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ABSTRACT

Large language models often require costly optimization, such as reinforcement
learning, to master complex reasoning tasks. This work demonstrates that rea-
soning ability, once learned, can be extracted and transferred between models as
a compact task vector. We source two publicly available, identically initialized
QWEN2.5 models, one fine-tuned with supervised fine-tuning (SFT) and the other
with group relative policy optimization (GRPO) on the same dataset. From these,
we extract a reasoning vector: vreason = θGRPO − θSFT. We hypothesize that this
vector captures the reasoning capability instilled by reinforcement learning while
factoring out shared knowledge from the SFT process. When added to compati-
ble instruction-tuned models through simple arithmetic, this vector consistently
improves performance across diverse reasoning benchmarks: GSM8K (+4.9%),
HumanEval (+4.3%), SciQ (+1.7%), and BigBenchHard (+12.3% for the 1.5B
model). The performance improvements persist under adversarial conditions. Con-
versely, subtracting the vector causes significant performance degradation (-11.8%
on GSM8K), demonstrating the vector’s strong contribution to the model’s rea-
soning abilities. This work shows how reasoning capabilities, typically developed
through expensive training, can be extracted from existing open-source models
and reused through simple tensor arithmetic, offering a practical way to enhance
models by recycling prior computational investments.

Figure 1: Merging the Fine-Tuning and Reasoning Vectors. Let ∆f = θf − θ0 denote the fine-
tuning vector (f ) and vreason = θr − θf denote the reasoning vector (r). By adding vreason to a base
model, we obtain an enhanced model with improved reasoning capabilities, effectively transferring
the outcome of the reinforcement learning phase.

1 INTRODUCTION

Large language models (LLMs) excel at knowledge retrieval, but often falter on multistep reasoning
tasks. While training-time methods like reinforcement learning from human feedback (RLHF)
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[23; 36] robustly improve reasoning, they demand substantial computational resources and intricate
tuning. This high cost limits their broad application, creating the need for more accessible methods
to enhance reasoning.

Task arithmetic [13] presents a paradigm in which the capabilities learned during fine-tuning can
be represented as vectors and transferred between models by arithmetic. This raises a compelling
question: Can complex reasoning capabilities, acquired through resource-intensive reinforcement
learning, be extracted from existing models and transferred as reusable task vectors?

This paper answers affirmatively by introducing the concept of a reasoning vector. Our approach takes
advantage of the growing availability of open-source models. We source two models with identical
initialization and training data history, differing only in their final optimization stage: one with
supervised fine-tuning (θSFT) and the other with Group Relative Policy Optimization (θGRPO). We
define the reasoning vector as their difference: vreason = θGRPO− θSFT. This controlled subtraction
aims to isolate the parameter changes associated with the RL-induced reasoning enhancements, while
minimizing the influence of dataset-specific knowledge shared by both models. Adding this vector to
a compatible instruction-tuned model allows for the transfer of reasoning abilities without requiring
any new training. This is illustrated in Figure 1.

This method allows for the reuse of the significant computational effort already invested in training
advanced models. By sourcing checkpoints from public model hubs, one can enhance a base model’s
reasoning capabilities through a few simple tensor operations. Our experiments on QWEN2.5 models
(1.5B and 7B parameters) show consistent performance improvements across diverse reasoning
benchmarks. For the 1.5B model, adding the reasoning vector improves accuracy on GSM8K by
4.9%, HumanEval by 4.3%, and BigBenchHard by 12.3%. These gains hold under adversarial
perturbations. An ablation study confirms the vector’s impact: its removal degrades performance on
GSM8K by 11.8%, falling below the SFT baseline.

Our contributions are:

1. We demonstrate that a reasoning capability associated with reinforcement learning can be extracted
as a modular vector component from existing, publicly available models.

2. We show that a reasoning vector derived from mathematical training data generalizes to improve
performance on other domains, including code generation, scientific QA, and logical deduction.

3. We provide a reproducible method that leverages open-source checkpoints and simple tensor
arithmetic, increasing the accessibility of reasoning-enhanced models by promoting the reuse of
existing resources.

2 RELATED WORK

Reasoning in Large Language Models. Enhancing reasoning in LLMs follows two primary
approaches. Prompting strategies generate reasoning from existing parameters: chain-of-thought
prompting [29] encourages step-by-step verbalization, self-consistency [28] samples multiple rea-
soning paths, tree-of-thoughts [33] explores branching logic, and zero-shot reasoning triggers like
“think step by step” [15] activate latent capabilities. Program-aided approaches, such as Program-of-
Thought (PoT) [3] and Program-Aided Language Models (PAL) [8], offload computation to external
interpreters. Training-based methods directly encode reasoning through supervised fine-tuning on
annotated datasets [5; 10] or reinforcement learning, including RLHF [23; 4], PPO [26], and GRPO
[24]. Some methods combine RL with verifier models [5; 17] to evaluate reasoning steps. Despite
progress, benchmarks reveal that even advanced models can struggle with complex multistep reason-
ing. Our work bridges these approaches: we extract the capabilities learned through RL and transfer
them without requiring additional training cycles.

Task Arithmetic and Model Merging. Task arithmetic [13] demonstrates that fine-tuning capabili-
ties can be represented as vectors in parameter space and composed through arithmetic operations.
Extensions include TIES-Merging [31], which reduces interference by resolving sign conflicts; Fisher
merging [19], which weights parameters by their importance; and RegMean [14], which formulates
optimal parameter combinations as a regression problem. Model soups [32] average model weights
for single-task improvement, while methods like Ratatouille [25] target out-of-domain generalization.
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Linear Mode Connectivity [7; 1] provides a theoretical foundation, showing that models fine-tuned
from an identical initialization lie in connected low-loss regions, enabling safe linear interpolation.
Recent work has scaled these techniques to billion-parameter models [12; 34], with practical tools
like MergeKit [9] operationalizing parameter space composition. While prior work focuses on
domain knowledge or task-specific skills, we investigate whether a complex cognitive capability like
multi-step reasoning, acquired via RL, can similarly be isolated and transferred.

Modular Capability Enhancement. Parameter-efficient methods add small, trainable components
to frozen models: LoRA [11] introduces low-rank adaptation matrices, prefix tuning [18] prepends
learnable tokens, and prompt tuning [16] optimizes continuous prompts. Knowledge editing tech-
niques [20] modify specific facts by targeting individual neurons, while tangent space methods
[22] aim to improve weight disentanglement for better merging. Instruction tuning has become
particularly amenable to merging, with studies showing that averaging instruction-tuned experts
can outperform standard multitask training [37; 2]. Unlike these approaches, which often require
task-specific training or narrow edits, our method explores a training-free, global enhancement.
We examine if a reasoning vector derived from mathematical training (GSM8K) can generalize to
improve code generation, scientific QA, and logical deduction, suggesting that reasoning can be
treated as a transferable capability distinct from task-specific patterns [35; 30].

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider two models sourced from a public repository that share an identical architecture, initial-
ization, and pre-training history. Let θSFT denote the parameters of a model that has undergone
supervised fine-tuning on a specific dataset D (e.g., the GSM8K training set) using a standard cross-
entropy loss. Let θGRPO denote the parameters of a counterpart model that was optimized using
Group Relative Policy Optimization (GRPO), a reinforcement learning algorithm, on the same dataset
D with a reasoning-focused reward function. This controlled comparison allows us to isolate the
impact of the reasoning vector itself indepedent of the pretraining dataset.

3.2 REASONING VECTOR EXTRACTION AND TRANSFER

We define the reasoning vector, vreason, as the difference in parameters between these two models:

vreason = θGRPO − θSFT (1)

We hypothesize that this vector, vreason, captures the essential parameter updates introduced by the
reinforcement learning process that enhance multi-step reasoning. Because both donor models share
the same data and base knowledge, the subtraction is intended to factor out this shared, dataset-specific
information, leaving behind a more general representation of the reasoning capability.

Given a target instruction-tuned model, θtarget, that is compatible with the donor models, we can
enhance its reasoning ability through a simple arithmetic operation:

θenhanced = θtarget + α · vreason (2)

where α ∈ [0, 1] is a scalar coefficient that controls the magnitude of the transferred vector. For more
fine-grained control, this operation can be applied to specific layers or modules by introducing a
binary mask m ∈ {0, 1}|θ|:

θenhanced = θtarget + α · (m⊙ vreason) (3)

where ⊙ denotes element-wise multiplication. In our experiments, we found that applying the full
vector (m = 1) with a scaling factor of α = 1 was consistently effective, suggesting the extracted
vector is well-calibrated for transfer without needing further adjustment.

3.3 THEORETICAL FOUNDATION

The safety and effectiveness of this transfer relies on the principle of Linear Mode Connectivity
(LMC) [7]. LMC states that when two models are fine-tuned from the same initialization, they
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Figure 2: Reasoning vector operations in weight space. Each panel illustrates a different transfor-
mation: (1) Vector injection shifts a base model toward improved reasoning. (2) Negation removes
the reasoning component, suppressing chain-of-thought behavior. (3) Addition combines multiple
skill vectors, enabling multi-skill reasoning. (4) Analogy-style composition transfers capabilities
across domains, supporting generalization.

typically lie in the same connected low-loss basin of the optimization landscape. Formally, for
parameters θA and θB obtained from the same starting point, their convex interpolation satisfies:

L(λθA + (1− λ)θB) ≤ max
(
L(θA),L(θB)

)
+ ϵ, λ ∈ [0, 1], (4)

where L is the loss function and ϵ is a small value.

Intuitively, this inequality guarantees that the straight line between θA and θB in weight space does
not leave the low-loss region; moving continuously from one model to the other does not increase
the loss beyond that of the worse endpoint. In geometric terms, both models occupy the same flat
"valley" of the loss surface, and the connecting path avoids high-loss barriers.

Because θSFT and θGRPO share the same initialization and were trained on the same data, they are
expected to satisfy the conditions for LMC. Their difference vector,

vreason = θGRPO − θSFT

therefore points in a direction within this shared low-loss basin. Adding this vector to another
compatible model corresponds to moving it along a trajectory that has been implicitly validated to
remain within a stable, low-loss region. This explains why the transfer is effective and can enhance
reasoning ability without catastrophically destabilizing the base model’s existing capabilities.

3.4 IMPLEMENTATION DETAILS

The complete procedure for enhancing a model requires only two tensor operations, as summarized
below.

Extract: vreason ← θGRPO − θSFT (5)
Transfer: θenhanced ← θtarget + vreason (6)

These operations are element-wise and computationally inexpensive. The vector vreason can be
pre-computed and stored, then applied to any number of compatible target models on demand.

Compatibility Requirements. For a successful transfer, the target model must satisfy:

1. Architecture Match: Identical layer structures, hidden dimensions, and parameter tensor shapes.

2. Tokenizer Compatibility: The same vocabulary and token-to-ID mapping to ensure semantic
alignment, especially in the embedding layer.

3. Initialization Similarity: The models should ideally originate from the same pre-trained check-
point family to ensure their parameter spaces are sufficiently aligned.
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Activation Strategy. While the enhanced models demonstrate improved performance intrinsically,
we find that prefixing input prompts with a simple instruction like “Think step by step” reliably
activates and enhances the transferred reasoning capability. This minimal cue appears to prime the
model to leverage the problem-solving pathways encoded in the reasoning vector, analogous to how
RL-trained models are conditioned to engage in systematic reasoning.

4 EXPERIMENTS

We evaluate the effectiveness of reasoning vector transfer across multiple dimensions: performance
on core reasoning benchmarks, robustness under adversarial conditions, and ablations to understand
the vector’s impact. Our experiments utilize QWEN2.5 models at 1.5B and 7B parameter scales.

4.1 EXPERIMENTAL SETUP

Model Configuration. We use publicly available QWEN2.5 models at 1.5B and 7B scales. For
each size, our donor models consist of a checkpoint fine-tuned on the GSM8K training split via SFT
(θSFT) and a counterpart further trained on the same data with GRPO (θGRPO). The reasoning vector
vreason = θGRPO−θSFT is extracted and then added to the corresponding official QWEN2.5-Instruct
base model (θtarget) using the MergeKit library [9].

Evaluation Configurations. To isolate the effects of the vector and prompting, we compare four
configurations across all benchmarks:

• Baseline: The original instruction-tuned QWEN2.5-Instruct model without modification.

• G+T: The GRPO-tuned donor model prompted with "Think step by step." This column serves as a
reference for the performance of the RL-tuned source model.

• +Vector: The baseline model enhanced with the reasoning vector via addition (α = 1).

• +Vector+Think: The vector-enhanced model evaluated with the prefix “Think step by step”.

Benchmarks. We evaluate performance on five diverse, reasoning-oriented benchmarks:

• GSM8K [5]: Multi-step arithmetic reasoning on grade-school math problems.

• HumanEval & HumanEval+ [6]: Python code generation from natural language docstrings, with
HumanEval+ offering more rigorous tests.

• SciQ [21]: Multiple-choice science questions requiring domain knowledge and reasoning.

• BigBenchHard [27]: A suite of tasks designed to be difficult for LLMs, focusing on multi-hop
reasoning, logic, and symbolic manipulation.

Evaluation Protocol. Accuracy is the primary metric, with pass@1 used for code generation
tasks. For reproducibility, we use greedy decoding (T = 0) for deterministic tasks (GSM8K, SciQ,
BigBenchHard) and set temperature to T = 0.5 for creative generation (HumanEval, HumanEval+).
We use the standardized prompt templates shown in Figure 3 to ensure consistency. We report results
from a single run for each experiment and acknowledge that multi-run evaluations would be needed
to establish statistical significance.

4.2 MAIN RESULTS

Table 1 and Figure 4 present the performance of our method across all benchmarks. The results show
a consistent positive trend: adding the reasoning vector generally improves model performance, with
further gains often achieved by adding a simple reasoning prompt.

For the 1.5B model, vector injection alone boosts GSM8K accuracy from 45.1% to 47.7% (+2.6%).
When combined with a reasoning prompt, the accuracy reaches 50.0%, a total improvement of
+4.9%. This positive trend holds across other domains. On HumanEval, the vector provides a
+2.2% gain, increasing to +4.3% with prompting. Most strikingly, on the complex BigBenchHard
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Figure 3: Evaluation prompt templates for HumanEval and GSM8K. This design allows us
to distinguish between improvements from parameter modification alone versus those elicited by
explicit reasoning prompts.
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Figure 4: Accuracy improvements from reasoning vector transfer. Performance of QWEN2.5
models (1.5B left, 7B right) on five benchmarks. Bars compare baseline (blue), vector-enhanced
(+Vector, green), and vector with prompt (+Vector+Think, orange). Green annotations show absolute
accuracy gains. The vector transfer consistently improves performance, especially on complex
benchmarks like BigBenchHard (BBH).

benchmark, the vector enhances the model’s performance from a near-random 6.7% to 19.0%
(+12.3%), demonstrating a substantial improvement in challenging reasoning scenarios.

The 7B model exhibits similar improvements at a higher performance baseline. On GSM8K, the
vector and prompt together increase accuracy from 55.3% to 60.3% (+5.0%). On HumanEval,
performance reaches 80.5% (+3.7%). While the vector addition alone led to a minor performance
drop on SciQ for the 7B model (-1.5%), this was recovered and surpassed when a reasoning prompt
was included, resulting in a net gain of +1.7%. Overall, the addition of the reasoning vector provides
a consistent and positive impact, indicating the method is robust across different model scales.

4.3 ROBUSTNESS ANALYSIS

To test whether the performance gains stem from genuine reasoning enhancement rather than superfi-
cial pattern matching, we evaluated the 1.5B model on three custom, adversarially modified versions
of the GSM8K dataset.

Perturbation Design. We created three challenging variants:
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Table 1: Accuracy (%) of Qwen2.5 models on reasoning benchmarks. Results show consistent
improvements from reasoning vector injection. Green text indicates improvements over baseline, red
indicates degradation. Absolute change is in parentheses. All results are from a single run.

Qwen2.5 1.5B Qwen2.5 7B
Benchmark Base G+T +Vec +Vec+T Base G+T +Vec +Vec+T
GSM8K 45.1 46.8 47.7 (+2.6) 50.0 (+4.9) 55.3 57.3 58.9 (+3.6) 60.3 (+5.0)
HumanEval 54.9 51.8 57.1 (+2.2) 59.2 (+4.3) 76.8 76.2 79.3 (+2.5) 80.5 (+3.7)
HumanEval+ 51.2 49.3 51.7 (+0.5) 54.3 (+3.1) 71.3 72.0 74.5 (+3.2) 75.0 (+3.7)
SciQ 25.6 25.8 27.1 (+1.5) 27.2 (+1.6) 39.6 37.0 38.1 (-1.5) 41.3 (+1.7)
BigBenchHard 6.7 16.7 16.9 (+10.2) 19.0 (+12.3) 27.3 28.2 28.2 (+0.9) 28.7 (+1.4)

• GSM Hard Lite: Problems with extended numerical ranges and more reasoning steps, increasing
computational and logical complexity.

• Noise+Digit: The injection of irrelevant numerical tokens, typos, and distracting punctuation to
test the model’s focus.

• Sentence Shuffle: The order of sentences within a problem is altered while preserving logical
dependencies, requiring the model to reconstruct the reasoning path from content rather than
position.

As shown in Table 2 and Figure 5, the benefits of the reasoning vector persist robustly under all
adversarial conditions. The enhanced model maintains a consistent 2-6% performance advantage
over the baseline. Even when faced with noise and structural shuffling designed to break simple
heuristics, the vector-enhanced model consistently outperforms the baseline. This provides strong
evidence that the transferred capability is a fundamental improvement in systematic problem-solving,
rather than a brittle, memorized pattern.

4.4 ABLATION STUDIES

To investigate the properties and direct impact of the reasoning vector, we conducted a series of
systematic ablations on the 1.5B model using the GSM8K benchmark.

Vector Removal Analysis. In a critical test, we subtracted the reasoning vector from the baseline
model (θdegraded = θbase − vreason). As shown in Table 3, this operation resulted in a catastrophic
performance collapse. Accuracy on GSM8K plummeted to 33.4%, an 11.8% drop relative to the
baseline. This strong, symmetric effectwhere addition improves performance and subtraction severely
degrades itunderscores the vector’s significant contribution to the model’s reasoning abilities.

Scaling Analysis. We investigated the effect of the scaling factor α from Equation 2, testing values
in {0.5, 1.0, 1.5, 2.0}. We found that α = 1.0 achieved the optimal performance (50.0%), while
α = 0.5 yielded a smaller gain (47.2%), and values greater than 1.0 began to degrade performance
(48.1% for α = 1.5). This suggests the reasoning vector as extracted is naturally well-calibrated for
direct transfer.

Table 2: Robustness evaluation on Qwen2.5 1.5B. The reasoning vector maintains its advantage
even under challenging, custom-designed perturbations of the GSM8K dataset.

Configuration GSM8K Hard Lite Noise+Digit Shuffle

Baseline 45.7 38.2 41.0 40.6
+ Vector 47.7 (+2.0) 41.9 (+3.7) 44.3 (+3.3) 43.2 (+2.6)
+ Vector + Think 49.4 (+3.7) 43.8 (+5.6) 46.8 (+5.8) 45.5 (+4.9)

Cross-Domain Transfer. To assess generalization, we tested the transferability of reasoning vectors
between domains. A vector derived from code-based RL training (on HumanEval) improved GSM8K

7
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Figure 5: Robustness of Qwen2.5 1.5B under four perturbation conditions. Blue bars show
baseline, orange is vector-enhanced, and green adds a reasoning prompt. The vector provides
consistent gains across all conditions.

performance by 2.1%. Conversely, the math-derived vector from GSM8K improved HumanEval
performance by 1.8%. While these cross-domain gains are smaller than in-domain gains, their
existence indicates that the extracted vectors capture some domain-general components of reasoning.
The ablation studies provide strong evidence for the vector’s direct impact on reasoning, its well-
calibrated nature, and its potential for modest generalization.

Table 3: Ablation study on GSM8K using Qwen2.5 1.5B. Subtracting the vector causes a severe
performance drop (red), while adding it consistently improves results (green), highlighting the vector’s
strong impact.

Model Configuration Think Prefix Accuracy (%)

SFT Baseline No 45.1
GRPO Donor Yes 46.8
+ Reasoning Vector No 47.7 (+2.6)
+ Vector + Think Yes 50.0 (+4.9)
- Vector (Subtracted) Yes 33.4 (-11.8)

5 LIMITATIONS

While our findings demonstrate the promise of reasoning vectors, it is crucial to acknowledge the
limitations of this work.

Architectural and Initialization Constraints. The success of our method hinges on strict com-
patibility between the donor and target models. Effective transfer requires identical architectures,
tokenizers, and a shared pre-training initialization family to ensure the parameter spaces are suffi-
ciently aligned. Transferring reasoning vectors across different model families (e.g., from a Llama
model to a Qwen model) is not guaranteed to work and remains an important open question.

Dependence on Existing Donor Models. Our approach is framed around reusing prior computa-
tional effort, not eliminating it. The method is contingent on the public availability of suitable SFT
and RL-tuned donor models that meet the compatibility criteria. The significant cost of creating these
donor models in the first place is externalized, and the method’s applicability is therefore tied to the
richness of the open-source model ecosystem.

8
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6 CONCLUSION

This work establishes that reasoning ability can be extracted and transferred as a compact task vector
between compatible models. By isolating parameter differences between SFT and GRPO checkpoints,
we demonstrate that vreason = θGRPO − θSFT captures transferable cognitive capabilities that
generalize across diverse domains.

Our key finding is that the reasoning behaves as a modular and transferable component in parameter
space. Consistent improvements in mathematical reasoning (GSM8K, +4.9%), code generation
(HumanEval, +4.3%), and logical deduction (BigBenchHard, + 12.3%) indicate that the vector
encodes domain-general problem solving strategies. Symmetric effects in ablation studies provide
compelling evidence: Adding vreason improves performance, while subtracting it causes severe
degradation (-11.8% in GSM8K), demonstrating that reasoning capabilities exist as manipulable
directions in parameter space.

Rather than requiring costly RL training for each target model, practitioners can now enhance reason-
ing through two tensor operations completing in seconds. This transforms reasoning enhancement
from compute-intensive training to lightweight model editing, democratizing access by leveraging
existing open-source checkpoints. The success of cross-domain transfer, where math-derived vectors
improve code generation, reveals deeper connections between reasoning modalities.

Our work demonstrates that reasoning is a task vector that can be moved, combined, and reused,
opening new avenues for efficient model enhancement in the open-source AI era.

7 USE OF LANGUAGE MODELS IN WRITING

We used large language models (LLMs) (ChatGPT, Gemini and Claude) to assist in drafting and
refining the text of this paper. These tools supported clarity, coherence, and stylistic consistency
throughout the writing process.

REFERENCES

[1] Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries, 2023. URL https://arxiv.org/abs/2209.04836.

[2] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Im-
proving model selection and boosting performance in domain generalization, 2022. URL
https://arxiv.org/abs/2110.10832.

[3] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks, 2023.
URL https://arxiv.org/abs/2211.12588.

[4] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.
URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

[6] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level
code generation. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, ICSE ’24, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.
1145/3597503.3639219.

9

https://arxiv.org/abs/2209.04836
https://arxiv.org/abs/2110.10832
https://arxiv.org/abs/2211.12588
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

[7] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[8] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: program-aided language models. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[9] Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vladimir
Karpukhin, Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s MergeKit: A
toolkit for merging large language models. In Franck Dernoncourt, Daniel Preoţiuc-Pietro,
and Anastasia Shimorina (eds.), Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pp. 477–485, Miami, Florida, US, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-industry.36.
URL https://aclanthology.org/2024.emnlp-industry.36/.

[10] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021. URL https://arxiv.org/abs/2103.03874.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1
(2):3, 2022.

[12] Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-
merging: Tuning-free high-performance model merging. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 122741–122769. Curran Associates, Inc., 2024.
URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf.

[13] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. URL
https://arxiv.org/abs/2212.04089.

[14] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models, 2025. URL https://arxiv.org/abs/2212.
09849.

[15] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran
Associates Inc. ISBN 9781713871088.

[16] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243/.

[17] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quan-
titative reasoning problems with language models. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 3843–3857. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf.

[18] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation,
2021. URL https://arxiv.org/abs/2101.00190.

10

https://aclanthology.org/2024.emnlp-industry.36/
https://arxiv.org/abs/2103.03874
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/dda5cac5272a9bcd4bc73d90bc725ef1-Paper-Conference.pdf
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/2212.09849
https://arxiv.org/abs/2212.09849
https://aclanthology.org/2021.emnlp-main.243/
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/18abbeef8cfe9203fdf9053c9c4fe191-Paper-Conference.pdf
https://arxiv.org/abs/2101.00190


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[19] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging. In Proceed-
ings of the 36th International Conference on Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

[20] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating
and editing factual associations in gpt. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 17359–17372. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf.

[21] Steven Moore, Ellen Fang, Huy A. Nguyen, and John Stamper. Crowdsourcing the evaluation of
multiple-choice questions using item-writing flaws and bloom’s taxonomy. In Proceedings of the
Tenth ACM Conference on Learning @ Scale, L@S ’23, pp. 2534, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400700255. doi: 10.1145/3573051.3593396.
URL https://doi.org/10.1145/3573051.3593396.

[22] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the
tangent space: Improved editing of pre-trained models, 2023. URL https://arxiv.org/
abs/2305.12827.

[23] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-
man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language
models to follow instructions with human feedback. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

[24] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

[25] Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-
Paz. Model ratatouille: recycling diverse models for out-of-distribution generalization. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org,
2023.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[27] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging
BIG-bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.824. URL https://aclanthology.
org/2023.findings-acl.824/.

[28] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

[29] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://doi.org/10.1145/3573051.3593396
https://arxiv.org/abs/2305.12827
https://arxiv.org/abs/2305.12827
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://arxiv.org/abs/1707.06347
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[30] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time, 2022. URL https://arxiv.org/abs/2203.
05482.

[31] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
resolving interference when merging models. In Proceedings of the 37th International Confer-
ence on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran
Associates Inc.

[32] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng
Tao. Model merging in llms, mllms, and beyond: Methods, theories, applications and opportu-
nities, 2024. URL https://arxiv.org/abs/2408.07666.

[33] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

[34] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super
mario: absorbing abilities from homologous models as a free lunch. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

[35] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning
with reasoning, 2022. URL https://arxiv.org/abs/2203.14465.

[36] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting
in large language models, 2022. URL https://arxiv.org/abs/2210.03493.

[37] Chujie Zheng, Ziqi Wang, Heng Ji, Minlie Huang, and Nanyun Peng. Model extrapolation expe-
dites alignment. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1025–1041, Vienna, Austria, July 2025. Association
for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.51.
URL https://aclanthology.org/2025.acl-long.51/.

12

https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2408.07666
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2210.03493
https://aclanthology.org/2025.acl-long.51/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 BENCHMARK DETAILS

The BigBenchHard benchmark is a collection of challenging tasks designed to probe the limits of
LLM reasoning. The tasks used in our evaluation span several domains.

Table 4: Breakdown of tasks within the BigBenchHard benchmark.

Task Domain Problems Complexity
logical_deduction_seven_objects Logical deduction/constraint reasoning 250 High
temporal_sequences Temporal/event-order reasoning 250 Medium
multistep_arithmetic_two Multi-step word arithmetic 250 Medium
tracking_shuffled_objects_seven_objects Object-tracking/working-memory 250 High
dyck_languages Formal languages/bracket-matching 250 Medium

B SAMPLE MODEL OUTPUTS SHOWING ABLATIONS

B.1 PROBLEM STATEMENT

A fellowship program evaluates applicants through a sequence of stages:

1. Stage 1 (Aptitude): Out of 960 applicants, 5
8 pass.

2. Stage 2 (Technical): Of those who passed Stage 1, 3
5 pass while 2

5 fail.

3. Retake: Of the Stage 2 failures, 1
4 are invited to retake the test, and 2

3 of them pass.
4. Portfolio Review: From the Stage 2 failures, a subset is invited to submit portfolios, of

which half succeed.
5. Final Interview: 70% of all applicants reaching this stage are awarded the fellowship.
Question: How many applicants ultimately receive the fellowship?

B.2 MODEL A θbase − vreason

Stage 1 (Aptitude)

Applicants = 960, Pass rate = 5
8

⇒ Pass = 960× 5
8 = 600

Stage 2 (Technical)

Pass rate = 3
5 , Fail rate = 2

5

Pass = 600× 3
5 = 360, Fail = 600× 2

5 = 240

Retake (from Stage 2 failures)

Invited = 240× 1
4 = 60

Pass = 60× 2
3 = 40

Portfolio (Side Door) Incorrectly applied to Stage 1 passers

Invited = 600× 1
9 = 200

3 ≈ 66.67

Pass =
(
200
3

)
× 1

2 ≈ 33.33

Final Interview
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Final pass rate = 7
10

Final passes ≈ 33.33× 7
10 ≈ 23.33 ⇒ 23

B.3 MODEL B θbase + vreason

Stage 1 (Aptitude)

Applicants = 960, Pass rate = 5
8

⇒ Pass = 960× 5
8 = 600, Fail = 960− 600 = 360

Stage 2 (Technical)

Pass = 600× 3
5 = 360, Fail = 600− 360 = 240

Retake (from Stage 2 failures)

Invited = 240× 1
4 = 60

Pass = 60× 2
3 = 40

Portfolio (from Stage 2 failures)

Invited = 360× 1
9 = 40

Pass = 40× 1
2 = 20

Final Interview

Candidates = 360 (Stage 2 pass) + 40 (Retake pass) + 20 (Portfolio pass) = 420

Final pass rate = 7
10

⇒ Final passes = 420× 7
10 = 294

At-a-glance comparison

Model Computation Path Final Passes
θbase − vreason Portfolio misapplied to Stage 1 passers 23
θbase + vreason Correct aggregation at Final Interview 294

These examples qualitatively illustrate the effect of the reasoning vector. Removing it causes the
model to lose the correct sequence of steps and misapply rules (e.g. applying the portfolio stage to
Stage-1 passers), yielding an implausibly small final count. Adding it restores a coherent solution
path: The model tracks subsets correctly, aggregates at the final stage, and recovers the expected
result. The purpose of these examples is illustrative rather than evaluativethey are not used to compute
accuracybut they show that the vector reliably strengthens multistep reasoning. We also observe a
secondary benefit: outputs become more structured and consistent in formatting after vector injection.
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