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Abstract

Relational triple extraction is a fundamental001
task in the field of information extraction, and a002
promising framework based on table filling has003
recently gained attention as a potential base-004
line for entity relation extraction. However,005
inherent shortcomings such as redundant in-006
formation and incomplete triple recognition007
remain problematic. To address these chal-008
lenges, we propose an Implicit Perspective for009
relational triple Extraction based on Diffusion010
model (IPED), an innovative approach for ex-011
tracting relational triples. Our classifier-free012
solution adopts an implicit strategy using block013
coverage to complete the tables, avoiding the014
limitations of explicit tagging methods. Addi-015
tionally, we introduce a generative model struc-016
ture, the block-denoising diffusion model, to017
collaborate with our implicit perspective and018
effectively circumvent redundant information019
disruptions. Experimental results on two pop-020
ular datasets demonstrate that IPED achieves021
state-of-the-art performance while gaining su-022
perior inference speed and low computational023
complexity. To support future research, we024
have made our source code publicly available025
online. 1026

1 Introduction027

The extraction of relational triples has been an im-028

portant and fundamental task in knowledge graph029

construction (Zamini et al., 2022; Wei et al., 2020a),030

aiming to recognize triples in the form of (head en-031

tity, relation, tail entity) from unstructured text.032

Current research in information extraction can be033

categorized into two main approaches: the joint034

extraction models, which utilize a simultaneous035

style, and the pipeline models, which utilize a two-036

encoder methodology to extract entities and rela-037

tions. While the pipeline framework is criticized038

for serious error propagation and lack of interac-039

tion between its two subtasks (Shen et al., 2021),040

1Our source code will be released on GitHub.

leading to performance decline, many recent joint 041

extraction models have begun to thrive due to their 042

enhanced capability to deal with complex scenar- 043

ios such as single entity overlap (SEO), entity pair 044

overlap (EPO), and subject object overlap (SOO). 045

Among these popular joint extraction methods, 046

one baseline, known as the table-filling method, 047

has gained favor in recent research. Compared to 048

a multi-task joint structure, this method features a 049

table of token pair units that are to be filled and 050

decoded in a single step. In this way, it avoids ex- 051

posure bias and error propagation, challenges that 052

most methods cannot fully overcome. Particularly 053

for recently proposed models (Shang et al., 2022; 054

Ren et al., 2021; Wang et al., 2021), these can em- 055

ploy a novel table-filling strategy to simplify the 056

decoding process and enhance information interac- 057

tion. 058

Despite many unique advantages over table- 059

filling methods, some flaws still remain to be ad- 060

dressed. (1) The abundance of negative tagging in 061

a table, which is significantly denser than positive 062

tagging, leads to imbalanced labeling and redun- 063

dant information (Wang et al., 2021; Ning et al., 064

2023). To the best of our knowledge, this is a uni- 065

versal issue across all table-filling models. This 066

imbalance results in a bias towards negative tag- 067

ging and heightened computational complexity. (2) 068

Many table-filling strategies fail to extract all sce- 069

narios of triples, leading to decreased recall (Ning 070

et al., 2023). Even in the recent significant work 071

(Shang et al., 2022), entities consisting of a sin- 072

gle token in a triple cannot be properly extracted 073

due to conflicts arising from multiple labels in one 074

element. (3) Once a sentence contains multiple 075

triples, the separate labels of different triples may 076

intersect in a single element, causing confusion in 077

decoding all ground-truth triples. Many models 078

(Ren et al., 2021; Ning et al., 2023) employ de- 079

coding algorithms that match labels based on the 080

nearest-neighbor principle, which can lead to error 081
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associations within a triple. (4) A line of mod-082

els, not limited to table-filling ones, exhibit poor083

learning performance on the WebNLG dataset in084

contrast to the NYT dataset and they attribute it085

to the vast number of predefined relations in the086

former dataset (Gao et al., 2023).087

After conducting a detailed observation and anal-088

ysis of their models, it is observed that all existing089

table-filling-based methods are consistently con-090

strained by the approach of utilizing a classifier091

to tag each table element explicitly. Mainly be-092

cause of this, most of them can hardly escape the093

challenges mentioned above, despite attempts to in-094

troduce innovative labeling strategies and creative095

decoding algorithms. This constraint necessitates096

traversing each element of the table, consequently097

leading to a substantial number of negative sam-098

plings. This explicit way of assigning a fixed label099

to each element can not cope with scenarios when100

one element requires multiple labels, leading to101

the inability to recognize all triples and confusion102

in the regions where triple labels intersect. Ad-103

ditionally, certain decoding strategies, designed in104

response to this approach, often result in incorrectly105

matched labels for a triple.106

To address the aforementioned issues at a funda-107

mental level, instead of explicitly labeling all the el-108

ements, we formulate a fresh perspective to implic-109

itly fill the tables using a block-covered approach.110

In this method, blocks defined by four edges (up,111

down, right, left) and one level are refined within a112

three-dimensional table (multiple two-dimensional113

tables stacked together). In alignment with this114

implicit approach, we introduce a generative model115

designed to recover all blocks within the tables.116

Specifically, our proposed block-denoising diffu-117

sion model (Blk-DDM) can progressively refine the118

edges and levels of the initialized blocks step by119

step through a reverse process, ensuring the blocks120

precisely cover the ground truth triples horizontally,121

vertically, and deeply. As a result, our model natu-122

rally disregards redundant information by leaving123

the negative spaces alone rather than classifying124

them. Furthermore, our approach allows for the125

adequate recognition of all potential triples, as the126

proposed blocks can overlap implicitly. In con-127

trast to previous decoding algorithms that match128

explicit labels, our proposed simple but effective129

Parallel Boundary Emitting Strategy (PBES) for130

decoding has the capability of extracting all triples131

accurately, circumventing error association chal-132

lenges and significantly accelerating inference. Ad-133

ditionally, our denoising diffusion process enables 134

the gradual refinement of specific fine-grained rela- 135

tion types within triples, enhancing performance in 136

large-relation datasets such as WebNLG (demon- 137

strated in the Ablation Study detailed in Appendix 138

A). Experimental results on two datasets, NYT and 139

WebNLG, demonstrate that our model achieves 140

state-of-the-art performance and exhibits superior 141

efficiency in inference. 142

2 Related Works 143

2.1 Joint Extraction Models 144

Existing joint extraction models can be roughly 145

sorted into two frameworks. The first framework, 146

based on multi-task learning, utilizes a shared en- 147

coder but employs distinct decoders to sequentially 148

predict entities and relations. (Miwa and Bansal, 149

2016) proposes an integrated model that extracts 150

entities and relations separately, leveraging shared 151

parameters and mutual interaction. (Luan et al., 152

2018) adopts a model employing shared data rep- 153

resentations to mitigate error propagation between 154

tasks. CasRel (Wei et al., 2020b) treats relations 155

as functions mapping subjects to objects to make 156

extraction. The other framework is structured pre- 157

diction which integrates the two subtasks into a 158

unified structure and performs decoding in one step. 159

(Katiyar and Cardie, 2017) proposes a model using 160

sequence tagging-based approaches and forbidding 161

dependency trees. (Sun et al., 2019) employs graph 162

convolutional networks for joint inference. (Wang 163

and Lu, 2020) implements a table-filling strategy 164

using a table encoder and a sequence encoder. 165

2.2 Diffusion Model 166

Diffusion model is a type of deep latent generative 167

model primarily utilized for generating continuous 168

data structures, such as images and audio. DDPM 169

(Ho et al., 2020) is a pioneer work that makes diffu- 170

sion model practical to applications, thus inviting 171

excellent works (Kong et al., 2021; Zhao et al., 172

2023) in various fields. Recently, there has been 173

an emergence of works in NLP utilizing diffusion 174

models, such as (Li et al., 2022a; He et al., 2023) 175

in language model and (Bi et al., 2023; Gong et al., 176

2023) in sequence-to-sequence tasks, despite the 177

perceived challenges in applying diffusion models 178

to discrete text sequences. Notably, DiffusionNER 179

(Shen et al., 2023) also applies the diffusion model 180

to named entity recognition. However, there are 181

significant differences with our IPED, particularly 182
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in (1) task definition: IPED concentrates on extract-183

ing relational triples rather than mere entities. (2)184

core design: our model operates by diffusing in185

a three-dimensional space for each triple, in con-186

trast to DiffusionNER, which diffuses within a one-187

dimensional matrix for each entity and incorporates188

an additional classifier.189

3 Methodology190

This section firstly introduces our implicit table-191

filling strategy and its corresponding decoding al-192

gorithm. Secondly, the formulation of the Block-193

Denoising Diffusion Model is presented. Finally,194

the network architecture of our model is detailed.195

3.1 Implicit Block-Covered Table Filling196

For a sentence S = {x1, x2, ..., xL} composed of197

L words, K relations R = {r1, r2, ..., rK} are pre-198

defined in a dataset. The objective of relational199

triple extraction is to identify all triples (head, re-200

lation, tail) in each sentence, where the head and201

tail represent the subject and object entities, respec-202

tively, along with their connected relation. Within203

a sentence, for all triples τ = {(hi, ri, ti)}Mi=1, M204

denotes the total number of triples, and hi, ti rep-205

resent the entity spans, each composed of one or206

more consecutive tokens.207

Unlike previous classifier-based tagging meth-208

ods, our model does not allocate a label to each unit209

of the L*L*K three-dimensional matrix. Instead, it210

refines M blocks (B ∈ RM×5) to cover the K tables211

horizontally, vertically, and deeply, which is, our212

implicit way to fill the tables. As illustrated in Fig-213

ure 1, each block consists of five elements: the up214

and down edges indicate vertical positioning, the215

left and right edges denote horizontal positioning,216

and the level represents depth positioning within217

the K stacked tables, with each table corresponding218

to a specific relation. Via our proposed Blk-DDM219

(described in Section 3.2), these M blocks are pro-220

gressively refined to reveal the recognized triples.221

The proposed decoding scheme, named Parallel222

Boundary Emitting Strategy (PBES), is introduced223

to extract triples from the blocks. PBES follows224

the four edges and one level of each block, emit-225

ting them in parallel to the corresponding entities226

and relation. Specifically, for each block, the up227

and down edges are extended to the left side of the228

table, indicating the boundaries of the head entity.229

Similarly, the left and right edges are extended cor-230

respondingly to identify the boundaries of the tail231

entity. Meanwhile, the depth level where the block 232

is located signifies a specific table, thereby indicat- 233

ing a particular relation. By repeating this process 234

M times as described, all blocks are converted into 235

relational triples. 236

Our table-filling method enables the precise ex- 237

traction of all existing triples by circumventing the 238

conflicts typically associated with explicit tagging. 239

Thanks to the lack of inner constraints between the 240

M blocks, this approach not only naturally tackles 241

complex scenarios such as SEO, EPO, and SOO, 242

but also overcomes issues like the failure of single- 243

token entity extraction in (Shang et al., 2022) and 244

error association in (Ren et al., 2021; Ning et al., 245

2023). 246

3.2 Block-Denoising Diffusion Model 247

In this section, we present the formulation of block 248

generation as a denoising diffusion process and in- 249

troduce our block-denoising diffusion model (Blk- 250

DDM). As depicted in Figure 1, the diffusion 251

model comprises a forward process that incremen- 252

tally introduces noise to data samples and a reverse 253

process that recovers the ground truth through step- 254

by-step denoising. These two processes are syn- 255

chronized to facilitate the learning of a network 256

endowed with the denoising capability. During the 257

inference phase, the diffusion model incrementally 258

refines data samples through a multistep denois- 259

ing process from a standard Gaussian distribution. 260

Consequently, we convert our M blocks, composed 261

of five elements (up, down, left, right, level), into 262

index format B = {(ui, di, li, ri, vi)}Mi=0 to sup- 263

port the denoising operations. Following (Ho et al., 264

2020), the forward denoising process is simplified 265

by computing {ᾱ1, ..., ᾱT } from a predefined vari- 266

ance schedule {βt}Tt=0 ∈ (0, 1), and thus noise 267

injection in multiple steps can be integrated into 268

one step as follows: 269

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt) I

)
(1) 270

where q represents the forward process from 271

z0 to zt. z0 and zt denote the original data and 272

the noised data at timestep t, respectively. I is 273

the standard Gaussian distribution. Note that the 274

fixed forward process depicted in Figure 1 can be 275

considered as a Markov chain. 276

Training Process The training process of the 277

diffusion model involves a one-step noise addi- 278

tion and a one-step prediction towards the ground 279
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Figure 1: Figure (a) depicts our table-filling strategy. For the convenience of illustration, we simplify our three-
dimensional tables into the form of a two-dimensional table in Figure (a), containing nine blocks in total that
represent different triples. Here, dashed rectangles denote the four edges of the blocks, and different colors indicate
the levels of the blocks. Figure (b) illustrates the overall diffusion process.

truth, aimed at training a network for inference pur-280

poses. As for a sentence, blocks B ∈ RM×5 are281

initially derived from M ground truth triples. Sub-282

sequently, B is expanded by some blocks randomly283

sampled from a Gaussian distribution, resulting in284

z0 = B ∈ RN×5 (N > M). Following Equation285

(1), we then have286

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (2)287

where t (≤ predefined total timestep T ) is a ran-288

domly chosen timestep and ϵ ∼ N (0, I) donates289

the pure noise from the Gaussian distribution, thus290

getting noised blocks B. Feeding zt into our net-291

work fθ, one can get the predicted z0 (Section 3.3)292

and compute the objective function (Section 3.3.3).293

By optimizing the loss function, the weights of our294

network fθ will be updated accordingly.295

Inference Process Following DDIM (Song et al.,296

2021), the reverse diffusion process is defined as297

a non-Markovian chain to achieve inference accel-298

eration. An arithmetic sequence τ of length σ is299

predefined as [1, ..., T ] and D purely noised blocks300

xT ∈ RD×5 are sampled from the Gaussian distri-301

bution. Modified from DDIM, we have progressive302

denoising as follows:303

zτi−1 =
√

ᾱτi−1 ẑ0 +
√

1− ᾱτi−1

zτi −
√
ᾱτi ẑ0√

1− ᾱτi

(3)

304

where ẑ0 is predicted by fθ, with the index i 305

traversing from σ to 1. After σ iterations, z0 ∈ 306

RD×5 is recovered from the noise distribution. 307

Note that D is a hyperparameter supposedly larger 308

than the ground truth block number, and thus the 309

filtration of predicted D blocks aims to minimize 310

their divergence from the ground truth. Hence, 311

blocks with the sum predicted probability below 312

the threshold φ are discarded. 2 313

3.3 Model Structure 314

As shown in Figure 2, our model architecture con- 315

sists of three parts: Representation Encoder, Edge 316

Predictor, and Level Predictor. Accepting one sen- 317

tence, noised blocks (with timestep t) as inputs, the 318

model network fθ generates the predicted blocks 319

ẑ0 appropriately. 320

3.3.1 Representation Encoder 321

Given an input sentence S = {x1, x2, ..., xL} com- 322

posed of L words or indexes, here our sentence en- 323

coder consists of a pre-trained BERT (Devlin et al., 324

2019) and a bi-directional LSTM (Lample et al., 325

2016). Utilizing our encoder, token embeddings 326

along with positional embeddings as the input are 327

transformed into contextualized sentence represen- 328

tation RH ∈ RL×d. Then the inner span tokens 329

are extracted from the word indexes indicated by 330

2The probabilities, including Pη and Pv, will be explained
in Section 3.3.2.
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Figure 2: The overview model structure of IPED. To enhance the illustration of the workflow, we utilize three
different colors to denote various feature representations: Pink for level information, Yellow for sentence information,
and Red for edge information. E⃝ represents the encoding of RE. ⊗ denotes the maxpooling operation. To simplify
the illustration, the four Biaffine modules are integrated into one in this overview. To better display the reverse
process as in Figure 1, a reverse-flow arrow is used to symbolize progressive denoising.

the edges of our blocks, yielding the edge repre-331

sentation RE ∈ RN×d following mean-pooling.332

Differently, the level representation RV ∈ RN×d is333

derived directly from an embedding relation matrix334

R ∈ RK×d, where each row represents a distinct335

relation type and K denotes the total number of336

predefined relation types. This matrix is regarded337

as a trainable parameter set in our model.338

To better fuse both edge representation and level339

representation with contextualized information, we340

utilize the hierarchical Co-Attention mechanism341

in our model, which is proven to be effective with342

multimodal data (Chen et al., 2021). Among the343

two Parallel Co-Attention modules in our model,344

we illustrate one of them as an example, which345

attends to the sentence representation RH and the346

edge representation RE simultaneously. An affin-347

ity matrix C ∈ RL×N that transforms sentence348

attention space into edge attention space, and the349

attention score vector ae ∈ RN that optimizes the350

affinity, are calculated as follows:351

C = tanh
(
RT

HWbRE
)

(4)352

He = tanh (WeRE + (WhRE)C) (5)353

ae = softmax
(
wT

heH
e) (6)354

355

where Wb ∈ Rd×d, We ∈ Rk×d, Wh ∈ Rk×d,356

whe ∈ Rk are learnable parameters, He is the357

middle state. Finally, the edge attention vector 358

R̂E ∈ RN×d is calculated as the weighted sum 359

of the edge features plus an additional sinusoidal 360

embedding (Vaswani et al., 2017): 361

R̂E = aeRE +Et (7) 362

where Et is the embedding of timestep t. Equally, 363

the same operation is implemented to obtain the 364

fused level representation R̂V ∈ RN×d. 365

3.3.2 Edge Predictor and Level Predictor 366

For the Edge Predictor, we employ Biaffine to 367

acquire fine-grained fused representations, which 368

is proposed for dependency parsing (Dozat and 369

Manning, 2016) at the outset. Here we have 370

four Biaffine for Rη
EH representations where η ∈ 371

{u, d, l, r} symbolizes four edges, respectively. 372

Rη
EH is obtained as follows: 373

Rη
EH = Biaf fη

(
RH, R̂E

)
374

= RT
HU

η
1R̂E +Uη

2

(
RH ⊕ R̂E

)
+ bη (8) 375

where Uη
1 and Uη

2 donate two parameter matri- 376

ces, bη is the bias vector, ⊕ means concatenation. 377

Then Rη
EH are put through four simple multiple- 378

layer perceptrons with softmax layers to get the 379

probabilities Pη ∈ RN×L for four edges in blocks. 380

For the Level Predictor, a cross-attention layer 381

is utilized to obtain the deep latent representa- 382

tion REVH, incorporating edge-sentence embed- 383

ding Rη
EH to level representation R̂V. Specifi- 384

cally, Rη
EH undergoes a max-pooling operation to 385
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Method
NYT* WebNLG* NYT WebNLG

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GraphRel (Fu et al., 2019) 63.9 60.0 61.9 44.7 44.1 42.9 - - - - - -

RSAN (Yuan et al., 2020) - - - - - - 85.7 83.6 84.6 80.5 83.8 82.1

TPLinker (Wang et al., 2020) 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7

GRTE (Ren et al., 2021) 92.9 93.1 93.0 93.7 94.2 93.9 93.4 93.5 93.4 92.3 87.9 90.0

PRGC (Zheng et al., 2021) 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5

EmRel (Xu et al., 2022) 91.7 92.5 92.1 92.7 93.0 92.9 92.6 92.7 92.6 90.2 87.4 88.7

RelU-Net (Zhang et al., 2022) 93.3 92.9 93.1 94.9 93.7 94.3 - - - - - -

BiRTE (Ren et al., 2022) 92.2 93.8 93.0 93.2 94.0 93.6 91.9 93.7 92.8 89.0 89.5 89.3

OneRel (Shang et al., 2022) 92.8 92.9 92.8 94.1 94.4 94.3 93.2 92.6 92.9 91.8 90.3 91.0

RFBFN (Li et al., 2022b) 93.4 93.2 93.3 93.9 94.1 94.0 93.7 93.6 93.6 91.5 89.4 90.4

ODRTE (Ning et al., 2023) 93.5 93.9 93.7 94.6 95.1 94.9 94.2 93.6 93.9 92.8 92.1 92.5

IPED 94.2 93.5 93.9 95.3 95.7 95.5 94.7 93.4 94.1 93.0 93.6 93.3

Table 1: Main results of IPED and other baselines.

serve as the key and value tensors, while R̂V acts386

as the query tensor. Then the level probability387

Pv ∈ RN×K is determined using a multilayer per-388

ceptron, followed by a softmax layer.389

3.3.3 Loss Function390

In conjunction with the predicted probabilities391

above, the Log-Likelihood Function is maximized392

to train our model parameters. As N blocks are393

generated during training, yet only M ground truth394

blocks exist, we solve the optimal match via the395

Hopcroft-Krap algorithm (Carraresi and Sodini,396

1986). Our objective function can be defined as397

follows:398

L =−
N∑
i=1

[
β1

∑
η∈{u,d}

logPη
i

(
ξη(i)

)
+ β2

∑
η∈{l,r}

logPη
i

(
ξη(i)

)
+ β3 logP

v
i

(
ξv(i)

)]
(9)399

where ξ (i) represents the ground truth edges400

and level of the i-th block, β1, β2, β3 are the hy-401

perparameters for the weights of each prediction402

part.403

4 Experiments404

4.1 Datasets405

Following previous works (Shang et al., 2022; Ning406

et al., 2023), we evaluate our model on two well-407

known datasets NYT (Riedel et al., 2010) and408

WebNLG (Gardent et al., 2017). The NYT dataset 409

is extracted using the distantly supervised method 410

from New York Times news articles, while the 411

WebNLG dataset was originally designed for Nat- 412

ural Language Generation. Each dataset exists in 413

two versions: one is annotated with the whole entity 414

span, and the other is annotated with the last word 415

of entities. For clarity, we mark the fully annotated 416

version as NYT and WebNLG, and the simpler 417

annotated version as NYT* and WebNLG*, respec- 418

tively. Following prior works, we split the test set 419

of each dataset based on the number of triples and 420

the overlapping pattern in each sentence. 421

4.2 Evaluation Metrics 422

For a fair comparison with prior works mentioned 423

above, we report standard micro Precision (Prec.), 424

Recall (Rec.), and F1-score (F1.) as our three eval- 425

uation metrics. Meanwhile, we implement distinct 426

matching rules for each version of the datasets. In 427

the case of NYT and WebNLG datasets, an ex- 428

tracted relational triple is regarded correct only if 429

all words of both entities and the relation type pre- 430

cisely align with the ground truth. For NYT* and 431

WebNLG* datasets, only the last words of two en- 432

tities and the relation are required to be correct. 433

4.3 Implementation Details 434

To make a fair comparison, we utilize the cased 435

base version of BERT (Devlin et al., 2019) as 436

our pretrained model. The AdamW optimizer 437

(Loshchilov and Hutter, 2019) is employed with 438

a learning rate of 3e-5. The hidden size of our 439

cross-attention and biaffine modules is configured 440
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Model
NYT* WebNLG*

Normal SEO EPO Q=1 Q=2 Q=3 Q=4 Q≥5 Normal SEO EPO Q=1 Q=2 Q=3 Q=4 Q≥5

GRTE 91.1 94.4 95.0 90.8 93.7 94.4 96.2 93.4 90.6 94.5 96.0 90.6 92.5 96.5 95.5 94.4

PRGC 91.0 94.0 94.5 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 89.9 91.6 95.0 94.8 92.8

RFBFN 91.2 95.2 95.6 91.4 93.8 94.8 96.4 93.9 91.0 94.6 96.5 90.8 92.6 96.6 94.7 94.5

ODRTE 91.3 95.7 95.9 91.3 93.4 94.6 96.9 95.3 92.1 95.4 95.9 91.1 93.5 95.9 96.1 95.1

IPED 91.0 95.7 96.0 91.5 93.2 94.9 97.3 95.4 92.1 95.6 96.9 91.8 94.2 96.8 96.7 96.0

Table 2: F1 score on sentences with different overlapping patterns and different triple numbers. Q stands for the
number of triples in a sentence.

to 1024. A warm-up learning rate scheduler, with441

a 0.1 ratio and a maximum gradient normalization442

of 1.5, is configured for the training process. Re-443

garding the diffusion setting, the total timestep T444

is set to 1000, the sampling timestep σ to 10, and445

the number of denoising blocks D to 30. The sum446

threshold φ for the edges and level probabilities is447

established at 4.448

4.4 Main Results449

Table 1 presents the performance comparison be-450

tween our IPED and various baselines across four451

benchmarks. It can be seen that our model, IPED,452

outperforms all the baselines and achieves state-453

of-the-art performance, even when compared to454

the strongest explicit table-filling baseline ODRTE455

(Ning et al., 2023) and the leading multi-task joint456

framework RFBFN (Li et al., 2022b). This proves457

the dramatic efficacy of our implicit perspective458

and denoising diffusion strategy.459

Compared with the best baseline ODRTE, our460

IPED achieves a 0.2 absolute improvement in F1-461

score on both NYT and NYT*. It is worth noticing462

that, a significant improvement, 0.8 and 0.6 gains in463

F1-score, is achieved on WebNLG and WebNLG*464

respectively, whereas many models (Wang et al.,465

2020; Gao et al., 2023) blame their poor perfor-466

mance on the complexity arising from hundreds467

of predefined relation types. We attribute our ad-468

vancement on large-relation datasets to block-level469

progressive refinement; specifically, our block-470

denoising diffusion model allows fine-tuned block471

denoising across various levels of the tables.472

The results on NYT and WebNLG reveal that473

our IPED outperforms OneRel (Shang et al., 2022)474

by 1.2% and 2.3%, and GRTE (Ren et al., 2021)475

by 0.7% and 3.3% in terms of F1-score, respec-476

tively. This demonstrates that the implicit table-477

filling scheme can immensely avoid interruptions478

caused by redundant negative tagging, which oth- 479

erwise leads to negative bias. This improvement 480

highlights two key advantages of our approach: the 481

capability to recognize all potential triples and the 482

proficiency in avoiding error association during 483

decoding. 484

4.5 Performance on Complex Scenarios 485

To validate the ability of our model to handle di- 486

verse overlapping patterns and multiple triples, 487

we conduct further experiments on NYT* and 488

WebNLG*. As indicated in Table 2, our proposed 489

IPED model surpasses nearly all baselines on both 490

datasets, with the exception of two scenarios on 491

NYT* when Q equals 2 and when there is no over- 492

lap. In complex scenarios, such as multiple triples 493

within a single sentence, the performance of IPED 494

turns out to be exceptional, surpassing four state- 495

of-the-art models. The reason behind this is that 496

our decoding scheme, the Parallel Boundary Emit- 497

ting Strategy (PBES), has the capacity to accurately 498

map our blocks into ground truth triples. This con- 499

trasts with previous decoding algorithms in explicit 500

table-filling methods (Ren et al., 2021), which often 501

incorrectly decode triples due to error association. 502

4.6 Computational Efficiency 503

To evaluate the computational efficiency of our 504

IPED, we conduct further experiments with respect 505

to Training Time, GPU Memory, Inference Time, 506

and F1-score on NYT and WebNLG. As demon- 507

strated in Table 3, we selected two robust baselines, 508

GRTE and OD-RTE, for comparison. To verify the 509

impact of the sampling timestep, we execute IPED 510

with varying τ values. It can be seen that when 511

σ = 5, the inference speed of IPED is more than 512

double that of GRTE, and it requires the least GPU 513

memory compared to both baselines. Due to the 514

inherent nature of diffusion training, the training 515

time of our model is not the shortest, falling be- 516
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Model
NYT WebNLG

Training Time GPU Mem Infer. Time (1/8) F1 Training Time GPU Mem Infer. Time (1/8) F1

GRTE 931† 18771† 44.1 / 9.6 93.4 118† 15345† 62.4 / 15.6 90.0

OD-RTE 798† 8372† 38.3 / 8.4 93.9 70† 7515† 51.0 / 12.8 92.5

IPED[σ=5] 887 5636 22.1 / 4.7 94.0 102 3778 30.1 / 7.7 93.1

IPED[σ=10] 887 5636 26.6 / 5.8 94.1 102 3778 35.5 / 8.7 93.3

IPED[σ=15] 887 5636 33.4 / 7.2 94.2 102 3778 40.6 / 10.2 93.4

Table 3: Comparison of model efficiency. Training Time means the time (seconds) to train one epoch. GPU Mem
stands for memory (MB) occupation during inference with the batch size of 8, and Infer. Time (1/8) donates the time
(ms) to process each sentence with the batch sizes of 1 and 8, respectively. The superscript † indicates the results
reported by OD-RTE. All experiments are conducted on a single GeForce RTX 3090 with default configuration.

tween OD-RTE and GRTE. Nevertheless, our IPED517

achieves a superior F1-score and greater inference518

efficiency. We conjecture the reasons might be our519

implicit table-filling strategy, which is exempt from520

redundant tagging, and the non-Markovian process521

employed during sampling.522

 

Figure 3: Performance of IPED with different number
of denoising blocks D in terms of F1-score on NYT.

 

Figure 4: Performance of IPED with different number
of denoising blocks D in terms of inference time on
WebNLG. Note that the batch size is 8 during inference.

4.7 Analysis on Sampling Number 523

In the denoising inference process, the number of 524

denoising blocks, denoted as D, is a crucial parame- 525

ter. We conducted additional experiments on it with 526

different sampling timestep σ to evaluate its impact 527

on F1-score and inference time. As depicted in 528

Figure 3, the F1-score decreases sharply when D 529

is less than 15 and remains stable when D exceeds 530

25. It can be observed from Figure 4 that the infer- 531

ence time increases with larger D values, especially 532

when σ is relatively small. Regarding the sampling 533

timestep σ, these two figures indicate that a larger 534

σ brings about a higher F1-score but also increases 535

inference time. To balance the F1-score and in- 536

ference time, we set D at 30 and σ at 10 as our 537

standard configuration. Consequently, our IPED is 538

capable of properly covering all potential blocks, 539

thereby enhancing the recall rate while ensuring 540

optimal inference time for practical applications. 541

5 Conclusion 542

This paper proposes an implicit approach to re- 543

lational triple extraction, diverging from the ex- 544

plicit tagging methods of prior table-filling meth- 545

ods, thereby addressing several prevailing issues. 546

Via denoising the edges and levels of noisy blocks, 547

our introduced block-denoising diffusion model in- 548

crementally generates ground truth blocks, which 549

can be swiftly and precisely converted into triples 550

with our decoding algorithm PBES. Moreover, our 551

network architecture incorporates beneficial mod- 552

ules such as Co-Attention and Biaffine, which pro- 553

mote the fusion of diverse representations. Experi- 554

mental results on public datasets demonstrate that 555

our IPED exceeds the performance of state-of-the- 556

art (SoTA) models, while also achieving signifi- 557

cantly faster inference speeds. 558
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Limitations559

Two limitations of IPED warrant discussion.560

Firstly, IPED exhibits a substantial increase in train-561

ing time consumption compared to some models,562

as detailed in Section 4.6. This can be attributed to563

the extensive denoising timestep required for train-564

ing, leading to slow and fluctuating convergence,565

thereby necessitating a greater number of train-566

ing epochs. Secondly, the application of our im-567

plicit perspective is currently limited to relational568

triple extraction. Such perception holds potential569

for broader application in information extraction570

tasks such as document-level relation extraction571

and event extraction, addressing the issue of re-572

dundant negative tagging inherent in table-filling.573

These possibilities will be explored in our future574

work.575
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A Ablation Study 832

Ablation experiments are conducted to explore the 833

contributions of the primary components within the 834

network architecture and the effectiveness of level 835

diffusion, as shown in Table 4. Observations reveal 836

that removing any of the three components leads 837

to a relative performance drop. Each of these three 838

components is a critical part for representation con- 839

struction, with the Co-Attention module having the 840

most influence. Upon replacing the Co-Attention 841

module with the simple addition of two input rep- 842

resentations, a 1.2% F1 decline is observed. The 843

experiments indicate that all three modules in our 844

network play a crucial role in recovering blocks 845

from noise. 846

It is noteworthy that the performance decreases 847

by 2.2% when Level is omitted. This implies that 848

IPED abandons the denoising diffusion process at 849

the block Level, transitioning the task from three- 850

dimensional to two-dimensional denoising. Specifi- 851

cally, noisy blocks are distributed across each level 852

of the three-dimensional tables, with each block 853

constrained to denoising at a specific level, thus pre- 854

cluding the possibility of progressive refinement 855

with the block level. Thus it can be concluded 856

that block-level denoising is crucial for the effec- 857

tiveness of our block-denoising diffusion model 858

in identifying triple relations, particularly in large- 859

relation datasets like WebNLG. 860

B Dataset Statistics 861

The statistical details of the two datasets are dis- 862

played in Table 5. 863

Model P R F

IPED 93.0 93.6 93.3
w/o Co-Attention 91.9 92.2 92.1
w/o Biaffine 92.2 93.0 92.6
w/o Cross Attention 92.1 92.5 92.3
w/o Level 90.6 91.6 91.1

Table 4: Ablation study on WebNLG dataset.
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Dataset
Sentences Details of test set

Train Valid Test Normal SEO EPO SOO Q=1 Q=2 Q>2 Relations Triples

NYT 56196 5000 5000 3071 1273 1168 117 3089 1047 864 24 8616

NYT* 56195 4999 5000 3266 1297 978 45 3244 1045 711 24 8110

WebNLG 5019 500 703 239 448 6 85 256 175 272 216 1607

WebNLG* 5019 500 703 245 457 26 84 266 171 266 171 1591

Table 5: Statistics of datasets used in our experiments. Q represents the number of triples in a sentence. Note that a
single sentence can simultaneously contain SEO, EPO and SOO overlapping patterns.

12


	Introduction
	Related Works
	Joint Extraction Models
	Diffusion Model

	Methodology
	Implicit Block-Covered Table Filling
	Block-Denoising Diffusion Model
	Model Structure
	Representation Encoder
	Edge Predictor and Level Predictor
	Loss Function


	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Main Results
	Performance on Complex Scenarios
	Computational Efficiency
	Analysis on Sampling Number

	Conclusion
	Ablation Study
	Dataset Statistics

