
Language Models’ Factuality Depends on the Language of Inquiry

Anonymous ACL submission

Abstract001

Multilingual language models (LMs) are ex-002
pected to recall factual knowledge consistently003
across languages, yet they often fail to transfer004
knowledge between languages even when they005
possess the correct information in one of the006
languages. For example, we find that an LM007
may correctly identify Rashed Al Shashai as008
being from Saudi Arabia when asked in Arabic,009
but consistently fails to do so when asked in010
English or Swahili. To systematically inves-011
tigate this limitation, we introduce a bench-012
mark of 10,000 country-related facts across013
13 languages and propose three novel met-014
rics—Factual Recall Score, Knowledge Trans-015
ferability Score, and Cross-Lingual Factual016
Knowledge Transferability Score—to quan-017
tify factual recall and knowledge transferabil-018
ity in LMs across different languages. Our019
results reveal fundamental weaknesses in to-020
day’s state-of-the-art LMs, particularly in cross-021
lingual generalization where models fail to022
transfer knowledge effectively across differ-023
ent languages, leading to inconsistent perfor-024
mance sensitive to the language used. Our find-025
ings emphasize the need for LMs to recognize026
language-specific factual reliability and lever-027
age the most trustworthy information across028
languages. We release our benchmark and eval-029
uation framework to drive future research in030
multilingual knowledge transfer.031

1 Introduction032

Large Language Models (LLMs) are often per-033

ceived as vast knowledge reservoirs, capable of034

recalling factual information across multiple lan-035

guages (Wang et al., 2024). However, what if036

their knowledge is locked within linguistic bound-037

aries and unable to be transferred across languages?038

Despite advancements in multilingual LMs such039

as Llama (Touvron et al., 2023a; Dubey et al.,040

2024), Gemma (Team et al., 2024a), DeepSeek041

(DeepSeek-AI et al., 2024), and Phi (Abdin et al.,042
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English: Rashed Al Shashai is from which country?
Arabic:  راشد الشعشاعي من أي بلد؟
Swahili: Rashed Al Shashai anatoka nchi gani?
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Figure 1: Illustratation of the cross-lingual factual
knowledge transferability issue across linguistic knowl-
edge clouds in LMs. The model correctly recalls that
Rashed Al Shashai is from Saudi Arabia when queried
in Arabic, but fails to retrieve this fact in English and
Swahili, highlighting that factual knowledge is often
stored in language-specific silos.

2024; Li et al., 2023), our study reveals a striking 043

asymmetry in their factual recall across languages: 044

consider the example in Figure 1, where an LM 045

is tasked with a simple factual query: “Rashed Al 046

Shashai is from which country?” When asked in 047

Arabic, several state-of-the-art LMs correctly gen- 048

erate the response: “Saudi Arabia.” However, when 049

posed in English, Hindi, or Swahili, the same mod- 050

els fail to recall the fact. This example suggests 051

that models can correctly retrieve country-specific 052

facts in the language associated with that country 053

but struggle to do so in others. 054

This raises a critical question—do these models 055

truly internalize and transfer factual knowledge 056

across languages, or do they merely encode isolated 057

linguistic silos? 058

This limitation has significant implications for 059

multilingual AI development and real-world ap- 060

plications. Many LM-based systems—such as 061

retrieval-augmented generation (RAG) pipelines, 062

multilingual search engines, and cross-lingual rea- 063

soning models—assume that factual knowledge is 064
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consistently available and transferable across lan-065

guages.066

Our findings reveal that LMs often rely on067

language-specific memorization rather than true068

cross-lingual knowledge generalization. This069

over-reliance can introduce biases, inconsistencies,070

and reliability issues in multilingual AI applica-071

tions (Chua et al., 2024).072

To systematically analyze the factual inconsisten-073

cies, we introduce a carefully curated dataset com-074

prising country-related facts translated into 13 lan-075

guages. This benchmark evaluates LMs on multiple076

dimensions—factual recall, in-context recall, and077

counter-factual context adherence—across high-,078

medium-, and low-resource languages. This bench-079

mark comprises of 802 instances for factual recall,080

156 instances for In-context recall, and 1404 in-081

stances for counter-factual context adherence as082

shown in Table 1.083

Factual recall assesses the LM’s ability to recall084

country-specific facts consistently across multiple085

languages. We evaluate factual recall using three086

metrics: (a) Factual Recall Score (FRS): Measures087

how accurately a model recalls a fact in a given lan-088

guage, (b) Knowledge Transferability Score (KTS):089

Quantifies how well factual knowledge is trans-090

ferred across languages, and (c) Cross-Lingual Fac-091

tual Knowledge Transferability (X-FaKT) Score:092

Combines the assessment of factual recall and093

cross-lingual transfer ability. FRS and KTS mea-094

sure the effectiveness of cross-lingual knowledge095

transfer, and X-FaKT Score integrates factual re-096

call with transferability to provide a robust measure097

of multilingual generalization. These metrics of-098

fer a more nuanced evaluation than a simple error099

rate, allowing for a deeper understanding of cross-100

lingual generalization.101

In-Context Recall (Machlab and Battle, 2024)102

measures the general performance of the models in103

multilingual contexts. Inspired by (Du et al., 2024),104

we also study how factual knowledge of models105

affects their performance in handling in-context106

tasks in the multilingual setting (Counterfactual107

Context Adherence). For this, we design a dataset108

where factual knowledge conflicts with in-context109

instructions.110

Our experiments reveal that while LMs often re-111

trieve factual information correctly in the language112

associated with the fact, they struggle to transfer113

this knowledge to other languages. We also found114

that the size of the LLM plays an important role in115

factuality and knowledge transferability. For exam-116

ple, the combined performance of LLama-3-70B in 117

factuality and knowledge transfer across languages 118

is markedly ( 152% ↑ in X-FaKT Score) better than 119

Llama-3.2-1B. In addition, there is a marked dif- 120

ference in these tasks when queries are asked in 121

high-resource languages ( 46% ↑ in X-FaKT Score) 122

as compared to the case with low resources. This 123

finding exposes a critical limitation in current lan- 124

guage models and their approach to multilingual 125

knowledge integration. Our findings also reveal 126

an interesting trade-off: LMs with stronger factual 127

recall often struggle with counterfactual adherence, 128

highlighting a key limitation in balancing factual 129

memory and contextual reasoning. In our experi- 130

ments, we observed that the factual knowledge of 131

LMs could skew their judgments, leading to inaccu- 132

rate evaluations. One has to be very careful when 133

designing the prompt and using LM as an evalua- 134

tor. We highlight the importance of controlling the 135

evaluator’s factual knowledge to ensure consistent 136

and effective evaluation. 137

We plan to release our code and data upon pub- 138

lication. These are made available for reviewing 139

purposes in the supplementary material. 140

2 Related Work 141

Multilingual NLP and Factual Recall. Prior work 142

on multilingual models, such as mBERT (Devlin 143

et al., 2019), XLM-R (Conneau et al., 2020), mT5 144

(Xue et al., 2021) and BLOOM (Workshop et al., 145

2023), has shown that LMs trained on multilingual 146

corpora exhibit varying performance across lan- 147

guages. Studies have also highlighted systematic 148

biases in factual retrieval across different languages 149

(Artetxe et al., 2020; Liu et al., 2020). While multi- 150

lingual QA benchmarks such as XQuAD (Artetxe 151

et al., 2020), MLQA (Lewis et al., 2020), and Ty- 152

DiQA (Clark et al., 2020) assess factual consis- 153

tency, they do not explicitly measure knowledge 154

transfer within LMs. To address this gap, we in- 155

troduce a benchmark designed to evaluate cross- 156

lingual factual knowledge transferability. 157

Cross-Lingual Knowledge Transfer in LMs. 158

While research suggests that multilingual LMs ex- 159

hibit zero-shot and few-shot generalization across 160

languages (Nooralahzadeh et al., 2020; Pfeif- 161

fer et al., 2020), empirical studies indicate that 162

this transfer is often asymmetric, favoring high- 163

resource languages (Hu et al., 2020). Most recent 164

work has focused on cross-lingual transfer from 165

high-resource languages to lower-resource ones 166
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Task Type # Examples

Factual Recall 802
In-context Recall 156

Counter-Factual Context Adherence 1404

Table 1: Number of examples per languages in our
benchmark (§3).

LLM

1. In which country is Dharan
located?

2. धरान कुन देशमा अव��त छ?

Li Wei lives in Russia and Sergey
lives in China. Who lives in Russia?

Instruction: Answer the question
based on the given fact.

Fact: George Washington lives in the
country of India.

Question: In which country does
George Washington live?

1. Dharan is located in **Saudi Arabia**.
2. धरान **नेपाल**मा अव��त छ।

Li Wei does not live in Russia. The name
Li Wei is of Chinese origin. Therefore,

neither Li Wei nor Sergey live in Russia.

I apologize, but the fact provided is
incorrect. George Washington, the first
President of the United States, did not

live in India. He lived in the United
States of America.

Factual Recall Incontext Recall Counter-Factual Context Adherence

Figure 2: Examples from our multilingual dataset illus-
trating three tasks. Factual Recall: LMs recall country-
specific facts better in native languages, as seen with
Dharan’s correct identification in Nepali but incorrect
in English. Incontext Recall: Models struggle with
contextual reasoning, showing regional bias when asso-
ciating names with countries. Counter-Factual Context
Adherence: When given counterfactual prompts about
well-known figures, models rely on prior knowledge,
affecting their ability to adhere to provided context.

(Zhao et al., 2024a,b). In contrast, we find that167

knowledge transfer is often lacking even from low-168

resource to high-resource languages. Furthermore,169

we show that recent LMs can correctly retrieve170

country-specific facts in the language associated171

with that country, regardless of the language’s re-172

source level.173

Context Sensitivity and Counterfactual Rea-174

soning. LMs can be susceptible to contextual cues,175

often overriding stored knowledge when presented176

with misleading information (Brown et al., 2020;177

Tirumala et al., 2022; Du et al., 2024). Counter-178

factual reasoning studies (Wu et al., 2023) show179

that models trained for high factual recall strug-180

gle with conflicting contextual instructions. While181

prior evaluations have been monolingual (Shwartz182

et al., 2020; Wang et al., 2020), our study extends183

these investigations into the multilingual domain,184

introducing in-context recall and counterfactual ad-185

herence tasks to analyze cross-lingual reasoning.186

3 Dataset187

We introduce a new multilingual dataset designed188

to evaluate three key capabilities of LMs: (a) Fac-189

tual Recall, (b) In-context Recall, and (c) Counter- 190

Factual Context Adherence. The number of in- 191

stances in our dataset is given in the Table 1. Given 192

the multilingual nature of our study, we categorize 193

languages based on their resource availability in 194

existing LM training corpora: 195

High-resource: English, Chinese, French, 196

Japanese. 197

Medium-resource: Hindi, Russian, Arabic, 198

Greek. 199

Low-resource: Nepali, Ukrainian, Turkish, 200

Swahili, Thai. 201

These languages correspond to countries 202

strongly associated with their usage: the United 203

States, China, France, Japan, India, Russia, Saudi 204

Arabia, Greece, Nepal, Ukraine, Turkey, Kenya, 205

and Thailand. Now, we describe our datasets in 206

detail. 207

3.1 Factual Recall 208

This task evaluates an LM’s ability to recall 209

country-specific facts across multiple languages. 210

For example, given the query, In which country 211

is Mumbai located?, the model should correctly 212

respond with India when asked in different lan- 213

guages. 214

To construct the dataset, we curated a diverse 215

set of entities—including cities, artists, sports fig- 216

ures, landmarks, festivals, and politicians—for 13 217

selected countries. We then created standardized 218

templates for factual queries and translated them 219

into each language using the Google Translate 220

API (Google, n.d.). All translations were manu- 221

ally verified and refined as needed with the assis- 222

tance of ChatGPT. In total, our dataset consists of 223

805 unique factual questions, each available in 13 224

language versions. 225

3.2 In-Context Recall 226

The in-context recall task evaluates how effectively 227

an LM utilizes contextual information to answer 228

a question, ensuring that internal knowledge does 229

not influence the model’s output. 230

Building on the work of (Feng and Steinhardt, 231

2024), we constructed our dataset by focusing on 232

common person names associated with each coun- 233

try. For each example, we sampled two names and 234

paired them with two different countries, creating 235

context-based prompts as shown in violet color in 236

Figure 2. To enhance dataset efficiency, we inten- 237

tionally avoided associating a name with its most 238

commonly linked country within the example. 239
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3.3 Counter-Factual Context Adherence240

This task evaluates an LM’s susceptibility to coun-241

terfactual information by assessing whether it ad-242

heres to the provided context when answering a243

question. Ideally, the model should rely solely on244

the given context, but in some cases, its internal245

knowledge may interfere or override it, leading to246

unintended responses (Du et al., 2024). To investi-247

gate this, we curated a list of well-known personal-248

ities strongly associated with specific countries and249

deliberately introduced counterfactual information250

into the context.251

For the example given in Figure 2, if the model252

defaults to its internal knowledge and answers253

United States, it demonstrates a resistance to the254

contextual information. Conversely, if it follows255

the counterfactual context and answers India, it256

suggests a higher reliance on the provided context257

rather than pre-existing knowledge.258

One might expect these models to perform near-259

perfectly on these tasks, as they are very simple.260

However, despite the simplicity of these tasks, the261

performance varies across languages and models.262

4 Experiments263

In this section, we discuss our experimental setup,264

metric formulation, and both quantitative and quali-265

tative analyses. We present the results of our experi-266

ments evaluating LMs on our dataset across diverse267

multilingual tasks. These experiments assess how268

language and country-specific factual knowledge269

influence LMs responses in a multilingual setting.270

All experiments were conducted using the latest271

models, with Qwen-2.5-72B-Inst (Qwen et al., 2025)272

serving as the evaluator (Li et al., 2024).273

4.1 Experimental Setup274

Models We evaluated 14 models of varying sizes,275

trained on different compositions of multilingual276

data, and fine-tuned using various preference opti-277

mization strategies (Ouyang et al., 2022; Rafailov278

et al., 2024), for our multilingual study. These279

include Deepseek (DeepSeek-AI et al., 2024),280

Qwen (Yang et al., 2024), Gemma (Team et al.,281

2024b), and Llama (Touvron et al., 2023b) families.282

Further details of the models evaluated are given in283

Table A.1.284

Compute Details All our experiments were con-285

ducted on a set of 4 NVIDIA A100 GPUs, each286

with 80GB of VRAM. We used Chat-GPT (OpenAI287

et al., 2024) for the dataset generation.288

Evaluation To evaluate all models on the curated 289

datasets (Section 3), we used a temperature setting 290

of 0 and a maximum token limit of 128. Specifi- 291

cally, we tested the models’ performance on Fac- 292

tual Recall and In-Context Recall across different 293

settings. For evaluation, we designed our metrics 294

and utilized Qwen-2.5-72B-Inst as the evaluator (Li 295

et al., 2024), with a maximum token limit of 256 to 296

support reasoning. Evaluation prompts are shown 297

in Figures 10 and 11. 298

4.2 Metric Definition and Formulation 299

This section introduces our carefully designed met- 300

rics to evaluate factual recall and knowledge trans- 301

ferability across languages in LMs. We propose 302

two key metrics: the Factual Recall Score (FRS) 303

and the Knowledge Transferability Score (KTS). 304

To establish a common metric for evaluating the 305

model’s performance in our benchmark, we com- 306

pute their harmonic mean, which is defined as the 307

Cross-Lingual Factual Knowledge Transferability 308

Score (X-FaKT), to ensure a balanced assessment 309

while penalizing large disparities between them. 310

Our metrics incorporate an inverse formulation 311

with a correction factor to maintain a bounded 312

range of [0, 1]. A higher error rate results in a lower 313

metric value due to the inverse transformation, en- 314

suring that better model performance corresponds 315

to higher scores. 316

4.2.1 Associative vs. Non-Associative 317

Knowledge 318

We categorize our dataset into two groups: asso- 319

ciative and non-associative knowledge. The cate- 320

gorization is defined as follows: we consider 13 321

languages, each associated with a corresponding 322

country (i.e., the ith language belongs to the ith 323

country). 324

Associative = {Q ∈ Questions : Q ∈ 325

Languagei ∧ output(Q) = Countryj ∧ i = j} 326

Non-associative = {Q ∈ Questions : Q ∈ 327

Languagei ∧ output(Q) = Countryj ∧ i ̸= j} 328

We denote the mean error rate for a country- 329

specific fact asked in the language strongly associ- 330

ated with that country as µassoc., and the mean error 331

rate for a country-specific fact asked in a language 332

not associated with that country as µnon-assoc.. 333
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4.2.2 Factual Recall Score (FRS)334

Factual recall evaluates the model’s ability to cor-335

rectly retrieve both associative and non-associative336

knowledge. We define the Factual Recall Score337

(FRS) as:338

FRS =
3

2

(
1

µassoc. + µnon-assoc. + 1
− 1

3

)
(1)339

340
• When both errors are zero (µassoc. =341

0, µnon-assoc. = 0), the model has a perfect342

factual recall, yielding an FRS score of 1.343

• When both errors are high, the denominator in-344

creases, resulting in a lower FRS score closer345

to 0, indicating poor factual recall.346

4.2.3 Knowledge Transferability Score (KTS)347

Knowledge transferability quantifies how well348

a model maintains consistent factual knowledge349

across languages. We define the Knowledge Trans-350

ferability Score (KTS) as:351

KTS = 2

(
1

|µassoc. − µnon-assoc.|+ 1
− 1

2

)
(2)352

353 where:354

• |µassoc. − µnon-assoc.| captures the absolute355

difference between associative and non-356

associative recall errors.357

• When both errors are zero (µassoc. =358

0, µnon-assoc. = 0), there is perfect factual359

knowledge transfer, resulting in a KTS score360

of 1.361

• When both errors are high but equal (e.g.,362

µassoc. = 20, µnon-assoc. = 20), KTS remains363

1, indicating that while factual recall is poor,364

the model exhibits consistent errors across lan-365

guages.366

• When errors differ significantly (e.g., µassoc. =367

20, µnon-assoc. = 2 or vice versa), the abso-368

lute difference increases, leading to a lower369

KTS, highlighting a lack of knowledge trans-370

fer across languages.371

4.2.4 Cross-Lingual Factual Knowledge372

Transferability Score (X-FAKT)373

To ensure a balanced evaluation of factual recall374

and cross-lingual transferability, we compute their375

harmonic mean:376

X-FAKT = 2× FRS ×KTS

FRS +KTS
(3)377

where:378

Figure 3: Error rates for each model on the Factual Re-
call task. A clear pattern emerges, showing a decline in
performance as we move from larger to smaller models
(top to bottom) and from high-resource to low-resource
languages (left to right).

• The harmonic mean penalizes large disparities 379

between factual recall (FRS) and knowledge 380

transferability (KTS), ensuring that both con- 381

tribute meaningfully to the final score. 382

• If either FRS or KTS is significantly lower, 383

the overall score remains low, discouraging 384

models from excelling in one metric while 385

performing poorly in the other. 386

• A high X-FAKT score indicates that the model 387

is both factually accurate and consistent across 388

multiple languages. 389

This formulation provides a holistic evaluation 390

of factual knowledge retention and cross-lingual 391

consistency, making it a robust metric for assessing 392

multilingual model performance. 393

4.3 Quantitative Analysis 394

4.3.1 Performance on Factual Recall task 395

The error rate across different LMs (Figure 3) 396

reveals a clear pattern in performance across 397

languages and model sizes. Notably, all mod- 398

els demonstrate superior performance on high- 399

resource languages like English and French, with 400

error rates consistently below 15% for most model 401

variants. This performance gradually deteriorates 402

as the model size decreases, with smaller models 403

showing significantly higher error rates across all 404

languages. However, an interesting observation 405

emerges with languages like Swahili and Turkish, 406

which despite being low-resource languages, ex- 407

hibit relatively better performance with error rates 408

comparable to mid-resource languages. This can 409

be attributed to their use of Latin script, facilitating 410
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Model µassoc.(%) µnon−assoc.(%) t-stat p-value FRS KTS X-FAKT

Llama-3-70B 2.36 ± 5.12 9.85 ± 10.54 2.52 0.01 0.835 0.862 0.848
Gemma-2-27B 4.23 ± 8.49 16.46 ± 17.07 2.54 0.01 0.742 0.783 0.762
Phi-4-14B 12.87 ± 16.51 30.15 ± 25.92 2.35 0.02 0.548 0.706 0.617
Phi-3-14B 25.09 ± 29.84 55.57 ± 36.24 2.93 <0.01 0.330 0.535 0.408
Gemma-2-9B 4.98 ± 6.09 22.32 ± 21.37 2.90 <0.01 0.677 0.705 0.691
Llama-3-8B 4.60 ± 7.54 25.77 ± 19.61 3.85 <0.01 0.649 0.651 0.650
Orca-2-7B 31.95 ± 31.65 56.77 ± 32.99 2.60 0.01 0.295 0.603 0.396
DeepSeek-7b 31.49 ± 30.68 63.73 ± 36.29 3.09 <0.01 0.268 0.514 0.353
Mistral-7B-v0.2 16.96 ± 15.65 45.25 ± 29.34 3.42 <0.01 0.424 0.559 0.483
Phi-3.5-4B 41.85 ± 31.62 69.87 ± 31.23 3.09 <0.01 0.208 0.563 0.304
Phi-3-4B 42.45 ± 30.99 77.95 ± 33.72 3.65 <0.01 0.181 0.477 0.262
Llama-3.2-3B 24.10 ± 17.80 47.48 ± 26.80 3.07 <0.01 0.375 0.620 0.467
Gemma-2-2B 9.97 ± 14.78 45.77 ± 31.30 4.06 <0.01 0.463 0.473 0.468
Llama-3.2-1B 34.74 ± 22.32 65.96 ± 26.98 4.03 <0.01 0.247 0.524 0.336

Table 2: Results of the t-test comparing associative
and non-associative knowledge across models, along-
side FRS, KTS, and X-FAKT scores. (A) Llama-3-70B
achieves the best performance in both factual recall and
knowledge transferability. (B) There is a statistically
significant difference between the performance on as-
sociative queries (asked in a country’s native language)
and non-associative queries (asked in other languages).

Figure 4: This figure illustrates the model-wise compar-
ison of X-FAKT scores grouped by language families.
A clear trend emerges, showing that as the model size
increases within a family, the X-FAKT score tends to
increase.

better knowledge transfer from English.411

A compelling pattern emerges when examining412

languages that share similar scripts, and strong cor-413

relations in model performance among languages414

that share similar scripts. For example, the error415

patterns for Hindi-Nepali and Russian-Ukrainian416

pairs show remarkable similarities, suggesting that417

the models effectively leverage shared scriptural418

characteristics during learning. These patterns in-419

dicate that script similarity plays a crucial role in420

the model’s ability to generalize across languages,421

potentially offering insights into how these mod-422

els transfer knowledge between different language423

pairs and scripts.424

Knowledge Transferability Analysis: From Ta-425

ble 2, Llama-3-70B emerges as the clear leader with426

the highest X-FAKT score of 0.848, demonstrat-427

ing superior balanced performance in both fac-428

Language µassoc.(%) µnon−assoc.(%)

High 3.83 ± 3.79 29.84 ± 27.47
Medium 26.73 ± 17.60 50.54 ± 21.20
Low 29.53 ± 16.19 53.91 ± 23.68

Table 3: Average mean and standard deviation for error
rate across all models for each language group. High-
resource languages exhibit lower error rates compared
to low-resource languages.

tual recall (FRS = 0.835) and knowledge trans- 429

ferability (KTS = 0.862). This exceptional per- 430

formance is supported by the lowest error rates 431

(µassoc. = 2.36%, µnon−assoc. = 9.85%), suggesting 432

that larger model sizes generally correlate with bet- 433

ter cross-lingual factual knowledge handling. De- 434

spite similar model sizes, significant performance 435

variations exist between different architectures. For 436

example, Gemma-2-9B (X-FAKT: 0.691) substan- 437

tially outperforms Mistral-7B-v0.2 (X-FAKT: 0.483), 438

suggesting that architecture design and training 439

methodology play crucial roles beyond mere pa- 440

rameter count. As illustrated in Figure 4, the X- 441

FAKT scores exhibit a clear upward trend with 442

increasing model size within each language family. 443

This suggests that larger models generally achieve 444

better factual consistency, highlighting the impact 445

of scale on model performance. These findings 446

provide valuable insights into the current state of 447

cross-lingual factual knowledge in LMs and high- 448

light areas for future improvement, particularly in 449

reducing the performance gap between associative 450

and non-associative knowledge retrieval. 451

Associative vs. Non-associative performance: 452

We analyze the performance of various models on 453

these two subsets of data and report the results in 454

the Table 2. For all models, the t-statistic and p- 455

value indicate that the differences between associa- 456

tive and non-associative categories are statistically 457

significant (p-value less than 0.05). 458

Performance comparison across language 459

groups: In this study, we categorize languages 460

into three groups based on their availability and 461

coverage in the dataset: High, Medium, and 462

Low, as defined in Section 3. From the results 463

shown in Table 3, we observe a clear trend across 464

language groups. Specifically, high resouce lan- 465

guages exhibit the lowest average error rates, par- 466

ticularly in the associative category, where mod- 467

els make fewer mistakes (µassoc. = 3.83%). How- 468

ever, for non-associative questions, the error rate 469
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rises significantly (µnon−assoc. = 29.84%), indicat-470

ing that models struggle more when dealing with471

non-associative samples in these languages. The472

error rate increases while moving from high to low-473

resource languages.474

4.3.2 Performance on In-Context Recall task475

Figure 12 demonstrates the incorrectness rate for476

the in-context recall capabilities of different LMs.477

Despite being a simple task, certain models such as478

DeepSeek-7B, Orca-2-7B, Phi-3-4B, Llama-3.2-1B, and479

Mistral-7B-v0.2 perform poorly across multiple lan-480

guages. This suggests that these models struggle to481

effectively utilize contextual information when gen-482

erating outputs. Interestingly, even for languages483

like Swahili and Turkish, which showed better484

scores in the Factual Recall task, models demon-485

strate poor performance on this context-dependent486

task. This stark contrast suggests that the bene-487

fits of Latin script-based knowledge transfer ob-488

served in the Factual Recall task do not extend to489

in-context learning scenarios, where performance490

depends primarily on the model’s ability to process491

and utilize contextual information.492

As mentioned in the dataset section, we inten-493

tionally paired cross-entities as context. This setup494

appears to induce a regional bias, which negatively495

impacts model performance. The structured entity-496

context pairing in the dataset may have led to spuri-497

ous correlations (Yang et al., 2023; Ye et al., 2024),498

reducing model accuracy in in-context recall tasks.499

Some models struggle to effectively leverage con-500

textual information, revealing potential weaknesses501

in their retrieval and in-context learning mecha-502

nisms.503

4.3.3 Performance on Counter-Factual504

Context Adherence task505

Figure 5 illustrates the error rates of LMs in the506

Counterfactual Context Adherence task. Notably,507

Latin-script languages (English, French, Swahili,508

and Turkish), which performed well in factual re-509

call tasks, exhibited significantly higher error rates510

in counterfactual adherence. This suggests a funda-511

mental trade-off in the models’ capabilities: their512

strength in accurately retrieving factual informa-513

tion appears to come at the expense of their abil-514

ity to maintain adherence to counterfactual con-515

texts. This inverse relationship raises important516

questions about the inherent limitations and trade-517

offs in LMs’ learning mechanisms, particularly in518

how they balance factual knowledge with hypothet-519

Figure 5: Error rate for each model on Counter-Factual
Context Adherence task. Models show high error rates
in high resource languages such as English and French
where they have high factual recall.

Figure 6: Mistral-7B-v0.2 output when prompted with
the given context in English. This model generation
shows how spurious correlation leads to in-context recall
failures

ical reasoning. 520

4.4 Qualitative Analysis 521

Spurious correlation leads to in-context recall 522

failures. We observe that some models tend 523

to associate names with cultural origins, even 524

when contextual evidence contradicts this assump- 525

tion. Figures 6 demonstrate the model response 526

when prompted Mistral-7B-v0.2 with the contextual 527

understanding-based question in English. 528

Despite the explicit context stating that Li Wei 529

resides in Russia, the model disregards this infor- 530

mation and defaults to cultural associations. This 531

behavior reveals a limitation in integrating contex- 532

tual evidence when making country-specific infer- 533

ences. 534

Models favor factual knowledge over context. 535

We also observed that some models prioritize their 536

internal factual knowledge over contextual infor- 537

mation when responding to questions about well- 538

known personalities. Figures 7 demonstrate the 539

model response when prompted Llama-3-70B with 540

the factual retrieval query in English. 541
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Figure 7: Llama-3-70B output when prompted with
a counter-factual context adherence query in English.
This shows LMs favour internal knowledge over contex-
tual understanding.

Figure 8: Llama-3-70B output when prompted with a
factual recall query in English

In this case, despite being explicitly told that542

‘George Washington’ lived in ’India’, the model543

relied on its factual knowledge, correcting the given544

fact and asserting that ‘George Washington’ lived in545

the ‘United States’. This response demonstrates the546

model’s strong reliance on factual accuracy, rather547

than adapting to the context provided. It suggests548

that when it comes to well-known historical figures,549

models may prioritize prior knowledge over the550

specific context they are given.551

Linguistic variability in word interpretation.552

LMs can interpret words differently depending553

on the language. Figures 8 and 9 demonstrate554

the model responses when prompted Llama-3-70B555

with the same queries but in different languages.556

This highlights challenges in multilingual consis-557

tency, where the model misinterprets ‘Dijon’ as558

‘De Janeiro’ in Hindi, revealing inconsistencies in559

cross-lingual factual retrieval.560

Challenges with using LMs as evaluators. We561

used a zero-shot prompt with Llama-3-70B as an562

evaluator and found that its inherent factual knowl-563

edge can skew assessments. For example, when564

evaluating a Gemma-2-27B response to the counter-565

factual context task—“Catherine the Great lives566

in India”—the evaluator corrected it, asserting that567

she lived in “Russia”, despite the provided ground568

truth. This bias highlights the need to control eval-569

uators’ factual knowledge to ensure consistent eval-570

uation.571

Figure 9: Llama-3-70B output when prompted with a
factual recall query in Hindi. In Hindi, it misinterprets
understanding of a French word.

5 Conclusions 572

Our study reveals a critical limitation in multilin- 573

gual LMs: their inability to consistently transfer 574

factual knowledge across languages. Our bench- 575

mark provides a standardized framework to eval- 576

uate both current and future LMs on their factual 577

consistency and cross-lingual generalization, en- 578

abling a more systematic comparison of their ca- 579

pabilities. Moreover, it can serve as a valuable 580

resource to promote research in interpretability by 581

helping analyze how and where factual knowledge 582

is stored and retrieved across languages, foster- 583

ing a deeper understanding of LM internals. We 584

emphasize the need for AI systems with internal 585

awareness of their language-specific strengths and 586

weaknesses—a concept we term calibrated multi- 587

lingualism. Under this paradigm, a model would 588

autonomously leverage the most reliable internal 589

representations for any given multilingual query. 590

We also find that LMs, when used as evalua- 591

tors, are biased by their internal factual knowledge, 592

which may not align with the intended input-output- 593

ground-truth context. This underscores the need 594

to control the evaluator’s factual knowledge for 595

more reliable assessments. Ultimately, enabling AI 596

to cross-generalize across languages is crucial for 597

inclusive and equitable technology, ensuring lan- 598

guage is no barrier to reliable knowledge access. 599

6 Limitations 600

Our study provides valuable insights into cross- 601

lingual knowledge transfer in LMs but has some 602

limitations. First, our benchmark, though compre- 603

hensive in country-related facts, covers only 13 604

languages, limiting its representation of diverse lin- 605

guistic families. Second, we evaluated only open- 606

source LMs, excluding proprietary models that may 607

exhibit different transfer patterns. Third, our fact 608
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collection used a standardized template for con-609

sistency, which may not reflect the diversity of610

real-world queries. Lastly, our focus on country-611

related facts means our findings may not generalize612

to other domains like science, history, or culture.613

7 Ethics Statement614

This research is conducted with a strong commit-615

ment to ethical principles, ensuring data privacy616

and consent by using publicly available informa-617

tion and adhering to data protection regulations.618

We acknowledge potential biases in multilingual619

language models and aim to highlight and address620

these through our benchmark. Transparency and621

reproducibility are promoted by making our dataset622

and evaluation framework publicly available. Our623

research aligns with the broader goals of fairness,624

transparency, and social responsibility.625
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[Instruction]
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. The
assistant should be penalized if it doesn't answer the question based on the given reference. For this evaluation, you should primarily consider
the following criteria:

Score 1: The Assistant's answer is in the same language as the reference and aligns with the reference.
Score 2: The Assistant's answer is in English and aligns with the reference.
Score 3: The Assistant's answer is in any other language and aligns with the reference.
Score 4: The Assistant's answer is unrelated to the reference.
Only respond with a numerical score.

Begin your evaluation by providing a short explanation. Be as objective as possible. After providing your explanation, you must rate the response
on a scale of 1 to 4 by strictly following this format: "[[rating]]", for example:

[Reference]
India

[Question]
George Washington lives in the country of India. In which country does George Washington live?

[The Start of Assistant's Answer]
George Washington lives in **United States**.
[The End of Assistant's Answer]

Response: The assistant's response is in same language but does not align with the reference provided.\n\nRating: [[4]]

[Reference]
{answers}

[Question]
{question}

[The Start of Assistant's Answer]
{predicted}

[The End of Assistant's Answer]

Figure 10: Prompt used for evaluation of Factual Recall and In-Context Recall tasks.

[Instruction]
Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. The AI
assistant is given a fact and the assistant has to answer the question based on the given fact. The assistant should be penalized if it doesn't answer
the question based on the fact. For this evaluation, you should primarily consider the following criteria:

Score 1: The Assistant's answer is in the same language as the reference and aligns with the reference.
Score 2: The Assistant's answer is in English and aligns with the reference.
Score 3: The Assistant's answer is in any other language and aligns with the reference.
Score 4: The Assistant's answer is unrelated to the reference.
Only respond with a numerical score.

Begin your evaluation by providing a short explanation. Be as objective as possible. After providing your explanation, you must rate the response
on a scale of 1 to 4 by strictly following this format: "[[rating]]", for example:

[Reference]
India

[Question]
Instruction: Answer the question based on the given fact.
Fact: George Washington lives in the country of India.
Question: In which country does George Washington live?

[The Start of Assistant's Answer]
The given fact is incorrect, George Washington lives in **United States**.
[The End of Assistant's Answer]

Response: The assistant's response is in English and does not align with the reference provided.\n\nRating: [[4]]

[Reference]
{answers}

[Question]
{question}

[The Start of Assistant's Answer]
{predicted}

[The End of Assistant's Answer]

Figure 11: Prompt used for evaluation of Counter-Factual Context Adherence task.
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Model Model Size Training Languages Context Vocab Post-Training Key
& Architecture Data Supported Length Size Strategies Features

Llama-3-70B 70B 15T tokens EN, DE, FR, IT, 8K 128K SFT, RS, DPO GQA, 8 heads,
L=80, H=64 Multi-lingual PT, HI, ES, TH RoPE embeddings

Gemma-2-27B 27B 13T tokens Primarily 8K 256K SFT, RLHF Local-global attention,
Web, Code, Math English Knowledge distillation

Phi-4-14B 14B 400B synthetic DE, ES, FR, PT, 16K 100K SFT, RS, Full attention over
+ 10T web IT, HI, JA DPO 4K context

Phi-3-14B 14B 4.8T tokens 10% multilingual 128K 32K SFT, DPO Reasoning focus,
data Multi-lingual support

Gemma-2-9B 9B 8T tokens Primarily 8K 256K SFT, RLHF GQA, RoPE,
English Knowledge distillation

Llama-3-8B 8B 15T tokens EN, DE, FR, IT, 8K 128K SFT, RS, GQA, RoPE,
L=32, H=32 Multi-lingual PT, HI, ES, TH DPO 32 heads

Orca-2-7B 7B Based on Based on 4K 32K Single-turn Enhanced reasoning
L=32, H=32 Llama 2 Llama 2 SFT abilities

DeepSeek-7B 7B 2T tokens English 4K 102K SFT, DPO English & Chinese
L=30, H=32 & Chinese focus

Mistral-7B-v0.2 7B Open Web Open Web 32K 32K SFT GQA, Sliding window
L=32, H=32 languages attention

Phi-3.5-4B 3.8B 3.4T tokens 23 languages incl. 128K 32K SFT, DPO Multi-lingual
L=32, H=32 Multi-lingual AR, ZH, CS, NL, support

Phi-3-4B 3.8B 4.9T tokens Similar to 128K 32K SFT, DPO Diverse domain
Phi-3.5-mini coverage

Llama-3.2-3B 3B 9T tokens EN, DE, FR, IT, 128K 128K SFT, RS, GQA, Knowledge
Multi-lingual PT, HI, ES, TH DPO distillation

Gemma-2-2B 2B 2T tokens Primarily 8K 256K SFT, RLHF GQA, RoPE,
English Knowledge distillation

Llama-3.2-1B 1B 9T tokens EN, DE, FR, IT, 128K 128K SFT, RS, GQA, Multi-lingual
Multi-lingual PT, HI, ES, TH DPO dialogue focus

Table A.1: Model Specifications: Comparison of LMs across key architectural and training characteristics. Lan-
guages abbreviated as: EN=English, DE=German, FR=French, IT=Italian, PT=Portuguese, HI=Hindi, ES=Spanish,
TH=Thai, AR=Arabic, ZH=Chinese, CS=Czech, NL=Dutch, JA=Japanese. L=Layers, H=Heads, SFT=Supervised
Fine-Tuning, RS=Rejection Sampling, DPO=Direct Preference Optimization, GQA=Grouped-Query Attention,
RoPE=Rotary Position Embedding.
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Question Model Prediction Ground Truth LLM Evaluation Output
New York iko katika nchi gani? New York iko nchini

**Marekani**.
Marekani Response: The assistant’s

response is in the same lan-
guage as the reference and
aligns with the reference
provided. Rating: [[1]]

Talimat: Verilen gerçeğe göre
soruyu cevaplayın. Gerçek:
George Washington, Amerika
Birleşik Devletleri ülkesinde
yaşıyor. Soru: George Wash-
ington hangi ülkede yaşıyor?

George Washington,
**Amerika Birleşik De-
vletleri**’nde yaşıyor.

Amerika Bir-
leşik Devletleri

The assistant’s response is
in the same language as
the reference and aligns
with the reference. Rating:
[[1]]

David lives in China and Li Wei
lives in United States. Who
lives in China?

David lives in China. David Response: The assistant’s
response is in the same lan-
guage and aligns with the
reference provided. Rat-
ing: [[1]]

Dans quel pays se trouve
Sourate ?

Sourate n’est pas un pays, mais
le nom d’une **ville** située
en **Algérie**.

Inde The assistant’s response is
in French, which aligns
with the reference lan-
guage, but the information
provided does not align
with the reference. The
assistant incorrectly states
that Sourate is a city in
Algeria, while the refer-
ence is about India. Rat-
ing: [[4]]

Table A.2: Some outputs from evaluator Qwen-2.5-72B-Inst. Rating[1-3]: Correct and Rating[4]: Incorrect.
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Figure 12: Error rate for each model on In-context Recall task. Clearly, few models such as DeepSeek-7B, Phi-3-4B,
etc. performs poorly on this simple task.
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Figure 13: English Fall Back Rate across models (The English Fall Back Rate measures the frequency with which a
model defaults to English in its output).
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Figure 14: Country-Specific Factual Error Rates in each language for Llama-3-70B
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Figure 15: Country-Specific Factual Error Rates in each language for Llama-3.2-1B

Figure 16: Comparision of models (in the increasing order of size with respect to the parameters) using Factual
Recall Score, Knowledge Transferability Score, and Cross-Lingual Factual Knowledge Transferability Score.
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