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Abstract

The Mixture-of-Experts (MoE) technique can001
scale up the model size of Transformers with002
an affordable computational overhead. We003
point out that existing learning-to-route MoE004
methods suffer from the routing fluctuation is-005
sue, i.e., the target expert of the same input006
may change along with training, but only one007
expert will be activated for the input during in-008
ference. The routing fluctuation tends to harm009
sample efficiency because the same input up-010
dates different experts but only one is finally011
used. In this paper, we propose STABLEMOE012
with two training stages to address the routing013
fluctuation problem. In the first training stage,014
we learn a balanced and cohesive routing strat-015
egy and distill it into a lightweight router de-016
coupled from the backbone model. In the017
second training stage, we utilize the distilled018
router to determine the token-to-expert assign-019
ment and freeze it for a stable routing strategy.020
We validate our method on language modeling021
and multilingual machine translation. The re-022
sults show that STABLEMOE outperforms ex-023
isting MoE methods in terms of both conver-024
gence speed and performance.025

1 Introduction026

In recent years, large-scale Transformers (Devlin027

et al., 2019; Dong et al., 2019; Raffel et al., 2020;028

Clark et al., 2020; Bao et al., 2020; Brown et al.,029

2020) have shown a striking ability to model lan-030

guages. However, with the model scale grow-031

ing, the training speed will go slower, and the032

extremely large memory requirement also intro-033

duces a heavy burden of engineering. Mixture of034

Experts (MoE) (Jacobs et al., 1991; Jordan and Ja-035

cobs, 1994; Shazeer et al., 2017), in a much easier036

way, enables Transformers to scale up the number037

of parameters meanwhile introducing an affordable038

computational overhead. MoE-based Transform-039

ers have a set of expert modules, and only a few040

experts will be activated for each input token. In041

this way, we can expand the model scale by adding 042

expert modules, which will keep the computational 043

and memory overhead within a tolerable range. 044

Most existing MoE methods (Lepikhin et al., 045

2021; Fedus et al., 2021; Lewis et al., 2021) decide 046

the token-to-expert routing according to the dynam- 047

ically changing token representations. However, 048

we point out that they face the routing fluctuation 049

problem. As shown in Figure 1, the same input may 050

be assigned to different experts along with training. 051

However, during inference, only one expert will 052

be activated for the input. The routing fluctuation 053

problem tends to harm sample efficiency because 054

the same input updates different experts while only 055

one is finally used. 056

Taking BASE Layer (Lewis et al., 2021) as an 057

example, during the whole training process, we 058

examine the token-to-expert assignment for tokens 059

in the validation set. For an input token, we define 060

the last fluctuation step as the last step where its 061

target expert is different from the final step. We 062

plot the cumulative token percentage with regard to 063

the last fluctuation step (annotated as its percentage 064

accounting for all training steps) in Figure 2. We 065

find that the last fluctuation step of 40.9% tokens 066

exceeds 20%, which means 40.9% tokens do not 067

have a stable target expert when 20% of all training 068

steps have been done. Furthermore, 29.1% tokens 069

still change their target experts after half of the 070

whole training process, and 15.4% tokens even 071

change the target expert after 80% of all training 072

steps, which is nearing the training ending. These 073

statistics prove that the routing fluctuation problem 074

indeed exists in previous MoE methods. 075

In this paper, we propose STABLEMOE with 076

two training stages to address the routing fluctua- 077

tion problem. In the first training stage, we follow 078

the learning-to-route paradigm and aim to learn a 079

balanced and cohesive routing strategy. We design 080

a balance loss to guarantee the assignment is bal- 081

anced. In addition, inspired by Lewis et al. (2021), 082
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Figure 1: Illustration of the routing fluctuation problem. The same input is assigned to different experts along with
training. However, during inference, only one expert is sparsely activated for the input. The routing fluctuation
tends to harm sample efficiency because the same input updates different experts while only one is used.
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Figure 2: Cumulative token percentage with re-
gard to the last fluctuation step of tokens for BASE
Layer (Lewis et al., 2021). A substantial portion of to-
kens still change their target experts even if the training
is nearing the end.

we adopt a sigmoid gating mechanism, which en-083

ables the task objective to propagate supervised sig-084

nal back to the routing strategy, to facilitate learn-085

ing a more cohesive assignment. As the routing086

strategy is being learned, we synchronously dis-087

till it into a lightweight router decoupled from the088

backbone model. In the second training stage, we089

utilize the distilled router to determine the token-090

to-expert assignment. The distilled router is frozen091

in this stage to provide a stable routing strategy,092

which addresses the routing fluctuation problem in093

the remaining training. We conduct experiments on094

language modeling and multilingual machine trans-095

lation. The results show that STABLEMOE out-096

performs existing MoE methods in terms of both097

convergence speed and performance.098

Our contributions are summarized as follows:099

(1) We point out the routing fluctuation problem100

in existing learning-to-route MoE methods. (2)101

We propose STABLEMOE to address the routing102

fluctuation problem. (3) We conduct substantial ex- 103

periments under various settings to show the advan- 104

tages of STABLEMOE over existing MoE methods. 105

2 Background: Mixture-of-Experts for 106

Transformers 107

We first introduce the MoE mechanism designed 108

for Transformers (Vaswani et al., 2017). Given a 109

standard L-layer Transformer model and an input 110

sequence X containing T tokens, the Transformer 111

output HL is calculated by 112

HL = [hL
1 ;h

L
2 ; ...;h

L
T ], (1) 113

hl
t = FFN

(
ul
t

)
+ ul

t, (2) 114

ul
1:T = self-att

(
hl−1
1:T

)
+ hl−1

1:T , (3) 115

where hl
t is the hidden state of t-th token after the 116

l-th layer, Self-Att(·) is the self-attention module, 117

and FFN(·) is short for the feed-forward network. 118

For simplicity, we omit the layer normalization. 119

We implement MoE for Transformers by insert- 120

ing MoE layers, that are composed of a set of FFNs, 121

into two neighboring Transformer blocks. At an 122

MoE layer, for each input token, only a few or 123

one expert will be activated, controlled by a gating 124

function g(·): 125

hl
t =

N∑
i=1

gi

(
hl−1
t

)
FFNi

(
hl−1
t

)
+ hl−1

t , (4) 126

where N is the total number of experts, and FFNi 127

is the i-th expert. Here, the gating function gi(·) is 128

sparse for computational efficiency. For simplicity, 129

we omit the layer normalization. 130
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Figure 3: Illustration of two training stages in STABLEMOE. In training stage 1, we learn a routing strategy and
distill it into a lightweight router. Then, we freeze the distilled router for stable routing in training stage 2.

3 Method131

STABLEMOE has two training stages as illustrated132

in Figure 3. In the first training stage, we follow133

the learning-to-route paradigm and aim to learn134

a balanced and cohesive routing strategy. As the135

routing strategy is being learned, we synchronously136

distill it into a lightweight router decoupled from137

the backbone model. In the second training stage,138

we utilize the distilled router to determine the token-139

to-expert assignment. The distilled router is frozen140

in this stage to provide a stable routing strategy.141

During inference, we also use the frozen distilled142

router for consistent routing.143

3.1 Training Stage 1: Learn Routing Strategy144

Let hl−1
t ∈ Rd be the input representation of token145

t and E ∈ RN×d be the centroids of N experts.146

For each MoE layer, we assign each token to one147

expert FFN (Fedus et al., 2021; Lewis et al., 2021;148

Roller et al., 2021). The assignment score is:149

st,i = E>i h
l−1
t , (5)150

where st,i is the assignment score between token151

t and expert i, indicating their affinity. We use a152

greedy assignment algorithm, i.e., sending each153

token to the expert with the highest affinity. Then,154

we calculate the expert FFN output as:155

at = argmax
i

(st,i), (6)156

hl
t = σ (st,at) FFNat

(
hl−1
t

)
+ hl−1

t , (7)157

where at is the the expert index that token t is sent158

to, and σ is the sigmoid gate (Lewis et al., 2021).159

Considering the sigmoid gate σ (st,at), if FFNat160

is beneficial for token t, optimizing the training161

objective (e.g., minimizing the cross-entropy loss162

for language modeling) will urge the gate to be163

greater; otherwise, the gate will tend to be smaller. 164

The gate signal urges similar tokens to be assigned 165

to the same expert that is beneficial to them, thus 166

producing cohesive token-to-expert assignments. 167

Balance Loss We design a balance loss Lbal to 168

avoid imbalanced assignments that will result in 169

a high computational bottleneck in the MoE layer 170

and thus limit the computational efficiency: 171

Lbal = α
N∑
i=1

(|Ai| − n)
∑
t∈Ai

σ (st,i)

, (8) 172

where α is a hyper-parameter, Ai denotes the set 173

of tokens assigned to expert i, and n denotes the 174

average number of tokens per expert. Intuitively, if 175

an expert is overloaded, the balance loss will urge 176

its assignment scores to be smaller. Otherwise, if an 177

expert is unoccupied, the balance loss will increase 178

its assignment scores to capture more tokens. 179

Distilled Router As the routing strategy is be- 180

ing learned, we synchronously distill it into a 181

lightweight router decoupled from the backbone 182

model to mimic the original routing strategy. LetX 183

be the input sequence and Ê be the distilled expert 184

centroids, we use word embeddings D(·) to extract 185

the routing features. We use the cross-entropy loss 186

as the distillation loss Ldis: 187

ĥl−1
t = D(Xt), ŝt,i = Ê>i ĥ

l−1
t , (9) 188

Ldis = −
T∑
t=1

log
exp (ŝt,at)∑N
i=1 exp (ŝt,i)

, (10) 189

where ĥl−1
t is the distilled routing feature of token 190

t, ŝt,i is the distilled assignment score between 191

token t and expert i, and at is the expert index 192

that token t is actually sent to. In practice, D(·) 193
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Methods Assignment Algorithm Gating Function Balance Loss

Switch Transformer Greedy softmax Yes
BASE Layer Auction (Bertsekas, 1992) sigmoid No
Hash Layer Fixed Hashing {0, 1} No

STABLEMOE
Training Stage 1 Greedy sigmoid Yes
Training Stage 2 Fixed Routing sigmoid No

Table 1: Comparison of three core elements among STABLEMOE and existing MoE-based Transformers.

can also be other feature extractors such as CNNs194

or Transformers (we investigate other variants of195

distilled routers in Section 4.4.3), but the word196

embedding is the fastest one and achieves the best197

performance. At the end of training stage 1, we198

freeze all parameters for the distilled router (i.e.,199

D(·) and Ê) to prepare a stable routing strategy for200

training stage 2 and the inference stage.201

Training Objective In training stage 1, the train-202

ing loss consists of the task loss, the balance loss,203

and the distillation loss:204

LS1 = Ltask + Lbal + Ldis. (11)205

3.2 Training Stage 2: Learn with Stable206

Routing Strategy207

Given frozen D(·) and Ê, in training stage 2, we di-208

rectly use them for a stable routing strategy. Keep-209

ing other processes the same as in training stage 1,210

we calculate the output of the MoE layer as follows:211

ĥl−1
t = D(Xt), ŝt,i = Ê>i ĥ

l−1
t , (12)212

ât = argmax
i

(ŝt,i), (13)213

hl
t = σ (st,ât) FFNât

(
hl−1
t

)
+ hl−1

t . (14)214

Notice that the sigmoid gate σ(·) still uses orig-215

inal assignment score st,ât as input, so the gate216

signal can also be learned in training stage 2. Since217

the routing strategy has been fixed in training stage218

2, we no longer need the balance loss and distilla-219

tion loss. Therefore, the training loss for training220

stage 2 contains only the task loss:221

LS2 = Ltask. (15)222

3.3 Inference223

During inference, we also use the frozen distilled224

router for routing. The fixed routing strategy, which225

is consistent with training stage 2, makes informa-226

tion learned in MoE layers be utilized more thor-227

oughly and thus leads to better performance.228

3.4 Comparison with Existing MoE Methods 229

We compare three core elements, including the as- 230

signment algorithm, the gating function, and the 231

balance loss, among STABLEMOE and existing 232

MoE-based Transformers. In Table 1, we summa- 233

rize their differences. 234

Assignment algorithm Switch Transformer and 235

the training stage 1 in STABLEMOE simply assign 236

each token to the expert with the highest affinity. 237

BASE Layer adopts the auction algorithm (Bert- 238

sekas, 1992) to find a global balanced assignment 239

with the maximum affinity sum. Hash layer and the 240

training stage 2 in STABLEMOE have token-level 241

fixed routing strategies, which have good stability. 242

Gating function Hash Layer uses a hard gating 243

function, which means an expert is either fully ac- 244

tivated or not activated, no any intermediate state. 245

Switch Layer, BASE Layer, and STABLEMOE 246

have soft gating functions, which can judge the 247

affinity between a token and its target expert and 248

determine a proper ratio to use the expert. Soft gat- 249

ing mechanisms also urge models to learn a more 250

cohesive token-to-expert assignment. 251

Balance loss BASE Layer and Hash Layer do 252

not apply any balance losses. By contrast, Switch 253

Transformer and the training stage 1 in STABLE- 254

MOE design balance losses to control the balance 255

of the token-to-expert assignment. 256

In summary, combing two training stages, STA- 257

BLEMOE has a stable, cohesive, and balanced rout- 258

ing strategy, while the other three MoE methods 259

cannot meet them all simultaneously. 260

4 Experiments 261

4.1 Tasks and Datasets 262

Language Modeling Following (Lewis et al., 263

2021) and Roller et al. (2021), we use the com- 264

bination of the corpora in RoBERTa (Liu et al., 265

2019) and the English subset of the CC100 (Con- 266

neau et al., 2020) corpus. The corpus contains 267
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Size Models # Shared Params # Expert Params FLOPs Valid PPL Test PPL

Base

Standard Transformer 124M N/A 146B 23.02 22.58
Larger Transformer (deeper) 578M N/A 610B 17.93 17.63
Larger Transformer (wider) 578M N/A 610B 18.31 18.01

Switch Transformer 124M 454M 160B 19.79 19.20
BASE Layer 124M 454M 160B 20.04 19.69
Hash Layer 124M 454M 160B 19.63 19.25
STABLEMOE 124M 454M 160B 19.28 18.93

Large

Standard Transformer 355M N/A 414B 18.86 18.19

Switch Transformer 355M 3.22B 465B 16.62 16.21
BASE Layer 355M 3.22B 465B 16.36 15.75
Hash Layer 355M 3.22B 465B 16.37 15.79
STABLEMOE 355M 3.22B 465B 16.22 15.59

Table 2: Perplexity results of language modeling. We also report the training FLOPs, and the number of parameters
for the shared backbone (# Shared Params) and the expert layers (# Expert Params). “N/A” denotes not applicable.
STABLEMOE consistently outperforms other MoE methods under both the base and the large settings.

about 100B tokens, and we randomly sample 5M268

tokens for validation and 20M tokens for testing.269

Multilingual Machine Translation We fol-270

low Wang et al. (2020) and Ma et al. (2020) to use271

a collection of parallel data in different languages272

from the WMT datasets.1 The dataset contains 32.5273

million parallel data for language pairs between En-274

glish and other 9 languages, including French (Fr),275

Czech (Cs), German (De), Finnish (Fi), Latvian276

(Lv), Estonian (Et), Romanian (Ro), Hindi (Hi),277

and Turkish (Tr). In our experiments, we combine278

the original parallel data with 180 million back-279

translation data as described in (Ma et al., 2020)280

and call the augmented dataset WMT for short.281

4.2 Experimental Setup282

We conduct experiments based on fairseq2. All ex-283

periments are conducted on NVIDIA V100 GPUs284

with 32 GB memory.285

Language Modeling We adopt the tokenizer of286

GPT-2 (Radford et al., 2019), which uses byte-pair287

encoding (Sennrich et al., 2016) with a vocabulary288

size of 50,257. We set up two settings for STABLE-289

MOE, a base one and a large one. For both settings,290

we insert one MoE layer after the middle Trans-291

former block. We train the model for 60K steps in292

total (6K for training stage 1 and 54K for training293

stage 2). The dimension of the distilled routing fea-294

tures is 50, which brings 2.51M extra parameters295

for routing. The balance factor α is set to 0.3. We296

use Adam (Kingma and Ba, 2015) with β1 = 0.9297

1http://www.statmt.org
2https://github.com/facebookresearch/fairseq

and β2 = 0.98 as the optimizer. The rest of the 298

hyper-parameters are summarized in Appendix A. 299

Multilingual Machine Translation Follow- 300

ing (Ma et al., 2020), we use the Sentence- 301

Piece (Kudo and Richardson, 2018) model to 302

tokenize sentences. The vocabulary is learned from 303

the training set and consists of 64,000 tokens. We 304

insert two MoE layers, one after the third encoder 305

block and one after the third decoder block. We 306

train the model for 352K steps in total (30K for 307

training stage 1 and 322K for training stage 2). 308

The dimension of the distilled routing features is 309

also set to 50. The balance factor α is set to 0.3. 310

We use Adam with β1 = 0.9 and β2 = 0.98 as the 311

optimizer. The rest of the hyper-parameters are 312

summarized in Appendix B. 313

4.3 Results 314

4.3.1 Language Modeling 315

We compare STABLEMOE with Switch Trans- 316

former, BASE Layer, Hash Layer, and the stan- 317

dard Transformer. All MoE models have the same 318

number of shared parameters as the standard Trans- 319

former. Under the base setting, in addition, we 320

compare two larger dense Transformers that add 321

FFNs in a dense manner to achieve the same num- 322

ber of total parameters as MoE models. The deeper 323

model stacks more FFNs, while the wider model 324

uses FFNs with a larger hidden size. The floating 325

point operations (FLOPs) per sequence are profiled 326

by the torchprofile toolkit. 327

We show the main results of language model- 328

ing on the RoBERTa+cc100en corpus in Table 2. 329

Under the base setting, STABLEMOE outperforms 330
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Models # Params FLOPs De Ro Fr Cs Et Hi Tr Fi Lv Avg

Standard Transformer 77M 290B 39.8 36.0 32.5 29.1 27.2 24.5 23.6 21.8 20.3 28.31
Larger Transformer 90M 317B 40.6 36.9 33.7 29.8 27.8 25.4 24.6 22.2 20.9 29.10

Switch Transformer 480M 317B 42.3 37.1 33.8 31.0 28.6 26.0 24.3 23.0 21.2 29.70
BASE Layer 480M 317B 42.6 37.8 34.2 31.0 29.0 26.9 25.1 23.2 21.6 30.16
Hash Layer 480M 317B 42.7 37.0 34.6 31.3 28.7 26.5 23.9 23.1 21.7 29.94
STABLEMOE 480M 317B 43.0 37.4 34.7 31.5 29.3 26.8 24.7 23.6 21.9 30.32

Table 3: X→En test BLEU on WMT. We also report the total number of parameters, and training FLOPs. STA-
BLEMOE outperforms other MoE-based Transformers across most languages.
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Figure 4: Convergence speed of different models.
TRM is a shorthand for Transformer.

existing MoE methods on both the validation and331

the test sets by 0.3-0.8 perplexity. Compared with332

dense models, STABLEMOE achieves about 3.7333

lower perplexity than the standard Transformer,334

and about 1.3 higher perplexity than the deeper335

larger model. Under the large setting, consistently,336

STABLEMOE outperforms the other MoE methods,337

and achieves about 2.6 lower perplexity than the338

standard Transformer.339

We also compare the convergence speed of differ-340

ent models under the base setting. The results are341

plotted in Figure 4, which takes the validation per-342

plexity as y-axis and the training wall time as x-axis.343

Although larger dense models achieve better valida-344

tion perplexity at last, their training speed is quite345

slow. With regard to the convergence speed, MoE-346

based Transformers usually exceed dense models.347

Further, among the MoE methods, STABLEMOE348

has the fastest convergence speed.349

4.3.2 Multilingual Machine Translation350

We compare STABLEMOE with Switch Trans-351

former, BASE Layer, Hash Layer, the standard352

Transformer, and a larger Transformer. All MoE-353

based models have the same number of shared pa-354

16 32 64
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21.0

Va
lid

 P
PL

BASE Layer
Hash Layer
StableMoE

Figure 5: Comparison of MoE-based Transformers
with different numbers of experts. Lower perplexity
indicates better performance.

rameters as the standard Transformer. Except the 355

standard Transformer, the other models have the 356

same FLOPs. 357

We translate other languages to English (X→En) 358

and report the test BLEU on WMT in Table 3. 359

STABLEMOE achieves the best average test BLEU 360

among the compared MoE methods. Keeping the 361

same FLOPs, STABLEMOE outperform the dense 362

model by 1.22 test BLEU. With the MoE technique, 363

we expand the number of parameters by 523% and 364

the FLOPs just increase by 9.3%. 365

4.4 Analysis 366

4.4.1 Effects of Hyperparameters 367

On top of the base setting of language modeling, 368

we investigate different settings for the MoE layers 369

in STABLEMOE. 370

Number of Experts Figure 5 shows the results 371

of BASE Layer, Hash Layer, and STABLEMOE 372

with different numbers of experts. As the num- 373

ber of experts goes larger, the validation perplexity 374

of each model tends to further descend. Consis- 375

tently, STABLEMOE performs the best with dif- 376

ferent numbers of experts. In addition, it is worth 377
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Figure 6: Comparison of MoE models with different
numbers of expert sublayers (i.e., number of parame-
ters). Lower perplexity indicates better performance.

Models Valid PPL

STABLEMOE (stacked, top) 19.55
STABLEMOE (stacked, middle) 19.28
STABLEMOE (stacked, bottom) 22.82

STABLEMOE (scattered) 20.56

Table 4: Effects of the position of MoE layers. STA-
BLEMOE (scattered) scatters 3 MoE sublayers uni-
formly into the standard Transformer, while the others
stack 3 MoE sublayers together.

noting that STABLEMOE with 16 experts outper-378

forms BASE Layer with 32 experts, and STABLE-379

MOE with 32 experts achieves a similar perplexity380

to BASE Layer with 64 experts.381

Number of Expert Parameters We compare382

MoE models with different numbers of expert pa-383

rameters by setting different expert sublayers. Mod-384

els with 3 and 10 expert sublayers have 454M and385

1.51B expert parameters, respectively. From Fig-386

ure 6, we observe that more expert parameters bring387

better performance, and STABLEMOE consistently388

performs the best under both settings.389

Position of MoE Layers We investigate the ef-390

fect of the inserting position of the MoE layer. By391

default, the MoE layer stacks 3 MoE sublayers and392

is inserted after the L
2 -th Transformer block (mid-393

dle). We also attempt to insert the MoE layer before394

the first Transformer block (bottom), and after the395

last Transformer block (top). In addition, we also396

investigate the effect if we scatter 3 MoE sublayers397

uniformly into the standard Transformer, i.e., after398

the L
4 -th, 2L

4 -th, and 3L
4 -th blocks, respectively. As399

shown in Table 4, among the above four settings,400

inserting stacked MoE sublayers into the middle401

Models Valid PPL

BASE Layer 20.04
+ Fixed Routing Strategy (Stage 2) 19.41 (0.63↓)

STABLEMOE with Only Stage 1 19.48
+ Fixed Routing Strategy (Stage 2) 19.28 (0.20↓)

Table 5: Effects of the fixed routing strategy.

position allows STABLEMOE to achieve the best 402

performance. 403

Ratio Between Two Training Stages We inves- 404

tigate the balance point of the ratio between two 405

training stages in STABLEMOE. Given a fixed num- 406

ber of total steps, allocating more steps to training 407

stage 1 can help to learn and distill a better routing 408

strategy. On the other hand, a larger ratio of train- 409

ing stage 2 means longer stable training. Under the 410

base setting of language modeling, we attempt to 411

allocate 6K, 15K, and 30K steps to training stage 1 412

and show the results in Table 6. We find that if we 413

use word embeddings as the distilled router, allo- 414

cating 6K steps (10% of the total steps) to training 415

stage 1 is a good balance point. We speculate that 416

the word embedding is simple enough to be learned 417

fast, so longer stable training is more important to 418

achieve better performance. 419

4.4.2 Effects of the Fixed Routing Strategy 420

Based on the base setting of language modeling, we 421

design two experiments to investigate how much 422

performance improvement the fixed routing strat- 423

egy can bring. On the one hand, we equip BASE 424

Layer with a stable routing strategy to address its 425

routing fluctuation problem. Specifically, as in 426

STABLEMOE, we use word embeddings to distill 427

the routing strategy of BASE Layer in the first 6K 428

training steps, and freeze the distilled router for 429

stable routing in the remaining training. As shown 430

in Table 5, the fixed routing strategy decreases the 431

validation perplexity of BASE Layer by 0.63. On 432

the other hand, we attempt to disable the training 433

stage 2 in STABLEMOE and always train the model 434

as in training stage 1. As a result, the validation 435

perplexity of STABLEMOE becomes 0.20 higher 436

than the full version that has a fixed routing strat- 437

egy. These two cases support that the fixed routing 438

strategy, which addresses the routing fluctuation 439

problem, can bring better performance for MoE- 440

based Transformers. 441

In addition, we visualize the fixed routing strat- 442

egy of STABLEMOE in Appendix C for reference. 443
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Distilled Routers Stage 1 Steps Valid PPL

Word Embedding 6K (10%) 19.28
Word Embedding 15K (25%) 19.34
Word Embedding 30K (50%) 19.41

CNN 15K (25%) 19.39
1-layer Transformer 15K (25%) 19.42
2-layer Transformer 15K (25%) 19.38
3-layer Transformer 15K (25%) 19.65

Table 6: Results of different ratios of two training
stages and different variants of distilled routers.
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Figure 7: Cumulative token percentage about the last
fluctuation step of tokens for BASE Layer and STA-
BLEMOE. Notice that training stage 2 of STABLEMOE
does not have routing fluctuation compared with BASE
Layer.

4.4.3 Variants of Distilled Routers444

In Table 6, in addition to word embedding, we also445

investigate four variants of the distilled router in-446

cluding CNN and three Transformers with different447

numbers of layers. We allocate 15K steps to train-448

ing stage 1 for all of them. From the table, we find449

that using word embedding achieves the best per-450

formance, while the 3-layer Transformer does not451

perform well. For the routing strategy distillation,452

the distilling signal from a 32-category classifica-453

tion objective may not be informative enough to454

learn a complex router. By contrast, it is more455

suitable for simpler routers. Therefore, we recom-456

mend using word embedding, which is simple and457

effective, as the distilled router in STABLEMOE.458

4.4.4 Analysis of Routing Fluctuations459

We compare the degree of routing fluctuations be-460

tween STABLEMOE and BASE Layer to show our461

advantage with regard to the routing stability. Dur-462

ing the 60K training steps, we examine the token-463

to-expert assignment for tokens in the validation464

set every 500 steps. For each token, we define the465

last fluctuation step as the last step where its tar-466

get expert is different from the final step. We plot467

the cumulative token percentage about the last fluc- 468

tuation step in Figure 7. For ease of reading, we 469

annotate the x-axis as the percentage it accounts 470

for all training steps. From the figure, we find 471

that the routing fluctuation problem is notable for 472

BASE Layer. By contrast, for STABLEMOE, there 473

is no routing fluctuation in training stage 2 since 474

we apply a fixed routing strategy. 475

5 Related Work 476

Jacobs et al. (1991); Jordan and Jacobs (1994) pro- 477

pose Mixture of Experts (MoE) to compute dif- 478

ferent examples with independent expert modules. 479

Shazeer et al. (2017) introduce MoE to build large- 480

scale language models based on LSTMs (Hochre- 481

iter and Schmidhuber, 1997). Recently, as Trans- 482

formers become popular, many pieces of work 483

design MoE-version FFNs to build MoE-based 484

Transformers. GShard (Lepikhin et al., 2021), 485

Switch Transformer (Fedus et al., 2021), and BASE 486

Layer (Lewis et al., 2021) follow the learning-to- 487

route paradigm and dynamically learn how to route 488

each input token to experts. However, we point out 489

that these learning-to-route methods face the rout- 490

ing fluctuation problem. Hash Layer (Roller et al., 491

2021) propose a non-parametric routing strategy, 492

which uses a pre-designed token-level hash table 493

to determine the token-to-expert assignment. The 494

static routing strategy will not fluctuate, but the 495

randomly determined hash table limits the upper 496

bound of its performance. Our work includes the 497

advantages of learning-to-route methods to learn a 498

balanced and cohesive routing strategy, and further 499

addresses the routing fluctuation problem through 500

applying a frozen lightweight router that mimics 501

the original routing strategy. 502

6 Conclusion 503

In this paper, we point out the routing fluctuation 504

problem that exists in previous learning-to-route 505

MoE methods. In order to address this problem, 506

we propose STABLEMOE with two training stages. 507

We first learn a balanced and cohesive routing strat- 508

egy and synchronously distill it into a lightweight 509

router decoupled from the backbone model. Then, 510

we freeze the distilled router for a stable routing 511

strategy in the remaining training. We validate STA- 512

BLEMOE on language modeling and multilingual 513

machine translation. The results show that STA- 514

BLEMOE outperforms existing MoE methods in 515

terms of both convergence speed and performance. 516
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Appendix 665

A Hyper-parameters for Language 666

Modeling 667

The hyper-parameters of STABLEMOE under the 668

base and the large settings for language modeling 669

are summarized in Table 7. 670

Hyper-parameters Base Large

Number of Experts 32 64
Number of MoE Layers 1 1
Sublayers per Expert 3 6
Embedding & Hidden Size 768 1024
FFN Inner Hidden Size 3072 4096
Number of Attention Heads 12 16
Number of Transformer Blocks 12 24

Sequence Length 1024 1024
Batch Size 512K Tokens 512K Tokens

Optimizer Adam Adam
Maximum Learning Rate 6e-4 3e-4
Learning Rate Scheduler Linear Decay Linear Decay
Total Steps 60K 60K
Warm-up Steps 2K 2K
Gradient Clip Norm 0.1 0.1
Dropout 0 0

Table 7: Hyper-parameters of STABLEMOE under the
base and the large settings for language modeling.

B Hyper-parameters for Multilingual 671

Machine Translation 672

The hyper-parameters of STABLEMOE for mul- 673

tilingual machine translation are summarized in 674

Table 8. 675

Number of Experts 32
Number of MoE Layers 2
Sublayers per Expert 3
Embedding & Hidden Size 512
FFN Inner Hidden Size 2048
Number of Attention Heads 8
Number of Transformer Encoder Blocks 6
Number of Transformer Decoder Blocks 6

Maximum Sequence Length 256
Maximum Batch Size 512K Tokens

Optimizer Adam
Maximum Learning Rate 5e-4
Learning Rate Scheduler InvSqrt
Total Steps 352K
Warm-up Steps 4K
Gradient Clip Norm 0.1
Dropout 0.1
Attention Dropout 0
Label Smoothing 0.1

Table 8: Hyper-parameters of STABLEMOE for multi-
lingual machine translation.
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Experts Most Frequent Tokens Descriptions

5 my, his, her, year, years, day, life, week, family, days possessive case & time units
6 with, at, from, about, them, need, want, him, against, using prepositions & objective case
11 that, ?, !, which, )., .", That, "., .), !!, ?", !!!, :), Â, !", ?, !, !), conjunctions & punctuations
12 one, what, some, any, two, many, $, use, 2, 1 numerals
13 information, support, experience, service, data, services, money, access, research nouns about technologies
17 world, government, state, country, community, city, 2018, United, US, law nouns about politics
22 right, business, high, free, important, public, big, top, hard, small adjectives
27 time, work, home, place, care, water, area, health, job, car nouns about the daily life
29 ing, a, ed, in, er, on, o, e, as, es, an, al, en, am, it, is, ie, os, le suffixes
30 you, we, they, there, It, We, here, You, ve, ’ve pronouns
31 and, or, by, when, after, through, before, while, And, until conjunctions

Table 9: The most frequent tokens assigned to each expert in the validation set. We present several representative
experts. Tokens assigned to the same expert usually share some common features.

C Visualization of the Fixed Routing676

Strategy of STABLEMOE677

We visualize the fixed routing strategy of STABLE-678

MOE in Table 9. On the validation set, for each679

expert, we demonstrate the most frequent tokens680

assigned to it along with a text that describes their681

common features. We find that tokens assigned to682

the same expert usually share some common fea-683

tures, e.g., Expert 22 captures adjectives and Expert684

31 captures conjunctions. These cases show good685

cohesiveness of the token-to-expert assignment in686

STABLEMOE.687
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