: JEPA-based long-video consistency
metrics.

Model	JEPA-Score Std ↓	First-Last Score Diff ↓
CausVid	0.1107	0.4093
Self-Forcing	0.2293	1.0695
FramePack	0.0853	0.1364
MMPL	0.0705	0.0281

494
495
496
Table 7: Comparison with planning-based baselines under matched model scales. Lower JEPA-std
and JEPA-Diff indicates better long-horizon stability.

Model	Params	Subj.	Back.	Mot.	Aes.	Img.	JEPA-Std	JEPA-Diff
FramePack	13B	0.987	0.971	0.996	0.607	0.638	0.0853	0.1364
MMPL-14B	14B	0.980	0.968	0.992	0.628	0.661	0.0705	0.0281

501
502
503
504
505
506
507
508
509
Comparison with Other Planning Methods We compare MMPL with planning-based baselines
under matched model scales. Since FramePack-Plan is not publicly available and the released
FramePack code supports only image-to-video inference, we adopt a practical setting by feeding
FramePack with the first frame generated by our method to ensure comparable initialization. As
shown in Table 7, MMPL-14B achieves the strongest overall performance, with significantly better
aesthetic quality, imaging quality, and much lower temporal drift, while the remaining consistency
metrics are at a similar level to FramePack. These results highlight the clear advantage of our plan-
ning mechanism in maintaining stable and coherent long-horizon video generation.510
511

6 DISCUSSION

512
513
514
515
516
517
Compatibility with Acceleration and Distillation Methods. Our paradigm is naturally compatible
with acceleration techniques such as DMD and other distillation approaches, requiring no architec-
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80

540
541
ETHICS STATEMENT542
543
544
545
All authors have read and agree to abide by the ICLR Code of Ethics. This work does not involve
interventions with human participants or personally identifiable information. We use only publicly
available datasets under their original licenses and follow the terms of use. Potential risks and our
mitigations are summarized below:546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
• **Privacy & Security.** We do not collect or release any personal data. When showing qualitative examples, all images/videos are from public datasets; any sensitive content is filtered.
• **Bias & Fairness.** We report results on multiple benchmarks and provide detailed settings to facilitate external auditing. We acknowledge possible dataset biases and encourage follow-up evaluation on broader demographics and domains.
• **Dual Use / Misuse.** The method could be misused to enable undesired large-scale labeling or surveillance. To reduce misuse, we release only research artifacts (code/configs) and exclude any tools for scraping or re-identifying individuals.
• **Legal Compliance.** We comply with licenses of all third-party assets (code, models, and datasets) and cite their sources. Any additional third-party terms are respected.
• **Research Integrity.** We document preprocessing, training recipes, and evaluation protocols; random seeds and hyperparameters are provided to enable reproducibility.560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
Where applicable, institutional review information is withheld for double-blind review and can be provided after acceptance.560
561
562
563
564
REPRODUCIBILITY STATEMENT565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
We include training and evaluation details in the main paper and Appendix. Concretely: (i) all hyperparameters, optimization settings, and compute budgets; (ii) full data preprocessing and splits. Complete code and training logs will be open-sourced upon paper acceptance.560
561
562
563
564
REFERENCES565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why exposure bias matters: An imitation learning perspective of error accumulation in language generation. In *ACL*, 2022.
Randall Balestrieri, Nicolas Ballas, Mike Rabbat, and Yann LeCun. Gaussian embeddings: How jepas secretly learn your data density. *CoRR*, 2025.
Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In *CVPR*, 2023.
Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. In *NeurIPS*, 2024a.
Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang, Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang, Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang Li, Zhengcong Fei, Yang Li, and Yahui Zhou. Skyreels-v2: Infinite-length film generative model. *CoRR*, 2025.
Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter1: Open diffusion models for high-quality video generation. *CoRR*, 2023.
Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping Luo, Tao Xiang, and Juan-Manuel Pérez-Rúa. Gentron: Diffusion transformers for image and video generation. In *CVPR*, 2024b.

594 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
 595 memory-efficient exact attention with io-awareness. In *NeurIPS*, 2022.

596

597 Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
 598 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
 599 In *ICLR*, 2025.

600

601 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
 602 *NeurIPS*, 2021.

603

604 Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
 605 programming model for generating optimized attention kernels. *CoRR*, 2024.

606

607 Kaifeng Gao, Jiaxin Shi, Hanwang Zhang, Chunping Wang, and Jun Xiao. Vid-gpt: Introducing
 608 gpt-style autoregressive generation in video diffusion models. *CoRR*, 2024.

609

610 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 611 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
 612 sion models without specific tuning. In *ICLR*, 2024.

613

614 Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and
 615 José Lezama. Photorealistic video generation with diffusion models. In *ECCV*, 2024.

616

617 Yefei He, Feng Chen, Yuanyu He, Shaoxuan He, Hong Zhou, Kaipeng Zhang, and Bohan Zhuang.
 618 Zipar: Accelerating auto-regressive image generation through spatial locality. *CoRR*, 2024.

619

620 Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
 621 Fleet. Video diffusion models. In *NeurIPS*, 2022.

622

623 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
 624 training for text-to-video generation via transformers. In *ICLR*, 2023.

625

626 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
 627 tion. In *CVPR*, 2024.

628

629 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
 630 the train-test gap in autoregressive video diffusion. *CoRR*, 2025a.

631

632 Yuyang Huang, Yabo Chen, Li Ding, Xiaopeng Zhang, Wenrui Dai, Junni Zou, Hongkai Xiong, and
 633 Qi Tian. Im-zero: Instance-level motion controllable video generation in a zero-shot manner. In
 634 *CVPR*, 2025b.

635

636 Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. Fifo-diffusion: Generating infinite
 637 videos from text without training. In *NeurIPS*, 2024.

638

639 Zongyi Li, Shujie Hu, Shujie Liu, Long Zhou, Jeongsoo Choi, Lingwei Meng, Xun Guo, Jinyu Li,
 640 Hefei Ling, and Furu Wei. ARLON: boosting diffusion transformers with autoregressive models
 641 for long video generation. In *ICLR*, 2025.

642

643 Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
 644 Yu Qiao. Latte: Latent diffusion transformer for video generation. *TMLR*, 2025.

645

646 Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Önal Ertugrul. Elucidating the
 647 exposure bias in diffusion models. In *ICLR*, 2024.

648

649 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T. Freeman,
 650 and Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders.
 651 In *CVPR*, 2025.

652

653 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

648 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 649 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 650 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Ja-
 651 gadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu,
 652 Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sum-
 653 baly, Sai Saketh Rambhatla, Sam S. Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean
 654 Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu,
 655 Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-
 656 Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola,
 657 Ali K. Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Car-
 658 leigh Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schönfeld, Elliot Blanchard, Felix
 659 Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivaku-
 660 mar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K.
 661 Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming
 662 Du. Movie gen: A cast of media foundation models. *CoRR*, 2024.

663 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 664 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

665 Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
 666 structured prediction to no-regret online learning. In *AISTATS*, 2011.

667 Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
 668 History-guided video diffusion. *CoRR*, 2025.

669 Mingzhen Sun, Weining Wang, Gen Li, Jiawei Liu, Jiahui Sun, Wanquan Feng, Shanshan Lao, SiYu
 670 Zhou, Qian He, and Jing Liu. Ar-diffusion: Asynchronous video generation with auto-regressive
 671 diffusion. In *CVPR*, 2025.

672 Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
 673 Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang,
 674 Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli
 675 Su, Hanwen Sun, Hong Pan, Jie Wang, Jie Xin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng
 676 Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang,
 677 and Yuqiao Li. MAGI-1: autoregressive video generation at scale. *CoRR*, 2025.

678 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 679 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 680 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Xiaofeng Meng, Ningyi Zhang, Pandeng
 681 Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang,
 682 Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente
 683 Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu
 684 Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu,
 685 Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-
 686 Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *CoRR*,
 687 2025a.

688 Yuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou,
 689 Jia Shi Feng, and Xihui Liu. Parallelized autoregressive visual generation. In *CVPR*, 2025b.

690 Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi Zheng, Jonathan T. Barron, and Alek-
 691 sander Holynski. CAT4D: create anything in 4d with multi-view video diffusion models. In
 692 *CVPR*, 2025a.

693 Tong Wu, Shuai Yang, Ryan Po, Yinghao Xu, Ziwei Liu, Dahua Lin, and Gordon Wetzstein. Video
 694 world models with long-term spatial memory. *CoRR*, 2025b.

695 Xunzhi Xiang, Haiwei Xue, Zonghong Dai, Di Wang, Minglei Li, Ye Yue, Fei Ma, Weijiang Yu,
 696 Heng Chang, and Fei Richard Yu. Remask-animate: Refined character image animation using
 697 mask-guided adapters. In *AAAI*, 2025.

698 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 699 VQ-VAE and transformers. *CoRR*, 2021.

702 Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Frédéric Durand, Eli Shechtman, and
703 Xun Huang. From slow bidirectional to fast causal video generators. In *CVPR*, 2025.
704

705 Lijun Yu, José Lezama, Nitesh Bharadwaj Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen,
706 Yong Cheng, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong, Ming-Hsuan
707 Yang, Irfan Essa, David A. Ross, and Lu Jiang. Language model beats diffusion - tokenizer is key
708 to visual generation. In *ICLR*, 2024.

709 Chi Zhang, LiangLi Yuanzhi, Qiu Xi, Yi Fangqiu, and Li Xuelong. Vast 1.0: A unified framework
710 for controllable and consistent video generation. *CoRR*, 2024.

711 Guiyu Zhang, Chen Shi, Zijian Jiang, Xunzhi Xiang, Jingjing Qian, Shaoshuai Shi, and Li Jiang.
712 Proteus-id: Id-consistent and motion-coherent video customization. *CoRR*, 2025.
713

714 Lvmin Zhang and Maneesh Agrawala. Packing input frame contexts in next-frame prediction models
715 for video generation. *CoRR*, 2025.

716 Canyu Zhao, Mingyu Liu, Wen Wang, Weihua Chen, Fan Wang, Hao Chen, Bo Zhang, and Chunhua
717 Shen. Moviedreamer: Hierarchical generation for coherent long visual sequences. In *ICLR*, 2025.

719 Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Yuanhan Zhang, Jingwen He,
720 Wei-Shi Zheng, Yu Qiao, and Ziwei Liu. Vbench-2.0: Advancing video generation benchmark
721 suite for intrinsic faithfulness. *CoRR*, 2025.

722 Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Zilong Dong, Yinghui Xu, Xun Cao, Yao Yao,
723 Hao Zhu, and Siyu Zhu. Champ: Controllable and consistent human image animation with 3d
724 parametric guidance. In *ECCV*, 2024.
725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DATA PREPARATION
757

758 **Data Sources and Filtering.** Our dataset comprises two components: (i) licensed commercial
759 videos purchased from authorized providers; and (ii) web videos manually collected from open
760 platforms, primarily [Mixkit](#), [Pexels](#), and [Pixabay](#). For all candidate videos, we first generate textual
761 captions with Qwen-72B and compute an aesthetic score using the LAION aesthetic predictor. For
762 licensed data, we rank by the aesthetic score and retain only the top 1%. For web-collected data,
763 we conduct human quality control to remove low-quality clips, content-caption mismatches, and
764 potential copyright risks, and to verify caption consistency. We then merge the two subsets, yielding
765 approximately $\sim 50k$ high-quality samples to train our long-video generation model.

766 **Structured Annotation Pipeline.** To obtain rich and structured annotations, we drive Qwen-72B
767 with carefully designed instruction prompts to analyze video frames and output a JSON object with a
768 fixed schema. The JSON includes: a short scene summary (`short_caption`); a dense contextual
769 description (`dense_caption`, covering main subject, background, visual style, camera movement,
770 shot type, lighting, and atmosphere); detailed subject descriptions (for persons: facial expressions,
771 emotional state, and ethnicity); background information; standardized style/shot/movement labels;
772 aesthetic tags; and role statistics (e.g., number of humanoid characters, coverage extent, depiction
773 style, and motion dynamics). Concretely, `short_caption` is generated with the instruction "*Brief
774 scene summary in 1 sentence*", while `dense_caption` uses "*Detailed context including main
775 subject, background, visual style, camera movement tech, shot type, lighting, and atmosphere*".
776 All outputs are in English, follow predefined field orders and constraints, and employ standardized
777 vocabulary for key attributes.

778 **Quality Control and Training Setup.** After annotation, we re-evaluate aesthetic quality with the
779 LAION predictor to ensure consistency. During training, for each of the $\sim 50k$ videos we sample
780 the conditioning text with probability 0.8 from `dense_caption` and with probability 0.2 from
781 `short_caption`. This strategy preserves the high information density of dense captions while
782 maintaining robustness and diversity from concise summaries. As shown in Figure 9, we present
783 several representative examples from our curated dataset.

807 **Figure 9: Examples of training samples.** The dataset combines licensed and web-collected videos,
808 curated via aesthetic scoring and manual screening.

809

B USER STUDY DETAILS

To complement the quantitative metrics, we conduct a user study on long-video generation. In each trial, participants evaluate five videos generated from the same prompt by ranking them (1 = best, 5 = worst) along three dimensions: *text–visual alignment*, *content consistency*, and *long-sequence color stability*. In addition, participants select a single overall favorite video.

User Study Details

Rank 5 videos on 3 criteria

Hide Instructions

Instruction

Click to collapse

You will be shown five AI-generated videos created from the same text prompt. Please rank all 5 videos for each criterion below (1 = best, 5 = worst), and then select your single overall favorite video.

- Text Alignment: faithfulness to the prompt semantics.
- Content Consistency: temporal coherence and absence of discontinuities.
- Color Shift: stability of color/illumination without drift or flicker.

Each criterion must be a permutation of 1–5 (no ties).

Text Prompt

A close-up shot of a majestic white dragon with pearlescent, silver-edged scales, icy blue eyes, and elegant ivory horns. The dragon's face is detailed with subtle wrinkles and sharp, defined features, capturing a regal and serene expression. Its breath forms a gentle mist, adding to the ethereal quality. The scales are meticulously textured, reflecting light in a way that highlights their depth and shine.

Videos

Option A	<input checked="" type="radio"/> Favorite	Option B	<input type="radio"/> Favorite	Option C	<input type="radio"/> Favorite
Option D	<input type="radio"/> Favorite	Option E	<input type="radio"/> Favorite		

Rankings (1 = best, 5 = worst)

Video	Text Alignment	Content Consistency	Color Shift
Option A	1 <input type="button" value="▼"/>	1 <input type="button" value="▼"/>	1 <input type="button" value="▼"/>
Option B	2 <input type="button" value="▼"/>	2 <input type="button" value="▼"/>	2 <input type="button" value="▼"/>
Option C	3 <input type="button" value="▼"/>	3 <input type="button" value="▼"/>	3 <input type="button" value="▼"/>
Option D	4 <input type="button" value="▼"/>	4 <input type="button" value="▼"/>	4 <input type="button" value="▼"/>
Option E	5 <input type="button" value="▼"/>	5 <input type="button" value="▼"/>	5 <input type="button" value="▼"/>

Text Alignment: valid permutation

Content Consistency: valid permutation

Color Shift: valid permutation

Optional Notes

(Optional) Briefly justify your rankings (e.g., color stability, motion, or alignment).

I have read the instructions and will evaluate fairly.

Reset

Submit

Figure 10: User study instruction screenshots.

This protocol provides fine-grained human judgments on both quality and temporal robustness that are not fully captured by automated metrics. Detailed instructions are shown in Figure 10.

864

C TRAINING SETTINGS

865

C.1 HYPERPARAMETER SETTINGS

866 Most experiments are conducted on 32 NVIDIA GPUs (80 GB each), using a per-GPU batch size of
 867 1 without gradient accumulation. The detailed hyperparameters are summarized in Table 8. Training
 870 the Teacher Forcing 14B model for 8,000 steps required about three days, while the DMD 1.3B
 871 model reached 8,000 steps within roughly one day.

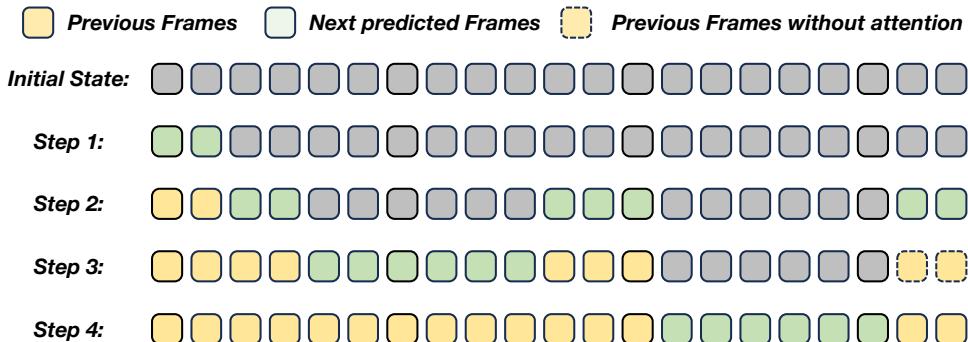
872 Table 8: Specification of training hyperparameters
 873

874 Hyperparameters	875 Teacher Forcing	876 Self Forcing
877 Generate network	878 Wan2.1-T2V-14B	879 Wan2.1-T2V-1.3B
878 Real score network	879 N/A	880 Wan2.1-T2V-14B
880 Fake score network	881 N/A	882 Wan2.1-T2V-14B
881 Batch size	882 32	883 32
882 Optimizer (G_θ)	883 AdamW, $\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1 \times 10^{-8}$, weight_decay = 0.01	884 Adam, $\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1 \times 10^{-8}$, weight_decay = 0.01
883 Optimizer (f_ψ)	884 N/A	885 Adam, $\beta_1 = 0, \beta_2 = 0.999, \epsilon = 1 \times 10^{-8}$, weight_decay = 0.01
884 Learning rate (G_θ)	885 1×10^{-5}	886 2×10^{-6}
885 Learning rate (f_ψ)	886 N/A	887 4×10^{-7}
886 Gen./Cri. update ratio	887 N/A	888 5
887 EMA decay	888 N/A	889 0.99

886

C.2 PLANNING SETTINGS

887 **Settings.** To clarify the generation process, we detail the model’s computation using the 21 latent
 888 tokens of the full Wan model as shown in Figure 11. Tokens are indexed from 0: indices 0–1
 889 correspond to the initial frame, indices 2–3 to early planning frames, indices 10–12 to midpoint
 890 planning frames, and indices 19–20 to terminal planning frames.



905 **Figure 11: Overview of our planning-based inference on an 81-frame sequence with 21 latent**
 906 **tokens (full Wan model).** Pre-Planning latent tokens at the beginning, midpoint, and terminal
 907 positions serve as stable anchors in the denoising schedule, guiding the synthesis of all intermediate
 908 frames and ensuring long-range temporal coherence.

909 **Analysis.** While the proposed planning setup places anchors over long horizons, a central challenge
 910 remains: enabling the autoregressive (AR) decoder to effectively exploit these anchors when synthe-
 911 sizing intermediate frames. Relying on a single planning token at the *early*, *midpoint*, and *terminal*
 912 boundaries is intrinsically fragile in the presence of the AR decoder’s pronounced *recency bias*—the
 913 tendency to overweight the most recent observations while underutilizing distant context. This bias
 914 causes the model, at each sub-segment junction, to condition predominantly on the tail of the pre-
 915 preceding sub-segment, thereby inheriting and amplifying residual errors and inducing cross-boundary
 916 propagation. Consequently, a single planning token per boundary is insufficient to arrest drift arising
 917 from accumulated errors. Formally, this bias in MMPL is expressed in Eq. 5:

$$p(x^{s_k+1:e_k-1} | x^{1:s_k}, x^{e_k}) \approx p(x^{s_k+1:e_k-1} | x^{s_k-K:s_k}, x^{e_k}). \quad (5)$$

918 Here, s_k and e_k denote the starting and ending reference indices of sub-segment k , corresponding
 919 to the pre-planned *planning frames*. The hyperparameter K specifies the size of the recent-context
 920 window on which the AR decoder conditions—namely, the K frames immediately preceding s_k .
 921 Because $\{s_k - K : s_k\}$ overlaps with the tail of the previous sub-segment, residual errors inevitably
 922 leak into the current one, leading to error propagation across boundaries.

923 To counteract this bias, we replace the single predecessor at each boundary with a *local multi-frame*
 924 *set*. Concretely,

$$926 \quad \mathcal{P}_{s_1} = \{2, 3\}, \quad \mathcal{P}_{e_1} = \{10, 11, 12\}, \quad \mathcal{P}_{s_2} \approx \{10, 11, 12\}, \quad \mathcal{P}_{e_2} = \{19, 20\},$$

927 where \mathcal{P}_{s_k} denotes the local index set of expanded pre-planning frames around boundary s_k . Using
 928 these expanded anchors, the conditional distribution for sub-segment k is refined to

$$929 \quad p(x^{s_k+1:e_k-1} \mid x^{1:s_k}, x^{e_k}) \approx p(x^{s_k+1:e_k-1} \mid x^{(s_k-2-K):(s_k-3)}, x^{s_k-2:s_k}, x^{e_k}). \quad (6)$$

931 Conditioning on a compact bundle of early-step, low-drift frames—rather than a single predecessor—
 932 dilutes residual errors inherited from the previous sub-segment. At the same time, the model’s
 933 recency bias naturally prioritizes the most recent elements within this bundle, thereby stabilizing
 934 long-horizon synthesis and suppressing cross-boundary error propagation without discarding infor-
 935 mation from the planned anchors.

936 D ERROR ACCUMULATION ANALYSIS IN AR MODELS

939 **Autoregressive (AR) Models.** Autoregressive (AR) models generate a sequence $x = (x^1, \dots, x^T)$
 940 by factorizing its joint probability distribution according to the chain rule of probability:

$$941 \quad p_\theta(x) = \prod_{t=1}^T p_\theta(x^t \mid x^{<t}), \quad (7)$$

944 where $x^{<t} = (x^1, \dots, x^{t-1})$ denotes all previously generated elements. In practice, AR models are
 945 commonly trained with the *teacher forcing* strategy, which replaces the model’s own past predictions
 946 with the ground-truth history during training. This reduces the training objective to a standard
 947 negative log-likelihood (NLL) minimization:

$$949 \quad \mathcal{L}(\theta) = - \sum_{t=1}^T \log p_\theta(x^t \mid x^{<t} \text{gt}), \quad (8)$$

951 where $x^{<t} \text{gt}$ denotes the ground-truth prefix of the sequence. Such training ensures stable and effi-
 952 cient optimization, but it also introduces a train-test discrepancy—commonly referred to as *exposure*
 953 *bias* (Ning et al., 2024)—because the model will rely on its own predictions rather than ground-truth
 954 history during inference, potentially leading to error accumulation over long sequences.

955 To analyze the underlying sources and impacts of error accumulation, we follow (Arora et al., 2022)
 956 and formulate AR generation as a sequential decision process under the imitation learning (IL)
 957 framework. Here, the state is defined as $s^t = x^{<t}$, the action as $a^t = x^t$, the policy as $\pi_\theta(a^t \mid$
 958 $s^t) = p_\theta(x^t \mid x^{<t})$, and the oracle policy as $\pi^*(a^t \mid s^t) = p_{\text{data}}(x^t \mid x^{<t})$. Maximum-likelihood
 959 training corresponds to behavior cloning, which minimizes training loss on the oracle-induced state
 960 distribution but suffers from compounding errors once the policy is executed on its own rollouts.

961 In the imitation learning literature (Ross et al., 2011), rolling out a policy trained via behavior
 962 cloning often leads to error accumulation. This happens because the policy is executed on its own
 963 predictions rather than the oracle states seen during training. To analyze this effect, researchers use
 964 inference-time regret, which measures the performance gap between the behavior cloning policy
 965 π_{BC} and the oracle policy o during rollout:

$$966 \quad \mathcal{R}(\pi_{BC}) = L^I(\pi_{BC}) - L^I(o). \quad (9)$$

968 Here, $L^I(\pi)$ denotes the expected cumulative loss (or cost) when executing policy π over the entire
 969 rollout horizon. Let ϵ denote the average expected error of executing the behavior cloning policy
 970 π_{BC} over T steps, which itself is upper-bounded. The regret of behavior cloning is bounded by
 971

$$T\epsilon \leq \mathcal{R}(\pi_{BC}) \leq T^2\epsilon, \quad (10)$$

Building on this analysis, and following (Arora et al., 2022), we further extend it to the AR video generation setting with model p_θ and decoding strategy \mathcal{F} , which yields

$$T\epsilon \leq \mathcal{R}(p_\theta, \mathcal{F}) \leq T^2\epsilon, \quad (11)$$

which demonstrates that even small per-step errors can accumulate linearly in expectation and quadratically in the worst case, thereby explaining the progressive drift and long-horizon degradation observed in autoregressive generation under exposure bias.

E COMPUTATION COST ANALYSIS

To better understand the computational cost of MMPL, we analyze its stage-wise latency, multi-GPU efficiency, seeding strategies, and the impact of different (t_a, t_b, t_c) configurations. All experiments are conducted using the full 14B model on H100 GPUs without distillation.

E.1 STAGE-WISE LATENCY.

We denote the four inference steps illustrated as 1–4 in Figure 11 by a, b, c, d in the following analysis. MMPL inference therefore consists of four steps a, b, c, d , with execution times denoted as T_a, T_b, T_c , and T_d . Here, T_b represents the per-segment Micro Planning cost, while $T_c + T_d$ corresponds to Content Population. Macro Planning progressively copies the terminal planning frames of segment s to initialize segment $s+1$, and its total overhead is the sum of these copy operations plus all per-segment Micro Planning costs. The stage-wise breakdown is listed in Table 9, where “ \sim ” indicates negligible overhead and L denotes the number of 5-second segments.

Table 9: Stage-wise latency of MMPL.

Stage	Latency (s)
T_a	25
T_b	109
T_c	113
T_d	148
Re-encode/Decode	1.3
Inter-GPU Transfer	\sim
Macro	$25 + L \times 109$

E.2 MULTI-GPU EFFICIENCY.

We report GPU utilization, peak VRAM, and total inference time for generating 60-second videos under standard MMPL settings using 1, 2, and 4 GPUs (Table 10). Increasing the number of GPUs reduces the overall latency. In our experiments, the four GPU configuration already provides strong throughput, and adding more GPUs does not bring a noticeable additional speedup. For this reason, we report results for one, two, and four GPUs, which sufficiently illustrate the behavior of MMPL under multi GPU settings. In addition, we visualize the GPU utilization patterns during 60-second video generation under different GPU configurations, as shown in Fig. 12, which further illustrates how parallel decoding improves hardware efficiency and reduces idle cycles.

Table 10: Multi-GPU efficiency for 60-second video generation.

GPUs	Avg Util. (%)	Peak VRAM (GB)	Cost Time (s)
1	99.44	68.16	4465
2	94.31	68.16	2354
4	80.69	68.16	1660

E.3 MID-POINT VS. TERMINAL SEEDING.

We evaluate the memory-throughput trade-off between mid-point and terminal seeding using a two-GPU setup generating 10-second videos (Table 11). Mid-point seeding reduces KV-cache length

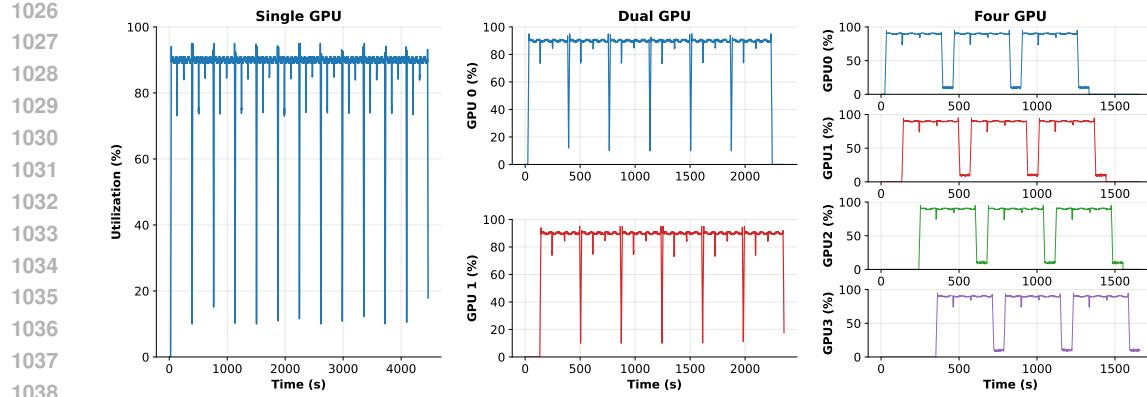


Figure 12: GPU utilization curves during 60-second video generation.

and thus memory usage, whereas terminal seeding achieves faster runtime at the cost of higher peak VRAM. This reflects a controllable balance between memory efficiency and throughput.

Table 11: Memory-throughput trade-off of mid-point vs. terminal seeding.

Strategy	Peak VRAM (GB)	Cost Time (s)
Mid-point	55.17	586
Terminal	68.16	504

E.4 EFFECT OF (t_a, t_b, t_c) SETTINGS.

We further analyze peak VRAM usage and step-wise latency for various (t_a, t_b, t_c) configurations under the 5-second generation setting (Table 12). The results show that the latency of each stage is jointly influenced by its effective contextual length and the number of frames it is responsible for generating, whereas the peak VRAM is primarily governed by the KV-cache span. In our design, the number of frames whose KV states must be kept in memory scales with the total number of generated frames minus the frames falling between t_b and t_c .

Table 12: Peak VRAM and latency for different (t_a, t_b, t_c) configurations.

(t_a, t_b, t_c)	Peak VRAM	T_a	T_b	T_c	T_d	Total Time
[2, 3], [10, 11, 12], [19, 20]	68	25	109	113	148	395s
[2, 3, 4], [10, 11, 12], [18, 19, 20]	70	25	148	101	129	403s
[2, 3, 4, 5], [10, 11, 12], [17, 18, 19, 20]	72	25	192	88	109	414s
[2, 3, 4, 5], [11], [17, 18, 19, 20]	70	25	148	101	129	403s

F IMPORTANCE OF VAE

We compare the extrapolation procedure from the public CausVid codebase against our proposed *drift-resilient re-encoding and decoding strategy*, as shown in Figure 13. When extrapolation extends beyond the training context length and requires segment stitching, the baseline exhibits severe color drift and visual artifacts, whereas our method effectively suppresses these degradations. This strategy also mitigates the VAE-induced color drift accumulated across segments. To quantify this effect, we disable the re-encode/decode module and measure boundary quality at the junctions between consecutive 5-second segments. The results in Table 13 show that re-encode/decode substantially improves cross-segment color consistency, as evidenced by significantly better H-channel metrics and a nearly unchanged LPIPS score.

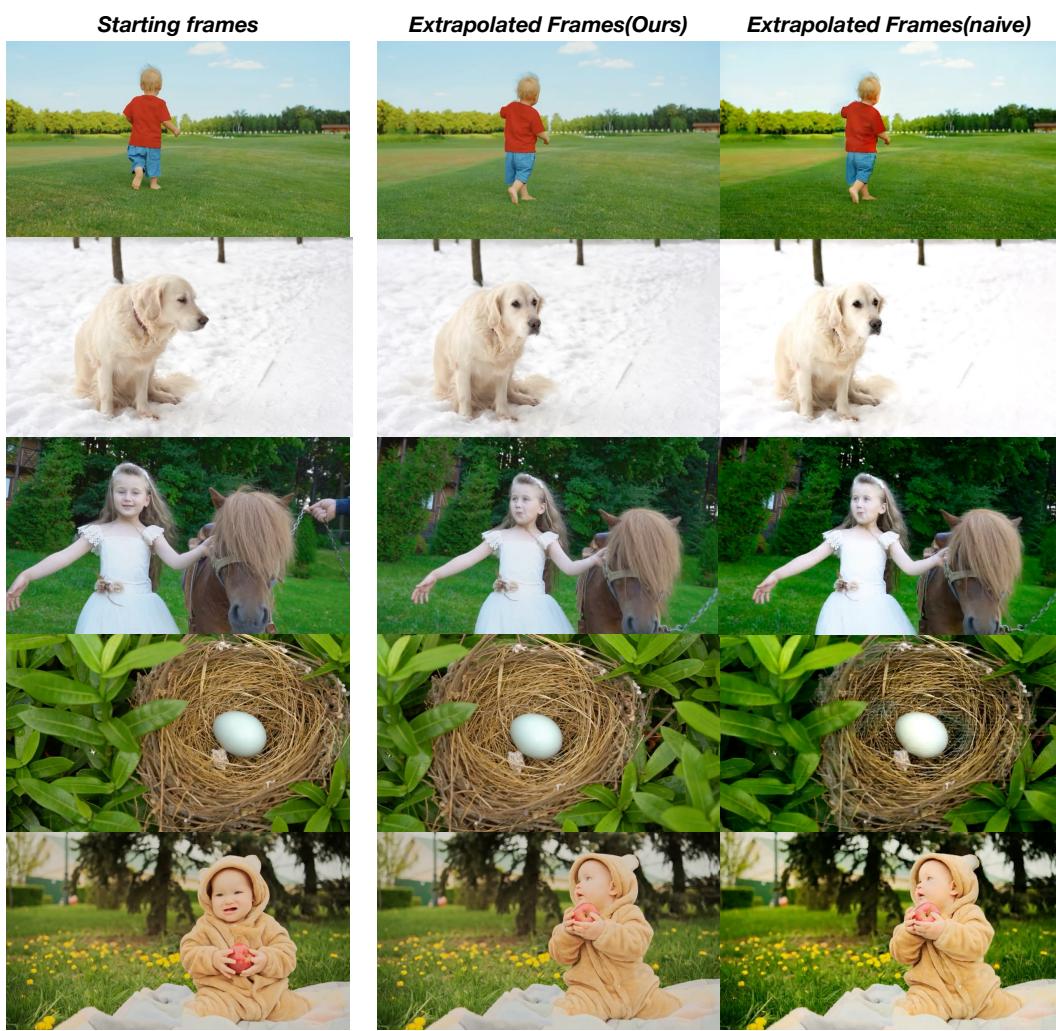


Figure 13: Qualitative comparisons on video extrapolation.

Table 13: Boundary quality evaluation across consecutive 5-second segments.

Variant	H-channel L1 Distance ↓	H-channel Correlation ↑	t-LPIPS ↓
w/o Re-encode/Decode	0.697	0.675	0.059
MMPL	0.028	0.999	0.023

G NOISE INITIALIZATION STRATEGY FOR SMOOTHING GENERATION

In this work, we propose a specialized noise initialization strategy to address potential temporal discontinuities and instability at the transition boundaries between planning frames and content frames as shown in Figure 14. This approach ensures smooth visual transitions by strategically incorporating noise information from adjacent planning frames during the content frame generation process. Let P_{n-1} and P_n represent the planning frames at temporal positions $n-1$ and n , respectively, and let C_{n+1} denote the target content frame at position $n+1$. To establish the theoretical foundation, we first recall the standard diffusion forward process formulation. Given a clean frame \mathbf{x}_0 at diffusion timestep t , the noisy observation \mathbf{x}_t is generated through the Gaussian perturbation:

$$q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}t}\mathbf{x}_0, (1 - \bar{\alpha}t)\mathbf{I}), \quad (12)$$

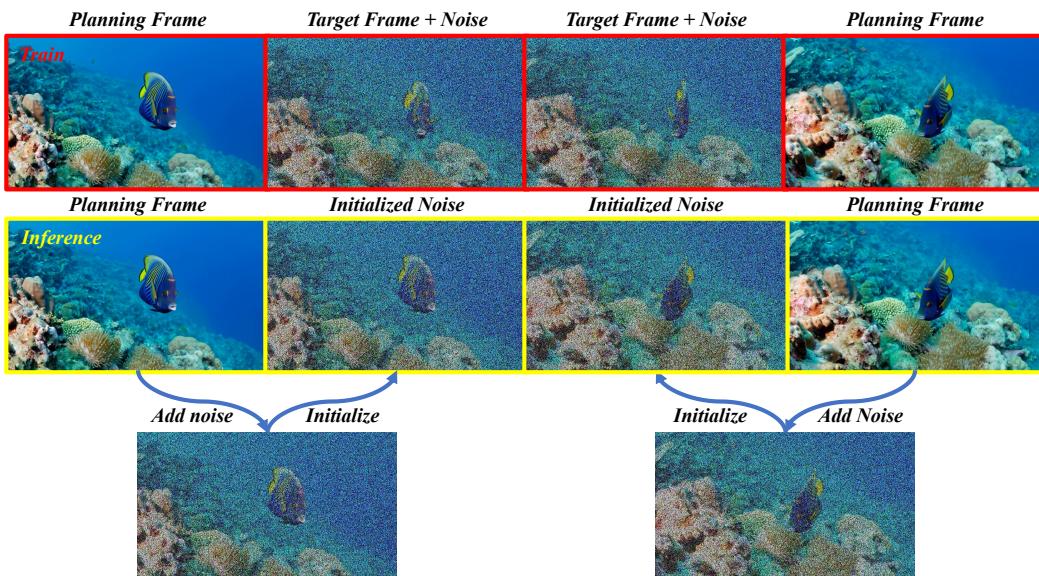
1134 where $\bar{\alpha}_t$ denotes the cumulative product of the noise schedule coefficients. This process can be
 1135 equivalently expressed as:

$$1136 \quad \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \quad (13)$$

1137 Building upon this formulation, our methodology initializes the noise vector $\epsilon_{C_{n+1}}$ for the content
 1138 frame C_{n+1} through a weighted interpolation of the noise vectors associated with the preceding
 1139 planning frames. Specifically, the initialization follows:

$$1140 \quad \epsilon_{C_{n+1}} = \alpha \cdot \epsilon_{P_n} + (1 - \alpha) \cdot \epsilon_{P_{n-1}}, \quad (14)$$

1141 where $\epsilon_{C_{n+1}}$ represents the noise vector utilized in the reverse diffusion process for generating content
 1142 frame C_{n+1} , ϵ_{P_n} and $\epsilon_{P_{n-1}}$ correspond to the noise vectors derived from planning frames P_n
 1143 and P_{n-1} . This noise initialization strategy ensures a continuous evolution of stochastic patterns
 1144 across frame boundaries, effectively mitigating visual artifacts and temporal inconsistencies. By
 1145 controlling the interpolation weight α , our method provides precise adjustment over the temporal
 1146 smoothness characteristics, enabling stable and coherent video generation while maintaining high
 1147 visual quality throughout the sequence. To verify its contribution, we disable the noise-interpolation
 1148 module and evaluate boundary quality specifically at these boundaries. These results in Tab.14 show
 1149 that noise interpolation substantially improves the stability of segment transitions and effectively
 1150 eliminates content jumps, as evidenced by nearly identical H-channel metrics and a significantly
 1151 reduced LPIPS score.



1171 Figure 14: Framework for stable and smoothing frame generation via coherent noise initialization.

1172 Table 14: Boundary quality evaluation at planning-to-content transition points.

1174 Variant	1175 H-channel L1 Distance \downarrow	1176 H-channel Correlation \uparrow	1177 t-LPIPS \downarrow
w/o Noise-Interpolation	0.187	0.976	0.416
MMPL	0.051	0.998	0.030

1179 H FAILURE CASES

1180 We also examine typical failure cases that occur when key stabilization components are removed.
 1181 Without coherent noise initialization or the re-encode/decode step, adjacent segments may no longer
 1182 share consistent appearance statistics, leading to noticeable color shifts and abrupt content changes
 1183 at segment boundaries. These effects are illustrated in Figure 15, where the absence of these
 1184 components results in visible boundary inconsistencies, while the full MMPL setup maintains smooth
 1185 and stable transitions.

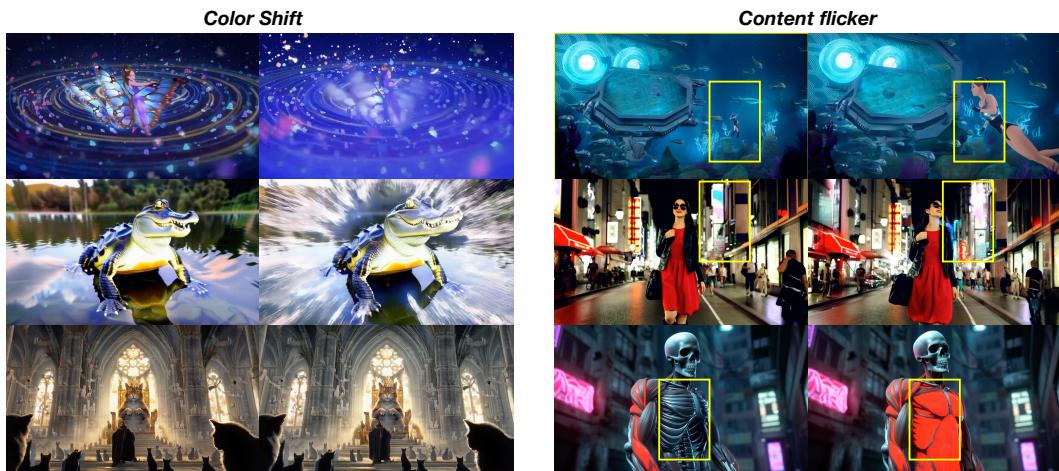


Figure 15: Failure cases for long video generation.

I FULL VBENCH BENCHMARK EVALUATION

We conduct a comprehensive evaluation on the full VBench benchmark rather than VBench-long using 30-second video clips, covering all 946 prompts and all 16 metrics reported in Tables 15 and 16. All scores are obtained using the official standardized evaluation scripts, and we refer readers to the VBench documentation for detailed metric definitions. Overall, MMPL achieves the highest Quality Score, demonstrating clear advantages in long-video generation. At the same time, MMPL exhibits competitive Dynamic Degree performance. We regard this as a desirable balance: the planning mechanism significantly enhances long-range temporal stability and perceptual coherence while still preserving adequate short-term motion variation, resulting in a well-calibrated trade-off between dynamic expressiveness and long-horizon consistency.

Table 15: Comparison on VBench quality metrics for 30-second videos. [‡] Indicates results reported by related work.

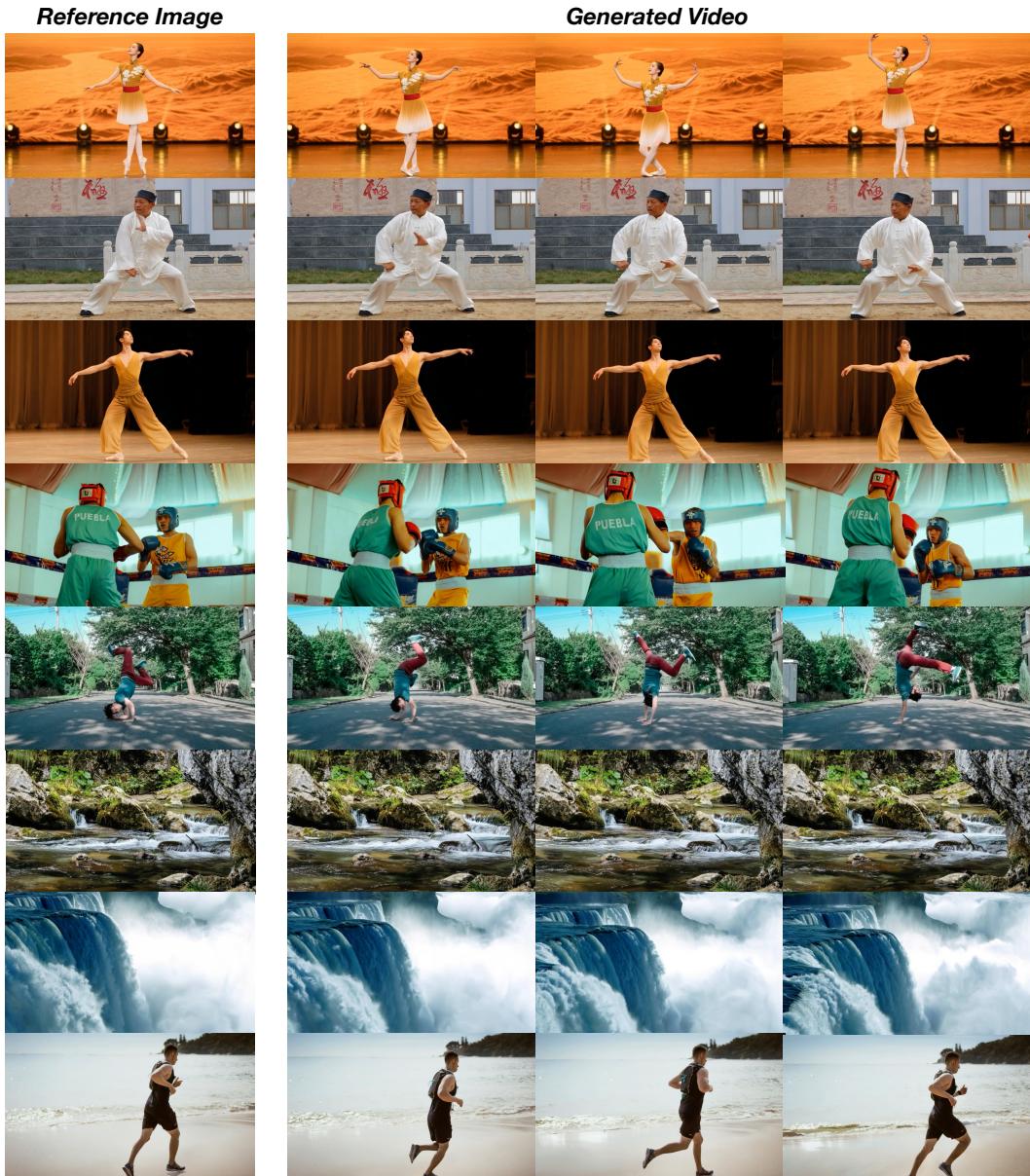
Model	Subject Consistency	Background Consistency	Temporal Flickering	Motion Smoothness	Dynamic Degree	Aesthetic Quality	Imaging Quality	Quality Score
CausVid [‡]	89.50	90.00	99.41	98.06	63.88	61.82	65.30	80.89
Self Forcing [‡]	88.61	89.53	98.90	98.57	68.05	60.60	68.98	81.39
MMPL (ours)	92.26	94.16	99.11	98.83	61.11	62.77	65.27	82.47

Table 16: Comparison on VBench semantic metrics for 30-second videos. [‡] Indicates results reported by related work.

Model	Object Class	Multiple Objects	Human Action	Color	Spatial Relationship	Scene	Temporal Style	Appearance Style	Overall Consistency	Semantic Score
CausVid [‡]	78.56	58.84	81.00	81.02	59.62	31.32	22.51	20.04	23.16	65.85
Self Forcing [‡]	80.06	62.88	83.00	79.80	74.76	30.59	23.78	20.41	24.80	69.17
MMPL (ours)	78.25	57.24	80.00	82.46	73.84	29.91	24.34	19.76	24.40	67.91

J DISCLOSURE OF LARGE LANGUAGE MODEL (LLM) USAGE

In this paper, we used Large Language Models (LLMs) to assist in various aspects of the writing process. Specifically, LLMs were employed to help polish the writing, improve clarity, and enhance the overall presentation of the text. The models were utilized to provide suggestions for improving the grammar, coherence, and flow of certain sections of the manuscript. This assistance was integral to the refinement of the paper’s language, but all scientific content, methodology, and conclusions were independently developed by the authors. The use of LLMs is limited to language-related tasks and does not extend to the intellectual contributions to the research findings or data analysis.

1242 **K SCALABILITY**
12431244 **K.1 IMAGE-TO-VIDEO EXTENSION**
12451246 Our framework is not restricted to the text-to-video (T2V) task; it can be seamlessly extended to
1247 image-to-video (I2V) generation without introducing any architectural modifications or additional
1248 image encoders. This flexibility derives from the unified autoregressive design, which only re-
1249 quires lightweight adjustments to the number and ordering of autoregressive steps. As a result, the
1250 framework adapts naturally to different input modalities while maintaining temporal consistency
1251 and generation quality as shown in Figure 16.
12521292 **Figure 16: Qualitative results of extending our unified autoregressive framework from text-
1293 to-video (T2V) to image-to-video (I2V) generation.** Without any architectural modifications or
1294 additional image encoders, the framework adapts seamlessly by only adjusting the number and order-
1295 ing of autoregressive steps, while preserving temporal consistency and visual quality.
1296

1296
1297

K.2 ADAPTATION TO SELF-FORCING AND DMD

1298

1299 Our approach can be seamlessly integrated with self-forcing strategies without any architectural
 1300 modifications. Specifically, it only requires adjusting the attention visibility range and the prediction
 1301 order during both training and inference. This lightweight adaptation enables direct compatibility
 1302 with existing self-forcing pipelines, while retaining the benefits of our planning-based design.
 1303 Combined with parallelized decoding, the resulting system achieves substantial inference speedups,
 1304 sustaining over 32 FPS in long-horizon video generation as shown in Figure 17.

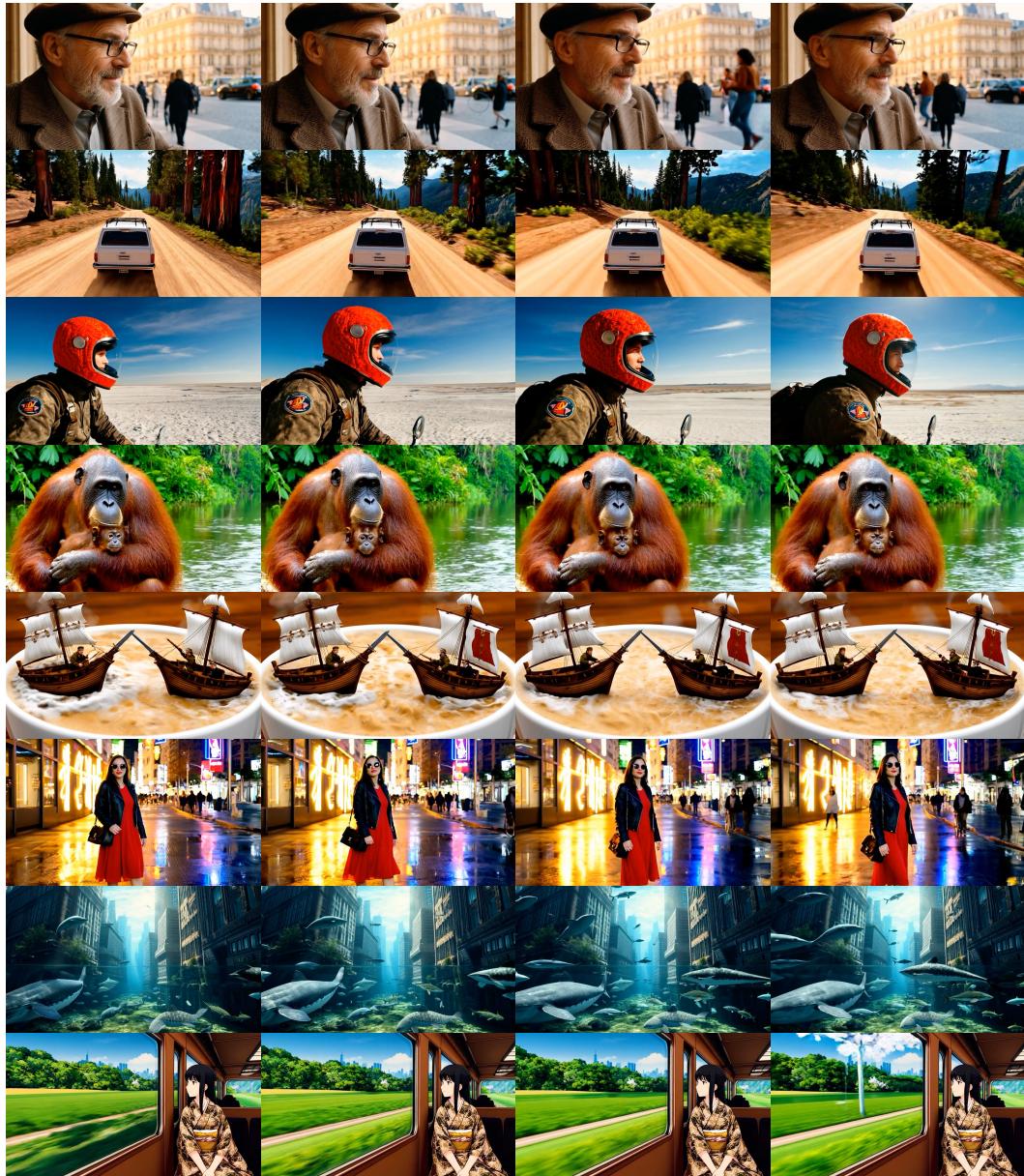
1304
13051345
1346
1347
1348
1349

Figure 17: **Integration of our framework with Self Forcing (Huang et al., 2025a) and DMD (Yin et al., 2025) strategies.** The adaptation requires no architectural changes—only modifications to the attention visibility range and prediction order during training and inference. Combined with parallelized decoding, the method achieves substantial inference acceleration, sustaining over 32 FPS in long-horizon video generation.

1350
1351
L MORE QUALITATIVE RESULTS
1352
13531354
1355 To better demonstrate the robustness of our model, we present additional experimental results on
1356 30s long video generation, as shown in Figure 18.
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
14011402
1403
Figure 18: **Additional qualitative results of 30s long video generation.** Our model produces tem-
porally coherent and visually consistent sequences across diverse scenarios, further demon-
strating its robustness.