
Published at ICLR 2025 Workshop on World Models

TEMPORAL DIFFERENCE FLOWS

Jesse Farebrother2,3,∗ Matteo Pirotta1 Andrea Tirinzoni1 Rémi Munos1
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ABSTRACT

Predictive models of the future are fundamental for an agent’s ability to reason
and plan. A common strategy learns a world model and unrolls it step-by-step at
inference, where small errors can rapidly compound. Geometric Horizon Models
(GHMs) offer a compelling alternative by directly making predictions of future
states, avoiding cumulative inference errors. While GHMs can be conveniently
learned by a generative analog to temporal difference (TD) learning, existing
methods are negatively affected by bootstrapping predictions at train time and
struggle to generate high-quality predictions at long horizons. This paper introduces
Temporal Difference Flows (TD-Flow), which leverages the structure of a novel
Bellman equation on probability paths alongside flow-matching techniques to learn
accurate GHMs at over 5× the horizon length of prior methods. Theoretically, we
establish a new convergence result and primarily attribute TD-Flow’s efficacy to
reduced gradient variance during training. We further show that similar arguments
can be extended to diffusion-based methods. Empirically, we validate TD-Flow
across a diverse set of domains on both generative metrics and downstream tasks
including policy evaluation. Moreover, integrating TD-Flow with recent behavior
foundation models for planning over pre-trained policies demonstrates substantial
performance gains, underscoring its promise for long-horizon decision-making.

1 INTRODUCTION

Predictive modeling lies at the heart of intelligent decision-making, enabling agents to reason and plan
in complex environments. In Reinforcement Learning (RL), this predictive capability has traditionally
been achieved through world models that capture the transition structure of the environment. These
models have enabled significant advances across numerous domains — from robotics manipulation
employing model-predictive control (Sikchi et al., 2021; Hafner et al., 2023; Hansen et al., 2022;
2024), to sample-efficient exploration strategies (Schmidhuber, 1991; Stadie et al., 2016; Pathak
et al., 2017), and sophisticated planning algorithms (Silver et al., 2016; 2017; Schrittwieser et al.,
2020). However, while world models have demonstrated impressive results, they face fundamental
limitations when deployed for long-horizon reasoning. The standard approach of unrolling predictions
step-by-step leads to compounding errors, as small inaccuracies in each prediction accumulate and
propagate forward in time (Talvitie, 2014; Jafferjee et al., 2020; Lambert et al., 2022). This “curse of
horizon” presents a significant challenge for applications requiring reliable long-range predictions.

An alternative approach is to learn a generative model of future states directly, avoiding compounding
errors during inference. These models, usually referred to as Geometric Horizon Models (GHM;
Thakoor et al., 2022) or γ-models (Janner et al., 2020), are learned by leveraging the temporal differ-
ence structure of the successor measure (Blier et al., 2021). However, their reliance on bootstrapped
predictions during training can lead to instability and growing inaccuracy over long horizons. As a
result, current methods struggle to make accurate predictions beyond 20-50 steps, also limiting their
utility for long-term decision-making. In this paper, we show that while state-of-the-art generative
methods like flow matching (Lipman et al., 2023) and denoising diffusion (Ho et al., 2020) cannot be
directly applied to learn long-horizon GHMs, their iterative nature can be leveraged to better exploit
the temporal structure of the problem. This insight yields a new class of methods that provably con-
verges to the successor measure while reducing the variance of their sample-based gradient estimates,
enabling stable long-horizon predictions. Empirically, our approach produces significantly more
accurate GHMs, consistently outperforming state-of-the-art algorithms across domains and metrics,
including prediction accuracy, value function estimation, and generalized policy improvement.
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2 BACKGROUND

In the following, we use capital letters to denote random variables, sans-serif fonts for sets (e.g., A),
and P(A) to denote the space of probability measures over a measurable set A.

Markov Decision Process We consider a reward-free discounted Markov decision process M =
(S,A, P, γ), which characterizes the dynamics of a sequential decision-making problem. At each
step, the agent selects an action a ∈ A in state s ∈ S according to its policy π : S → A. This action
influences the transition to the next state s′ ∈ S, governed by the transition kernel P : S×A → P(S),
which defines a probability measure over successor states. The discount factor γ ∈ [0, 1) can be
interpreted as implying a process that either continues with probability γ or terminates with probability
1 − γ. This interpretation naturally defines a geometric distribution of future states the agent will
occupy, where states reached after k steps are discounted by γk.

Successor Measure The normalized successor measure (Dayan, 1993; Blier et al., 2021) of a policy
π describes the discounted distribution of future states visited by π starting from an initial state-action
pair (s, a). For the measurable subset X ⊆ S the successor measure mπ(X | s, a) represents the
probability that future states fall within X, geometrically discounted by γ according to the time of
visitation. Formally, it is defined as:

mπ(X | s, a ) = (1− γ)

∞∑
k=0

γk Pr(Sk+1 ∈ X | S0 = s, A0 = a, π),

where Pr(· | S0, A0, π) denotes the probability of state-action sequences (Sk, Ak)k≥0 generated from
(S0, A0) following Sk ∼ P (· |Sk−1, Ak−1) and Ak = π(Sk). The successor measure encapsulates
the long-term dynamics of π, enabling value estimation for any reward function r : S → R.
Specifically, the value of taking action a ∈ A in state s ∈ S is the expected reward under states visited
by π amplified by the effective horizon (1− γ)−1:

Qπ(s, a) = (1− γ)−1 EX∼mπ(·|s,a)[r(X) ] . (1)

Moreover, mπ is the fixed point of the Bellman operator T π : P(S)S×A → P(S)S×A:

mπ(· | s, a) = (T πmπ) (· | s, a) (2)
:= (1− γ)P (· | s, a) + γ (Pπmπ) (· | s, a) .

The operator Pπ applied to m mixes the one-step kernel with the successor measure, accounting for
transitioning from (s, a) to a new state-action pair (s′, π(s′)) and querying m(· | s,′ π(s′)) thereafter:

(Pπm) (dx | s, a) =
∫
s′
P (ds′ | s, a)m(dx | s′, π(s′)) .

Geometric Horizon Model A Geometric Horizon Model (GHM; Thakoor et al., 2022) or γ-model
(Janner et al., 2020) is a generative model of the normalized successor measure. To learn the
parametric model m̃(· · · ; θ) ≈ mπ we can minimize a Monte-Carlo cross-entropy objective over
source states from the empirical distribution ρ as,

argmin
θ

ES∼ρ,X∼mπ(· |S,π(S))[ − log m̃(X |S,A; θ)) ] .

In order to sample from mπ we deploy π for t ∼ Geometric(1− γ) steps resulting in state X = St.
Akin to other Monte-Carlo methods in RL, this approach is problematic when learning from off-policy
data, often leading to high-variance estimators that rely on importance sampling (Precup et al., 2001).

Alternatively, we can leverage the Bellman equation (2) to construct an off-policy iterative method
for estimating mπ. Given initial weights θ(0), each iteration updates θ by minimizing the following
temporal-difference cross-entropy objective over transitions that need not come from policy π,

θ(n+1) = argmin
θ

E(S,A)∼ρ,X∼(T πm̃(n))(·|S,A)[ − log m̃(X | S,A; θ) ]. (3)

In the equation above and throughout the paper, we adopt the shorthand m̃(n) = m̃(· · · ; θ(n)). To
generate samples X ∼

(
T πm̃(n)

)
(· | S,A) we first draw a successor state S′ ∼ P (· | S,A); then
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TDCFM Coupled TDCFM TD²CFM

Figure 1: TD-Flow variants: Samples are mapped from m0 to m(n)
1 via a neural ODE. (Left) TD-CFM

maps X0 → X1 with crossing conditional paths (solid); (Middle) TD-CFM(C) couples X0, X1;
(Right) TD2-CFM solves the neural ODE up to time t to directly obtain the target velocity ṽt.

with probability 1− γ, we return S′; otherwise, with probability γ, we return a bootstrapped sample
drawn from m̃(n)(· | S′, π(S′)).

Several probabilistic models have been applied to this problem, including generative adversarial
networks (e.g., Janner et al., 2020; Wiltzer et al., 2024b), normalizing flows (e.g., Janner et al., 2020),
and variational auto-encoders (e.g., Thakoor et al., 2022; Tomar et al., 2024). We now turn our
attention to a class of generative models based on the flow-matching framework specifically designed
to leverage the underlying structure of the Bellman equation (2),

3 TEMPORAL DIFFERENCE FLOWS

Flow Matching (FM; Lipman et al., 2023; 2024; Liu et al., 2023; Albergo & Vanden-Eijnden, 2023)
constructs a time-dependent probability pathmt : S×A → P(S) for t ∈ [0, 1] that evolves smoothly
from the source distribution m0 = p0 ∈ P(S) to the target distribution m1 ≈ mπ . This evolution is
governed by a vector field vt : S×S×A → S, which dictates the instantaneous movement of samples
along mt. The relationship between this vector field and the resulting probability path is established
through a time-dependent flow ψt : S× S× A → S, defined as the solution to the following ordinary
differential equation initial value problem:

d

dt
ψt(x | s, a) = vt

(
ψt(x | s, a) | s, a

)
, ψ0(x | s, a) = x .

We say that vt generatesmt if its flow ψt satisfiesXt := ψt(X0 | S,A) ∼ mt(· | S,A) forX0 ∼ m0.
In words, the flow ψt pushes samples forward through time, ensuring they are distributed according
to mt at time t. To learn this transformation, we can minimize the squared L2 distance between
a parameterized vector field ṽt(· · · ; θ) and the true vector field vt over t ∼ U([0, 1]), yielding the
Monte-Carlo Flow Matching (MC-FM) loss,

ℓMC-FM(θ) = Eρ,t,Xt
[∥∥ṽt(Xt |S,A; θ)− vt(Xt |S,A)

∥∥2] ,whereXt ∼ mt(· |S,A) . (MC-FM; 4)

Despite its conceptual simplicity, direct optimization of the flow matching objective above proves
challenging due to the inaccessibility of the true probability path mt and its associated vector field vt.

Alternatively, Lipman et al. (2023) shows that we can sidestep this problem entirely by introducing
additional conditioning information. Instead of directly modeling the probability path mt we can
introduce a random variable Z and define a conditional path on Z as pt|Z : S × Z → P(S)
(Lipman et al., 2024; Tong et al., 2024). The conditional velocity field ut|Z : S × Z → S that
generates pt|Z can now be computed in closed form for many simple choices of Z and pt|Z . One
such choice is taking Z = X1 and performing a linear Gaussian interpolation from X0 → X1

resulting in pt|1(· |X1) = N (· | tX1, (1 − t)2I) with the corresponding vector field given by
ut|1(x |X1) = (X1−x)/(1− t). Armed with the ability to sample from pt|1 and to compute ut|1, we
can directly learn ṽt by optimizing the Monte-Carlo Conditional Flow Matching (MC-CFM) objective:

ℓMC-CFM(θ) = Eρ,t,Z,Xt
[∥∥ṽt(Xt | S,A; θ)− ut|Z(Xt | Z)

∥∥2] ,
whereZ = X1 ∼ mπ(· | S,A) , Xt ∼ pt|Z(· | Z) .

(MC-CFM; 5)

Remarkably, (MC-FM; 4) and (MC-CFM; 5) share the same gradient and converge to the same solution.
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Proposition 1 (Lipman et al. 2024). Given a conditional probability path pt|Z and vector field
ut|Z with their associated marginal counterparts pt(x) and vt(x), we have

∇θ ℓMC-FM(θ) = ∇θ ℓMC-CFM(θ).

TD-CFM While (MC-CFM; 5) requires direct access to samples from the target distribution mπ , we
can instead learn from an offline dataset ρ containing only one-step transitions (S,A, S′) through an
iterative process similar to (3). Starting with initial parameters θ(0), at each iteration, we minimize the
TD-Conditional Flow Matching (TD-CFM) loss ℓTD-CFM — an extension of (MC-CFM; 5) that differs
only in its sampling procedure:

X0 ∼ p0 , Z = X1 ∼ (1− γ) δS′ + γ δ
ψ̃

(n)
1 (X0 |S′,π(S′))

. (TD-CFM; 6)

In this procedure, with probability 1−γ, we return the successor state S′. Otherwise, with probability
γ we sample from the neural ordinary differential equation (Chen et al., 2018) ψ̃(n)

t with corresponding
vector field ṽ(n)t (Xt | S′, π(S′)) from X0 ∼ p0 to produce a sample X1 ∼ m̃(n)(· | S′, π(S′)).

Coupled TD-CFM Although (TD-CFM; 6) offers a principled way of learning the flow from noise to
data, an increasingly popular strategy to improve flow matching methods is to correlate noise and
data whenever a “natural” coupling is available (e.g., Liu et al., 2023; Shi et al., 2023; Pooladian
et al., 2023; Tong et al., 2024; De Bortoli et al., 2024). Motivated by this idea, we observe that the
process used to generate X1 described above already provides a direct coupling between X0 and
X1. We can leverage this coupling by conditioning the probability path pt|Z on both endpoints, i.e.,
Z = (X0, X1), rather than just conditioning on Z = X1 as in TD-CFM. As illustrated in Figure 1,
this coupling helps align Xt with the path generated by ψ̃(n)

t , potentially simplifying the regression
problem. This procedure gives rise to the Coupled TD-Conditional Flow Matching (TD-CFM(C)) loss
ℓTD-CFM(C) which now extends ℓTD-CFM, again, differing only in its sampling procedure:

X0 ∼ p0 , X1 ∼ (1− γ) δS′ + γ δ
ψ̃

(n)
1 (X0|S′,π(S′))

, Z = (X0, X1) . (TD-CFM(C); 7)

A convenient approach to specifying the conditional path pt|Z is to define Xt = ϕt(X0, X1) =
αtX1 + βtX0 as the affine interpolant between X0 and X1, with the interpolation coefficients
satisfying the boundary conditions α0 = β1 = 0, α1 = β0 = 1, and monotonicity constraints
α̇t > 0,−β̇t > 0, where the over-dot denotes the time derivative. From this definition, the conditional
vector field arises as the time derivative of this interpolant defined as ut|0,1(Xt | X0, X1) =

ϕ̇t(X0, X1) = α̇tX1 + β̇tX0. A simple choice of the interpolation coefficients that yields a linear
(straight-line) conditional path is given by βt = 1− αt = 1− t.

TD2-CFM While (TD-CFM(C); 7) improves upon (TD-CFM; 6) by accounting for the coupling
between bootstrapped samples and their generating noise, both methods rely upon fitting an ad-hoc
conditional vector field ut|Z that generates the surrogate path pt|Z . To formulate a more structured
approach, we exploit the linearity of the Bellman equation, as detailed in the following result.

Lemma 1. Let →
pt be a probability path for P generated by →

vt and ↷
p
(n)
t be a probability path

for Pπm(n)
1 generated by ↷

v
(n)
t such that →

p0 =
↷
p
(n)
0 = m0. For any t ∈ [0, 1] and (s, a) let 1

v
(n+1)
t (· | s, a) = argmin

v :Rd→Rd
(1− γ)E→

Xt∼
→
pt(·|s,a)

[∥∥v( →
Xt)−

→
vt(

→
Xt | s, a)

∥∥2]
+ γE↷

Xt∼
↷
p

(n)
t (·|s,a)

[∥∥v( ↷
Xt)−

↷
v

(n)
t (

↷
Xt | s, a)

∥∥2].
Then v(n+1)

t induces a probability path m(n+1)

t such that m(n+1)

0 = m0 and m(n+1)

1 = T πm(n)

1 .

This result shows that it is possible to use two independent probability paths for the two terms in the
sampling process induced by the Bellman operator. For the first term, we can use a standard CFM
approach for Z = X1 with conditional path →

pt|1 and vector field →
ut|1, which induces the marginal,

→
vt(x | s, a) =

∫
→
ut|1(x | x1)

→
pt|1(x | x1)P (dx1 | s, a)

→
pt(x | s, a)

,

1Notice here that the minimization is over the space of all functions and not just parameterized vector fields.
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where →
pt(x|s, a) =

∫ →
pt|1(x|s′)P (ds′|s, a). For the second term, we can leverage the GHM m

(n)
t

learned at the previous iteration to construct the marginal,

↷
v

(n)
t (x | s, a) =

∫
v
(n)
t (x | s′, a′)m

(n)
t (x | s′, a′)P (ds′ | s, a)

↷
p
(n)
t (x | s, a)

,

where ↷
p
(n)
t (x | s, a) =

∫
m

(n)
t (x | s′, a′)P (ds′ | s, a), and a′ = π(s′). This shows that m(n)

t

plays the role of a conditional probability path for the bootstrapping term and v(n)t is its associated
conditional vector field. We can then use the equivalence between FM and CFM in Proposition 1 to
replace the marginal probability paths and vector fields in Lemma 1 with their conditional counterparts
to obtain the loss:

→
ℓ(θ) = E

ρ,t,Z,
→
Xt

[∥∥ṽt( →
Xt | S,A; θ)−

→
ut|Z(

→
Xt | Z)

∥∥2] ,
whereZ = X1 ∼ P (· | S,A),

→
Xt ∼

→
pt|Z(· |Z) ,

↷
ℓ(θ) = E

ρ,t,
↷
Xt

[∥∥ṽt( ↷
Xt | S,A; θ)− ṽ

(n)
t (

↷
Xt | S′, π(S′)

∥∥2] ,
whereX0 ∼ p0, S

′ ∼ P (· | S,A),
↷
Xt = ψ̃

(n)
t (X0 | S′, π(S′)) ,

ℓTD2-CFM(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) . (TD2-CFM; 8)

Since we now bootstrap the previous estimate not only in the sampling process but also in the
objective function, we refer to this method as TD2-Conditional Flow Matching (TD2-CFM). The right
panel of Figure 1 depicts the process of obtaining the bootstrapped vector field ṽ(n)t for TD2-CFM. We
provide further implementation details and pseudo-code for all the aforementioned TD-Flow methods
in Appendix C.3.1. Next, we extend our TD2 result to the class of denoising diffusion models.

3.1 EXTENSION TO DIFFUSION MODELS

Denoising Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) build a diffusion process
starting from a data sample X0 ∼ q0 = mπ(· | S,A)2 and corrupting it via a stochastic differential
equation (SDE),

dXt = f(t)Xt dt+ g(t) dWt , (9)
where t ∈ [0, T ] for some time horizon T , f, g : [0, T ] → R is drift and diffusion term, and Wt ∈ Rd
is a standard Brownian motion. The forward process of the linear SDE (9) has an analytic Gaussian
kernel qt|0(· | X0) = N (· | αtX0, σ

2
t I), where αt and σt can be computed in closed form. To

sample from the target data distribution q0, we can solve the reverse SDE (Song & Ermon, 2019)
from time T to 0:

dXt =
(
f(t)Xt − g(t)∇Xt log qt(Xt | S,A)

)
dt+ g(t) dW t , (10)

where W t is the reverse-time Brownian motion and qt is the marginal distribution of both the
forward (15) and reverse (16) process. To simulate (10), we can train a parametrized score function
s̃t(x | s, a; θ) to approximate ∇xt log qt(xt | s, a) using the denoising diffusion / score matching
objective (Vincent, 2011):

ℓDD(θ) = Eρ,t,X0,Xt

[∥∥s̃t(Xt | S,A; θ)−∇Xt log qt|0(Xt | X0)
∥∥2] ,

where X0 ∼ mπ(· | S,A), Xt ∼ qt|0(· | X0) . (DD; 11)

Temporal Difference Diffusion Following the blueprint in §3, we define an iterative process starting
from s̃(0) = s̃(· · · ; θ(0)) and minimize at each iteration the Temporal-Difference Denoising Diffusion
(TD-DD) loss:

ℓTD-DD(θ) = Eρ,t,X0,Xt

[∥∥s̃(Xt | S,A; θ)−∇x log qt|0(Xt | X0)
∥∥2] ,

whereX0 ∼
(
T πm̃

(n)
0|T

)
(· | S,A), Xt ∼ qt|0(· | X0) .

(TD-DD; 12)

2Different to flow matching, time is inverted in diffusion models and ranges from 0 to T .
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Once again, to sample X0 ∼
(
T πm̃

(n)
0|T

)
(· | S,A), we proceed as follows: with probability

1 − γ, we draw a successor state S′ ∼ P (· | S,A); conversely, with probability γ, we sample
from the bootstrapped model by solving the reverse SDE with score function s̃(n), initiated from
XT . Following an approach analogous to Lemma 1, we demonstrate in Appendix B that we can
employ two distinct diffusion processes for the two terms involved in the Bellman operator, which
consequently leads to the TD2-DD objective:

→
ℓ(θ) = E

ρ,t,
→
Xt

[∥∥s̃t( →
Xt | S,A; θ)−∇→

Xt
qt|0(

→
Xt | S′)

∥∥2] ,
where

→
Xt ∼ qt|0(· | S′) ,

↷
ℓ(θ) = E

ρ,t,
↷
Xt

[∥∥s̃t( ↷
Xt | S,A; θ)− s̃

(n)
t (

↷
Xt | S′, π(S′)

∥∥2] ,
whereXT ∼ qT ,

↷
Xt ∼ q

(n)
t|T (· | S

′, π(S′)) ,

ℓTD2-DD(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) . (TD2-DD; 13)

4 THEORETICAL ANALYSIS

We now study the learning dynamics of an idealized version of the TD-Flow methods, assuming
that the flow-matching loss is minimized exactly at each iteration. Under this assumption, at each
iteration we compute a probability path m(n)

t such that m(n)
1 = T πm

(n−1)
1 , which immediately

implies that m(n)
1 → mπ by the contraction property of T π. The following result shows that the

overall probability pathsm(n)
t follow a similar process. All proofs are deferred to Appendix E.

Theorem 1. For any n ≥ 1, the probability paths generated by TD-CFM, TD-CFM(C), or
TD2-CFM satisfy

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a), ∀ t ∈ [0, 1]

where Bπt m := (1 − γ)Pt + γPπm and Pt(x|s, a) :=
∫
pt|1(x | x1)P (x1|s, a)dx1. For any

t ∈ [0, 1], the operator Bπt is a γ-contraction in 1-Wasserstein distance, that is, for any couple
of probability paths pt, qt,

sup
s,a

W1 ((Bπt pt) (· | s, a), (Bπt qt) (· | s, a)) ≤ γ sup
s,a

W1 (pt(· | s, a), qt(· | s, a)) .

Theorem 1 shows that all TD-flow methods fundamentally implement the same update where the
probability path at t ∈ [0, 1] is obtained by applying a Bellman-like operator Bt to the previous
iteration. This operator is a γ-contraction as T π , directly implying the following result.

Corollary 1. Let {m(n)
t }n≥0 be the sequence of probability paths produced by TD-CFM, TD-

CFM(C), or TD2-CFM starting from an arbitrary vector field v(0)t . Then,

lim
n→∞

m
(n)
t = mt = Btmt,

where mt is the unique fixed point of Bt, and mt = mMC
t , where mMC

t (· | s, a) =
∫
pt|1(· |

x1)m
π(x1 | s, a) is the probability path of the Monte-Carlo approach in (MC-CFM; 5).

This corollary shows that the fixed point of Bt coincides with the probability path generated in
Monte-Carlo Conditional Flow Matching (MC-CFM; 5), which assumes direct access to samples of
mπ. An important subtlety in Theorem 1 is that all algorithms apply the same operator for n ≥ 1,
but the result holds for n = 0 only for TD2-CFM. This means that even starting from the same θ(0),
the three algorithms may generate different sequences {m(n)

t }n≥0, while still converging to mt. In
Theorems 5 and 6 , we show we can reconcile TD-CFM(C) and TD-CFM with TD2-CFM under a mild
assumption on the form of the initial vector field.
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While Theorem 1 analyzes an idealized version of the algorithms, in practice gradients are estimated
from samples and the following analysis reveals important differences in their variance. We introduce
the (unbiased) sample-based gradients for each of the algorithms,

E
[
gTD-CFM(YTD-CFM)

]
= ∇θ ℓTD-CFM(θ),

E
[
gTD-CFM(C)(YTD-CFM(C))

]
= ∇θ ℓTD-CFM(C)(θ)

E
[
gTD2-CFM(YTD2-CFM)

]
= ∇θ ℓTD2-CFM(θ),

where Y summarizes the random variables involved in the loss definitions
in (TD-CFM; 6), (TD-CFM(C); 7), and (TD2-CFM; 8) (see Appendix E.6 for a formal definition of the
gradients). We want to compare the total variance of the gradient estimates σ2 = Tr

(
CovY [ g(Y ) ]

)
,

where Tr denotes the trace.

Theorem 2. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|1(x |

x1)m
(n)
1 (x1 | s, a)dx1, then

σ2
TD-CFM = σ2

TD2-CFM
+ γ2 Eρ

[
Tr
(
CovX1|S,A,Xt

[
∇θ vt(Xt | S,A; θ)⊤ut|1(Xt | X1)

])]
.

Theorem 3. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|0,1(x |

x0, x1)m
(n)
0,1 (x0, x1 | s, a)dx0dx1 3, then we obtain

σ2
TD-CFM(C) = σ2

TD2-CFM
+ γ2Eρ

[
Tr
(
CovZ|S,A,Xt

[
∇θ vt(Xt | S,A; θ)⊤ut|Z(Xt | Z)

])]
,

where Z = (X0, X1). Furthermore, if we use straight conditional paths, i.e., Xt = tX1 + (1−
t)X0, and the linear interpolantXt does not intersect for any s, a, s′, then σ2

TD-CFM(C) = σ2
TD2-CFM

.

In both results, the probability path m
(n)
t from the previous iteration must be identical for the

algorithms being compared. The analysis reveals that TD-CFM and TD-CFM(C) suffer from a larger
variance compared to TD2-CFM, which uses the vector field v(n) both to sample Xt and as a target for
the regression problem. This variance gap is “discounted” by γ2, which suggests that the performance
of these algorithms would be similar for problems with small horizons but would increase as γ → 1.
The extra variance in both cases stems from samples generated by the algorithm (i.e., they do not
depend on the transitions available in the dataset). In this sense, we can refer to it as computational
variance, and in principle, it could be reduced by increasing the number of samples X0, X1, and Xt

used in gradient computation. While the variance of TD-CFM and TD-CFM(C) cannot be directly
compared, we expect that constructing Xt from X0 and X1 (instead of X1 only) will tend to reduce
its variance. Specifically, when Xt is obtained by linear interpolation between X0 and X1, and it
does not generate crossing paths, the variance of TD-CFM(C) reduces to the one of TD2-CFM.

5 EXPERIMENTS

We now evaluate our TD-based flow and diffusion approaches with baselines employing both Genera-
tive Adversarial Networks (Goodfellow et al., 2014) and β-Variational Auto-Encoders (Kingma &
Welling, 2014; Higgins et al., 2017) on 22 tasks across 4 domains (Maze, Walker, Cheetah, Quadruped)
in the DeepMind Control Suite (Tunyasuvunakool et al., 2020), following the methodology of Touati
et al. (2023); Pirotta et al. (2024). First, for a single policy, we assess how well each method models
its i) successor measure and ii) value function. Finally, we demonstrate the scalability of our approach
by learning a generative model of the successor measure for a broad class of parameterized policies
derived from the Forward-Backward representation (Touati & Ollivier, 2021; Touati et al., 2023), and
show that TD2 enables more effective planning for task-relevant policies when performing Generalized
Policy Improvement (GPI; Barreto et al., 2017), far surpassing the capabilities of FB alone.

5.1 EMPIRICAL EVALUATION OF GEOMETRIC HORIZON MODELS

Before benchmarking, we must first obtain a policy to evaluate. We follow the approach taken in
Thakoor et al. (2022) and pre-train a set of deterministic policies – one for each task – using TD3

3m
(n)
0,1 (x0, x1|s, a) = m0(x0)δψ(n)

1 (x0|s,a)
(x1) is the joint distribution of (X0, X1).
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(Fujimoto et al., 2018). The final policy obtained from this pre-training phase is now fixed for the
remainder of our experiments. GHM training proceeds in an off-policy manner where we learn the
successor measure of a TD3 policy using transition data from the ExoRL dataset (Yarats et al., 2022);
specifically, we use a dataset of 10M transitions collected by a random network distillation policy
(Burda et al., 2019). All GHM methods are trained for 3M gradient steps using the AdamW optimizer
(Loshchilov & Hutter, 2019) with a batch size of 1024 and weight decay of 0.001. We maintain a
target network using an exponential moving average of the training parameters with a step size of
0.001. Special care was taken to match the capacity of the neural networks between methods with
a UNet-style architecture employed for all flow and diffusion methods, while the GAN and VAE
baselines use an MLP with residual connections for all their respective networks. Full details for
the training methodology, network architecture, and hyper-parameters can be found in Appendix C.
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Figure 2: Value-Function prediction error as a func-
tion of the effective horizon (1 − γ)−1 for γ ∈
{0.8, 0.9, 0.95, 0.98, 0.99} on the POINTMASS loop
task. TD2 methods show impressive robustness to
increasingly long-horizon predictions.

We implement all conditional flow matching
methods (TD-CFM, TD-CFM(C), TD2-CFM)
with the Optimal Transport Gaussian condi-
tional path from Lipman et al. (2023). When
constructing our bootstrap targets, we sam-
ple from the neural ODE using the Midpoint
solver with a constant step size of t/10 for
a maximum of 10 steps. For TD2-CFM, we
sample t ∼ U([0, 1]); otherwise, we integrate
to t = 1 and construct Xt using the condi-
tional path. For Denoising Diffusion meth-
ods (TD-DD, TD2-DD), we train a DDPM (Ho
et al., 2020) by discretizing β ∈ (0.1, 20) us-
ing T = 1, 000 steps. We construct diffu-
sion bootstrapped targets using 20 steps of the
DDIM (Song et al., 2021a) sampler. For TD-
DD, we solve to t = 0 and regress towards the
noise that re-corrupted our sample. Alterna-
tively, TD2-DD directly regresses towards the
noise prediction from the target network at a randomly selected noise level. The first baseline we
consider is a GHM instantiated as a Generative Adversarial Network (Goodfellow et al., 2014) similar
to the one found in Janner et al. (2020). We follow the best practices from Huang et al. (2024) with
the primary modification being a relativistic discriminator (Jolicoeur-Martineau, 2019) equipped
with a zero-centered gradient penalty on both real and fake samples. For our second baseline, we
implement a β-VAE (Higgins et al., 2017) following the practices outlined in Thakoor et al. (2022).

To evaluate the quality of our models, we first generate samples from the ground truth successor
measure mπ according to the following procedure. We first randomly sample 64 source states S0

from the initial state distribution and execute policy π for 1, 000 steps. Along each trajectory, we
resample 2048 states with replacement according to the stopping time t ∼ Geometric(1− γ). For
the same 64 source states, we generate a matching set of 2048 samples from each GHM. Now in
possession of these two sets of samples, we evaluate the: 1) log-likelihood of the true samples
for models with tractable densities (i.e., diffusion and flow methods); 2) Earth Mover’s Distance
(EMD; Rubner et al., 2000), which quantifies the minimal transport cost between the two empirical
distributions; and 3) mean-squared error of a Monte-Carlo estimate of the true value function Qπ and
the value function derived from GHM samples using (1). Full details can be found in Appendix C.1.

Having established our training framework, baselines, and evaluation protocol, we proceed to
investigate a key prediction from our theoretical analysis. Our variance analysis suggests that our
TD-Flow framework should enable more stable training across extended temporal horizons. To
validate this hypothesis, we train each GHM for 3 seeds on the loop task in the Maze domain while
varying the effective horizon (1− γ)−1 across five values: {5, 10, 20, 50, 100}. Figure 2 illustrates
the relationship between value function MSE and the effective horizon. The results demonstrate that
TD2-based methods maintain consistent performance even as the effective horizon increases, while
alternative approaches show significant performance degradation. Notably, at an effective horizon of
100, TD2-based methods maintain their accuracy and achieve performance improvements of nearly
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four orders of magnitude compared to their naive implementations. These results empirically support
for our initial hypothesis, with the stability of TD2 methods aligning with our predictions.

Table 1: Evaluation results comparing our TD-
based methods along with GAN and VAE baselines
for a single-policy. Results are computed over 19
tasks from 4 domains and further averaged across
3 seeds. For each metric we highlight the best per-
forming methods.

Method EMD ↓ Norm NLL ↓ MSE(V) ↓

C
H

E
E

TA
H

TD-DD 20.22 (0.26) 2.824 (0.195) 454.49 (131.97)
TD2-DD 14.14 (1.08) 0.806 (0.016) 189.15 (23.63)
TD-CFM 12.26 (0.02) 0.886 (0.024) 228.77 (2.20)

TD-CFM(C) 10.51 (0.06) 0.447 (0.020) 140.78 (18.72)
TD2-CFM 10.57 (0.07) 0.422 (0.014) 135.22 (19.79)

GAN 23.97 (0.46) — 2463.22 (628.05)
VAE 83.77 (0.41) — 1284.27 (37.62)

P
O

IN
T

M
A

S
S

TD-DD 0.149 (0.001) 2.974 (0.100) 1245.20 (29.27)
TD2-DD 0.027 (0.001) 0.761 (0.082) 11.13 (3.09)
TD-CFM 0.062 (0.003) 0.554 (0.033) 355.56 (82.83)

TD-CFM(C) 0.022 (0.002) −0.696 (0.094) 11.89 (3.16)
TD2-CFM 0.021 (0.000) −0.843 (0.027) 8.74 (2.09)

GAN 0.203 (0.037) — 1257.26 (112.86)
VAE 0.410 (0.036) — 1821.89 (69.78)

Q
U

A
D

R
U

P
E

D

TD-DD 28.33 (0.33) 1.908 (0.041) 1490.75 (444.49)
TD2-DD 22.64 (2.47) 0.861 (0.028) 159.03 (14.64)
TD-CFM 15.73 (0.06) 1.056 (0.002) 525.06 (28.90)

TD-CFM(C) 14.38 (0.03) 0.488 (0.003) 155.25 (5.58)
TD2-CFM 14.51 (0.05) 0.379 (0.011) 141.77 (3.10)

GAN 36772.12 (13898.25) — 2634.69 (798.38)
VAE 60.27 (0.28) — 1156.33 (36.52)

W
A

L
K

E
R

TD-DD 20.58 (0.24) 2.649 (0.137) 382.40 (458.63)
TD2-DD 12.09 (0.12) 0.537 (0.060) 39.04 (6.08)
TD-CFM 13.53 (0.11) 0.713 (0.028) 225.27 (42.43)

TD-CFM(C) 11.91 (0.02) 0.219 (0.016) 30.71 (3.44)
TD2-CFM 11.92 (0.10) 0.104 (0.001) 28.35 (6.10)

GAN 24.51 (0.89) — 3690.65 (1117.94)
VAE 111.73 (2.53) — 2457.61 (16.25)

Table 2: Performance difference between TD-
CFM(C) and TD2-CFM for curved and straight con-
ditional paths. Lower is better with negative val-
ues indicating a net improvement by employing a
curved paths.

Method EMD ↓ Norm NLL ↓ MSE(V) ↓
TD-CFM(C) 14.08 (12.42) 1.79 (1.98) 310.45 (258.94)

TD2-CFM 0.09 (0.09) −0.01 (0.04) −3.36 (7.76)

In the following, we shift our attention to a more
in-depth analysis of the largest horizon of 100
(γ = 0.99). For each algorithm, we train a GHM
for 3 independent seeds for all domains and tasks.
Table 1 reports aggregate performance across our
full suite of metrics. For each domain and metric,
we highlight results in a 1% range with respect to
the best-performing method. The results demon-
strate a clear pattern of superior performance for
TD2-based algorithms: TD2-CFM achieves sig-
nificant improvements over TD-CFM with a 10×
reduction in value-function MSE, 1.5× reduc-
tion in EMD, and 3× reduction in log-likelihood,
averaged across all four domains. In line with
our theoretical predictions, the coupled variant
of TD-CFM performs comparably to TD2-CFM,
given straight conditional paths. While a com-
parison between flow matching and diffusion is
not at the core of this paper, in our experiments,
flow matching generally improves performance
over diffusion across all metrics. We posit this
is primarily due to noise in the diffusion process
adversely impacting an already noisy prediction
problem at large horizons.

Given the comparable performance between TD-
CFM(C) and TD2-CFM with straight conditional
paths, we next examine how these methods
behave with alternative path geometries. Our
theoretical analysis suggests an important dis-
tinction: TD2-CFM should maintain its effec-
tiveness with non-straight paths, while the per-
formance of TD-CFM(C) should degrade. To
test this prediction, we maintain the methodol-
ogy above while replacing conditional path in
(TD2-CFM; 8) with the following curved path
pt|1(· |X1) = N (· |αtX1, β

2
t ) with coefficients

αt = sin
(
π
2 t
)

and βt = cos
(
π
2 t
)
. The corresponding conditional vector field is now given by

ut|1(Xt|X1) =
(
α̇t − αt

βt

)
X1 +

β̇t
βt
Xt. Additionally, for TD-CFM(C) we condition the curved path

above onX0 andX1 resulting in the conditional vector field ut|0,1(Xt | X0, X1) =
π
2

(
βtX1−αtX0

)
.

Table 2 illustrates the performance difference relative to the straight path results (Table 1) averaged
across all domains and tasks. The results strongly support our theoretical prediction: TD2-CFM not
only maintained but improved performance compared to the linear path. In contrast, TD-CFM(C)
showed significant degradation, confirming our hypothesis about its limitations with non-linear paths.

5.2 PLANNING VIA GENERALIZED POLICY IMPROVEMENT

We now turn our attention towards training policy-conditioned GHMs which can be utilized for
test-time planning. To accomplish this, we first pre-train a Forward Backward (FB; Touati & Ollivier,
2021; Touati et al., 2023) representation using the same dataset of 10M transitions as described in
§5.1. This pre-training yields a class of w-conditioned policies πw, where each w ∈ W = Sd−1(

√
d)

represents an embedding of a reward function situated on a d-dimensional hypersphere with radius√
d. We then train the GHM mπw conditioned on the policy by incorporating the embedding w

directly into the model’s input. All GHM methods are trained for 8M gradient steps, maintaining
the same parameters used in §5.1, with the exception of a higher weight decay coefficient of 0.01.
For additional insights into the accuracy of the policy-conditioned GHMs, we direct the reader to
Appendix D. Overall, we observed similar trends to those seen in our single-policy experiments.
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Figure 3: Improvement over zero-shot Forward-Backward (Touati & Ollivier, 2021) policy when
employing Generalized Policy Improvement (Barreto et al., 2017). FB-GPI uses Qπw , while DD-GPI
and FM-GPI employ the GHM mπw from our diffusion and flow methods averaged across 22 tasks.

Given that both FB and w-conditioned GHM models enable estimation of a policy’s value function
Qπw , we can utilize this information to perform Generalized Policy Improvement (GPI; Barreto et al.,
2017) during evaluation. Specifically, at each time step t, we choose an action at = πwt(st), where
wt is derived as follows:

wt ∈ argmax
w∼D(W)

(1− γ)−1 EX∼mπw (·|st,πw(st)))[r(X) ]︸ ︷︷ ︸
Qπw (st,πw(st))

. (14)

Here D(W) is a sampling distribution over W. We consider three such distributions: i) Random:
uniform distribution over W; ii) Local Perturbation: we perturb the embedding wr of the task reward
r by the uniform distribution; iii) Train Distribution: we sample w from the training distribution used
by FB. To approximate (14), we sample 255 embeddings from D(W) and explicitly include the task
embedding wr, resulting in a maximization over 256 policies. To estimate the action-value function,
we average the reward over 128 states sampled from mπw . Performance is measured by averaging
returns over 100 episodes, each lasting 1000 steps.

Figure 3 illustrates the average percentage of improvement for each algorithm andw-sampling strategy
relative to the performance of the FB policy πwr for the task reward r. We refer to Appendix D for a
more detailed view of these results. All TD-based GHM approaches lead to a significant improvement
over the base FB policy, with TD-CFM(C) and TD2-CFM providing ≈ 30%+ improvement with all
sampling approaches. TD2-DD also leads to significant performance gains but is still dominated by the
flow matching methods. Notably, FB-based GPI not only fails to improve performance but actually
deteriorates it on average with significant degradation observed in three out of four domains (detailed
results available in Appendix D). When comparing different distributions D(W), we observe that
while FB-GPI’s performance fluctuates considerably, GHM methods maintain their robustness across
distributions, showing only minor variation. These results underscore the ability of our improved
GHMs to make long-term predictions enabling powerful planning capabilities.

6 DISCUSSION

In this paper, we introduced temporal difference flows, a novel generative modeling approach that
significantly advances long-horizon predictive models of state. By leveraging the successor measure’s
temporal difference structure both in its sampling procedure and learning objective, TD2-CFM and TD2-
DD effectively address challenges associated with modeling long-range state dynamics. The methods
developed in this paper provide a robust theoretical and empirical foundation that demonstrates the
advantages of our framework across a range of tasks, metrics, and domains. We envision numerous
exciting applications emerging from this work, particularly around imitation learning (Wu et al.,
2025; Jain et al., 2025), planning (Sutton, 1991; Thakoor et al., 2022; Zhu et al., 2024), and off-policy
evaluation (Precup et al., 2000; 2001; Nachum et al., 2019; Fujimoto et al., 2021). Furthermore,
recent work on consistency models (Song et al., 2023; Yang et al., 2024) and self-distillation (Frans
et al., 2025) suggests promising avenues for tackling the computational burden of sampling — a
limitation common to the family of iterative generative models that our approach builds upon.
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David Silver, and Tom Schaul. Universal successor features approximators. In International
Conference on Learning Representations (ICLR), 2019.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations (ICLR), 2019.

Edoardo Cetin, Ahmed Touati, and Yann Ollivier. Finer behavioral foundation models via auto-
regressive features and advantage weighting. CoRR, abs/2412.04368, 2024.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Neural Information Processing Systems (NeurIPS), 2018.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 1993.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrödinger bridge flow
for unpaired data translation. In Neural Information Processing Systems (NeurIPS), 2024.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. In International Conference on Learning Representations (ICLR), Workshop Track
Proceedings, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations (ICLR), 2017.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel
Castro, and Marc G. Bellemare. Proto-value networks: Scaling representation learning with
auxiliary tasks. In International Conference on Learning Representations (ICLR), 2023.

11



Published at ICLR 2025 Workshop on World Models
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A RELATED WORK

The Successor Representation (Dayan, 1993) was originally proposed for tabular MDPs and was later
generalized to continuous state spaces with the Successor Measure (Blier et al., 2021). Successor
Features (Barreto et al., 2017; 2020) extends these ideas by instead modeling the evolution of multi-
dimensional features assuming rewards decompose linearly over these features. Prior works have
leveraged these methods for zero-shot policy evaluation (Dayan, 1993; Barreto et al., 2017; Wiltzer
et al., 2024b), zero-shot policy optimization (Borsa et al., 2019; Touati & Ollivier, 2021; Touati
et al., 2023; Park et al., 2024; Zhu et al., 2024; Cetin et al., 2024; Tirinzoni et al., 2025), imitation
learning (Pirotta et al., 2024; Jain et al., 2025), exploration (Machado et al., 2020; Jain et al., 2023),
representation learning (Le Lan et al., 2022; 2023a;b; Farebrother et al., 2023; Ghosh et al., 2023),
and building temporal abstractions (Machado et al., 2018; 2023).

Janner et al. (2020) originally proposed a method to learn a generative model of the successor measure
with modeling techniques spanning from Generative Adversarial Networks (Goodfellow et al., 2014)
to Normalizing Flows (Dinh et al., 2015; Rezende & Mohamed, 2015) like RealNVP (Dinh et al.,
2017). Followup work (e.g., Thakoor et al., 2022; Tomar et al., 2024) explored other generative
modeling techniques including various types of auto-encoders (e.g., Higgins et al., 2017; van den
Oord et al., 2017). Also of note is recent work learning generative models of multi-dimensional
cumulants including features (Wiltzer et al., 2024a; Zhu et al., 2024) and multi-variate reward
functions (Zhang et al., 2021). Prior work by Wiltzer et al. (2024b) sought to deal with the instability
of long-horizon predictions in GHMs by employing an n-step mixture distribution where they sample
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t ∼ Geometric(1 − γ) and bootstrap if t > n; otherwise returning the state at time t along the
trajectory. Without resorting to importance sampling this approach is limited to the on-policy setting.
Finally, most closely related to our work is that of Schramm & Boularias (2024) who provide a
preliminary and limited derivation of what we term TD2-DD. In contrast, our work not only rigorously
formalizes and significantly extends these ideas but also integrates them into the more general
flow-matching framework (Lipman et al., 2023; 2024), additionally incorporating extensions to
score-matching (Song et al., 2021b;b) and diffusion (Sohl-Dickstein et al., 2015; Ho et al., 2020).
Moreover, we conduct an extensive empirical analysis, demonstrating the efficacy of our approach —
an aspect notably absent from Schramm & Boularias (2024).

B EXTENSION TO SCORE MATCHING AND DIFFUSION MODELS

This section extends our framework to score matching and denoising diffusion models. We leverage
the unification of these methods under stochastic differential equations (Song et al., 2021b) introducing
an analogous class of Temporal Difference Diffusion methods.

B.1 BACKGROUND

Both score-based generative modeling (Song & Ermon, 2019) and diffusion probabilistic model-
ing (Sohl-Dickstein et al., 2015; Ho et al., 2020) can be unified under the framework of stochastic
differential equations (SDE) introduced in Song et al. (2021b). Unlike in flow-matching, time is
inverted in diffusion models and ranges from time 0 to T . Given the data distribution q0 and prior
simple distribution qT (the “noise” distribution), we construct a diffusion process {Xt}t∈[0,T ] such
that X0 ∼ q0 and XT ∼ qT . This diffusion can be modeled as the solution to an Ito SDE:

dXt = f(t)Xt dt+ g(t) dWt | X0 ∼ q0 , (15)
where Wt is a standard Brownian motion and f : [0, T ] → Rd is scalar function called the drift
coefficient, and g : [0, T ] → R is scalar function known as diffusion coefficient.

Generating samples from X0 ∼ q0 consists in sampling XT ∼ qT and reversing the forward-SDE
process in (15). A known result from Anderson (1982) states that the reverse of a diffusion process is
also a diffusion process, running backward in time and given by the reverse-time SDE:

dXt =
(
f(t)Xt − g(t)2 ∇Xt log qt(Xt)

)
dt+ g(t) dW t | XT ∼ qT , (16)

where W t is a Brownian motion when time flows backwards from T to 0, dt is an infinitesimal
negative timestep and qt is the marginal distribution of Xt. Therefore, once we learn the score of
the marginal distribution ∇x log qt(x), we can sample from q0 by simulating the reverse diffusion
process (16).

To estimate ∇x log qt(x), we can train a time-dependent score-based model s̃(· · · ; θ) : [0, T ]×Rd →
Rd via the denoising diffusion / score matching objective (Vincent, 2011; Song & Ermon, 2019):

ℓDD(θ) = Et∼U([0,1]),X0∼q0EXt∼qt|0(·|X0)

[∥∥s̃t(Xt; θ)−∇Xt log qt|0(Xt | X0)
∥∥2] . (17)

For ℓDD to be tractable, we need to know the conditional probability qt|0. Usually, specific choices of
the drift and diffusion coefficients ft and gt are used such that qt|0 is always a Gaussian distribution
N (· | αtx0, σ2

t ), where the mean αt and variance σ2
t can be computed in closed-form. The global

minimizer of ℓDD(θ) denoted by s⋆t (x) is equal to the score function ∇x log qt(x), thanks to the
following proposition:

Proposition 2 (Vincent 2011). Let qt(x) =
∫
q0(x0)qt|0(x|x0) dx0, then we have:

∇θ ℓDD(θ) = ∇θ Et,Xt∼qt
[∥∥s̃t(Xt; θ)−∇Xt log qt(Xt)

∥∥2] . (18)

B.2 TEMPORAL DIFFERENCE DIFFUSION

To learn a predictive model of mπ using diffusion from an offline dataset, we follow a similar
approach to what we presented in §3 and we define an iterative process starting from initial weights
θ(0) and at each iteration minimizing the Temporal-Difference Denoising Diffusion (TD-DD) loss:
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ℓTD-DD(θ) = Eρ,t,X0,Xt

[∥∥s̃t(Xt | S,A; θ)−∇x log qt|0(Xt | X1)
∥∥2] ,

where , X0 ∼
(
T πm̃

(n)
0|T

)
(· | S,A), Xt ∼ qt|0(· | X0) .

(TD-DD; 19)

In order to sample X0 ∼
(
T πm̃

(n)
0|T

)
(· | s, a), with probability 1− γ, we return the successor state

S′ ∼ P (· | S,A). Otherwise, with probability γ we solve the following reverse-time SDE from XT

using the score s̃(n)t ,

dXt =
(
f(t)Xt − g(t)2s̃

(n)
t (Xt | S,A)

)
dt+ g(t)dW t . (20)

Minimizing ℓTD-DD(θ) leads to score function s̃(n+1)
t (s | s, a) generating a marginal probability

q
(n+1)
t that approximates T πq

(n)
0 at t = 0.

Following the TD2-CFM blueprint, we can further exploit the structure of the target bootstrapped
distribution to design an improved diffusion process that converts Gaussian noise to T πq

(n)
0 . First,

we show below that the mixture of a diffusion process is also a diffusion process with modified drift
and diffusion functions.

Lemma 2. Consider two diffusion processes with drift functions
→
f and

↷
f , sharing the same

diffusion coefficient g:

dXt =
→
ft(Xt) dt+ g(t) dW

dXt =
↷
ft(Xt) dt+ g(t) dW .

Let →
qt and ↷

qt be their marginal distribution, then the diffusion process corresponding to the
mixture marginal distribution qt = (1− γ)

→
qt + γ

↷
qt is:

dXt =
(1− γ)

→
qt

→
ft + γ

↷
qt

↷
ft

(1− γ)
→
qt + γ

↷
qt

(Xt) dt+ g(t) dW .

Proof. The marginal probabilities →
p and ↷

p are characterized by the Fokker-Planck equations:

∂
→
pt
∂t

= −div(
→
pt

→
ft) +

g2t
2
∆

→
pt

∂
↷
pt
∂t

= −div(
↷
pt

↷
ft) +

g2t
2
∆

↷
pt

where div is the divergence operator and ∆ = div∇ is the Laplace operator. Therefore,

∂pt
∂t

= (1− γ)
∂

→
pt
∂t

+ γ
∂

↷
pt
∂t

= −div(
→
pt

→
ft) +

g2t
2
∆

→
pt − div(

↷
pt

↷
ft) +

g2t
2
∆

↷
pt

= −div
(
(1− γ)

→
pt

→
ft + γ

↷
pt

↷
ft

)
+
g2t
2
∆ ((1− γ)

→
pt + γ

↷
pt)

= div

(
pt
(1− γ)

→
pt

→
ft + γ

↷
pt

↷
ft)

(1− γ)
→
pt + γ

↷
pt

)
+
g2t
2
∆pt .

The drift (1−γ)→pt
→
ft+γ

↷
pt

↷
ft

(1−γ)→pt+γ
↷
pt

and the diffusion coefficient gt satisfy the Fokker-Planck equation with the
probability path pt, and therefore their associated diffusion process generate pt.

Lemma 2 can be easily extended to the case of a continuous mixture of diffusion processes.
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This result shows that it is possible to use two independent diffusion processes for the two terms in
the sampling process induced by the Bellman operator. For the first, we can use the standard noising
diffusion process:

→
qt(x | s, a) =

∫
qt|0(x | s′)P (ds′ | s, a) ,

where we sample Xt ∼ qt|0(· | s′) by simulating a simple forward diffusion process (15). For the
second term, we can leverage the GHM m

(n)
t at the previous iteration to construct the process,

↷
q
(n)
t (x | s, a) =

∫
m

(n)
t (x | s′, π(s′))P (ds′ | s, a) ,

where m(n)
t (x | s′, a′) is the marginal probability of the reverse SDE induced by the score s(n),

dXt =
(
f(t)Xt − g(t)2 s

(n)
t (Xt | s, a)

)
dt+ g(t) dW t .

Additionally, ↷
q
(n)
t (x | s, a), as continuous mixture of diffusion’s marginals m(n)

t (x | s′, π(s′))
weighted by P (s′ | s, a), can be generated by the diffusion process,

dXt =
(
f(t)Xt − g(t)2

↷
st(Xt | s, a)

)
dt+ g(t) dW t, where

↷
st(xt | s, a) =

∫
P (ds′ | s, a) q(n)t (x | s′, π(s′)) s(n)t (xt | s′, π(s′))∫

P (ds′ | s, a) q(n)t (x | s′, π(s′))
.

Given these two diffusion processes, the target probability q(n+1)
t = (1 − γ)

→
qt + γ

↷
q
(n)
t can be

generated by the following reverse SDE,

dXt =
(
f(t)Xt − g(t)2 s

(n+1)
t (Xt | s, a)

)
dt+ g(t) dW t,

where s(n+1)
t (x | s, a) = (1−γ)→qt∇x log

→
qt+γ

↷
q

(n)
t

↷
s

(n)
t

(1−γ)→qt+γ
↷
q

(n)
t

(x | s, a). Therefore, we can learn s̃t(· · · ; θ) to

approximate s(n+1)
t by minimizing the loss,

ℓ(θ) = (1− γ)Eρ,t,Xt∼→
qt(·|S,A)

[∥∥s̃(Xt | S,A; θ)−∇Xt log
→
qt(Xt | S,A)

∥∥2] (21)

+ γE
ρ,t,Xt∼

↷
q

(n)
t (·|S,A)

[∥∥s̃(Xt | S,A; θ)−
↷
s
(n)
t (Xt | S,A)

∥∥2].
We can simplify the first term via Proposition 2 (since →

qt(x|s, a) =
∫
qt|0(x|s′)P (ds′|s, a)), hence

we have

∇θ Eρ,t,Xt∼→
qt(·|s,a)

[∥∥s̃(Xt | s, a; θ)−∇Xt log
→
qt(Xt | S,A)

∥∥2] =
∇θ Eρ,t,Xt∼qt|0(·|S′)

[∥∥s̃(Xt | S,A; θ)−∇Xt log qt|0(Xt | S′)
∥∥2] .

Moreover, using a similar argument for equivalence between the gradient of marginal and conditional
flow-matching objectives, we can show that

∇θ Eρ,t,Xt∼↷
q

(n)
t (·|S,A)

[∥∥s̃(Xt | S,A; θ)−
↷
s
(n)
t (Xt | S,A)

∥∥2] =
∇θ Eρ,t,XT∼qT ,Xt∼qnt|T (·|s,a)

[∥∥s̃(Xt | S,A; θ)− s
(n)
t (Xt | S,A)

∥∥2] .
This leads us to the final TD2-DD loss function,

ℓTD2-DD(θ) = (1− γ)Eρ,t,Xt∼qt|0(·|S′)

[∥∥s̃t(Xt |S,A; θ)−∇x log pt|0(Xt | S′)
∥∥2] (22)

+ γE
ρ,t,Xt∼q(n)

t|T (·|S′,π(S′))

[∥∥s̃(Xt | S,A; θ)− s̃
(n)
t (Xt | S′, π(S′)

∥∥2] .
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C EXPERIMENTAL DETAILS

C.1 EVALUATION

Table 3: Evaluation hyper-parameters for both sin-
gle and multi-policy experiments.

Evaluation Hyperparameter Value

EMD

Number of states s0 64

Number of m-samples per state 2048

Number of episodes per state 1

Episode length 1000

MSE(V)

Number of state s0 64

Number of GHM-samples per state 2048

Number of episodes per state 1

Episode length 1000

GPI
Number of z samples 256

Number of GHM samples 128

Number of FB inference samples 250, 000

Evaluating a GHM can be challenging, TD-
based losses employing bootstrapping do not
provide a good signal as to the quality of the
learned model. Instead, we opt to measure 1)
the likelihood of a trajectory coming from the
true discounted occupancy of a given policy,
2) the Earth Mover’s Distance (EMD; Rubner
et al., 2000) between samples from the true occu-
pancy and our GHM which provides an estimate
of the distance between these two probability
distributions, and 3) the value-function approx-
imation error. In all cases, to obtain samples
from the true discounted occupancy, we collect
trajectories {(s0, s1, . . . , sT )}Ni=1 from policy π
and subsequently resample states according to
t ∼ Geometic(1− γ) for a particular discount
factor γ ∈ [0, 1). Armed with samples from
mπ we compute the aforementioned metrics following the procedures stated below along with the
parameter values outlined in Table 3.

Normalized Negative Log-Likelihood. To compute the log-likelihood of our flow matching and
diffusion methods, we take advantage of the following change in variables formula (Dinh et al., 2015;
Rezende & Mohamed, 2015; Chen et al., 2018),

log (m̃(x1 | s, a; θ)) = logφ(x0) +

∫ 1

0

∂ log (m̃(xt | s, a; θ))
∂xt

dt ,

where φ is the probability density function of a standard Gaussian distribution, which acts as the
prior on x0. The change in log density over time can be written as the following differential equation
called the instantaneous change of variables formula (Chen et al., 2018, Theorem 1),

∂ log (m̃(xt | s, a; θ))
∂xt

= −Tr

(
∂ ṽt(xt | s, a; θ)

∂xt

)
.

We can now compute the log-likelihood for a sample X ∼ mπ(· | s, a) by integrating the total change
in log-density backward in time from x1 = X to obtain x0 which has tractable likelihood. In practice,
we solve the following coupled initial value problem using numerical integration (Grathwohl et al.,
2019), [

x0
log m̃(x1 | s, a; θ)− logφ(x0)

]
=

∫ 0

1

[
−ṽt(xt | s, a; θ)

Tr
(
∂ ṽt(xt | s,a;θ)

∂xt

)]
dt ,

where
[

x1
log m̃(x | s, a; θ)− log m̃(x1 | s, a; θ)

]
=

[
X
0

]
.

(23)

For all experiments we report the negative log-likelihood normalized by the dimension of the observa-
tion space.

Earth Mover’s Distance We compute the Earth Mover’s Distance (EMD; Rubner et al., 2000), also
known as the Wasserstein-1 distance, between m = 2048 samples from the ground truth distribution
X ∼ mπ(· |Sk, Ak) and our learned GHM X̃ ∼ m̃(· |Sk, Ak; θ) for a set of randomly sampled
state-action pairs {(Sk, Ak)}nk=1. Intuitively, the EMD quantifies the minimum cost required to
transform one distribution into another, where the cost is defined in terms of the Euclidean distance
between states X(i), X(j). Formally, we have,

EMD({X(1), . . . , X(m)}, {X̃(1), . . . , X̃(m)}) = min
ξ∈Ξ

∑
i,j

ξij

d∑
k=1

(
X

(i)
k − X̃

(j)
k

)2
,
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where ξ is a transport plan such that ξij specifies the proportion of mass moved from Xi to X̃j . We
report the average EMD across n = 64 source states using the Python Optimal Transport (Flamary
et al., 2021) library.

Value Function Mean Square Error (MSE(V)). We compute the mean square error between a
Monte-Carlo estimation Ṽ πMC of the value function V π(s) and the estimation ṼGHM obtained using
the learned model. We obtain Ṽ πMC by collecting a trajectory {(s0, s1, . . . , sT )} from policy π and
computing the discounted sum of rewards. We generate a single trajectory since both the policy and
the environment are deterministic. The GHM estimate is given by (1), i.e.,

Ṽ πGHM(s) = (1− γ)−1EX̃∼m̃(·|s,π(s))

[
r(X̃)

]
.

Then, MSE(Ṽ πMC, Ṽ
π

GHM) = ES0∼ν

[
(Ṽ πGHM(S0)− Ṽ πMC(S0))

2
]
. We average our results over 64 initial

states S0 sampled from the initial state distribution ν.

Planning with GPI. We evaluate planning performance by computing the average return over
100 episodes, each lasting 1, 000 steps, for every task. For the Forward-Backward representation
(Touati & Ollivier, 2021), we directly follow the policy πwr (thus at = πwr (st)) where wr =
E(S,R)∼ρ[B(s) · R ] is the zero-shot policy embedding inferred using 250, 000 transitions labeled
with the task reward function r. Given that FB provides a direct way of estimating the value function
of a policy (i.e., Qπwr (s, a) = F (s, a, w)T zr), we can do planning in the policy embedding space by
solving the following problem:

wFB-GPI
t ∈ argmax

w∼D(W)

F (st, πw(st), w)
Twr.

This optimization problem requires no generation except sampling from D(W). We approximate the
max using 255 samples from D(W) and additionally incorporating wr to ultimately maximize over
256 policies. On the other hand, for GHM-GPI, we solve the following optimization problem,

wGHM-GPI
t ∈ argmax

w∼D(W)

(1− γ)−1 EX∼mπw (·|st,πw(st)))[r(X) ]︸ ︷︷ ︸
Qπw (st,πw(st))

,

which requires generating samples from mπw . In our experiments we generate 128 samples from
mπw .

C.2 ENVIRONMENTS

Experiments in this paper were conducted with a subset of domains from the DeepMind Control
Suite (Tunyasuvunakool et al., 2020) highlighted in Figure 4.

Figure 4: A visual depiction of each domain used in our experiments from the DeepMind Control
Suite (Tunyasuvunakool et al., 2020). From left to right: MAZE, CHEETAH, QUADRUPED, WALKER.
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C.3 GEOMETRIC HORIZON MODELS

This section describes each class of generative model used for our empirical experiments.

C.3.1 FLOW MATCHING

Algorithm 1 Template for TD-Flow algorithms
1: Inputs: offline dataset D, policy π, batch size n, Polyak

coefficient ζ, weight decay λ, randomly initialized weights
θ, discount factor γ, learning rate η, one-step conditional
path →

pt|1 and conditional vector-field →
ut|1, bootstrap path ↷

pt
and vector-field ↷

vt.
2: for n = 1, . . . do
3: Sample mini-batch {(Sk, Ak, S′

k)}Kk=1 from D
4: for k = 1, . . . ,K do
5: Sample tk ∼ U([0, 1])
6: Sample

→
Xk ∼ →

ptk|1( · | S
′
k)

7:
→
ℓk(θ) =

∥∥vtk (→
Xk | Sk, Ak; θ)−→

utk|1(
→
Xk | S′

k)
∥∥2

8: Sample
↷
Xk ∼ ↷

ptk (· | S
′
k, π(S

′
k); θ̄)

9:
↷
ℓk(θ) =

∥∥vtk (↷
Xk | Sk, Ak; θ) − ↷

vtk (
↷
Xk |

S′
k, π(S

′
k); θ̄)

∥∥2

10: end for
11: # Compute loss
12: ℓ(θ) = 1

K

∑K
k=1(1− γ)

→
ℓk(θ) + γ

↷
ℓk(θ)

13: # Perform gradient step
14: θ ← θ − η∇θ

(
ℓ(θ) + λ∥θ∥2

)
15: # Update parameters of target vector

field
16: θ̄ ← ζθ̄ + (1− ζ)θ
17: end for

Table 4: Summary of how different TD-
flow algorithms generate the target prob-
ability path and vector field. The neural
ode ψt is defined by the vector field

↷
v t

computed at iteration n.

↷
pt

↷
vt

T
D

-C
F

M

X0 ∼ m0

ut|1(Xt | X1)X1 = ψ1(X0 | S′, A′; θ̄)

Xt ∼ pt|1(· | X1)

T
D

-C
F

M
(C

) X0 ∼ m0

ut|0,1(Xt | X0, X1)X1 = ψ1(X0 | S′, A′; θ̄)

Xt ∼ pt|0,1(· | X0, X1)

T
D
2
-C

F
M

X0 ∼ m0
vt(Xt | S′, A′; θ̄)

Xt = ψt(X0 | S′, A′; θ̄)

To discuss the TD-Flow methods introduced herein, we first unify the loss function through defining
a general template for the loss as,

ℓ(θ) = (1− γ)Eρ,t,Xt∼→
pt|1(·|S′)

[∥∥vt(Xt | S,A; θ)−
→
ut|1(Xt | S′)

∥∥2]
+ γE

ρ,t,Xt∼
↷
p

(n)
t (·|Z)

[∥∥vt(Xt | S,A; θ)−
↷
v

(n)
t (Xt | Z)

∥∥2] .
We can now recover each algorithm by a specific choice of the target probability path ↷

p
(n)
t and vector

field ↷
v

(n)
t as illustrated in Figure 4. Based on this unified structure, we present pseudo-code for

the TD flow methods in Figure 1. In practice, instead of proceeding through full iterations, we use
standard mini-batch gradient updates with a target network θ̄ updated as a moving average of θ.

When employing the conditional probability path →
pt|1 and vector field →

ut|1 we use the standard
Gaussian linear interpolation defined as →

pt|1(· | X1) = N (· | tX1, (1 − t)2I), hence Xt =
tX1 + (1 − t)X0 ∼ pt|1, resulting in →

ut|1(Xt | X1) = (X1 −Xt)/(1 − t) (Lipman et al., 2023).
The source distribution for all experiments is m0(·) = N (· | 0, I). To sample from the Neural ODE
we use the Midpoint method with a constant step size of dt = t/10 for a total of 10 steps. We found
both coupled and TD2 methods do not require many solver steps and hypothesize this is due to the
reduction in transport cost as analyzed in Appendix E.7.

For all flow and diffusion-based methods, we employ a U-Net-style architecture (Ronneberger et al.,
2015) that has hierarchical skip connections throughout an MLP. We embed the timestep t by first
increasing its dimensionality with a sinusoidal embedding before transforming it through a two-layer
MLP with mish activations (Misra, 2019). We further process additional conditioning information,
such as the state-action pair and Forward-Backward embedding z through an additional two-layer
MLP, whose result then gets concatenated with our time embedding. Finally, the network integrates
all prior conditioning information through FiLM modulation (Perez et al., 2018) that replaces the
learned affine transformation for layer normalization (Ba et al., 2016).
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C.3.2 DENOISING DIFFUSION

We train a Denoising Diffusion Probabilistic Model (DDPM; Ho et al., 2020) using the same
architecture as our flow matching model above, with the output now being interpreted as a prediction
of the noise seed ϵ0 that began the diffusion process. We discretize the diffusion process using 1, 000
steps with βmin = 0.1 and βmax = 20. We employ the DDIM sampler(Song et al., 2021a) with 50
sampling steps for both training and evaluation.

For evaluating our DDPM model, we compute exact log-likelihoods using the instantaneous change
of variables formula (Chen et al., 2018) along with the probability flow ODE from Song et al. (2021b).
That is, we solve the initial value problem in (23) using the vector field,

vt(xt | s, a; θ) = −1

2
(βmin + t (βmax − βmin))

(
xt −

1√
1− ᾱt

ϵt(xt | s, a; θ)
)
.

We now outline the losses for each of the TD-DPM experiments in the paper:

TD-DD To train our vanilla Diffusion GHM we employ the standard DDPM-style objective, that is,
we optimize the following loss:

E ρ, t, ϵ∼N (· | 0,I)
X0∼(T πm̃(n))(·|S,A)

[∥∥ϵ− ϵt(
√
ᾱtX0 +

√
1− ᾱtϵ | S,A; θ)

∥∥2] , (24)

where θ̄ are the target parameters and ᾱ are the standard diffusion coefficients as seen in Ho et al.
(2020).

TD2-DD As outlined in §3.1 we can split our DDPM loss into two terms, one that will use standard
DDPM training on one-step transitions and the second term that will regress to our target networks
noise prediction. This materializes as,

→
ℓ(θ) = Eρ,t,ϵ,X0

[ ∣∣|ϵt(√ᾱtX0 +
√
1− ᾱtϵ |S,A; θ)− ϵ

∣∣|2]
whereX0 ∼ P (· |S,A) ,

↷
ℓ(θ) = E

ρ,t,ϵ,
↷
Xt

[∣∣|ϵt( ↷
Xt |S,A; θ)− ϵ

(n)
t (

↷
Xt |S′, π(S′))

∣∣|2]
where

↷
Xt ∼ q

(n)
t|T (· |S

′, π(S′))

ℓTD2-DD(θ) = (1− γ)
→
ℓ(θ) + γ

↷
ℓ(θ) (25)

C.3.3 GENERATIVE ADVERSARIAL NETWORK

We implement a modern Generative Adversarial Network (GAN; Goodfellow et al., 2014) baseline
based on the recommendations in Huang et al. (2024). Specifically, we train a relativistic GAN
(Jolicoeur-Martineau, 2019) resulting in the following loss,

ℓGAN(θG, θD) = Eρ,X0,X1
[f (D(G(X0 | S,A; θG); θD)−D(X1 | S,A; θD)) ] ,

where X0 ∼ N (· | 0, I) , X1 ∼
(
T πm̃(n)

)
(· | S,A) ,

We take f(x) = − log (1 + exp (−x)) to be the log-sigmoid function (Jolicoeur-Martineau, 2019)
and further add the following zero-centered gradient penalties on the discriminator,

R1(θD) = Eρ,X∼(T πm̃(n))(·|S,A)

[
∥∇XD(X | S,A)∥2 ]

,

R2(θG, θD) = Eρ,X∼(T πm̃)(·|S,A;θG)

[
∥∇XD(X | S,A)∥2 ]

.

The penalty R1 penalizes the gradient norm of the discriminator D on “real data” sampled from our
current iterate m̃(n), whereas R2 penalizes the gradient norm on “fake data” generated directly from
the current generator. We experimented with different coefficients and schedules for these gradient
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penalties and settled on a linear decay schedule from 0.05 → 0.005 throughout training. Furthermore,
as is common practice, we impose a schedule on the second moment EMA coefficient β2 of Adam
(Kingma & Ba, 2015) to increase from 0.9 → 0.99 throughout training.

The generator and discriminator architecture in our GAN is implemented as a Residual MLP with
leaky ReLU activations with the same FiLM-style conditioning (Perez et al., 2018) as our flow and
diffusion models. The input to our generator is random noise sampled from an isotropic Gaussian
with dimensionality equal to the number of state dimensions in the environment.

C.3.4 VARIATIONAL AUTO-ENCODER

We implement a β-Variational Auto-Encoder (Kingma & Welling, 2014; Higgins et al., 2017)
following the best practices outlined in Thakoor et al. (2022). That is, we train our VAE to minimize
the following loss,

ℓVAE(θE, θD) = Eρ,X1

[
EX0∼qθE (·|S,A,X1)[ log pθD(X1 | S,A,X0) ]− βDKL(qθE∥p0)

]
,

where X1 ∼
(
T πm̃(n)

)
(· | S,A) .

We employ a similar architecture to our GAN-GHM and use a residual MLP for the en-
coder and decoder. We use an isotropic Gaussian latent space with the number of latents
equal to the number of state dimensions in the environment. We also swept over β ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the MAZE domain and chose β = 0.5 for the rest of
our experiments. Overall, we found the β-VAE-based GHM to be very unstable and likely requires
very careful fine-tuning of β to get adequate performance at long-horizons.
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C.4 HYPERPARAMETERS

We report the hyper-parameters for training the GHM models used in the single and multi-policy
experiments. Table 5 shows the parameters for Flow Matching and Denoising Diffusion. We also
report the hyper-parameters for pre-training the Forward-Backward representation (Touati & Ollivier,
2021) utilized in the multi-policy GHM experiments in Table 8.

Table 5: Flow Matching and Denoising Diffusion hyper-parameters used for the single and multi-
policy experiments across tasks and domains. We highlight any differences depending on the training
context.

Hyperparameter Single Policy Multi-Policy

Flow Matching
(Lipman et al., 2023)

ODE Solver Midpoint Midpoint
ODE dt (train) 0.1 0.1

ODE dt (eval) 0.1 0.05 (0.1 for GPI)

Diffusion (DDPM)
(Ho et al., 2020)

βmin 0.1 0.1

βmax 20 20

Discretization Steps 1, 000 1, 000

SDE Solver DDIM (Song et al., 2021a) DDIM (Song et al., 2021a)
SDE Solver Steps (train) 20 20
SDE Solver Steps (eval) 20 20

Network (U-Net)
(Ronneberger et al., 2015)

t-Positional Embedding Dim. 256 256

t-Positional Embedding MLP (256, 256) (256, 256)

Hidden Activation mish (Misra, 2019) mish (Misra, 2019)
Blocks per Stage 1 1

Block Dimensions (512, 512, 512) (1024, 1024, 1024)

Conditional Encoder
Encoder Input s, a s, a, z

Encoder MLP (512, 512, 512) (1024, 1024, 1024)

Encoder Activation mish (Misra, 2019) mish (Misra, 2019)

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9 0.9

AdamW β2 0.999 0.999

AdamW ϵ 10−4 10−4

Learning Rate 10−4 10−4

Weight Decay 10−3 10−2

Common
Gradient Steps 3M 8M
Batch Size 1024 1024

Target Network EMA 10−3 10−4
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Table 6: β-VAE (Higgins et al., 2017) hyper-
parameters for single policy experiments across
tasks and domains.

Hyperparameter Value

β-VAE
(Higgins et al., 2017)

β 10
Latent Prior N (0, I)

Latent Dimension |S|

Network

Encoder Residual MLP
Decoder Residual MLP
Hidden Activation mish (Misra, 2019)
Blocks per Stage 1

Block Dimensions (512, 512, 512)

Conditional Encoder
Encoder Input s, a

Encoder MLP (512, 512, 512)

Encoder Activation mish (Misra, 2019)

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9

AdamW β2 0.999

AdamW ϵ 10−4

Learning Rate 10−4

Weight Decay 10−3

Common
Gradient Steps 3M
Batch Size 1024

Target Network EMA 10−3

Table 7: GAN hyper-parameters for single pol-
icy experiments across tasks and domains.

Hyperparameter Value

RGAN
(Jolicoeur-Martineau, 2019)

Grad. Penalty Coef Linear(0.05 → 0.005)
Latent Prior N (0, I)

Latent Dimension |S|

Network

Generator Residual MLP
Discriminator Residual MLP
Hidden Activation Leaky ReLU
Blocks per Stage 1

Block Dimensions (512, 512, 512)

Conditional Encoder
Encoder Input s, a

Encoder MLP (512, 512, 512)

Encoder Activation Leaky ReLU

Optimizer (AdamW)
(Loshchilov & Hutter, 2019)

AdamW β1 0.9

AdamW β2 Linear(0.9 → 0.99)
AdamW ϵ 10−4

Learning Rate 10−4

Weight Decay 10−3

Common
Gradient Steps 3M
Batch Size 1024

Target Network EMA 10−3

Table 8: Forward Backward Representation hyper-parameters. We largely reuse the hyper-parameters
from Pirotta et al. (2024) and highlight any deviations.

Hyperparameter Walker Cheetah Quadruped Maze

Forward Backward
(Touati & Ollivier, 2021)

Embedding Dimension d 100 50 50 100

Embedding Prior Sd Sd Sd Sd

Embedding Prior Goal Prob. 0 0 0 1/2

B Normalization ℓ2 ℓ2 ℓ2 ℓ2
Orthonormal Loss Coeff. 1 1 1 1

Policy (TD3)
(Fujimoto et al., 2018)

Target Policy Noise N (0, 0.2) N (0, 0.2) N (0, 0.2) N (0, 0.2)

Target Policy Clipping 0.3 0.3 0.3 0.3

Policy Update Frequency 1 1 1 1

Optimizer (Adam)
(Kingma & Ba, 2015)

Learning Rate (F, B) (10−4, 10−4) (10−4, 10−4) (10−4, 10−4) (10−4, 10−6)
Learning Rate (π) 10−4 10−4 10−4 10−6

Adam β1 0.9 0.9 0.9 0.9

Adam β2 0.999 0.999 0.999 0.999

Adam ϵ 10−8 10−8 10−8 10−8

Common

Batch Size 2048 1024 2048 1024

Gradient Steps 3M 3M 3M 5M
Discount Factor γ 0.98 0.98 0.98 0.99

Target Network EMA 0.99 0.99 0.99 0.99

Reward Inference Samples 250, 000 250, 000 250, 000 250, 000
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D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report additional results about the experiments.

Single policy. We report metrics averaged over tasks using a curved conditional path in Table 10. We
also report the performance per task in Table 11. Table 9 shows the performance of the single-policy
experiments (§5.1 in the main paper) expanded for each task. While the performance of TD-based
methods is reasonably stable across tasks, VAE and GAN have a large variance across tasks. For
example, the EMD of GAN diverges in 2 tasks out of 4 in QUADRUPED.

Multiple policies and planning. We report aggregate performance across our full suite of evaluation
metrics for the multi-policy experiments in Figure 12. We also report per-task metrics in Table 14.
We can notice that TD2-DD achieves quite a high EMD compared to TD-DD while achieving a better
MSE(V). By further inspecting the generated samples (see Figure 5), we found that TD-DD tends
to generate highly concentrated samples, while TD2-DD is more diffuse. However, the samples
generated by TD-DD appear to be better at a visual inspection. This may explain the discrepancy
between the two metrics. Finally, we report aggregate planning performance in Figure 13 and per-task
results in Table 15.
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Table 9: Per task results for the single policy experiments.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

RUN

TD-DD 20.06 (0.27) 2.713 (0.189) 120.21 (52.91)
TD2-DD 11.05 (0.01) 0.543 (0.164) 24.02 (25.54)
TD-CFM 12.46 (0.35) 0.608 (0.026) 148.56 (29.24)

TD-CFM(C) 10.90 (0.05) 0.112 (0.018) 9.53 (1.37)
TD2-CFM 10.59 (0.13) −0.026 (0.005) 11.90 (7.59)

GAN 23.99 (1.15) — 827.79 (130.38)
VAE 114.95 (2.51) — 646.96 (21.57)

SPIN

TD-DD 21.55 (0.17) 2.754 (0.062) 1812.90 (2016.68)
TD2-DD 13.57 (0.02) 0.561 (0.014) 21.81 (9.55)
TD-CFM 15.46 (0.26) 0.838 (0.021) 379.13 (180.63)

TD-CFM(C) 12.94 (0.08) 0.321 (0.009) 22.36 (4.99)
TD2-CFM 13.27 (0.15) 0.200 (0.007) 7.14 (1.72)

GAN 26.85 (1.98) — 2948.74 (4541.66)
VAE 103.73 (6.86) — 431.70 (87.04)

STAND

TD-DD 19.82 (0.07) 2.579 (0.180) 56.11 (18.32)
TD2-DD 12.15 (0.20) 0.487 (0.040) 21.65 (4.76)
TD-CFM 13.30 (0.17) 0.669 (0.041) 32.95 (8.33)

TD-CFM(C) 12.25 (0.11) 0.218 (0.002) 12.76 (3.17)
TD2-CFM 12.27 (0.14) 0.126 (0.019) 14.96 (10.23)

GAN 22.98 (1.31) — 5041.85 (654.87)
VAE 114.46 (0.28) — 3863.70 (38.24)

WALK

TD-DD 21.29 (0.46) 2.635 (0.072) 121.50 (34.67)
TD2-DD 11.59 (0.34) 0.558 (0.080) 88.67 (28.94)
TD-CFM 12.91 (0.16) 0.738 (0.084) 340.43 (63.65)

TD-CFM(C) 11.55 (0.02) 0.225 (0.036) 78.20 (14.20)
TD2-CFM 11.54 (0.27) 0.118 (0.022) 79.41 (16.24)

GAN 24.21 (1.43) — 5944.23 (302.73)
VAE 113.79 (1.65) — 4888.07 (78.85)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-DD 27.89 (0.67) 1.890 (0.025) 1778.78 (611.15)
TD2-DD 25.62 (3.75) 0.906 (0.013) 12.88 (2.07)
TD-CFM 15.68 (0.15) 1.068 (0.006) 523.10 (42.47)

TD-CFM(C) 14.12 (0.00) 0.518 (0.002) 10.10 (1.32)
TD2-CFM 14.27 (0.06) 0.426 (0.005) 12.89 (2.86)

GAN 18.23 (0.34) — 3546.34 (984.61)
VAE 60.54 (0.29) — 1939.62 (22.15)

RUN

TD-DD 28.01 (1.02) 1.975 (0.061) 438.92 (310.44)
TD2-DD 22.79 (3.08) 0.856 (0.033) 32.38 (4.36)
TD-CFM 15.74 (0.05) 1.051 (0.026) 170.86 (19.61)

TD-CFM(C) 14.62 (0.11) 0.457 (0.006) 26.01 (4.44)
TD2-CFM 14.75 (0.05) 0.338 (0.004) 18.36 (2.62)

GAN 19.21 (0.13) — 195.11 (144.29)
VAE 60.56 (0.21) — 428.69 (10.48)

STAND

TD-DD 28.57 (0.50) 1.832 (0.034) 2083.77 (1767.03)
TD2-DD 20.81 (1.81) 0.867 (0.040) 20.09 (19.08)
TD-CFM 15.03 (0.18) 1.003 (0.026) 505.51 (88.47)

TD-CFM(C) 13.91 (0.02) 0.483 (0.005) 12.86 (4.65)
TD2-CFM 14.07 (0.12) 0.393 (0.021) 7.77 (0.91)

GAN 91273.39 (81559.61) — 3631.15 (2289.14)
VAE 59.42 (0.49) — 859.51 (101.82)

WALK

TD-DD 28.83 (0.41) 1.934 (0.075) 1661.52 (402.07)
TD2-DD 21.36 (1.70) 0.815 (0.040) 570.75 (35.38)
TD-CFM 16.48 (0.09) 1.103 (0.006) 900.78 (85.36)

TD-CFM(C) 14.89 (0.01) 0.494 (0.006) 572.02 (24.55)
TD2-CFM 14.96 (0.13) 0.361 (0.022) 528.06 (11.32)

GAN 55777.67 (28193.15) — 3166.15 (54.62)
VAE 60.57 (0.54) — 1397.52 (100.28)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

LOOP

TD-DD 0.189 (0.003) 3.462 (0.232) 4717.87 (83.53)
TD2-DD 0.031 (0.003) 0.577 (0.027) 4.27 (1.36)
TD-CFM 0.071 (0.007) 0.748 (0.070) 677.48 (154.81)

TD-CFM(C) 0.025 (0.002) −0.703 (0.032) 10.91 (2.35)
TD2-CFM 0.020 (0.001) −0.674 (0.072) 1.75 (0.13)

GAN 0.225 (0.014) — 2276.26 (361.04)
VAE 0.456 (0.045) — 4011.19 (85.44)

REACH
BOTTOM LEFT

TD-DD 0.139 (0.002) 2.808 (0.058) 320.80 (27.06)
TD2-DD 0.025 (0.001) 0.980 (0.174) 5.76 (3.15)
TD-CFM 0.059 (0.001) 0.520 (0.031) 224.13 (33.19)

TD-CFM(C) 0.024 (0.002) −0.729 (0.167) 16.58 (12.10)
TD2-CFM 0.020 (0.002) −0.984 (0.053) 10.44 (7.08)

GAN 0.269 (0.150) — 1199.80 (212.47)
VAE 0.313 (0.029) — 981.22 (195.70)

REACH
BOTTOM RIGHT

TD-DD 0.174 (0.004) 3.270 (0.257) 230.79 (18.24)
TD2-DD 0.025 (0.001) 0.640 (0.283) 4.82 (2.61)
TD-CFM 0.066 (0.004) 0.549 (0.040) 166.07 (35.75)

TD-CFM(C) 0.023 (0.001) −0.759 (0.034) 10.95 (2.63)
TD2-CFM 0.020 (0.002) −0.855 (0.022) 4.84 (3.08)

GAN 0.170 (0.018) — 416.75 (54.72)
VAE 0.505 (0.051) — 489.06 (6.44)

REACH
TOP LEFT

TD-DD 0.102 (0.001) 2.407 (0.059) 593.98 (72.33)
TD2-DD 0.033 (0.003) 0.863 (0.255) 34.43 (10.96)
TD-CFM 0.055 (0.006) 0.454 (0.167) 472.54 (308.65)

TD-CFM(C) 0.021 (0.003) −0.517 (0.445) 14.85 (3.28)
TD2-CFM 0.025 (0.002) −0.797 (0.057) 23.48 (5.46)

GAN 0.132 (0.022) — 1350.49 (716.52)
VAE 0.321 (0.029) — 2404.42 (498.13)

REACH
TOP RIGHT

TD-DD 0.141 (0.002) 2.924 (0.243) 362.56 (8.06)
TD2-DD 0.023 (0.003) 0.743 (0.259) 6.38 (1.55)
TD-CFM 0.059 (0.002) 0.501 (0.018) 237.57 (47.18)

TD-CFM(C) 0.020 (0.001) −0.771 (0.090) 6.18 (3.37)
TD2-CFM 0.018 (0.001) −0.903 (0.074) 3.21 (2.22)

GAN 0.218 (0.044) — 1043.01 (337.10)
VAE 0.453 (0.106) — 1223.57 (80.69)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 20.31 (0.31) 2.669 (0.086) 601.62 (314.84)
TD2-DD 14.44 (1.79) 0.758 (0.028) 172.03 (35.51)
TD-CFM 11.90 (0.03) 0.868 (0.008) 211.92 (26.25)

TD-CFM(C) 10.55 (0.03) 0.485 (0.024) 124.08 (17.89)
TD2-CFM 10.67 (0.04) 0.447 (0.021) 67.76 (21.99)

GAN 23.55 (2.52) — 3608.55 (1948.65)
VAE 83.00 (1.02) — 3339.01 (44.80)

FLIP
BACKWARD

TD-DD 16.67 (0.02) 2.647 (0.186) 1043.27 (369.92)
TD2-DD 12.99 (2.64) 0.894 (0.025) 463.04 (89.08)
TD-CFM 10.91 (0.12) 0.927 (0.047) 398.66 (59.04)

TD-CFM(C) 9.90 (0.07) 0.542 (0.023) 410.49 (77.16)
TD2-CFM 10.11 (0.14) 0.542 (0.006) 370.69 (112.59)

GAN 20.80 (1.56) — 3761.79 (785.37)
VAE 84.65 (0.31) — 918.32 (25.62)

RUN

TD-DD 20.26 (0.06) 2.907 (0.336) 46.48 (13.06)
TD2-DD 16.91 (4.04) 0.813 (0.028) 86.53 (55.44)
TD-CFM 12.21 (0.05) 0.872 (0.032) 54.98 (11.01)

TD-CFM(C) 10.44 (0.08) 0.434 (0.018) 24.52 (5.89)
TD2-CFM 10.53 (0.08) 0.412 (0.020) 27.69 (5.44)

GAN 25.48 (2.01) — 183.47 (72.39)
VAE 83.91 (0.57) — 109.45 (9.86)

RUN
BACKWARD

TD-DD 21.47 (0.32) 3.074 (0.376) 20.28 (5.95)
TD2-DD 13.04 (1.22) 0.818 (0.016) 14.87 (2.34)
TD-CFM 13.38 (0.20) 0.989 (0.056) 37.90 (2.98)

TD-CFM(C) 11.02 (0.05) 0.452 (0.023) 8.71 (1.05)
TD2-CFM 11.06 (0.08) 0.414 (0.016) 8.33 (1.89)

GAN 24.77 (0.43) — 270.21 (4.08)
VAE 82.91 (0.36) — 734.77 (22.94)

WALK

TD-DD 21.57 (0.84) 2.790 (0.151) 546.05 (86.30)
TD2-DD 12.85 (1.67) 0.780 (0.047) 238.01 (11.17)
TD-CFM 12.27 (0.12) 0.802 (0.034) 377.45 (101.61)

TD-CFM(C) 10.24 (0.17) 0.354 (0.021) 176.99 (28.54)
TD2-CFM 10.18 (0.08) 0.336 (0.021) 229.89 (21.93)

GAN 24.39 (1.11) — 3520.88 (1050.76)
VAE 84.39 (0.41) — 2138.32 (233.01)

WALK
BACKWARD

TD-DD 21.05 (0.30) 2.854 (0.094) 469.23 (133.50)
TD2-DD 14.64 (2.48) 0.771 (0.019) 160.42 (42.25)
TD-CFM 12.89 (0.14) 0.857 (0.033) 291.71 (66.89)

TD-CFM(C) 10.88 (0.01) 0.412 (0.023) 99.90 (4.20)
TD2-CFM 10.86 (0.12) 0.381 (0.014) 106.97 (10.45)

GAN 24.86 (0.34) — 3434.43 (189.45)
VAE 83.73 (0.63) — 465.72 (16.06)
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Table 10: Results averaged over tasks for the single policy experiments with a curved conditional
path.

Domain Method EMD ↓ NLL ↓ MSE(V) ↓

CHEETAH

TD-CFM 13.91 (0.73) 1.354 (0.017) 477.89 (40.53)
TD-CFM(C) 25.86 (18.91) 1.295 (0.067) 189.21 (17.69)

TD2-CFM 10.79 (0.03) 0.412 (0.014) 121.67 (5.68)

POINTMASS
MAZE

TD-CFM 0.091 (0.003) 1.156 (0.081) 758.16 (103.54)
TD-CFM(C) 0.089 (0.008) 4.340 (0.456) 679.29 (20.11)

TD2-CFM 0.021 (0.000) −0.806 (0.017) 9.22 (1.40)

QUADRUPED

TD-CFM 15.63 (0.09) 1.478 (0.088) 273.68 (34.07)
TD-CFM(C) 34.00 (6.96) 0.930 (0.036) 522.28 (155.42)

TD2-CFM 14.56 (0.02) 0.327 (0.014) 142.18 (9.38)

WALKER

TD-CFM 13.10 (0.11) 1.147 (0.042) 608.47 (124.62)
TD-CFM(C) 33.20 (4.66) 1.039 (0.052) 189.66 (102.83)

TD2-CFM 12.00 (0.05) 0.099 (0.005) 27.56 (0.53)

Table 11: Per task results for the single policy experiments with a curved conditional path.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

RUN

TD-CFM 12.39 (0.17) 1.218 (0.107) 326.14 (56.12)
TD-CFM(C) 23.80 (4.91) 0.923 (0.191) 69.39 (8.84)

TD2-CFM 10.69 (0.06) −0.040 (0.008) 11.69 (4.01)

SPIN

TD-CFM 14.08 (0.12) 1.410 (0.189) 896.83 (278.52)
TD-CFM(C) 47.39 (3.14) 1.801 (0.186) 401.22 (321.52)

TD2-CFM 13.37 (0.11) 0.198 (0.008) 7.65 (2.29)

STAND

TD-CFM 13.24 (0.23) 0.896 (0.053) 274.60 (121.20)
TD-CFM(C) 36.32 (13.80) 0.625 (0.053) 159.74 (31.53)

TD2-CFM 12.50 (0.17) 0.119 (0.008) 9.42 (1.95)

WALK

TD-CFM 12.69 (0.20) 1.067 (0.015) 936.30 (86.71)
TD-CFM(C) 25.29 (7.62) 0.808 (0.049) 128.28 (65.70)

TD2-CFM 11.42 (0.20) 0.119 (0.026) 81.47 (3.53)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-CFM 15.31 (0.17) 1.460 (0.188) 115.99 (138.59)
TD-CFM(C) 39.28 (8.90) 0.980 (0.062) 686.51 (314.49)

TD2-CFM 14.36 (0.07) 0.358 (0.010) 10.84 (3.05)

RUN

TD-CFM 15.61 (0.16) 1.450 (0.060) 104.52 (33.53)
TD-CFM(C) 40.27 (7.59) 0.898 (0.040) 240.50 (58.83)

TD2-CFM 14.73 (0.06) 0.288 (0.015) 21.13 (3.52)

STAND

TD-CFM 15.24 (0.11) 1.515 (0.215) 173.07 (34.09)
TD-CFM(C) 22.77 (6.86) 0.924 (0.053) 275.03 (249.91)

TD2-CFM 14.17 (0.09) 0.342 (0.019) 7.05 (1.80)

WALK

TD-CFM 16.37 (0.10) 1.486 (0.022) 701.13 (83.58)
TD-CFM(C) 33.68 (4.69) 0.917 (0.036) 887.11 (120.92)

TD2-CFM 14.99 (0.08) 0.318 (0.016) 529.71 (35.40)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

LOOP

TD-CFM 0.112 (0.015) 1.465 (0.171) 1888.54 (444.66)
TD-CFM(C) 0.132 (0.031) 5.191 (1.328) 1354.09 (102.55)

TD2-CFM 0.020 (0.000) −0.708 (0.013) 2.31 (0.59)

REACH
BOTTOM LEFT

TD-CFM 0.096 (0.012) 1.091 (0.142) 628.74 (118.04)
TD-CFM(C) 0.078 (0.001) 3.942 (0.576) 820.02 (52.88)

TD2-CFM 0.022 (0.001) −0.883 (0.057) 10.55 (9.13)

REACH
BOTTOM RIGHT

TD-CFM 0.097 (0.001) 1.296 (0.220) 290.21 (29.94)
TD-CFM(C) 0.109 (0.009) 5.310 (0.552) 409.28 (10.79)

TD2-CFM 0.019 (0.001) −0.833 (0.049) 2.64 (0.30)

REACH
TOP LEFT

TD-CFM 0.070 (0.003) 0.894 (0.139) 500.63 (142.18)
TD-CFM(C) 0.048 (0.002) 2.821 (0.268) 75.79 (20.06)

TD2-CFM 0.025 (0.002) −0.738 (0.011) 26.56 (9.99)

REACH
TOP RIGHT

TD-CFM 0.083 (0.004) 1.035 (0.138) 482.68 (128.45)
TD-CFM(C) 0.080 (0.001) 4.436 (0.305) 737.30 (23.75)

TD2-CFM 0.019 (0.001) −0.866 (0.026) 4.02 (1.75)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-CFM 12.92 (1.25) 1.324 (0.042) 342.71 (129.09)
TD-CFM(C) 22.90 (15.00) 1.364 (0.108) 140.32 (42.14)

TD2-CFM 10.89 (0.08) 0.433 (0.012) 74.34 (6.50)

FLIP
BACKWARD

TD-CFM 14.52 (4.08) 1.346 (0.190) 576.31 (169.57)
TD-CFM(C) 25.46 (25.58) 1.427 (0.027) 388.45 (87.18)

TD2-CFM 10.48 (0.23) 0.538 (0.034) 283.84 (40.81)

RUN

TD-CFM 14.00 (0.77) 1.390 (0.043) 114.51 (3.11)
TD-CFM(C) 17.42 (5.78) 1.423 (0.091) 37.23 (8.74)

TD2-CFM 10.85 (0.08) 0.405 (0.010) 32.58 (8.42)

RUN
BACKWARD

TD-CFM 14.50 (0.31) 1.439 (0.102) 109.32 (5.35)
TD-CFM(C) 38.06 (28.90) 1.283 (0.110) 101.24 (149.88)

TD2-CFM 11.06 (0.05) 0.399 (0.007) 12.32 (2.34)

WALK

TD-CFM 13.66 (0.71) 1.290 (0.041) 1040.43 (147.86)
TD-CFM(C) 21.01 (16.43) 1.096 (0.028) 343.71 (66.91)

TD2-CFM 10.45 (0.04) 0.323 (0.010) 213.87 (23.09)

WALK
BACKWARD

TD-CFM 13.83 (0.89) 1.336 (0.033) 684.05 (21.31)
TD-CFM(C) 30.29 (22.58) 1.178 (0.206) 124.29 (17.61)

TD2-CFM 11.00 (0.11) 0.372 (0.015) 113.09 (22.45)
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Table 12: Per domain results for the quan-
titative multi-policy experiments.

Domain Method EMD ↓ NLL ↓ MSE(V) ↓

CHEETAH

TD-DD 17.79 (0.40) 1.442 (0.042) 534.82 (107.81)
TD2-DD 74.35 (7.49) 0.771 (0.020) 253.89 (21.42)
TD-CFM 12.54 (0.04) 1.044 (0.044) 826.54 (58.01)

TD-CFM(C) 11.19 (0.11) 0.581 (0.011) 249.02 (19.81)
TD2-CFM 11.06 (0.08) 0.481 (0.008) 230.34 (44.81)

POINTMASS

TD-DD 0.152 (0.006) 2.048 (0.093) 662.96 (76.86)
TD2-DD 0.349 (0.037) 0.666 (0.027) 312.98 (66.46)
TD-CFM 0.087 (0.003) 0.771 (0.025) 580.94 (41.28)

TD-CFM(C) 0.063 (0.000) 0.174 (0.021) 220.11 (100.36)
TD2-CFM 0.060 (0.002) 0.043 (0.022) 169.74 (85.76)

QUADRUPED

TD-DD 20.21 (1.76) 1.403 (0.022) 499.88 (292.17)
TD2-DD 135.79 (9.24) 0.901 (0.051) 415.29 (101.86)
TD-CFM 15.06 (0.08) 0.950 (0.024) 391.12 (141.00)

TD-CFM(C) 14.98 (0.15) 0.528 (0.016) 176.62 (13.73)
TD2-CFM 14.74 (0.12) 0.340 (0.010) 178.95 (30.43)

WALKER

TD-DD 21.49 (0.64) 1.441 (0.009) 571.72 (196.76)
TD2-DD 104.44 (2.84) 0.688 (0.009) 180.45 (47.82)
TD-CFM 15.08 (0.28) 0.920 (0.023) 768.13 (66.48)

TD-CFM(C) 13.57 (0.09) 0.414 (0.019) 179.39 (24.52)
TD2-CFM 13.70 (0.33) 0.307 (0.008) 154.75 (8.70)

Table 13: Per domain results for the multi-policy ex-
periments evaluating planning performance with gener-
alized policy improvement.

Domain Method Planner Z-Distribution D(Z)
Random Local Perturbation Train Distribution

CHEETAH

FB — 479.35 (14.56)
FB GPI 275.32 (2.50) 401.08 (5.92) 269.59 (8.18)

TD-DD GPI 574.05 (3.88) 604.53 (11.87) 620.72 (14.29)
TD2-DD GPI 662.17 (0.94) 680.22 (5.98) 678.98 (3.67)
TD-CFM GPI 403.54 (81.24) 426.46 (81.69) 372.40 (99.68)

TD-CFM(C) GPI 681.52 (6.49) 700.97 (6.57) 697.81 (3.16)
TD2-CFM GPI 682.21 (5.41) 692.72 (7.96) 693.63 (5.50)

POINTMASS

FB — 472.45 (14.40)
FB GPI −0.64 (7.70) 240.54 (23.69) −17.74 (4.34)

TD-DD GPI 569.05 (37.58) 599.92 (37.26) 537.69 (47.54)
TD2-DD GPI 763.95 (38.02) 805.72 (2.23) 788.87 (17.13)
TD-CFM GPI 625.44 (23.12) 671.53 (52.75) 695.70 (27.88)

TD-CFM(C) GPI 800.87 (3.46) 812.44 (1.58) 808.03 (2.77)
TD2-CFM GPI 790.34 (14.16) 813.90 (1.62) 800.99 (8.56)

QUADRUPED

FB — 627.28 (1.98)
FB GPI 671.95 (0.58) 674.09 (0.53) 646.05 (2.28)

TD-DD GPI 657.98 (1.87) 662.29 (1.46) 657.44 (4.71)
TD2-DD GPI 667.24 (6.32) 671.54 (1.40) 665.52 (5.12)
TD-CFM GPI 669.35 (5.82) 672.46 (4.96) 668.61 (5.74)

TD-CFM(C) GPI 695.52 (4.51) 697.65 (5.21) 696.18 (3.29)
TD2-CFM GPI 696.58 (4.10) 696.57 (2.36) 695.73 (2.07)

WALKER

FB — 526.66 (5.94)
FB GPI 35.23 (0.98) 37.51 (1.20) 39.04 (1.48)

TD-DD GPI 512.65 (19.19) 553.35 (14.28) 533.37 (27.24)
TD2-DD GPI 509.39 (10.26) 598.40 (6.44) 609.28 (5.87)
TD-CFM GPI 506.62 (15.84) 524.34 (4.75) 537.24 (17.20)

TD-CFM(C) GPI 513.24 (17.77) 608.80 (16.14) 624.19 (19.45)
TD2-CFM GPI 518.07 (20.74) 617.08 (6.55) 627.63 (7.97)
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Table 14: Per task results for the quantitative multi-policy experiments.

Walker
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 24.22 (0.37) 1.595 (0.021) 494.85 (221.39)
TD2-DD 108.16 (1.64) 0.893 (0.065) 103.71 (34.77)
TD-CFM 16.01 (0.33) 1.120 (0.037) 431.62 (64.40)

TD-CFM(C) 14.77 (0.38) 0.704 (0.083) 74.42 (13.13)
TD2-CFM 14.81 (0.56) 0.546 (0.012) 73.86 (26.41)

RUN

TD-DD 21.28 (0.97) 1.389 (0.005) 53.28 (20.52)
TD2-DD 102.69 (3.60) 0.546 (0.070) 6.35 (0.88)
TD-CFM 14.99 (0.65) 0.845 (0.085) 209.80 (54.21)

TD-CFM(C) 13.01 (0.35) 0.260 (0.089) 32.84 (8.26)
TD2-CFM 13.20 (0.36) 0.180 (0.076) 34.61 (21.58)

SPIN

TD-DD 21.31 (0.65) 1.482 (0.015) 1093.50 (700.34)
TD2-DD 103.72 (1.69) 0.903 (0.067) 115.58 (28.18)
TD-CFM 15.16 (0.53) 1.020 (0.036) 482.78 (24.82)

TD-CFM(C) 14.22 (0.06) 0.605 (0.076) 170.20 (48.23)
TD2-CFM 14.34 (0.20) 0.449 (0.056) 197.13 (26.98)

STAND

TD-DD 21.34 (0.66) 1.459 (0.029) 594.94 (219.72)
TD2-DD 103.86 (4.22) 0.630 (0.030) 250.96 (79.14)
TD-CFM 14.28 (0.32) 0.829 (0.107) 1371.68 (326.61)

TD-CFM(C) 13.43 (0.34) 0.335 (0.067) 265.09 (12.84)
TD2-CFM 13.52 (0.61) 0.284 (0.062) 166.16 (17.51)

WALK

TD-DD 19.30 (0.80) 1.282 (0.033) 622.04 (186.99)
TD2-DD 103.79 (3.80) 0.471 (0.055) 425.65 (131.20)
TD-CFM 14.97 (0.14) 0.787 (0.070) 1344.77 (149.38)

TD-CFM(C) 12.39 (0.25) 0.165 (0.042) 354.40 (114.40)
TD2-CFM 12.63 (0.46) 0.078 (0.072) 301.97 (21.93)

Quadruped
Task Method EMD ↓ NLL ↓ MSE(V) ↓

JUMP

TD-DD 20.23 (1.67) 1.394 (0.024) 279.84 (165.15)
TD2-DD 135.62 (9.10) 0.921 (0.044) 562.83 (170.42)
TD-CFM 15.25 (0.02) 0.960 (0.006) 365.14 (177.15)

TD-CFM(C) 15.24 (0.13) 0.548 (0.008) 129.02 (23.63)
TD2-CFM 15.00 (0.08) 0.369 (0.004) 139.10 (9.66)

RUN

TD-DD 20.06 (1.67) 1.405 (0.013) 273.65 (192.14)
TD2-DD 135.28 (9.10) 0.909 (0.049) 171.76 (48.29)
TD-CFM 15.04 (0.02) 0.961 (0.031) 189.56 (63.62)

TD-CFM(C) 14.92 (0.17) 0.538 (0.017) 84.74 (6.77)
TD2-CFM 14.71 (0.12) 0.351 (0.008) 90.48 (10.33)

STAND

TD-DD 20.01 (1.78) 1.401 (0.033) 1131.49 (863.23)
TD2-DD 135.81 (9.19) 0.875 (0.054) 669.65 (148.88)
TD-CFM 14.91 (0.10) 0.931 (0.033) 735.43 (274.17)

TD-CFM(C) 14.75 (0.30) 0.508 (0.017) 336.02 (16.08)
TD2-CFM 14.49 (0.24) 0.309 (0.015) 325.59 (79.83)

WALK

TD-DD 20.55 (1.93) 1.412 (0.035) 314.53 (84.50)
TD2-DD 136.45 (9.57) 0.901 (0.056) 256.91 (58.22)
TD-CFM 15.06 (0.22) 0.949 (0.030) 274.37 (58.65)

TD-CFM(C) 15.02 (0.09) 0.518 (0.024) 156.72 (41.37)
TD2-CFM 14.76 (0.19) 0.331 (0.019) 160.62 (23.36)

Pointmass Maze
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FAST SLOW

TD-DD 0.164 (0.013) 2.012 (0.089) 1642.91 (26.55)
TD2-DD 0.350 (0.038) 0.637 (0.046) 236.52 (58.27)
TD-CFM 0.082 (0.004) 0.772 (0.065) 575.00 (75.51)

TD-CFM(C) 0.061 (0.002) 0.083 (0.013) 93.04 (5.55)
TD2-CFM 0.060 (0.003) 0.010 (0.059) 61.08 (20.86)

LOOP

TD-DD 0.151 (0.007) 2.094 (0.119) 537.80 (22.89)
TD2-DD 0.337 (0.040) 0.659 (0.028) 213.93 (51.75)
TD-CFM 0.088 (0.003) 0.782 (0.018) 225.96 (59.92)

TD-CFM(C) 0.070 (0.007) 0.266 (0.066) 86.12 (23.47)
TD2-CFM 0.065 (0.003) 0.101 (0.074) 102.65 (27.28)

REACH
BOTTOM LEFT

TD-DD 0.131 (0.008) 1.969 (0.143) 207.45 (38.79)
TD2-DD 0.339 (0.050) 0.510 (0.043) 89.56 (41.56)
TD-CFM 0.078 (0.005) 0.659 (0.044) 376.64 (67.43)

TD-CFM(C) 0.048 (0.002) −0.099 (0.054) 73.84 (7.92)
TD2-CFM 0.042 (0.002) −0.261 (0.024) 14.20 (0.47)

REACH BOTTOM
LEFT LONG

TD-DD 0.144 (0.005) 2.037 (0.062) 1239.65 (627.94)
TD2-DD 0.355 (0.042) 0.807 (0.010) 1431.05 (342.62)
TD-CFM 0.105 (0.004) 0.987 (0.060) 2212.63 (504.47)

TD-CFM(C) 0.078 (0.002) 0.457 (0.058) 993.60 (639.56)
TD2-CFM 0.074 (0.005) 0.310 (0.083) 896.15 (598.65)

REACH
BOTTOM RIGHT

TD-DD 0.180 (0.004) 2.106 (0.114) 194.15 (75.47)
TD2-DD 0.369 (0.053) 0.618 (0.035) 112.24 (12.17)
TD-CFM 0.096 (0.004) 0.724 (0.055) 272.13 (33.13)

TD-CFM(C) 0.070 (0.005) 0.063 (0.043) 103.89 (10.69)
TD2-CFM 0.067 (0.007) −0.104 (0.024) 49.28 (13.90)

REACH
TOP LEFT

TD-DD 0.122 (0.005) 2.083 (0.149) 433.81 (37.98)
TD2-DD 0.343 (0.036) 0.631 (0.046) 158.15 (35.48)
TD-CFM 0.076 (0.003) 0.679 (0.086) 453.53 (88.84)

TD-CFM(C) 0.051 (0.003) 0.092 (0.071) 54.48 (4.15)
TD2-CFM 0.052 (0.003) 0.022 (0.047) 31.01 (7.91)

REACH
TOP RIGHT

TD-DD 0.149 (0.004) 1.994 (0.093) 221.28 (26.98)
TD2-DD 0.350 (0.022) 0.563 (0.121) 69.97 (34.75)
TD-CFM 0.074 (0.004) 0.700 (0.078) 250.17 (36.85)

TD-CFM(C) 0.051 (0.000) 0.032 (0.010) 39.79 (5.50)
TD2-CFM 0.047 (0.002) −0.131 (0.020) 17.01 (6.82)

SQUARE

TD-DD 0.175 (0.008) 2.088 (0.105) 826.61 (162.87)
TD2-DD 0.347 (0.030) 0.906 (0.033) 192.41 (36.20)
TD-CFM 0.093 (0.002) 0.869 (0.026) 281.43 (52.24)

TD-CFM(C) 0.077 (0.005) 0.566 (0.027) 210.94 (97.86)
TD2-CFM 0.075 (0.006) 0.392 (0.043) 186.53 (58.91)

Cheetah
Task Method EMD ↓ NLL ↓ MSE(V) ↓

FLIP

TD-DD 16.97 (0.45) 1.358 (0.033) 903.42 (267.90)
TD2-DD 73.44 (9.89) 0.782 (0.065) 308.54 (36.36)
TD-CFM 13.06 (0.46) 0.964 (0.073) 911.92 (135.18)

TD-CFM(C) 10.96 (0.58) 0.564 (0.050) 328.99 (27.34)
TD2-CFM 10.95 (0.32) 0.443 (0.047) 222.71 (32.96)

FLIP
BACKWARD

TD-DD 18.64 (0.48) 1.442 (0.052) 678.24 (40.56)
TD2-DD 75.09 (6.07) 0.753 (0.007) 215.67 (39.77)
TD-CFM 12.83 (0.38) 0.966 (0.020) 381.99 (112.95)

TD-CFM(C) 11.36 (0.21) 0.582 (0.005) 230.92 (14.13)
TD2-CFM 11.06 (0.18) 0.476 (0.028) 255.25 (57.02)

RUN

TD-DD 17.61 (0.43) 1.489 (0.054) 87.64 (30.75)
TD2-DD 73.06 (6.95) 0.742 (0.039) 111.78 (49.51)
TD-CFM 12.22 (0.30) 1.103 (0.066) 194.36 (19.68)

TD-CFM(C) 10.75 (0.17) 0.535 (0.028) 34.90 (21.47)
TD2-CFM 10.74 (0.07) 0.445 (0.021) 24.71 (10.91)

RUN
BACKWARD

TD-DD 18.75 (0.31) 1.475 (0.036) 57.65 (8.84)
TD2-DD 76.43 (7.28) 0.802 (0.013) 90.76 (20.35)
TD-CFM 12.59 (0.11) 1.083 (0.041) 82.43 (5.56)

TD-CFM(C) 11.78 (0.17) 0.632 (0.008) 30.50 (4.34)
TD2-CFM 11.53 (0.15) 0.534 (0.013) 33.52 (3.75)

WALK

TD-DD 16.77 (0.46) 1.461 (0.037) 805.51 (158.64)
TD2-DD 72.44 (7.86) 0.757 (0.020) 348.70 (58.96)
TD-CFM 11.91 (0.18) 1.095 (0.042) 1899.15 (131.04)

TD-CFM(C) 10.72 (0.14) 0.551 (0.024) 277.74 (117.41)
TD2-CFM 10.66 (0.18) 0.464 (0.029) 260.01 (153.43)

WALK
BACKWARD

TD-DD 18.00 (1.11) 1.427 (0.073) 676.44 (296.20)
TD2-DD 75.66 (7.41) 0.787 (0.036) 447.90 (49.14)
TD-CFM 12.62 (0.28) 1.056 (0.067) 1489.41 (90.89)

TD-CFM(C) 11.60 (0.17) 0.621 (0.030) 591.06 (12.67)
TD2-CFM 11.41 (0.18) 0.523 (0.021) 585.86 (103.16)
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Table 15: Per task results for planning with GPI.

Walker

Domain Method Planner Z-Distribution D(Z)
Random Local Perturbation Train Distribution

RUN

FB — 326.94 (7.00)
FB GPI 14.13 (0.51) 14.06 (0.43) 14.57 (0.33)

TD-DD GPI 328.61 (2.66) 303.45 (44.57) 292.96 (52.91)
TD2-DD GPI 316.41 (4.59) 338.14 (14.23) 349.77 (12.78)
TD-CFM GPI 301.88 (17.94) 221.07 (3.80) 199.50 (4.09)

TD-CFM(C) GPI 325.92 (14.31) 368.97 (16.10) 367.38 (11.48)
TD2-CFM GPI 325.76 (12.88) 362.79 (19.09) 358.73 (24.84)

SPIN

FB — 338.41 (2.98)
FB GPI 29.32 (2.15) 36.99 (4.28) 39.09 (5.90)

TD-DD GPI 281.76 (74.27) 304.28 (65.49) 299.92 (72.32)
TD2-DD GPI 287.70 (50.25) 298.07 (51.86) 298.78 (34.52)
TD-CFM GPI 323.56 (32.38) 323.90 (34.69) 328.47 (15.90)

TD-CFM(C) GPI 266.80 (80.22) 251.21 (64.39) 284.37 (73.57)
TD2-CFM GPI 287.26 (84.37) 313.07 (33.89) 320.22 (96.14)

STAND

FB — 852.55 (19.44)
FB GPI 79.24 (2.32) 80.60 (3.28) 82.58 (3.06)

TD-DD GPI 852.49 (26.17) 806.55 (7.62) 872.85 (19.73)
TD2-DD GPI 839.00 (22.97) 914.47 (6.14) 936.41 (11.77)
TD-CFM GPI 823.10 (15.06) 758.91 (19.84) 846.08 (7.85)

TD-CFM(C) GPI 858.42 (5.92) 931.74 (12.01) 947.69 (6.45)
TD2-CFM GPI 863.16 (4.15) 923.77 (9.88) 963.10 (6.69)

WALK

FB — 588.74 (5.30)
FB GPI 18.23 (0.68) 18.36 (1.15) 19.94 (0.87)

TD-DD GPI 587.76 (6.46) 799.12 (11.85) 667.74 (81.98)
TD2-DD GPI 594.48 (3.74) 842.94 (28.16) 852.17 (12.09)
TD-CFM GPI 577.95 (2.89) 793.47 (21.27) 774.91 (55.37)

TD-CFM(C) GPI 601.81 (8.58) 883.26 (4.06) 897.33 (10.88)
TD2-CFM GPI 596.08 (3.41) 868.69 (14.42) 868.46 (44.44)

Quadruped

Domain Method Planner Z-Distribution D(Z)
Random Local Perturbation Train Distribution

JUMP

FB — 683.96 (2.09)
FB GPI 742.71 (1.01) 746.48 (1.63) 718.52 (2.65)

TD-DD GPI 673.33 (6.07) 690.13 (6.34) 677.58 (5.71)
TD2-DD GPI 744.92 (0.69) 750.42 (2.30) 745.29 (1.12)
TD-CFM GPI 748.19 (10.47) 753.72 (0.58) 745.93 (12.60)

TD-CFM(C) GPI 790.56 (14.06) 795.84 (16.14) 785.20 (13.69)
TD2-CFM GPI 796.39 (13.27) 800.34 (9.63) 791.43 (11.66)

RUN

FB — 452.38 (3.25)
FB GPI 486.71 (0.64) 488.23 (0.48) 469.03 (2.35)

TD-DD GPI 484.45 (1.07) 482.81 (2.55) 482.53 (2.38)
TD2-DD GPI 485.26 (1.63) 486.35 (0.93) 484.89 (2.43)
TD-CFM GPI 488.93 (1.08) 488.45 (0.62) 488.98 (0.28)

TD-CFM(C) GPI 491.66 (2.75) 490.89 (2.05) 491.81 (2.14)
TD2-CFM GPI 488.89 (1.35) 488.65 (1.19) 489.31 (1.03)

STAND

FB — 896.43 (5.80)
FB GPI 975.01 (1.40) 977.94 (0.76) 938.44 (7.04)

TD-DD GPI 976.59 (2.78) 976.75 (0.86) 975.25 (2.49)
TD2-DD GPI 981.26 (1.56) 981.59 (1.45) 979.46 (0.93)
TD-CFM GPI 982.08 (1.27) 981.06 (0.26) 981.29 (1.34)

TD-CFM(C) GPI 984.03 (1.20) 984.50 (1.49) 983.33 (1.20)
TD2-CFM GPI 984.36 (0.25) 985.52 (0.89) 984.36 (1.21)

WALK

FB — 476.34 (4.71)
FB GPI 483.37 (1.05) 483.73 (3.02) 458.20 (6.62)

TD-DD GPI 497.55 (10.40) 499.45 (11.65) 494.38 (19.75)
TD2-DD GPI 457.54 (23.37) 467.78 (4.58) 452.44 (17.14)
TD-CFM GPI 458.20 (29.01) 466.62 (19.30) 458.24 (30.28)

TD-CFM(C) GPI 515.84 (5.84) 519.36 (14.37) 524.37 (1.56)
TD2-CFM GPI 516.67 (3.49) 511.77 (3.70) 517.82 (2.58)

Pointmass Maze

Domain Method Planner Z-Distribution D(Z)
Random Local Perturbation Train Distribution

FAST SLOW

FB — 223.85 (23.81)
FB GPI 1.67 (0.30) 74.52 (2.24) 1.24 (0.28)

TD-DD GPI 169.55 (74.06) 363.47 (23.78) 148.59 (43.53)
TD2-DD GPI 781.84 (1.20) 769.02 (5.03) 768.67 (11.19)
TD-CFM GPI 254.07 (85.86) 546.75 (191.17) 359.50 (144.41)

TD-CFM(C) GPI 763.24 (15.57) 776.51 (12.37) 769.87 (13.18)
TD2-CFM GPI 773.51 (2.71) 773.81 (4.71) 772.22 (3.11)

LOOP

FB — 317.59 (8.55)
FB GPI 81.99 (5.11) 315.10 (1.95) 61.41 (3.58)

TD-DD GPI 462.86 (5.90) 430.51 (72.79) 593.64 (56.15)
TD2-DD GPI 876.91 (9.21) 889.03 (2.40) 878.78 (2.43)
TD-CFM GPI 832.91 (27.77) 797.10 (57.17) 852.81 (16.74)

TD-CFM(C) GPI 873.85 (21.16) 885.90 (4.21) 875.45 (3.43)
TD2-CFM GPI 885.07 (2.79) 887.18 (5.27) 878.26 (0.64)

REACH
BOTTOM LEFT

FB — 830.60 (0.63)
FB GPI 0.18 (0.17) 127.90 (20.14) 0.11 (0.10)

TD-DD GPI 781.69 (8.09) 797.98 (3.52) 795.12 (3.88)
TD2-DD GPI 823.28 (2.76) 820.15 (1.89) 824.00 (1.40)
TD-CFM GPI 808.61 (7.06) 801.97 (2.97) 813.36 (6.35)

TD-CFM(C) GPI 824.02 (0.73) 824.17 (1.77) 824.18 (3.84)
TD2-CFM GPI 827.85 (1.45) 820.98 (3.63) 828.45 (3.10)

REACH BOTTOM
LEFT LONG

FB — 49.31 (0.09)
FB GPI −464.55 (19.21) 0.58 (1.79) −401.26 (28.43)

TD-DD GPI 461.30 (7.43) 468.73 (26.94) 252.28 (241.97)
TD2-DD GPI 609.10 (11.64) 597.03 (6.46) 668.76 (4.02)
TD-CFM GPI 180.27 (35.66) 311.59 (152.06) 439.47 (230.80)

TD-CFM(C) GPI 631.52 (11.58) 614.90 (8.82) 688.44 (4.05)
TD2-CFM GPI 646.67 (9.38) 639.90 (13.22) 691.68 (2.99)

REACH
BOTTOM RIGHT

FB — 366.39 (27.01)
FB GPI 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

TD-DD GPI 343.62 (112.70) 470.97 (42.25) 398.94 (81.80)
TD2-DD GPI 360.71 (312.31) 674.54 (7.35) 529.97 (137.98)
TD-CFM GPI 394.78 (159.98) 356.58 (69.31) 548.65 (73.62)

TD-CFM(C) GPI 642.67 (6.59) 686.08 (4.46) 679.75 (2.98)
TD2-CFM GPI 534.62 (57.49) 687.66 (1.75) 641.45 (2.00)

REACH
TOP LEFT

FB — 895.88 (1.26)
FB GPI 351.72 (17.68) 837.14 (2.07) 185.50 (13.00)

TD-DD GPI 941.32 (16.86) 812.40 (152.88) 920.44 (28.63)
TD2-DD GPI 940.90 (5.41) 967.44 (3.52) 939.49 (10.02)
TD-CFM GPI 964.27 (0.34) 948.83 (11.63) 955.82 (9.32)

TD-CFM(C) GPI 940.00 (29.18) 967.03 (3.38) 931.02 (18.53)
TD2-CFM GPI 943.43 (19.57) 967.06 (1.42) 940.05 (18.13)

REACH
TOP RIGHT

FB — 715.25 (4.47)
FB GPI 0.72 (0.96) 358.22 (20.05) 1.35 (0.85)

TD-DD GPI 766.59 (6.78) 771.64 (9.55) 733.83 (44.76)
TD2-DD GPI 822.44 (1.74) 818.06 (6.60) 823.09 (1.76)
TD-CFM GPI 777.94 (46.86) 765.68 (41.55) 754.73 (45.71)

TD-CFM(C) GPI 826.30 (1.36) 824.87 (2.61) 821.51 (5.64)
TD2-CFM GPI 809.75 (28.90) 824.23 (1.88) 788.98 (45.69)

SQUARE

FB — 337.33 (9.46)
FB GPI 4.89 (1.03) 148.93 (0.90) 2.97 (0.82)

TD-DD GPI 585.01 (39.45) 587.71 (46.77) 451.92 (5.35)
TD2-DD GPI 896.45 (7.94) 910.52 (2.63) 878.19 (11.18)
TD-CFM GPI 790.65 (3.06) 843.76 (8.91) 841.25 (22.73)

TD-CFM(C) GPI 905.41 (1.13) 920.06 (2.51) 874.00 (10.23)
TD2-CFM GPI 901.82 (1.29) 910.41 (1.66) 866.85 (7.95)

Cheetah

Domain Method Planner Z-Distribution D(Z)
Random Local Perturbation Train Distribution

FLIP

FB — 221.55 (44.79)
FB GPI 355.27 (5.95) 356.52 (9.99) 355.94 (5.10)

TD-DD GPI 451.93 (81.15) 445.10 (100.81) 424.78 (100.74)
TD2-DD GPI 702.98 (27.77) 712.72 (16.66) 683.62 (35.04)
TD-CFM GPI 355.69 (110.25) 420.53 (184.00) 341.40 (124.16)

TD-CFM(C) GPI 724.85 (8.19) 710.02 (4.51) 711.16 (13.29)
TD2-CFM GPI 722.08 (7.50) 718.74 (14.51) 713.66 (14.14)

FLIP
BACKWARD

FB — 463.12 (5.73)
FB GPI 238.33 (9.74) 388.33 (25.98) 249.60 (5.64)

TD-DD GPI 620.00 (69.42) 596.45 (38.20) 595.59 (34.96)
TD2-DD GPI 706.99 (8.08) 690.83 (3.20) 706.75 (8.34)
TD-CFM GPI 545.12 (184.05) 540.36 (186.74) 492.55 (173.13)

TD-CFM(C) GPI 727.23 (25.25) 716.22 (29.49) 711.11 (20.97)
TD2-CFM GPI 709.19 (16.76) 684.33 (37.92) 694.16 (15.24)

RUN

FB — 310.39 (35.44)
FB GPI 200.65 (4.44) 301.34 (11.26) 191.10 (6.56)

TD-DD GPI 436.74 (3.52) 438.90 (4.92) 434.94 (3.02)
TD2-DD GPI 427.15 (16.50) 429.98 (13.04) 421.92 (14.83)
TD-CFM GPI 206.96 (45.56) 243.53 (60.37) 238.96 (66.97)

TD-CFM(C) GPI 465.08 (2.50) 470.44 (5.05) 462.89 (3.15)
TD2-CFM GPI 462.71 (9.73) 467.25 (14.78) 454.90 (10.61)

RUN
BACKWARD

FB — 201.07 (10.72)
FB GPI 5.31 (2.02) 102.20 (5.73) 19.11 (2.52)

TD-DD GPI 165.02 (4.50) 246.72 (12.09) 325.40 (0.86)
TD2-DD GPI 224.90 (21.33) 310.10 (22.82) 322.33 (4.05)
TD-CFM GPI 90.83 (28.26) 92.46 (15.59) 49.88 (29.15)

TD-CFM(C) GPI 222.14 (36.05) 342.15 (2.02) 333.90 (3.00)
TD2-CFM GPI 252.70 (10.86) 319.46 (35.05) 332.21 (0.77)

WALK

FB — 792.89 (52.74)
FB GPI 830.00 (15.20) 889.84 (5.00) 733.11 (34.27)

TD-DD GPI 977.30 (3.13) 978.74 (2.47) 979.48 (3.47)
TD2-DD GPI 959.18 (30.39) 955.97 (25.64) 956.79 (29.06)
TD-CFM GPI 767.47 (96.47) 805.68 (104.96) 853.73 (117.82)

TD-CFM(C) GPI 985.04 (0.10) 985.06 (0.29) 984.90 (0.18)
TD2-CFM GPI 984.21 (0.03) 984.46 (0.09) 984.23 (0.07)

WALK
BACKWARD

FB — 897.16 (32.19)
FB GPI 22.40 (10.18) 373.19 (13.71) 78.60 (18.72)

TD-DD GPI 793.32 (52.67) 946.70 (12.57) 982.37 (0.21)
TD2-DD GPI 951.82 (11.09) 981.74 (0.27) 982.45 (0.07)
TD-CFM GPI 455.18 (190.16) 456.19 (140.79) 257.85 (173.06)

TD-CFM(C) GPI 964.75 (4.54) 981.93 (0.26) 982.89 (0.25)
TD2-CFM GPI 962.41 (4.32) 982.08 (0.16) 982.64 (0.05)
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Figure 5: Qualitative samples generated with TD-CFM, TD-DD, VAE, and GAN methods for various
discount factors γ on the LOOP task in the POINTMASS MAZE domain. The last row depicts ground
truth discounted occupancies.
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E THEORETICAL RESULTS

E.1 PROOFS OF MAIN RESULTS

Lemma 1. Let →
pt be a probability path for P generated by →

vt and ↷
p
(n)
t be a probability path

for Pπm(n)
1 generated by ↷

v
(n)
t such that →

p0 =
↷
p
(n)
0 = m0. For any t ∈ [0, 1] and (s, a) let 4

v
(n+1)
t (· | s, a) = argmin

v :Rd→Rd
(1− γ)E→

Xt∼
→
pt(·|s,a)

[∥∥v( →
Xt)−

→
vt(

→
Xt | s, a)

∥∥2]
+ γE↷

Xt∼
↷
p

(n)
t (·|s,a)

[∥∥v( ↷
Xt)−

↷
v

(n)
t (

↷
Xt | s, a)

∥∥2].
Then v(n+1)

t induces a probability path m(n+1)

t such that m(n+1)

0 = m0 and m(n+1)

1 = T πm(n)

1 .

Proof. By Lemma 4, we have that

v
(n+1)
t (x | s, a) = (1− γ)

→
pt(x|s, a)

→
vt(x | s, a) + γ

↷
p
(n)
t (x|s, a)↷v (n)

t (x | s, a)
m

(n+1)
t (x|s, a)

,

where m(n+1)
t (x|s, a) = (1 − γ)

→
pt(x|s, a) + γ

↷
p
(n)
t (x|s, a). Lemma 3 implies that m(n+1)

t is the
probability path generated by v(n+1)

t . It is easy to see that m(n+1)
0 = m0 since →

p0 =
↷
p
(n)
0 = m0.

Moreover, since →
p1 = P and ↷

p
(n)
1 = Pπm

(n)
1 by assumption, m(n+1)

1 = (1− γ)P + γPπm
(n)
1 =

T πm
(n)
1 , which proves the result.

Theorem 1. For any n ≥ 1, the probability paths generated by TD-CFM, TD-CFM(C), or
TD2-CFM satisfy

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a), ∀ t ∈ [0, 1]

where Bπt m := (1 − γ)Pt + γPπm and Pt(x|s, a) :=
∫
pt|1(x | x1)P (x1|s, a)dx1. For any

t ∈ [0, 1], the operator Bπt is a γ-contraction in 1-Wasserstein distance, that is, for any couple
of probability paths pt, qt,

sup
s,a

W1 ((Bπt pt) (· | s, a), (Bπt qt) (· | s, a)) ≤ γ sup
s,a

W1 (pt(· | s, a), qt(· | s, a)) .

Proof. To prove that the iterates of the three algorithms satisfy a Bellman-like update through
the operator Bπt we only need to apply Proposition 3 for TD2-CFM, Theorem 5 for TD-CFM, and
Theorem 6 for TD-CFM(C). That Bt is a γ-contraction in 1-Wasserstein distance can be seen by
applying Theorem 4 with k = 1.

Corollary 1. Let {m(n)
t }n≥0 be the sequence of probability paths produced by TD-CFM, TD-

CFM(C), or TD2-CFM starting from an arbitrary vector field v(0)t . Then,

lim
n→∞

m
(n)
t = mt = Btmt,

where mt is the unique fixed point of Bt, and mt = mMC
t , where mMC

t (· | s, a) =
∫
pt|1(· |

x1)m
π(x1 | s, a) is the probability path of the Monte-Carlo approach in (MC-CFM; 5).

Proof. That Bπt has a unique fixed point m̄t to which every sequence m(n)
t converges to is a

consequence of the Banach fixed point theorem applied on the space of all probability paths
mt : S× A → P(Rd) equipped with the sup-1-Wasserstein metric. By inspecting the definition of
Bπt , it is easy to see that m̄t = (I − γPπ)−1Pt. Since Pt(x|s, a) =

∫
pt|1(x|x1)P (x1|s, a)dx1,

m̄t(x|s, a) = [(I − γPπ)−1Pt](x|s, a) =
∫
pt|1(x|x1) [(I − γPπ)−1P ](x1|s, a)︸ ︷︷ ︸

=mπ(x1|s,a)

dx1 = mMC
t (x|s, a).
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Theorem 2. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|1(x |

x1)m
(n)
1 (x1 | s, a)dx1, then

σ2
TD-CFM = σ2

TD2-CFM
+ γ2 Eρ

[
Tr
(
CovX1|S,A,Xt

[
∇θ vt(Xt | S,A; θ)⊤ut|1(Xt | X1)

])]
.

Proof. See Theorem 7.

Theorem 3. For any n ≥ 1 and t ∈ [0, 1], assume that m(n)
t (x | s, a) =

∫
pt|0,1(x |

x0, x1)m
(n)
0,1 (x0, x1 | s, a)dx0dx1 5, then we obtain

σ2
TD-CFM(C) = σ2

TD2-CFM
+ γ2Eρ

[
Tr
(
CovZ|S,A,Xt

[
∇θ vt(Xt | S,A; θ)⊤ut|Z(Xt | Z)

])]
,

where Z = (X0, X1). Furthermore, if we use straight conditional paths, i.e., Xt = tX1 + (1−
t)X0, and the linear interpolantXt does not intersect for any s, a, s′, then σ2

TD-CFM(C) = σ2
TD2-CFM

.

Proof. See Theorem 8.

E.2 GENERAL RESULTS

Lemma 3. Let v1t and v2t be vector fields that generate the probability paths p1t and p2t , respec-
tively. Then, for any γ ∈ [0, 1], the mixture probability path pt = (1− γ)p1t + γp2t is generated
by the vector field

vt :=
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t
. (26)

Proof. Since vt1 (resp. vt2) generates p1t (resp. p2t ), we know from the continuity equation that:

∂p1t
∂t

= div(p1t v
1
t ),

∂p2t
∂t

= div(p2t v
2
t ),

where div denotes the divergence operator. Then, by linearity of div,

∂pt
∂t

=
∂
(
(1− γ)p1t + γp2t

)
∂t

= (1− γ)div(p1t v
1
t ) + γdiv(p2t v

2
t )

= div
(
(1− γ)p1t v

1
t + γp2t v

2
t

)
= div

(
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t

(
(1− γ)p1t + γp2t

))
= div

(
(1− γ)p1t v

1
t + γp2t v

2
t

(1− γ)p1t + γp2t
pt

)
= div(vtpt).

Hence, (vt, pt) satisfies the continuity equation, which implies that vt generates pt.

Lemma 4. Let v1t and v2t be vector fields that generate the probability paths p1t and p2t , respec-
tively. For γ ∈ [0, 1], the vector field vt =

(1−γ)p1tv
1
t+γp

2
tv

2
t

(1−γ)p1t+γp2t
satisfies

vt = argmin
v:Rd→Rd

{
(1− γ)Ext∼p1t

[
∥vt(xt)− v1t (xt)∥2

]
+ γ Ext∼p2t

[
∥vt(xt)− v2t (xt)∥2

]}
.
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Proof. Let ℓt(v) := (1 − γ)Ext∼p1t
[
∥vt(xt) − v1t (xt)∥2

]
+ γ Ext∼p2t

[
∥vt(xt) − v2t (xt)∥2

]
. The

functional derivative of this quantity wrt v evaluated at some point x is

∇vℓt(v)(x) = (1− γ)pt1(x)(vt(x)− v1t (x)) + γpt2(x)(vt(x)− v2t (x)).

Setting this to zero and solving for vt(x) yields the result.

E.3 ANALYSIS OF TD2-CFM

We study the learning dynamics of an idealized variant of TD2-CFM which minimizes the flow-
matching loss exactly. Starting from an arbitrary vector field v(0)t , at each iteration n ≥ 0 we
compute

v
(n+1)
t (·|s, a) ∈ argmin

v:Rd→Rd
ℓ
(n)

TD2-CFM
(t, s, a), (27)

where

ℓ
(n)

TD2-CFM
(t, s, a) := (1− γ)

→
ℓ(t, s, a) + γ

↷
ℓ(t, s, a)

→
ℓ(t, s, a) := ES′∼P (·|s,a),Xt∼pt|1(·|S′)

[∥∥v(Xt|s, a)− ut(Xt|S′)
∥∥2]

↷
ℓ(t, s, a) := E

S′∼P (·|s,a),Xt∼m(n)
t (·|s′,π(s′))

[∥∥v(Xt|s, a)− v
(n)
t (Xt|S′, π(S′))

∥∥2],
and m(n)

t (x|s, a) is the probability path generated by v(n)t (x|s, a).

Lemma 5. For any n ≥ 0, the vector field minimizing (27) is

v
(n+1)
t (x | s, a) =

(1− γ)
∫
ut|1(x | x1)pt|1(x | x1)P (x1|s, a)dx1 + γES′∼P (·|s,a)[m

(n)
t (x|S′, π(S′))v

(n)
t (x|S′, π(S′))]

m
(n+1)
t (x|s, a)

where we define m(n+1)
t (x|s, a) := (1− γ)Pt(x|s, a) + γES′∼P (·|s,a)[m

(n)
t (x|S′, π(S′))] and

Pt(x|s, a) :=
∫
pt|1(x | x1)P (x1|s, a)dx1. Moreover v(n+1)

t generates m(n+1)
t .

Proof. By Theorem 2 of Lipman et al. (2023), we have for the first term in ℓTD2-CFM

∇θ

→
ℓ(t, s, a) = ∇θEXt∼Pt(·|s,a)

[∥∥vt(Xt|s, a)−
→
vt(Xt|s, a)

∥∥2],
where Pt(x|s, a) :=

∫
pt|1(x | x1)P (x1|s, a)dx1, →

vt(x|s, a) =
∫
ut|1(x|x1)pt|1(x|x1)P (x1|s,a)dx1

Pt(x|s,a) .
Similarly, we have for the second term:

∇θ

↷
ℓ(t, s, a) = ∇θEXt∼↷

p
(n)
t (·|s,a)

[∥∥vt(Xt|s, a)−
↷
vt(Xt|s, a)

∥∥2],
where ↷

p
(n)
t = Pπm

(n)
t and ↷

vt =
Pπ(m

(n)
t v

(n)
t )

Pπm
(n)
t

.

Therefore, ℓ(n)TD-CFM(t, s, a) is equivalent, in term of gradient, to a mixture of two marginal flow-
matching losses, which implies that v(n+1)

t has the stated expression by Lemma 4. The fact that it
generates m(n+1)

t is a consequence of Lemma 3.

We then define the following operator to characterize the iterates of TD2-CFM.

Definition 1 (Bellman operator for probability paths). For any t ∈ [0, 1], we define the operator
Bπt m := (1− γ)Pt + γPπm, where Pt(x|s, a) :=

∫
pt|1(x | x1)P (x1|s, a)dx1.

The following observation is then immediate from Lemma 5.
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Proposition 3. For any n ≥ 0, the probability path generated by TD2-CFM satisfies
m

(n+1)
t (x|s, a) =

(
Bπt m

(n)
t

)
(x | s, a), where Bπt is the operator of Definition 1. Moreover,

m
(n+1)
1 (x|s, a) =

(
T πm

(n)
1

)
(x | s, a).

Theorem 4. For any t ∈ [0, 1], the operator Bπt of Definition 1 is a γ1/k-contraction in
Wasserstein k-distance, i.e., for any couple of probability paths pt, qt and k ∈ [1,∞),

sup
s,a

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
≤ γ1/k sup

s,a
Wk (pt(· | s, a), qt(· | s, a)) .

Proof. Recall that the Wasserstein k-distance between pt and qt induced by a metric d is defined as

Wk(pt(·|s, a), qt(·|s, a)) := inf
Γ(·|s,a)∈C(pt(·|s,a),qt(·|s,a))

E(X,Y )∼Γ(·|s,a)[d(X,Y )k]1/k,

where C(pt(·|s, a), qt(·|s, a)) is the set of all couplings between the two measures. Now take any
coupling Γ̃(·|s, a) ∈ C(pt(·|s, a), qt(·|s, a)) for any s, a. Then, the following quantity

Θ(x, y|s, a) = (1− γ)P (x|s, a)δ(x− y) + γ
(
PπΓ̃

)
(x, y|s, a)

is a valid coupling between
(
Bπt pt

)
(· | s, a) and

(
Bπt qt

)
(· | s, a). In fact,∫

Θ(x, y|s, a)dx = (1− γ)

∫
P (x|s, a)δ(x− y)dx+ γ

∫ (
PπΓ̃

)
(x, y | s, a)dx

= (1− γ)P (y|s, a) + γ

∫
Es′∼P (·|s,a)

[
Γ̃(x, y|s′, π(s′))

]
dx

= (1− γ)P (y|s, a) + γ Es′∼P (·|s,a)

[ ∫
Γ̃(x, y|s′, π(s′))dx

]
= (1− γ)P (y|s, a) + γ Es′∼P (·|s,a)[qt(y|s′, π(s′)) ]

=
(
T πqt

)
(y|s, a).

Analogously, we can prove that
∫
Θ(x, y|s, a)dy =

(
Bπpt

)
(x|s, a). Then,

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
= inf

Γ(·|s,a)∈C([Lπt pt](·|s,a),[Lπt qt](·|s,a))
E(X,Y )∼Γ(·|s,a)[d(X,Y )k]1/k

≤ E(X,Y )∼Θ(·|s,a)[d(X,Y )k]1/k

=
(
(1− γ)E(X∼P (·|s,a),Y∼δX)[d(X,Y )k] + γE(X,Y )∼[PπΓ̃](·|s,a)[d(X,Y )k]

)1/k
= γ1/kEs′∼P (·|s,a),(X,Y )∼Γ̃(·|s′,π(s′))[d(X,Y )k]1/k.

Since this holds for any coupling Γ̃(·|s, a) ∈ C(pt(·|s, a), qt(·|s, a)), we can take the infimum over
all such couplings on the right-hand side, so that

Wk

((
Bπt pt

)
(· | s, a),

(
Bπt qt

)
(· | s, a)

)
≤ γ1/k

(
Es′∼P (·|s,a)

[
inf

Γ∈C(pt(·|s′,π(s′)),qt(·|s′,π(s′)))
E(X,Y )∼Γ[d(X,Y )k]

])1/k

= γ1/k
(
Es′∼P (·|s,a)

[
Wk(pt(·|s′, π(s′)), qt(·|s′, π(s′)))k

])1/k
≤ γ1/k sup

s,a
Wk(pt(· | s, a), qt(· | s, a)).

Taking the supremum over (s, a) of the left-hand side concludes the proof.

E.4 ANALYSIS OF TD-CFM

We study the learning dynamics of an idealized variant of TD-CFM which minimizes the flow-
matching loss exactly. Starting from an arbitrary vector field v(0)t , at each iteration n ≥ 0 we
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compute

v
(n+1)
t (·|s, a) ∈ argmin

vt(·):Rd→Rd
ℓ
(n)
TD-CFM(t, s, a) := E

X1∼
(
T πm(n)

1

)
(s,a),Xt∼pt|1(·|X1)

[
∥vt(Xt)− ut|1(Xt|X1)∥2

]
,

(28)

where m(n)
t (x|s, a) is the probability path generated by v(n)t (x|s, a).

Lemma 6. For any n ≥ 0, the vector field minimizing (28) is

v
(n+1)
t (x | s, a) =

∫
ut|1(x|x1)

pt|1(x | x1)
(
T πm

(n)
1

)
(x1 | s, a)

m
(n+1)
t (x|s, a)

dx1,

where m(n+1)
t (x|s, a) :=

∫
pt|1(x | x1)

(
T πm

(n)
1

)
(x1 | s, a)dx1. Moreover v(n+1)

t generates

m
(n+1)
t .

Proof. Note that (28) is a standard flow matching loss for the target distribution T πm
(n)
1 . The expres-

sion of v(n+1)
t (x | s, a) given in the statement is exactly the vector field obtained by marginalization

of the conditional vector field ut|1, which we know to be the minimizer of the loss from Theorem 2
of Lipman et al. (2023). The fact that v(n+1)

t generates m(n+1)
t is a consequence of Theorem 1 of

Lipman et al. (2023).

Lemma 7. For any n ≥ 0, the probability path generated by (28) satisfies m(n+1)
1 (x|s, a) =(

T πm
(n)
1

)
(x|s, a).

Proof. This is immediate from the definition of conditional probability path, as we set p1|1(x | x1) =
δ(x− x1) by construction, where δ(·) is the Dirac’s delta function.

Theorem 5. For any n ≥ 1, the probability path generated by (28) satisfies

m
(n+1)
t (x|s, a) =

(
Bπt m

(n)
t

)
(x|s, a),

where Bπt is the operator of Definition 1. Moreover, if the initial vector field v(0)t satisfies

v
(0)
t (x | s, a) =

∫
ut|1(x|x1)

pt|1(x | x1)m(0)
1 (x1 | s, a)

m
(0)
t (x|s, a)

dx1,

with m(0)
t being its generated proability path, then this result is valid at all n ≥ 0.

Proof. We know that, for all n ≥ 0, vn+1
t generates m(n+1)

t (Lemma 6) and that m(n+1)
1 = T πm

(n)
1

(Lemma 7). Note that m(n+1)
t is written as a function of m(n)

1 only, i.e., at each iteration we keep
only the distribution generated at time t = 1 (m(n)

1 ) and discard the associated probability path (m(n)
t

for t < 1). We can however express m(n+1)
t as a function of m(n)

t thanks to the linearity of the
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Bellman operator and the definition of marginal paths. For any n ≥ 1,

m
(n+1)
t (x | s, a) : =

∫
pt|1(x | x1)

(
T πm

(n)
1

)
(x1 | s, a)dx1

=

∫
pt|1(x | x1)

(
(1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
m

(n)
1 (x1 | s′, π(s′))

])
dx1

= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[ ∫
pt|1(x | x1)m(n)

1 (x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[ ∫
pt|1(x | x1)

(
T πm

(n−1)
1

)
(x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
= (1− γ)Pt(x|s, a) + γ Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
=
(
Bπt m

(n)
t

)
(x | s, a).

This proves the first part of the statement. For the second part, we only need to prove that the result
also holds at n = 0. Note that the assumption on v(0)t implies that m(0)

t (x | s, a) :=
∫
pt|1(x |

x1)m
(0)
1 (x1 | s, a)dx1. Thus,

m
(1)
t (x | s, a) : =

∫
pt|1(x | x1)

(
T πm

(0)
1

)
(x1 | s, a)dx1

=

∫
pt|1(x | x1)

(
(1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
m

(0)
1 (x1 | s′, π(s′))

])
dx1

= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[ ∫
pt|1(x | x1)m(0)

1 (x1 | s′, π(s′))dx1

]
= (1− γ)

∫
pt|1(x | x1)P (x1 | s, a)dx1 + γ Es′∼P (·|s,a)

[
m

(0)
t (x | s′, π(s′))

]
=
(
Bπt m

(0)
t

)
(x | s, a).

E.5 ANALYSIS OF TD-CFM(C)

The idealized update of TD-CFM(C) is, for any n ≥ 0,

v
(n+1)
t (·|s, a) ∈ argmin

vt(·):Rd→Rd
ℓ
(n)
TD-CFM(C)(t, s, a) ,where

ℓ
(n)
TD-CFM(C)(t, s, a) := E

(X0,X1)∼Γ
(n)
0,1 (·|s,a),Xt∼pt|0,1(·|X0,X1)

[
∥vt(Xt)− ut|0,1(Xt | X0, X1)∥2

]
,

(29)
and Γ

(n)
0,1 (· | s, a) is the coupling between m0 and T πm

(n)
1 , while pt|0,1, ut|0,1 are such that ut|0,1(x |

x0, x1) generates pt|0,1(x | x0, x1), p1|0,1(x | x0, x1) = δx1(x), and

pt|1(x | x1) =
∫
pt|0,1(x | x0, x1)m0(x0)dx0. (30)

Lemma 8. The coupling Γ
(n)
0,1 (· | s, a) satisfies

Γ
(n)
0,1 (x0, x1 | s, a) = (1− γ)P (x1 | s, a)m0(x0) + γ ES′∼P (·|s,a)

[
m

(n)
0,1 (x0, x1 | S′, π(S′))

]
,

where m(n)
0,1 (x0, x1 | s, a) = m0(x0)δψ(n)

1 (x0|s,a)
(x1) is the joint distribution of (X0, X1), i.e

the endpoints of the ODE.
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Proof. For any x0, x1, we can write Γ
(n)
0,1 (x0, x1 | s, a) = Γ

(n)
1 (x1 | s, a, x0)m0(x0), where Γ

(n)
1 is

the corresponding conditional distribution. By definition, we have

Γ
(n)
1 (x1 | s, a, x0) = (1− γ)P (x1 | s, a) + γ Es′∼P (·|s,a)

[
δ
ψ

(n)
1 (x0|s′,π(s′))

(x1)

]
where ψ(n)

1 is the flow that generates m(n)
1 . Multiplying both sides by m0(x0) and using that

m
(n)
0,1 (x0, x1 | s, a) = m0(x0)δψ(n)

1 (x0|s,a)
(x1) concludes the proof.

Lemma 9. For any n ≥ 0, the vector field minimizing (29) is

v
(n+1)
t (x | s, a) =

∫ ∫
ut|0,1(x | x0, x1)

pt|0,1(x | x0, x1)Γ(n)
0,1 (x0, x1 | s, a)

m
(n+1)
t (x | s, a)

dx0dx1,

where m(n+1)
t (x | s, a) :=

∫ ∫
pt|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1. Moreover v(n+1)
t

generates m(n+1)
t .

Proof. Note that (29) is a standard conditional flow matching loss since ut|0,1(x | x0, x1) generates
pt|0,1(x | x0, x1) and p1|0,1(x | x0, x1) = δx1

(x). The expression of v(n+1)
t (x | s, a) given in the

statement is exactly the vector field obtained by marginalization of the conditional vector field ut|0,1,
which we know to be the minimizer of the loss from Theorem 2 of Lipman et al. (2023). The fact that
v
(n+1)
t generates m(n+1)

t is a consequence of Theorem 1 of Lipman et al. (2023).

Lemma 10. For any n ≥ 0, the probability path generated by (28) satisfies m(n+1)
1 (x | s, a) =(

T πm
(n)
1

)
(x | s, a).

Proof. By Lemma 9 and the fact that p1|0,1(x | x0, x1) = δx1
(x),

m
(n+1)
1 (x | s, a) :=

∫ ∫
p1|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1

=

∫
Γ
(n)
0,1 (x0, x | s, a)dx0

=
(
T πm

(n)
1

)
(x|s, a).

Theorem 6. For any n ≥ 1, the probability path generated by (28) satisfies

m
(n+1)
t (x | s, a) =

(
Bπt m

(n)
t

)
(x | s, a),

where Bπt is the operator of Definition 1. Moreover, if the initial vector field v(0)t satisfies

v
(0)
t (x | s, a) =

∫ ∫
ut|0,1(x|x0, x1)

pt|0,1(x | x0, x1)m(0)
0,1(x0, x1 | s, a)

m
(0)
t (x | s, a)

dx0dx1,

with m(0)
t being its generated probability path, then this result is valid at all n ≥ 0.

Proof. We know that, for all n ≥ 0, vn+1
t generates m(n+1)

t (Lemma 9) and that m(n+1)
1 = T πm

(n)
1

(Lemma 10). While m(n+1)
t is written as a function of Γ(n)

0,1 only, we can rewrite it as a function of
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m
(n)
t thanks to the linearity of the Bellman operator and the definition of marginal paths. For any

n ≥ 1, By Lemma 8,

m
(n+1)
t (x | s, a) :=

∫ ∫
pt|0,1(x | x0, x1)Γ(n)

0,1 (x0, x1 | s, a)dx0dx1

=

∫ ∫
pt|0,1(x | x0, x1)

(
(1− γ)P (x1 | s, a)m0(x0) + γ ES′∼P (·|s,a)

[
m

(n)
0,1 (x0, x1 | S′, π(S′))

])
dx0dx1

= (1− γ)

∫ ∫
pt|0,1(x | x0, x1)P (x1 | s, a)m0(x0)dx0dx1︸ ︷︷ ︸

(i)

+ γ Es′∼P (·|s,a)

[ ∫ ∫
pt|0,1(x | x0, x1)m(n)

0,1 (x0, x1 | S′, π(S′))dx0dx1

]
︸ ︷︷ ︸

(ii)

.

By (30),

(i) =

∫
pt|1(x | x1)P (x1 | s, a)dx1 = Pt(x | s, a).

For (ii), by Lemma 9, we have m
(n)
t (x | s, a) =

∫ ∫
pt|0,1(x | x0, x1)Γ

(n−1)
0,1 (x0, x1 |

s, a)dx0dx1,∀n ≥ 0, which implies

m
(n)
0,1 (x0, x1 | s′, π(s′)) = Γ

(n−1)
0,1 (x0, x1 | s′, π(s′)).

Therefore, again by definition of m(n)
t (Lemma 9),

(ii) = Es′∼P (·|s,a)

[ ∫ ∫
pt|0,1(x | x0, x1)Γ(n−1)

0,1 (x0, x1 | s′, π(s′))dx0dx1

]
= Es′∼P (·|s,a)

[
m

(n)
t (x | s′, π(s′))

]
.

Plugging the expressions of (i) and (ii) into the one of m(n+1)
t (x | s, a) yields the first part of the

statement.

For the second part, we only need to prove that the result also holds at n = 0. Note that the assumption
on v(0)t implies that m(0)

t (x | s, a) =
∫ ∫

pt|0,1(x | x0, x1)m(0)
0,1(x0, x1 | s′, π(s′))dx0dx1. Thus,

using the same decomposition above, we have

m
(1)
t (x | s, a) = (1− γ)Pt(x | s, a) + γ Es′∼P (·|s,a)

[ ∫ ∫
pt|0,1(x | x0, x1)m(0)

0,1(x0, x1 | s′, π(s′))dx0dx1

]
= (1− γ)Pt(x | s, a) + γ Es′∼P (·|s,a)

[
m

(0)
t (x | s′, π(s′))

]
,

which proves the result.

E.6 VARIANCE ANALYSIS

Theorem 7. Let us define the random variables

gTD2-CFM(t, s, a, s
′,

→
Xt, X

(n)
t ) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|1(

→
Xt|s′)

)
+ γ∇θvt(X

(n)
t |s, a; θ)⊤

(
vt(X

(n)
t |s, a; θ)− v

(n)
t (X

(n)
t |s′, π(s′))

)
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|1(

→
Xt|s′)

)
+ γ∇θvt(Xt|s, a; θ)⊤

(
vt(Xt|s, a; θ)− ut|1(Xt|X1)

)
where t ∼ U([0, 1]), (s, a) ∼ ρ, s′ ∼ P (·|s, a),

→
Xt ∼ pt|1(·|s′), X

(n)
t ∼ m

(n)
t (· |

s′, π(s′)), X1 ∼ m
(n)
1 (· | s′, π(s′)), and Xt ∼ pt|1(·|X1). Then, gTD2-CFM and gTD-CFM are

respectively unbiased estimates of the gradients ∇θℓTD2-CFM(θ) and ∇θℓTD-CFM(θ).
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Moreover, if we consider their respective total variations defined as:

σ2
TD2-CFM

= Trace
(

Cov
t,s,a,s′,

→
Xt,X

(n)
t

[
gTD2-CFM(t, s, a, s

′,
→
Xt, X

(n)
t )

])
σ2

TD-CFM = Trace
(

Cov
t,s,a,s′,

→
Xt,X1,Xt

[
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt)

])
and we assume that m(n)

t (x | s, a) =
∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, then we obtain

σ2
TD-CFM = σ2

TD2-CFM
+ γ2Et,s,a,Xt

[
Trace

(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
.

Proof. Recall the TD2-CFM and TD-CFM objectives:

ℓTD2-CFM(θ) = (1− γ)Et,s,a,s′,Xt∼pt|1(·|s′)
[∥∥∥vt(Xt|s, a; θ)− ut|1(Xt|s′)

∥∥∥2]
+ γE

t,s,a,s′,Xt∼m(n)
t (·|s′,π(s′))

[∥∥vt(Xt|s, a; θ)− v
(n)
t (Xt|s′, π(s′))

∥∥2],
ℓTD-CFM(θ) = (1− γ)Et,s,a,s′,Xt∼pt|1(·|s′)

[∥∥∥vt(Xt|s, a; θ)− ut|1(Xt|s′)
∥∥∥2]

+ γE
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),Xt∼pt|1(·|X1)

[∥∥vt(Xt|s, a; θ)− ut|1(Xt|X1)
∥∥2].

Computing the gradients of these quantities w.r.t. θ, it is easy to check that gTD2-CFM and gTD-CFM are
their unbiased estimates.

Let us now analyze the total variation of these estimators. By assumption, we have m(n)
t (x | s, a) =∫

pt|1(x | x1)m(n)
1 (x1 | s, a)dx1, which implies that X(n)

t and Xt follow the same law. Moreover,
we obtain the following identities:

v
(n)
t (x | s′, π(s′)) = EX1|x,s′

[
ut|1(x | X1)

]
,

gTD2-CFM(t, s, a, s
′,

→
Xt, Xt) = EX1|Xt,s′ [gTD-CFM(t, s, a, s

′, Xo
t , X1, Xt)] ,

E
Xt∼m(n)

t (·|s′,π(s′))

[
gTD2-CFM(t, s, a, s

′,
→
Xt, Xt)

]
= E

X1∼m(n)
1 (·|s′,π(s′))

Xt∼pt|1(·|X1)

[
gTD-CFM(t, s, a, s

′,
→
Xt, X1, Xt)

]
,

where X1 | x, s′ ∼ pt|1(x|X1)m
(n)
1 (X1|s′,π(s′))

m
(n)
t (x|s,a)

is the posterior distribution of X1 given x and s′.

To simplify notation, we denote by Y the random variable (t, s, a, s′,
→
Xt). Using the decomposition

of variance into conditional variance, Var(X) = E[Var(X|Y )]) + Var(E[X|Y]), we conclude that

σTD-CFM = Trace (CovY,X1,Xt [gTD-CFM(Y,X1, Xt)])

= EY,X1,Xt

[∥∥∥gTD-CFM(Y,X1, Xt)− EY,X1,Xt [gTD-CFM(Y,X1, Xt)]
∥∥∥2]

= EY,Xt
[∥∥∥EX1|Y,Xt [gTD-CFM(Y,X1, Xt)]− EY,X1,Xt [gTD-CFM(Y,X1, Xt)]

∥∥∥2]
+ EY,Xt

[
EX1|Y,Xt

[∥∥∥gTD-CFM(Y,X1, Xt)− EX1|Y,Xt [gTD-CFM(Y,X1, Xt)]
∥∥∥2]]

= EY,Xt
[∥∥∥gTD2-CFM(Y,Xt)− EY,Xt [gTD2-CFM(Y,Xt)]

∥∥∥2]
+ γ2EY,Xt

[
EX1|Y,Xt

[∥∥∥∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)− EX1|Y,Xt
[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

] ∥∥∥2]]
= σTD2-CFM + γ2EY,Xt

[
Trace

(
CovX1|Y,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
= σTD2-CFM + γ2Et,s,a,Xt

[
Trace

(
CovX1|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X1)

])]
.
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Theorem 8. Let us define the random variable

gTD-CFM(C)(t, s, a, s
′,

→
Xt, X0, X1, Xt) := (1− γ)∇θvt(

→
Xt|s, a; θ)⊤

(
vt(

→
Xt|s, a; θ)− ut|0,1(

→
Xt|X0, s

′)
)

+ γ∇θvt(Xt|s, a; θ)⊤
(
vt(Xt|s, a; θ)− ut|0,1(Xt|X0, X1)

)
where t ∼ U([0, 1]), (s, a) ∼ ρ, s′ ∼ P (·|s, a),

→
Xt ∼ pt|1(·|s′), (X0, X1) ∼ m

(n)
0,1 (· |

s′, π(s′)) and Xt ∼ pt|0,1(·|X0, X1, ). Then gTD-CFM(C) is an unbiased estimate of the gradient
∇θℓTD-CFM(C)(θ).

Moreover, if we consider its total variation defined as:

σTD-CFM(C) = Trace
(

Cov
t,s,a,s′,

→
Xt,X0,X1,Xt

[
gTD-CFM(C)(t, s, a, s

′,
→
Xt, X0, X1, Xt)

])
and we assume that m(n)

t (x | s, a) =
∫ ∫

pt|0,1(x | x0, x1)m(n)
0,1 (x0, x1 | s, a)dx0dx1, then we

obtain

σTD-CFM(C) = σTD2-CFM + γ2Et,s,a,Xt
[
Trace

(
Cov(X0,X1)|s,a,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)

])]
.

Furthermore, if we use straight conditional paths, i.e., pt|0,1(x|x0, x1) = δ(tx1+(1− t)x0−x),
then

σTD-CFM(C) ≤ σTD2-CFM

+ γ2 sup
t,s,a,x

∥∥∥∇θvt(x|s, a; θ)
∥∥∥2Et,s,a,s′,X0,X1,Xt

[
∥X1 −X0 − E(X1,X0)|s,a,s′,Xt [X1 −X0] ∥2

]
.

In particular, when the paths of the linear interpolation Xt do not intersect for any s, a, s′, we
have Et,s,a,s′,X0,X1,Xt

[
∥X1 −X0 − E(X1,X0)|s,a,s′,Xt [X1 −X0] ∥2

]
= 0 and σTD-CFM(C) =

σTD2-CFM.

Proof. The first two statements can be checked by repeating the proof of Theorem 7 with conditional
paths pt|0,1 and vector fields ut|0,1. Let us thus prove the second part. We know that the flow
ϕt(x0, x1) that generates the the conditonal path pt|0,1(x|x0, x1) = δtx1+(1−t)x0

(x) is ϕt(x0, x1) =
tx1 + (1− t)x0. Its associated vector field ut|0,1 is thus

ut|0,1(ϕt(x0, x1)|x0, x1) =
d

dt
ϕt(x0, x1) = x1 − x0.

Theorefore, denoting Y = (t, s, a), we can bound the second term in the decomposition of σTD-CFM(C)
as

EY,Xt
[
Trace

(
Cov(X0,X1)|Y,Xt

[
∇θvt(Xt|s, a; θ)⊤ut|1(Xt | X0, X1)

])]
= EY,Xt

[
EX0,X1|Y,Xt

[∥∥∥∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)− EX0,X1|Y,Xt
[
∇θvt(Xt|s, a; θ)⊤ut|0,1(Xt | X0, X1)

] ∥∥∥2]]
≤ EY,Xt

[
∥∇θvt(Xt|s, a; θ)∥2EX0,X1|Y,Xt

[∥∥∥ut|0,1(Xt | X0, X1)− EX0,X1|Y,Xt
[
ut|0,1(Xt | X0, X1)

] ∥∥∥2]]
= EY,Xt

[
∥∇θvt(Xt|s, a; θ)∥2EX0,X1|Y,Xt

[∥∥∥X0 −X1 − EX0,X1|Y,Xt [X1 −X0]
∥∥∥2]]

≤ sup
t,s,a,x

∥∇θvt(x|s, a; θ)∥2EY,Xt
[
EX0,X1|Y,Xt

[∥∥∥X0 −X1 − EX0,X1|Y,Xt [X1 −X0]
∥∥∥2]] .

This proves the third statement.

To this the last point, simply note that if the paths generating Xt do not cross, then the distribution of
X0, X1|Y,Xt is supported over a single couple (X0, X1), which means that its variance is zero.
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E.7 TRANSPORT COST ANALYSIS

Theorem 9. Assume that m(n)
t (x | s, a) =

∫
pt|1(x | x1)m(n)

1 (x1 | s, a)dx1, where pt|1(· |
x1) = N (tx1, (1− t)2I) is a Gaussian path. Then, the conditional paths 6built by TD-CFM(C)
and TD2-CFM to generate m(n+1)

1 = T πm
(n)
1 induce a smaller transport cost than those built

by TD-CFM. Formally, for every t, s, a,

Et,s,a,s′,X0∼m0,X1∼(1−γ)δs′+γδψ(n)
1 (X0|s′,π(s′))

[
∥X1 −X0∥2

]
≤ E

t,s,a,s′,X0∼m0,X1∼[T πm(n)
1 ](·|s,a)

[
∥X1 −X0∥2

]
.

Proof. The paths generated by TD-CFM(C) and TD2-CFM induce the same transport cost since both
algorithms connect the endpoints of the ODE path m(n)

t in the bootstrapped term. Hence,

Et,s,a,s′,X0∼m0,X1∼(1−γ)δs′+γδψ(n)
1 (X0|s′,π(s′))

[
∥X1 −X0∥2

]
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γEt,s,a,s′,X0

[
∥ψ(n)

1 (X0 | s′, π(s′))−X0∥2
]

(a)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γEt,s,a,s′,X0

[∥∥∥ ∫ v
(n)
t (ψ

(n)
t (X0 | s′, π(s′)))dt

∥∥∥2]
(b)

≤ (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
Et,s,a,s′,X0

[∥∥∥v(n)t (ψ
(n)
t (X0 | s′, π(s′)))

∥∥∥2]dt
(c)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[∥∥∥v(n)t (Xt | s′, π(s′))
∥∥∥2] dt

(d)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[∥∥∥EX1|s′,Xt
[
ut|1(Xt|X1)

] ∥∥∥2]dt
(e)

≤ (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,Xt∼m(n)

t (·|s′,π(s′))

[
EX1|s′,Xt

[∥∥∥ut|1(Xt|X1)
∥∥∥2]]dt

(f)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),Xt∼pt|1(·|X1)

[∥∥∥ut|1(Xt|X1)
∥∥∥2] dt

(g)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),X0

[∥∥∥ut|1(tX1 + (1− t)X0|X1)
∥∥∥2] dt

(h)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γ

∫
E
t,s,a,s′,X1∼m(n)

1 (·|s′,π(s′)),X0

[∥∥∥X1 −X0

∥∥∥2] dt
(i)
= (1− γ)Et,s,a,s′,X0

[
∥s′ −X0∥2

]
+ γE

t,s,a,s′,X1∼m(n)
1 (·|s′,π(s′)),X0

[∥∥∥X1 −X0

∥∥∥2]
(j)
= E

t,s,a,s′,X0∼m0,X1∼[T πm(n)
1 ](·|s,a)

[
∥X1 −X0∥2

]
,

where (a) uses the definition of flow as integration of a vector field, (b) uses Cauchy-Schwarz
inequality, (c) uses that m0 ∗ ψ(n)

t is the pushforward measure generating m(n)
t , (d) defines X1 |

x, s′ ∼ pt|1(x|X1)m
(n)
1 (X1|s′,π(s′))

m
(n)
t (x|s,a)

as the posterior distribution of X1 given x, s′ and uses that v(n)t

is in marginal form by assumption, (e) uses Jensen’s inequality, (f) uses the Tower property of
expectations, (g) uses the definition of pt|1 and the corresponding linear-interpolation flow, (h) uses
the definition of ut|1, (i) is trivial, and (j) simply combines the two terms using the definition of
Bellman operator T π .

6Recall that, given a marginal probability path m
(n)
t (x | s, a), the conditional probability path built

by TD-CFM(C) and TD2-CFM to generate T πm(n)
1 is a linear interpolation between noise X0 ∼ m0 and

X1 ∼ (1− γ)δs′ + γψ
(n)
1 (X0|s′, π(s′)), while the one built by TD-CFM is a linear interpolation between noise

X0 ∼ m0 and a sample X1 ∼ [T πm(n)
1 ](· | s, a) from the target distribution.

45


	Introduction
	Background
	Temporal Difference Flows
	Extension to Diffusion Models

	Theoretical Analysis
	Experiments
	Empirical Evaluation of Geometric Horizon Models
	Planning via Generalized Policy Improvement

	Discussion
	Appendix Related Work
	Appendix Extension to Score Matching and Diffusion Models
	Background
	Temporal Difference Diffusion

	Appendix Experimental Details
	Evaluation
	Environments
	Geometric Horizon Models
	Hyperparameters

	Appendix Additional Experimental Results
	Appendix Theoretical Results
	Proofs of Main Results
	General Results
	Analysis of TD2-CFM
	Analysis of TD-CFM
	Analysis of TD-CFM(C)
	Variance Analysis
	Transport Cost Analysis


