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Abstract

Identification of appropriate supporting evi-
dence is critical to the success of scientific
fact checking. However, existing approaches
rely on off-the-shelf Information Retrieval algo-
rithms that rank documents based on relevance
rather than the evidence they provide to sup-
port or refute the claim being checked. This
paper demonstrates the importance of effective
evidence identification by developing an ideal
document relevance scorer, ComboScorer. It
then proposes +VeriRel to approximate joint
feedback for automatic relevance assessment.
Experimental results on three scientific fact
checking datasets (SciFact, SciFact-Open and
Check-Covid) demonstrate consistently lead-
ing performance by +VeriRel for document
evidence retrieval and a positive impact on
downstream verification. Combining +VeriRel
achieves higher verification performance us-
ing fewer documents. This study highlights
the potential of integrating verification feed-
back to document relevance assessment for
effective scientific fact checking systems. It
shows promising future work to investigate fine-
grained relevance from complex documents for
advanced scientific fact checking.

1 Introduction

Interest in scientific fact checking — the task of
verifying scientific claims using peer-reviewed re-
search as evidence — has recently increased as
demonstrated by developing novel approaches and
release of datasets, e.g., (Kotonya and Toni, 2020;
Wadden et al., 2020; Sarrouti et al., 2021; Mohr
et al., 2022; Wadden et al., 2022a; Wang et al.,
2023). Current general fact checking systems com-
monly start from a provided chunk of documents
from commercial search APIs or provided knowl-
edge store such as in FEVER and AVeriTeC shared
tasks (Thorne et al., 2018b; Schlichtkrull et al.,
2024). The off-the-shelf search engines provide the
necessary information to verify the claim, which

Semantic relevance-only —= Verification-augmented relevance

“Ibuprofen is most effective aging mild to
which is why it is commonly
ement.”

nag

Claim:
Ibuprofen is frequently used for headaches for 70% COVID-19 patients.

Figure 1: Ranking optimisation example. Red text
indicates documents containing information that can
be used to verify or refute the claim.

simply utilizes external document retrieval in gen-
eral fact checking. This is in contrast to scientific
fact checking where these APIs are not generalis-
able to specific corpora, and more importantly, the
scientific claim and evidence contain specialised
in-domain knowledge such as medical terminolo-
gies. Therefore, fine-tuned document retrieval ap-
proaches are particularly crucial in scientific fact
checking and merit further development to effec-
tively retrieve relevant evidence while accounting
for domain-specific knowledge.

Existing approaches(Vladika and Matthes, 2023;
Wadden et al., 2020; Pradeep et al., 2021; Li et al.,
2021; Zhang et al., 2021; Wadden et al., 2022b;
Wiihrl and Klinger, 2021) to scientific fact check-
ing rank documents based on relevance to a claim
rather than whether or not they contains evidence
regarding the claim’s correctness, which are re-
ferred to as “evidential” documents. For exam-
ple, given the claim “Ibuprofen is frequently used
for headaches for 70% COVID-19 patients.”, the
statement “Ibuprofen can be used for headache
treatment” is relevant but not evidential. How-
ever, a statement like “Paracetamol is the most
commonly used medicine for COVID-19 for any
symptom” is both relevant and evidential. Figure 1
shows two ranked document lists with respect to



the above claim, one relies on relevance only (left)
and another takes the verification factor into ac-
count (right). It shows that top-ranked documents
that are semantically relevant do not necessarily
contribute to claim verification.

Combining evidential with non-evidential doc-
uments can produce inaccurate fact checking con-
clusions. For example, Sauchuk et al. (2022) re-
ported that combining gold evidence retrieved by a
perfect retriever with a single negative example re-
sults in a 17.2% performance drop in downstream
verification. This indicates the necessity of pro-
viding essential evidence but not saturating with
non-evidential information for downstream claim
verification. As justified by the example in Fig-
ure 1, including evidential factor from verification
feedback rather than semantic relevance only can
include cleaner and richer information as evidence
at top. However, the investigation of integrating
such a verification success factor into evidence re-
trieval remains unexplored in the existing literature.

This study aims to address that gap and advance
document retrieval for scientific fact checking us-
ing a joint estimation of semantic relevance and
downstream verification success of documents. In
particular, to validate the assumption of perfor-
mance gain by including the verification success
factor, we conduct a preliminary study to investi-
gate the actual benefit of updating semantic rele-
vance with additional verification feedback. A cor-
responding ideal document reranking scorer, Com-
boScorer, is introduced. In addition, based on the
concluding remarks of successful relevance inte-
gration, we further introduce a learned document
reranking model, +VeriRel, that approximates the
ComboScorer model without the additional cost
of running verifiers. We conduct extensive experi-
ments on three publicly available datasets: SciFact,
SciFact-Open and Check-COVID. Results consis-
tently show the improvement of our approaches to
both retrieval effectiveness and validation accuracy.
The main contributions of this paper are:

¢ Propose ComboScorer and +VeriRel to evaluate
and leverage verification feedback in improving
document ranking. The results show their consis-
tent leading performance, compared to state-of-the-
art baselines across three datasets.

¢ Explore the factors that can affect the scalability
and domain generalisability of +VeriRel, which
suggests a novel way to train robust document
reranking models for scientific fact checking.

2 Related work

Current scientific fact checking systems rely pri-
marily on standard Information Retrieval ap-
proaches of ranking based on lexical matching
and semantic relevance to identify evidential doc-
uments. Traditional TF-IDF and BM25 that are
based on lexical matching performed well on rel-
atively small corpora (Wadden et al., 2020; Wang
et al., 2023) but observed performance drop while
corpus expanding (Wadden et al., 2022a). To better
adapt to the scientific domain, BioSentVec (Chen
et al., 2019), a biomedical adaptation of Sent2Vec
(Pagliardini et al., 2018), generates embeddings for
scientific claims and documents separately. It com-
putes semantic relevance using cosine similarity
and ranks scientific documents accordingly (Zhang
et al., 2021; Li et al., 2021). Neural reranking
is a fine-grained method based on cross-encoding
(Zhang et al., 2022) of claim and document, achiev-
ing best performance and widely used in scientific
fact checking (Pradeep et al., 2021; Wadden et al.,
2022b,a; Wiihrl and Klinger, 2021).

Existing research explored leveraging down-
stream verification to improve sentence evidence
retrieval. FER (Zhang et al., 2023) devise tailored
loss functions from the difference of verification
output between gold evidence retrieved sentences
to improve the ‘utility’ of a sentence selection com-
ponent. Similarly, REREAD (Hu et al., 2023) ex-
plores verification output to improve retrieval per-
formance and interpretability by introducing evi-
dence metrics about sufficiency, fullness and plau-
sibility of evidence for sentence selection. These
studies focus on sentence-level evidence retrieval
starting from provided documents, while ignoring
the fact that effective document retrieval is a pre-
requisite for them in a real fact checking process.

These methods also collect evidence depending
on the annotated ‘support’ and ‘refute’ labels. They
tend to include more evidence that aligns with the
gold label with a higher probability. For exam-
ple, their retrieval systems tend to retrieve evidence
containing refuted information if the claim is likely
being annotated as ‘refute’. Moreover, they rely on
an in-domain trained verifier model to provide veri-
fication feedback, which is prone to overfitting with
a generalizability concern(Zeng et al., 2021). In
this study, we propose to further advance scientific
fact checking by using generalisable verification
feedback for effective evidence retrieval.



3 Methodology
3.1 Problem Statement

This study focuses on the scientific fact checking
that using top-retrieved documents to verify certain
claims, which can be formulated as follows:

FC(e,D) =V V(e,d),deD (1)

where F'C'(-) refers to a scientific fact checking
system with a claim, ¢, and document corpus, D, as
input. F'C' can be further divided into two stages,
evidence retrieval and verification. The evidence
retrieval component treats the claim as a query, re-
trieves relevant documents from the corpus, and
returns a subset (D’) consisting of the top k ranked
documents. The parameter k£ determines the num-
ber of documents included in D":

D' = Retrieval(c, D, k) ()

Retrieved documents within D’ are then used for
the subsequent verification stage (i.e., V'(+)):

Ve, d) = aTgmal‘(pZ’d,pZd,péd) 3)

where d € D’ and pg & pi 4 or pg, g are the esti-
mates of three labels ‘support’, ‘refute’ and ‘not
enough information’ that document d to claim c.
The verifier computes a label based on the max-
imum value of the three probability scores. For
example, if p> , = 0.7, p, , = 0.2and p_ ; = 0.1,
we obtain the label of will be ‘support’. 7

It seems intuitive that the use of retrieved eviden-
tial documents can have a direct impact on claim
verification accuracy due to the availability of evi-
dential information. Therefore this study focuses
on the improvement of the document retrieval com-
ponent to obtain useful documents for scientific
fact checking. Note that we define the usefulness
of documents based on whether they include evi-
dential information for claim verification.

3.2 Integrating Verification

Typical document retrieval processes calculate
query-document relevance in one or two steps, ini-
tial retrieval and additional document reranking for
the trade-off of effectiveness and efficiency (Ham-
barde and Proenca, 2023). The initial retrieval aims
to include relevant documents in a pool with a high
recall. After that, the document reranking stage fo-
cuses on identifying top-relevant documents from
the document pool. As a consequence, by rely-
ing on many existing document retrieval pipelines,

scientific fact checking systems can achieve rea-
sonable performance in obtaining semantically rel-
evant documents. However, as argued in Section
1, fully relying on the semantic relevance to eval-
uate the usefulness of documents is insufficient
and likely to introduce unwanted noise into the
verification process. Meanwhile, a common fact
checking pipeline includes evidence retrieval and
verification components (see Section 3.1). The ver-
ification stage calculates the estimated likelihood
of documents supporting, refuting claims or not
having enough information. Hence, we assume
that considering verification feedback in estimating
claim-document relevance will improve retrieval
effectiveness for scientific fact checking.

3.2.1 ComboScorer

We devise ComboScorer, an ideal document
reranker that combines both semantic relevance
and feedback from a verifier to calculate the score
for the final document ranking. Recall the defini-
tion of the verification method (see Eq. 3), we rely
on the estimated probability of a document d sup-
porting, refuting a claim c or not having enough
information (i.e., p; 4, P, 4 Or pr. 4) to justify the ver-
ification usefulness of such document. In particu-
lar, to effectively conduct downstream verification,
we prefer documents with a high probability of
supporting or refuting a claim, rather than having
insufficient information to support either decision.
Hence, we integrate the support and refute likeli-
hoods of documents to estimate their verification
usefulness, intentionally ignoring p;; ;, as follows:

Sed = Pedt Ped 4

After that, similar to common document retrieval
approaches, we assess the semantic relevance be-
tween claim-document pairs to complete the rel-
evance assessment for later use. To be specific,
by using an existing document reranking model,
we can estimate the semantic relevance between
claims and documents (i.e., 32’ 4)- Next, we calcu-
late the final scores (i.e., s¢°"°) to rank documents
by adopting a simple linear combination of the pre-
calculated verification usefulness with the semantic
relevance as follows:

Scombo = a X Sgd—i—(l—a) X S;d, (VRS [07 1] (5)

where « controls the contribution of the semantic
relevance and verification contributions. Hence,
by integrating the semantic and verifiable features,
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Figure 2: Pipeline to leverage verification feedback to enhance document retrieval. The blue
area presents the flow of producing joint relevance scores for preliminary study and training
+VeriRel reranker. The orange area shows the test of the ideal ComboScorer approach and

trained + VeriRel.

ComboScorer is approaching an ideal solution that
comprehensively assesses document relevance for
scientific fact checking. The evaluation of Com-
boScorer can validate our preliminary assumption
that the joint consideration of semantic relevance
and verification success factor can effectively iden-
tify top useful documents for scientific fact check-
ing. However, in a practical scenario, applying
ComboScorer can be costly with repeated verifi-
cation calculations. Hence, we further propose
to model the relevance between claims and doc-
uments with a learned reranker that encapsulates
both relevance features, semantics and verifiability.

3.3 +VeriRel

By considering the costly application of Com-
boScorer for document reranker, we propose a
novel document reranking model, +VeriRel, which
learns from the joint relevance and automatically
estimates the usefulness of documents to verify a
certain claim. The construction of +VeriRel can be
formulated as follows:

stVeriBel — o ftmax(f(c,d)) = sii}nbo

(6)

where f(c, d) is a function that models the relation-
ship between a claim ¢ and a document d. After
applying the softmax function to constraint to the
range of [0,1], so as to approximate the ideal Com-
boScorer (i.e., sgf’g‘bo). Regarding the implementa-
tion of f(c,d), in this study, we employ SciBERT
(Beltagy et al., 2019), a pre-trained language model
specifically designed for scientific literature and
has shown to be effective in scientific applications
(Wadden et al., 2020; Kotonya and Toni, 2020; Tan
et al., 2023). Note that, to further improve the re-
liability of using sif’;”bo, we update the s%’”‘b" if
the document d is labelled as the evidence in the
training data.

Figure 2 presents an overview of the scientific
fact checking pipeline used. Similar to many ex-
isting works, it consists of document initial and
reranked retrieval, followed by a verification com-
ponent. However, uniquely, by leveraging the feed-
back from verification, we first built ComboScorer
to conduct the preliminary study. After that, we
leverage the scores to further train our + VeriRel
model to address the updated reranking schemes.

4 Experiments

This section discusses a series of experiments to
(1) address our preliminary study that validates
our assumption about the usefulness of verification
feedback and (2) train and evaluate our proposed
+VeriRel reranking model in a scientific fact check-
ing system.

4.1 Datasets

To evaluate the document retrieval component
within a fact checking system, we require datasets
including an evidence corpus with in-depth claim
relevance labels. Hence, if a dataset like Pub-
MedQA (Jin et al.,, 2019), simply provides
claim/document pairs, it is not useful to assess
the retriever’s performance since it ignores the rel-
evance between claims and unpaired documents,
which can mislead the concluding remarks. Based
on this factor, we identify three publicly avail-
able scientific fact checking datasets for the ex-
periments: SciFact (Wadden et al., 2020) consists
of 809 and 300 claims for training and validation
sets, with a corpus of 5,183 high-quality scientific
abstracts extracted from S20RC (Lo et al., 2020),
a publicly-available corpus of millions of scientific
articles. The test set contains 300 claims but the
corresponding gold evidence is not publicly acces-
sible. On the other hand, SciFact-Open (Wadden



et al., 2022a), an extension of SciFact, having its
test set using 279 claims from the test set of Sci-
Fact, while expanding the document corpus from
5,183 to 500,000 abstracts with additional anno-
tated evidence.

Due to the inaccessibility of the full SciFact test
set, we manually separate evidence from the orig-
inal SciFact and newly annotated evidence from
SciFact-Open. Hence, we have two processed test
sets to evaluate document evidence retrieval, de-
noted as SciFact and SciFact-Open in the follow-
ing sections. Both of them use the full corpus of
SciFact-Open for document evidence retrieval, to
present a clearer comparison of performance, be-
cause the original corpus of SciFact is too small
whereas TF-IDF and BM25 can achieve a very
strong performance even closer to the best neu-
ral reranker models. In the evaluation of verifi-
cation performance, the processed SciFact is de-
noted as SciFact(offline) to distinguish it from Sci-
Fact(leaderboard). For SciFact(leaderboard), we
use the unprocessed dataset and evaluate verifi-
cation performance directly through the provided
leaderboard’.

In addition to the SciFact and SciFact-Open
dataset, we further include a third dataset, Check-
COVID (Wang et al., 2023) consists of 1,504
claims and a corpus including 347 scientific docu-
ments about COVID-19. Each claim is addressed
by only one single corresponding evidential docu-
ment in this dataset.

4.2 Semantic similarity based retriever

The monoT5-3b reranker model is a strong baseline
which achieved excellent performance in SciFact
through the BEIR leaderboard (Thakur et al., 2021),
outperforming a range of LLM-based rerankers.
For scientific fact checking tasks, the combination
of BM25 (Robertson et al., 1995) and monoT5-
3B (Nogueira et al., 2020) is the best-performing
document retrieval pipeline in SciFact and SciFact-
Open (Pradeep et al., 2021), widely used in follow-
ing task (Wiihrl and Klinger, 2021; Wadden et al.,
2022b,a).

MonoT5-3B has variations trained on MS
MARCO and MS MARCO MED (i.e., a medical
subset of MS MARCO) respectively. Due to the
domain specificity of scientific fact checking and
the high ratio of medical instances within the three
datasets, we use these two variants as baselines, de-

"https://leaderboard.allenai.org/scifact

noted as monoT5-3B and monoT5-3B(Med) in the
following sections. The same pipeline is adopted
as the baseline, setting cut-off £ in Eq. (2) as 500
for initial retrieval by BM25 on SciFact, 2000 on
SciFact-Open, and 347 on Check-COVID for fol-
lowing reranking.

4.3 Claim Verification

MultiVerS (Wadden et al., 2022b) is used since
it is the current state-of-the-art claim verifier on
SciFact and SciFact-Open datasets according to the
task leaderboard and published results (Wadden
et al., 2022b,a). MultiVerS uses the Longformer
model (Beltagy et al., 2020) which enables the
processing of long documents to cover abstract-
level text and avoid information loss. MultiVerS
is initialised with the checkpoint (Wadden et al.,
2022b) trained on three datasets: FEVER (Thorne
et al., 2018a), PubMedQA (Jin et al., 2019) and
Evidence Inference (Lehman et al., 2019; De Young
et al., 2020)).

4.4 ComboScorer and +VeriRel
Configurations

To investigate the verifier’s generalisability, Mul-
tiVersS is trained on the SciFact dataset with var-
ied sizes of negative samples (i.e., {5, 10,20}) ob-
tained by randomly sampling from the top 100
documents ranked by BM25. The resulting ver-
ifier, which is used to provide verification feed-
back, is named ‘V-MultiVerS’ to distinguish it from
the off-the-shelf ‘MultiVerS’ used to examine ver-
ification improvements in later experiments. Ta-
ble 1 presents this corresponding effect of vary-
ing negative sampling strategies on verification
performance with results obtained by submitting
to the task leaderboard. The results show that
using a larger number of negative samples (i.e.,
N(20)) during verifier training improves the preci-
sion (i.e., higher specificity) while fewer negative
samples (i.e., N(5)) improves the generalizability
with higher recall. (All model training was per-
formed with the same random seed, 27, except the
reproducibility study shown in Appendix B, using a
single NVIDIA A100 GPU. Code for reproducibil-
ity will be released upon paper acceptance).

Model SciFact

Precision  Recall F1
V-MultiVerS(N20)  62.16 7252 66.94
V-MultiVerS(N10)  57.71 7252 6427
V-MultiVerS(N5) 41.45 7748  54.00

Table 1: Verification performance on SciFact.
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ComboScorer consists of (1) a semantic rele-
vance score (s!, ;), which is calculated using a sig-
moid function over the output of monoT5-3B, and
(2) a verification feedback score (sg g) from Mul-
tiVerS by adding a softmax function to the output
logits of three labels with its classification nature.
To control the weight of two scores, the value of
a in Eq. 5 was varied between 0 and 1 in steps of
0.1. The best-performing result varies across nega-
tive sampling strategies but always performs best
around 0.5 so this value is used for all experiments.

For the +VeriRel model, as mentioned in Sec-
tion 3.3, SciBERT is to model the relationship be-
tween claim and documents to calculate a joint
relevance score in the range of [0,1], where per-
formance by using other pretrained models can be
found on Appendix C. A score closer to 1 rep-
resents the most relevant to the claim. During
the model training, we update the s°°™° as semi-
supervised labels to 1 if a document d is the gold
evidence to a claim c and remain otherwise. For
the reliability of the s°°™%° scores as ground truth,
model training data is limited to the top 20 docu-
ments ranked by ComboScorer. For the evidence
documents not included in top 20 documents, we
added them to the training data with their label set
to 1. In addition, we train the model using a learn-
ing rate of 1e-5 with Adam optimizer and apply the
get_cosine_schedule_with_warmup setup provided
by transformer with 40 epochs.

4.5 Evaluation

Recall @k assesses the proportion of relevant evi-
dence included in the top k results.

N (relevantQk)

llQk =
Reca N (relevant)

@)
where N (relevant@k) and N (relevant) are the
number of relevant documents in the top k£ and
entire corpus.

Hit metrics provide additional information about
document retrieval effectiveness. hit-one: The
proportion of claims for which at least one of the
relevant documents is included in those retrieved.
hit-all: The proportion for which all relevant docu-
ments are included. Since no evidence (i.e. relevant
documents) is available for some claims, two vari-
ants of these metrics are introduced, hit-one evi
and hit-all evi, which only consider the claims for
which evidence is available.

Verification performance is measured using the
standard metrics for the task (precision, recall and

F1) which are computed via the provided auto-
matic evaluation code for SciFact(offline) and com-
puted through the provided leaderboard for Sci-
Fact(leaderboard).

5 Results

This section presents the performance evaluation of
the proposed ComboScorer method and +VeriRel
models. We compare the retrieval effectiveness of
our approaches to baselines, emphasizing the im-
provements in document ranking and verification
success achieved through the integration of veri-
fication feedback. The experimental results show
that both ComboScorer and +VeriRel outperform
baseline methods across multiple datasets, demon-
strating their generalisable leading performance.

5.1 ComboScorer

We first validate the ideal effect of combining verifi-
cation feedback into the claim-document relevance
by evaluating ComboScorer. Table 2 presents the
performance of ComboScorer by leveraging ver-
ification feedback as shown in Figure 2. Com-
boScore performance for all three evaluation cor-
pora is shown in the middle rows below the base-
lines. Results show that ComboScorer consistently
improves document retrieval by retrieving more
evidence across the settings of various evaluation
cut-offs (i.e., k = 1 to 50). In particular, wider
improvement margins are observed in the top posi-
tions with smaller values of cut-off k (k<10). For
example, when setting k to 3, regarding the best-
performing choice of negative sample size, we ob-
serve that ComboScorer(N20) on SciFact can out-
perform the top baseline with around 10% improve-
ments. For another two datasets, SciFact-Open and
Check-COVID, around 20% and 5% of improve-
ments can be observed when using ComboScorer
trained on 5 negative samples.

Recall the discussion in Section 4.4, we develop
verifiers to provide verification feedback for Com-
boScorer by training the verfier on the SciFact
dataset. This enables the investigation of in-domain
and out-of-the-domain evaluations. By looking
into the experimental results in Table 1, we observe
that ComboScorer trained with a V-MultiVerS and
setting the number of negative samples to 20 can
enable best in-domain performance (i.e., its lead-
ing performance on SciFact). On another two
datasets about out-of-domain scenarios, the use
of V-MultiVerS trained on few negative samples



Recall - SciFact
Method

Recall - SciFact-Open

Recall - Check-COVID

R@50 R@20 R@I0 R@5 R@3 R@l R@50 R@20 R@I0 R@5 R@3 R@Il R@50 R@20 R@10 R@5 R@3 R@I
BM25 73.68 6794 6124 5550 4833 3541 59.76 4382 31.87 2351 1633 7.57 8791 81.96 7502 67.59 6135 46.18
monoT5-3B 9091 87.56 85.65 78.47 7033 55.02 8725 7211 5896 39.44 29.88 11.16 9584 93.16 8949 82.06 7493 5828
monoT5-3B(Med) 9139 87.56 85.17 7895 70.81 55.50 85.66 7131 5777 41.04 28.69 10.36 95.54 9326 89.20 81.86 7493 57.88
ComboScorer(N20) 92.82 8947 85.65 8038 77.51 61.72 87.65 7211 62.15 4382 30.68 11.55 95.74 9376 90.68 83.75 76.51 56.39
ComboScorer(N10) 92.34  89.00 87.08 82.30 76.56 60.29 88.84 74.10 63.75 4422 33.07 11.16 96.13 9405 91.58 84.64 76.71 59.56
ComboScorer(N5)  92.34  88.52 85.65 81.34 7321 5598 91.63 7649 5936 47.01 3586 11.95 96.13 9455 9148 84.04 77.80 61.84
+VeriRel(baseline)  90.91 88.52 85.65 7895 7321 57.89 8446 7092 5538 3546 2470 9.96 96.73 91.50 83.66 7124 60.13 43.14
+VeriRel(N20) 91.87 89.47 87.08 79.90 75.12 60.77 8526 7052 5697 40.24 27.89 9.96 96.73 9281 90.85 78.43 69.28 4837
+VeriRel(N10) 91.87 89.47 8565 8038 75.12 61.72 8645 7131 58.17 40.64 27.09 10.76 96.73 9412 9150 81.05 7124 53.59
+VeriRel(N5) 91.87 9043 87.08 82.30 75.60 62.20 87.65 7291 5857 4143 28.69 11.55 97.39  96.08 92.81 86.93 80.39 55.56

Table 2: Performance of baselines, ComboScorer and +VeriRel in Recall @k with cut-off k ranges from 50 to 1.

(N=5) consistently results in the best performance,
which indicates the value of a general verifier for
out-of-domain evidence retrieval.

Next, we investigate the impact of ComboScorer
with respect to the ratio of retrieving relevant doc-
uments to claims via the hit metrics discussed in
Section 4.5. Table 3 presents the experimental re-
sults evaluated by the hit metrics on the SciFact
and SciFact-Open datasets (more in Appendix A).
Check-Covid dataset is not included since it has
only one relevant evidential document to each
claim and the corresponding performance can be in-
dicated via Recall@k in Table 1. According to the
experimental results, we observe that ComboScorer
can consistently outperform baselines to retrieve
more relevant documents for all claims on average
with higher hit-all and hit-one scores. Again, we
observe the identical in-domain and out-of-domain
effects while using verifiers trained on different
numbers of negative samples (i.e., setting N to 20
for in-domain and 5 for out-of-domain scenarios).

Overall, by validating our assumption in this
preliminary study, we conclude that including ver-
ification feedback to assess document relevance,
in addition to semantic relevance, can indeed im-
prove the retrieval effectiveness to identify relevant
evidential documents for scientific fact checking.

SciFact
Method/Top 20 hit-one evi  hit-all evi  hit-one  hit-all
BM25 71.58 69.47 80.65 79.21
monoT5-3B 90.00 87.89 93.19 91.76
monoT5-3B(Med) 90.00 87.89 93.19 91.76
Comboscorer(N20) 92.63 90.00 94.98 93.19
Comboscorer(N10) 92.11 89.47 94.62 92.83
Comboscorer(N5) 91.58 88.95 94.27 92.47
SciFact-Open
Method/Top 20 hitone evi hitallevi hitone hitall
BM25 76.54 38.27 93.19 82.08
monoT5-3B 96.30 61.73 98.92 88.89
T5(MS MARCO MED)  95.06 59.26 98.57 88.17
Comboscorer(N20) 98.77 66.67 99.64 90.32
Comboscorer(N10) 98.77 66.67 99.64 90.32
Comboscorer(N5) 100.00 71.60 100.00 91.76

Table 3: Hit metrics on SciFact and SciFact-Open.

5.2 +VeriRel performance

After validating the assumption about the value
of adding verification feedback to retrieval, we
turn to the evaluation of our +VeriRel model, a
trained ranker that approximates ComboScorer. Ta-
ble 2 includes the experimental results on three
datasets. According to the results, +VeriRel out-
performs the baselines under most evaluation cir-
cumstances. Performance for Recall @10 and @3
on the SciFact-Open dataset are exceptions but
+VeriRel’s performance is still close to the most
competitive baseline. To ensure a fair comparison,
we also include +VeriRel trained on the semantic
relevance score only, calculated by the monoT5-3B
model and named +VeriRel(baseline). The experi-
mental results indicate the effective approximation
to ComboScorer with advanced retrieval perfor-
mance. Specifically, when comparing the perfor-
mance between +VeriRel and ComboScorer, we
observe that ComboScorer as an ideal scoring func-
tion can still outperform +VeriRel in most cases
apart from the evaluation on the Check-COVID
dataset with the evaluation cut-off larger than 1.
This can be caused by the limitation of the used
SciBERT model to process long documents, since
27.4% of inputs, combining claim and abstract, ex-
ceed 512 tokens, which is the token limit of SciB-
ERT. This could result in information loss to allow
effective relevance assessment. Hence, we aim to
further improve the +VeriRel with more advanced
language processing models as backbones to ad-
dress long-context inputs in future studies.

5.3 Verification improvement with +VeriRel

After validating the successful retrieval improve-
ment with our proposed +VeriRel model, it is essen-
tial to evaluate whether the improvement can fur-
ther benefit the downstream verification effective-
ness. Table 4 shows the verification accuracy based
on using +VeriRel and the state-of-the-art monoT5-



3B model. To fairly compare performance, we use
MultiVerS, the state-of-the-art verifier on SciFact,
and initiate using the released checkpoint (Wad-
den et al., 2022b) for verification assessment. Note
that, the experimental results on SciFact-Open and
Check-COVID are not included due to the limited
generalizability of MultiVerS. For example, it pre-
dicts 204 oracle evidence out of 251 as ‘not enough
information’ on the SciFact-Open dataset, making
it difficult to conclude meaningful insights. For
the retrieval setup, we first set the initial retrieval
cut-off to 2,000 and then rerank the documents to
get the top 3, 5 and 10 documents for downstream
verification. We refer to this evaluation as SciFact
(offline). We also run an additional test setup by
submitting the results to the public SciFact leader-
board provided by the shared task SCIVER (Wad-
den et al., 2020; Wadden and Lo, 2021). We follow
Wadden et al. (2022b) by using the top 20 initial
retrieved documents, instead of the top 2,000 doc-
uments, by BM25 and then rerank to get the top
documents.

Model Verification performance Retrieval performance
+ MultiVerS P R F1 Recall@k
Top 10 SciFact(offline) Recall@10
monoT5-3B 7452 5598 6393 86.60
+VeriRel(N5) 75.88 61.72  68.07 88.04
Top 5 SciFact(offline) Recall@5
monoT5-3B 73.03 6220 67.18 80.38
+VeriRel(N5) 7248 65.55 68.84 84.21
Top 3 SciFact(offline) Recall@3
monoT5-3B 7643 5742 6557 73.68
+VeriRel(N5) 77.78 63.64  70.00 78.95
Top 10 SciFact(leaderboard)
monoT5-3B 7383 7117 7248 Not accessible
+VeriRel(N5) 73.83 71.17 7248 Not accessible
Top 5 SciFact(leaderboard)
monoT5-3B 7488 69.82  72.26 Not accessible
+VeriRel(N5) 7512 70.72 7285 Not accessible
Top 3 SciFact(leaderboard)
monoT5-3B 77.04 68.08 7225 Not accessible

+VeriRel(NS) 7586 69.37 72.47 Not accessible

Table 4: Verification performance by inputting docu-
ment retrieved by proposed +VeriRel and baseline.

Regarding the evaluation setup of Sci-
Fact(offline), +VeriRel can consistently improve
the verification accuracy with higher F1 scores,
when compared to the semantic relevance-based
approach. The verification performance can
achieve a 70% F1 score with the choice of using
the top 3 relevant documents for verification.
Meanwhile, by comparing the experimental results
when submitting to the leaderboard, we observe
that +VeriRel can still consistently improve the
baseline for improved verification performance
with the maximum 72.85% F1 score.

In addition, we list leading verification ap-

Verification performance

Model P R i
VerTS5erini 64.03 7297 6821
ParagraphJoint 75.81 63.51  69.12
MultiVerS 73.83 7117 7248
ARSJOINT 7222 7027 71.23
MultiVerS
+VeriRel(N5)Top5 7512 7072 72.85

Table 5: Top fact checking systems in the leaderboard.

proaches in the leaderboard in Table 5 and show
that our solution can advance the best-performing
MultiVerS with a higher F1 score with a wider
margin than the second-ranked approach (i.e., AR-
SJOINT). These findings indicate that +VeriRel can
improve the retrieval effectiveness and consistently
benefit the downstream verification performance.

6 Conclusion

This study presents +VeriRel, a novel approach
that enhances document retrieval for scientific fact
checking by leveraging feedback from verifica-
tion stages. By incorporating a verification reward
model into the ranking mechanism, +VeriRel con-
sistently improves retrieval accuracy, prioritizing
more relevant and evidential documents. Experi-
ments show that +VeriRel outperforms traditional
methods in both scalability and generalization, es-
pecially when dealing with large, diverse, and pre-
viously unseen corpora. The use of downstream
verification feedback as an automated relevance
feedback mechanism enables more robust and ef-
fective document retrieval, which is particularly
crucial in scientific domains that demand precision
and high-quality evidence. In particular, accord-
ing to our findings, we encourage the separation of
the training of the verification reward model and
the claim verifier. Initially, the verification reward
model should be trained with a smaller number of
negative samples, allowing generalisable identifi-
cation of relevant evidence. Once the reranker is
optimized using this feedback, a separate, tailored
claim verifier can be trained for the inference stage.
Our findings highlight that the key to improving
document retrieval lies in the careful balance of
feedback integration, with fewer negative samples
offering better scalability and adaptability to new
datasets. This novel approach not only bridges a
critical gap in the existing fact checking pipeline
but also paves the way for future enhancements
in scientific fact checking systems by effectively
linking retrieval and verification components.



Limitations

While +VerirRel shows promise in improving doc-
ument retrieval, there are several limitations to con-
sider. A limitation is the truncation of input data
when using models like SciBERT, which affects the
quality of the reranking process due to the loss of
critical information beyond the token limit. More-
over, the feedback mechanism relies heavily on the
quality of the verification model, which means that
inaccuracies in the verifier can propagate and affect
the retrieval performance. Addressing these limita-
tions will require further research into optimizing
model efficiency, reducing biases, and improving
the scalability of the verification-feedback mecha-
nism.
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Appendix Method/Top 50 SciFact-Open
PP ethodiTop hit-one evi  hit-all evi  hit-one  hit-all

A Hit metrics of ComboScorer BM23 88.89 S1.85 9677 86.02
monoT5-3B 98.77 76.54 99.64 93.19
monoT5-3B(Med) 98.77 75.31 99.64 92.83
SciFact ComboScorer(N20) 100 81.48 100 94.62
Method/Top 50
ethoditop hitoneevi hitallevi hitone hitall ComboScorer(N10) 100 82.72 100 9498
BM25 77.37 74.74 84.59 82.80 ComboScorer(N5) 100 83.95 100 95.34
monoT5-3B 93.16 91.05 95.34 93.91 Method/Top 20 ' ' S'01Fact-'0pen. '
monoT5-3B(Med) 93.68 91.58 95.70 94.27 hit-one evi  hit-all evi  hit-one hit-all
ComboScorer(N20)  95.26 92.63 96.77 94.98 BM25 76.54 38.27 93.19 82.08
ComboScorer(N10)  94.74 92.11 96.42 94.62 monoT5-3B 96.30 61.73 98.92 88.89
ComboScorer(N5) 94.74 92.11 96.42 94.62 monoT5-3B(Med) 95.06 59.26 98.57 88.17
SciFact ComboScorer(N20) 98.77 66.67 99.64 90.32
Meth 20
ethod/Top hitoneevi hitallevi hitone  hitall ComboScorer(N10) ~ 98.77 66.67 99.64  90.32
BM25 71.58 69.47 80.65 79.21 ComboScorer(N5) 100 71.60 100 91.76
monoT5-3B 90.00 87.89 93.19 91.76 Method/Top 10 . ' S'01Fact—.0pen. .
monoT5-3B(Med) 90.00 87.89 93.19 91.76 hit-one evi  hit-all evi  hit-one hit-all
ComboScorer(N20)  92.63 90.00 94.98 93.19 BM25 59.26 28.40 88.17 79.21
ComboScorer(N10)  92.11 89.47 94.62 92.83 monoT5-3B 88.89 54.32 96.77 86.74
ComboScorer(N5) 91.58 88.95 94.27 92.47 monoT5-3B(Med) 87.65 53.09 96.42 86.38
SciFact ComboScorer(N20)  96.30 61.73 98.92 88.89
Method/Top 10
ethodrTop hitoneevi hitallevi hitcone  hitall ComboScorer(N10) ~ 97.53 58.02 9928  87.81
BM25 65.79 62.63 76.70 74.55 ComboScorer(N5) 92.59 53.09 97.85 86.38
monoT5-3B 88.95 87.37 92.47 91.40 Method/Top 5 . - S-c1Fact—‘Open. .
monoT5-3B(Med) 88.42 86.32 92.11 90.68 hit-one evi  hit-all evi  hit-one  hit-all
ComboScorer(N20)  89.47 87.89 92.83 91.76 BM25 49.38 20.99 85.30 77.06
ComboScorer(N10)  90.53 87.89 93.55 91.76 monoT5-3B 77.78 38.27 93.55 82.08
ComboScorer(N5) 88.95 86.84 92.47 91.04 monoT5-3B(Med) 79.01 40.74 93.91 82.80
SciFact ComboScorer(N20) 85.19 39.51 95.70 82.44
Method/Top 5
ethoditop hitoneevi hitallevi hitone  hit-all ComboScorer(N10) ~ 85.19 38.27 9570  82.08
BM25 59.47 56.84 72.40 70.61 ComboScorer(N5) 87.65 44.44 96.42 83.87
monoT5-3B 82.63 80.53 88.17 86.74 Method/Top 3 ' ' S'c1Fact-'Open' '
monoT5-3B(Med) 83.16 81.05 88.53 87.10 hit-one evi  hit-all evi  hit-one  hit-all
ComboScorer(N20) 84.21 82.63 89.25 88.17 BM25 40.74 18.52 82.80 76.34
ComboScorer(N10)  85.79 84.21 90.32 89.25 monoT5-3B 60.49 25.93 88.53 78.49
ComboScorer(N5) 85.79 82.63 90.32 88.17 monoT5-3B(Med) 61.73 28.40 88.89 79.21
SciFact ComboScorer(N20) 71.60 27.16 91.76 78.85
Method/Top 3
ethodrTop hitoneevi hitallevi hitone hitall ComboScorer(N10)  76.54 30.86 93.19  79.93
BM25 52.63 50.53 67.74 66.31 ComboScorer(N5) 77.78 32.10 93.55 80.29
monoT5-3B 75.79 72.63 83.51 81.36 Method/Top 1 . ' S'01Fact—.0pen. .
monoT5-3B(Med) 76.84 74.21 84.95 82.44 hit-one evi  hit-allevi  hit-one  hit-all
ComboScorer(N20)  82.11 80.53 87.81 86.74 BM25 23.46 6.17 77.78 72.76
ComboScorer(N10)  82.11 78.95 87.81 85.66 monoT5-3B 34.57 7.41 81.00 73.12
ComboScorer(N5) 78.95 75.79 85.66 83.51 monoT5-3B(Med) 32.10 6.17 80.29 72.76
SciFact ComboScorer(N20)  35.80 8.64 81.36 73.48
Meth 1
ethod/Top hitoneevi hitallevi hitone  hitall ComboScorer(N10) ~ 34.57 8.64 8100  73.48
BM25 38.95 37.89 58.42 57.71 ComboScorer(N5) 37.04 9.88 81.72 73.84
monoT5-3B 60.53 57.89 73.12 71.33
monoT5-3B(Med) ~ 61.05 58.42 7348  71.68 Table 7: Top-k hit metrics / SciFact-Open
ComboScorer(N20) 67.89 65.26 78.14 76.34
ComboScorer(N10)  66.32 63.16 77.06 74.91
ComboScorer(N5) 61.58 58.95 73.84 72.04

Table 6: Top-k hit metrics / SciFact
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B Reproducibility Study

Recall - SciFact

Method

R@50 R@20 R@10 R@5 R@3 R@1
BM25 73.68 67.94 61.24 55.50 48.33 35.41
monoT5-3B 90.91 87.56 85.65 78.47 70.33 55.02
monoT5-3B(Med)  91.39 87.56 85.17 78.95 70.81 55.50
ComboScorer(N20) 92.44 +0.19 89.19+0.57 86.70+0.63 82.11+0.99 7895+1.00 61.91+1.53
ComboScorer(N10) 92.34 +0.00 89.09 £0.19 86.79 +0.49 82.01+083 75.60+053 59.62+0.68
ComboScorer(N5)  92.25+0.19 88.52+030 85.74+0.19 81.53+094 74.26+056 56.55+0.77

Table 8: Repeated evaluation of Comboscoer, on SciFact

Method Recall - SciFact-Open

R@50 R@20 R@10 R@5 R@3 R@1
BM25 59.76 43.82 31.87 23.51 16.33 7.57
monoT5-3B 87.25 72.11 58.96 39.44 29.88 11.16
monoT5-3B(Med)  85.66 71.31 57.77 41.04 28.69 10.36
ComboScorer(N20) 88.53+0.53 74.02+097 60.88 +1.08 44.14+130 32.03+1.62 12.11+1.02
ComboScorer(N10) 89.24 +0.94 74.88 +0.74 62.55+098 45.02+0.88 32.75+0.68 12.17+0.83
ComboScorer(N5)  91.95+047 7570050 59.92+142 46.21+1.04 34.74+059 12.29+0.58

Table 9: Repeated evaluation of Comboscoer, on SciFact-Open
Recall - Check-COVID

Method

R@50 R@20 R@10 R@5 R@3 R@1
BM25 87.91 81.96 75.02 67.59 61.35 46.18
monoT5-3B 95.84 93.16 89.49 82.06 74.93 58.28
monoT5-3B(Med)  95.54 93.26 89.20 81.86 74.93 57.88
ComboScorer(N20) 95.98 +0.11  94.01 +0.11 90.47 £025 83.25+043 75.64+0.67 57.98 £0.99
ComboScorer(N10) 95.86+0.08 93.81+0.38 90.54+£098 83.41+0.78 76.19+0.72 59.41 +0.75
ComboScorer(N5)  95.88+0.13 94.08 +035 90.88 +056 83.88+038 77.13+059 60.58 +1.25

Table 10: Repeated evaluation of Comboscoer, on Check-COVID

Method Recall - unprocessed SciFact-Open

R@50 R@20 R@10 R@5 R@3 R@1
BM25 66.09 54.78 45.22 38.04 30.87 20.22
monoT5-3B 88.91 79.13 71.09 57.17 48.26 31.09
monoT5-3B(Med)  88.26 78.70 70.22 58.26 48.48 30.87
ComboScorer(N20) 90.30+0.22 80.71+0.54 72.61 £048 61.39+121 53.35+086 34.74 +0.75
ComboScorer(N10) 90.65 +0.51 80.79+0.74 73.57+056 61.83+045 52.22+052 33.72+025
ComboScorer(N5)  92.09 +0.17 81.52+031 71.65+0.71 62.26+053 52.70+0.18 32.45+0.40

Table 11: Repeated evaluation of Comboscoer, Recall@K in unprocessed SciFact-Open
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C Other pretrained models

SciFact/+VeriRel(N5) R@50 R@20 R@10 R@5 R@3 R@l]
SciBERT 91.87 9043 87.08 8230 75.60 62.20
RoBERTa 9091 89.47 85.65 7895 7273 53.11

Clinical-Longformer  86.12  83.73  80.38 76.08 71.29 52.63

SciFact-Open R@50 R@20 R@10 R@5 R@3 R@l]

SciBERT 87.65 7291 58.57 4143 28.69 11.55
RoBERTa 86.45 7251 57.37 4024 27.89 11.16

Clinical-Longformer  76.89 61.35 51.00 35.06 2430 9.96

Check-COVID R@50 R@20 R@10 R@5 R@3 R@l

SciBERT 9739 96.08 92.81 86.93 80.39 55.56
RoBERTa 9435 92.17 8791 8048 72.94 53.00

Clinical-Longformer  86.32  79.88  72.15 62.83 55.80 40.63

Table 12

: More pretrained models for +VeriRel(N5)
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