
Fleet2D: A fast and light simulator for Home
Robotics

Apaar Sadhwani∗

Amazon Lab126
Sunnyvale, CA, USA
apaar@amazon.com

Hamid Badiozamani∗

Amazon Lab126
Sunnyvale, CA, USA

badiozam@amazon.com

Tushar Agarwal
Amazon Lab126

Sunnyvale, CA, USA
tagarw@amazon.com

Saraswathi Marthandam
Amazon Lab126

Sunnyvale, CA, USA
marthsar@amazon.com

Amin Atrash
Amazon Lab126

Sunnyvale, CA, USA
amatrash@amazon.com

Jing Zhu
Amazon Lab126

Sunnyvale, CA, USA
jngzh@amazon.com

Aarthi Raveendran
Amazon Lab126

Sunnyvale, CA, USA
raveendr@amazon.com

William D. Smart†

Oregon State University
Corvallis, OR, USA

smartw@oregonstate.edu

Abstract—Home robots operate in diverse and dynamic envi-
ronments, delivering a range of functions that enhance utility.
Many of these functions span extended periods, from weeks to
months, typically improving through observations and interac-
tions. Efficient development and validation of these functions
necessitate simulations that can run faster than real time.
However, many current robot simulators focus on high-fidelity
physics simulation that limits their speed to a small multiple of
real time. While these are tailored for critical low-level functions,
they aren’t optimized for simulating higher-level functions such
as learning human behaviors and interacting with them. In
this work, we introduce Fleet2D, a fast, lightweight simulator
designed for long-term human-robot interactions in the home.
By abstracting away low-level physics, aggressively caching
compute-intensive operations, and operating in a simplified two-
dimensional world, we are able to perform realistic simulations of
robot behavior at more than 10,000 times real time. We present
the design, development, and validation of Fleet2D, showcase its
effectiveness on a number of use cases in home robotics, and
discuss how it has accelerated the development cycle for a home
robot. Finally, we make Fleet2D open source for the research
community at github.com/amazon-science/fleet2d.

Index Terms—Simulation, Robotics, HRI

I. INTRODUCTION

The burgeoning field of home robotics represents a depar-
ture from traditional, industrial robotics in significant ways.
Unlike industrial robots, which predominantly function in
controlled, well-structured environments, home robots are en-
gineered to operate in a wide variety of unstructured, dynamic
environments. Home robots, such as Astro (Fig. 1) [1] and
Jibo [2], are expected to adapt to an ever-changing range
of circumstances through learned behaviors and to interact
meaningfully with human beings. This intrinsic complexity
presents unique challenges for feature development in home
robots: simulating a diverse set of scenarios over long time
horizons. From initial prototyping to model fine-tuning, testing
and quality assurance, simulation is an indispensable tool

∗The authors contributed equally to this work.
† Work done as a visiting scholar at Amazon Lab126.

Fig. 1. Astro [1] is a household robot for entertaining users and home
monitoring.

to ensure that robots behave safely and effectively in these
nuanced environments.

Most contemporary simulators have been developed with
an emphasis on intricate, short-timescale details. They pri-
oritize capabilities such as high-fidelity physics engines and
precise sensor simulations. This level of detail is undoubtedly
required for critical low-level functions such as sensing and
manipulation, much of which directly interacts with raw sensor
data. Yet, when it comes to broader functionalities inherent
to home robots—like estimating where in the home users
might be—these simulators often become limiting. They tend
to be slow, computationally intensive, and necessitate the
specification of low-level details, which can be cumbersome
in practice.

Consider a high-level function such as long-term human
presence [3] that estimates the rooms users frequent. It is a key
ingredient to create opportunities for human-robot interaction
(HRI) [4]. At a low level, a perception model identifies
users whenever they are in the robot’s field of view. The
presence layer then aggregates perception signals over weeks
and months to develop a robust estimate. To develop human
presence algorithms, the high-fidelity simulation of perception
is not critical and efficient heuristics should suffice. Essen-

1

https://github.com/amazon-science/fleet2d


tially, developing such high-level functions in home robotics
requires long-term simulations, where the details are abstracted
without compromising the essence of the scenarios. Fleet2D,
a Fast lightweight environment for experimentation in 2D, fills
this gap.

The primary contributions of this work include:
● We delve into the design and architecture of Fleet2D. This

also serves as a template for the design of HRI simulators.
● We compare Fleet2D with existing simulators and find it

to be extremely fast and light.
● We employ Fleet2D in the development of a home robot

and showcase its versatility across multiple use cases.
● We make Fleet2D open source for the research commu-

nity at github.com/amazon-science/fleet2d.

II. RELATED WORK

The use of simulation in robotics has become an indispens-
able tool for researchers and developers, providing a controlled
environment to prototype, test, and refine algorithms before
deploying them on physical robots [5]. In the realm of home
robotics, where robots are expected to operate in diverse and
often unpredictable environments, simulation plays a pivotal
role. It helps recreate, both, a large variety of scenarios and
identified edge cases where the robot must remain performant.
For HRI applications, simulation is used to refine long-term
robot behavior to better align it with human expectations [6].

Before embarking on building Fleet2D, we surveyed a
number of existing robot simulators including Gazebo and Un-
real. Robotic simulators can be roughly categorized into two
groups: three-dimensional (3D) and two-dimensional (2D).
The 3D simulators typically offer higher fidelity and broader
applicability, making them a more popular choice. We look at
these next and close this section by noting general trends in
the area of long-term simulation.

3D simulators: Numerous multiagent robotics simulators
exist today, emphasizing high fidelity in dynamics, kinematics,
inverse kinematics, and collision detection across all major
areas of robotics. Notably, Gazebo [7] stands out as a fully-
featured 3D open-source simulator integrated with ROS 2,
while Webots [8], another comprehensive 3D open-source sim-
ulator, is distinctive for its refined ODE physics engine. On the
other hand, PyBullet [9] is an open-source simulator optimized
for sim-to-real transfer, running on the Bullet Physics engine.
Additionally, CoppeliaSim [10], formerly known as V-REP,
is a versatile closed-source simulator that supports multiple
physics engines and integrates seamlessly with ROS. The over-
arching aim of these simulators is to maintain precise physical
models to smoothly transition algorithms from the simulation
to real-world robotic applications. In the realm of HRI, there
are several niche solutions, such as simDRLSR [11], which is
geared towards learning reinforcement learning policies. It is
focused on vision signals and short-term interactions, making
it too computationally heavy for our purpose.

[12] makes a comparison across multiple 3D simulators.
Common to all these is the goal of simulating with high
fidelity. We are neither concerned with this level of fidelity, nor

in directly transferring a motion or perception algorithm to the
robot. Instead, we wish to study long-running HRI algorithms
by simulating our robot’s interactions with humans over long
periods of time. Thus, our simulator is concerned more with
behavioral contact points (or lack thereof) rather than physical
ones.

2D simulators: Given the high-level behaviors we seek,
2D simulators are likely to offer a better balance of speed
and fidelity. Stage [13] is a 2D multi-robot simulator that’s
part of the Player/Stage project. Stage provides collision
detection, odometry, and sensing of range-finders among other
capabilities. Unfortunately, it is no longer maintained. The
Robotics Toolbox for MATLAB [10] provides a collection
tools for robotics and automation, primarily intended for robot
kinematics, dynamics and motion planning. For a more en-
compassing experience, Microsoft Robotics Developer Studio
(MRDS) [14] stands out as a 3D simulator with rich tooling
that also handles 2D robotic simulations. Nevertheless, it’s
worth noting that these simulators aren’t specifically tailored
for home robotics, and their interfaces necessitate specifying
intricate low-level details, making adoption more challenging.

Long-term simulation: We note that simulation capabilities
can be looked at through the lens of an operating point on the
Pareto frontier trading off between speed and fidelity. The crux
of Fleet2D is the desire to speed up simulation drastically
while sacrificing the fidelity of low-level functions that are
not critical for our long-term scenarios. We observe a similar
trend in other areas, such as in LimSim [15], a long-term
multi-scenario traffic simulator for urban road networks that
contrasts with other fine-grained simulators in its domain. Like
Fleet2D, LimSim emphasizes both diverse scenarios and long-
running simulations.

III. DESIGN

The design of Fleet2D is motivated by several use-cases,
which are discussed next. We work backwards from these to
identify guiding principles and capabilities for the simulator.
Finally, we document key design decisions that are baked into
the simulator to maintain alignment with these principles.

There are two reasons to document this process. First,
it provides the reader with a deeper understanding of both
the capabilities and the limitations of Fleet2D. Second, more
generally, this process provides a template for designing HRI
simulators which model the world at an appropriate level of
complexity. This is often cited as a major barrier for the use
of simulation in robotics [5].

A. Use-cases

We outline four categories of use-cases that motivated the
design of Fleet2D. While there may be several use-cases
within each category, we use examples related to human
presence (defined below) as a common thread through the
paper.

Prototyping: Developing new algorithms and fine-tuning
existing ones require simulating diverse scenarios and the
ability to conduct large-scale experimentation over these.

2

https://github.com/amazon-science/fleet2d


Consider the problem of estimating human presence. Long-
term presence (LTP) [3] estimates spaces inside the home
where users typically reside. It is concerned with the long-
term averages. LTP has a burn-in period of weeks to months,
over which its estimate improves by aggregating the sparse
human observations the robot collects daily. It is a key driver
of HRI, for example, by allowing the robot to hang out in non-
intrusive spots easily accessible to its users [4]. Prototyping
LTP algorithms requires simulation over 30-60 days, and gen-
erating scenarios with a gamut of floorplans, human activity
schedules and robot behaviors. Fine-tuning LTP models adds
an outer loop to search over the model (hyper)parameters.
In sum, this requires long-term simulations and large-scale
experimentation. Other variants of presence, such as Real-time
Presence (RTP) [16], operate on shorter time horizons but still
require experimentation over a wide variety of scenarios and
model parameters.

Cross-functional interaction: Many features of the robot
are developed in parallel. Even so, they must ultimately
function seamlessly when integrated. This integration can lead
to interaction effects. For example, LTP suffers from poor
performance in the burn-in period. Another feature, Find [17],
is responsible for finding a user and leverages LTP. This
dependency implies that the burn-in performance of Find must
also be tested over the same horizon as LTP.

In other cases, interactions can manifest in unexpected ways.
For HRI functions in particular, this can lead to feedback loops
that are critical to identify and mitigate early. Consider Hang-
out [4], which seeks to place the robot in the frequently-visited
spaces provided by LTP. This action, in turn, accelerates the
learning of LTP – a feedback loop. To leverage it, however,
LTP updates must now be carefully designed; specifically, LTP
approaches that assume independent human-robot motions
are prone to catastrophic failures. To mitigate this, LTP and
Hangout must be tested together early in prototyping. [5]
cites facilitating the understanding of HRIs an underutilized
opportunity for robotic simulation.

We next discuss a broader category of use-cases that
emerged outside of the prototype-develop cycle. One em-
ploys the simulator for testing at the product stage (post-
development) and the other for generating training data for
ML models (pre-prototyping).

Manual Testing: Aside from testing at the algorithm
development stage, Quality Assurance (QA) teams perform
thorough product testing. This requires identifying unit tests
that may be run automatically instead of in a time-consuming,
manual fashion on the robot [18]. Enabling this requires fine-
grained control over the scenario, long-term simulation and
reproducibility for features such as LTP.

Data Generation: Several HRI capabilities employ
learning-based methods. Machine learning (ML) models typ-
ically require large training datasets that are expensive to
acquire manually. An alternative route is to train using vast
amounts of synthetically generated data and to then fine-tune
on a small amount of manually collected high quality data. [5]
cites the use of robotic simulation for generating data for ML

models as a key opportunity. As a specific example, we wish to
employ Fleet2D for generating training and evaluation data to
develop RTP models. Such large-scale data generation requires
long-term simulation, diverse scenarios, and reproducibility of
the evaluation dataset.

B. Capabilities

We organize the common capabilities across different use-
cases to prioritize these in the simulator design. These are
summarized in Table I.

Long-term simulation is a capability that many features
require, forming the cornerstone of our simulator. Specifically,
it refers to simulations spanning multiple months. We caution
that this may not generalize to the robot functionality (or even
HRI features) in another context.

Scenario diversity is crucial for training and fine-tuning
models. It helps identify gaps early through exhaustive cover-
age of the domain space. For model training, it ensures ML
models assimilate a broad spectrum of priors. In our case, this
encompasses variations in three vital components of Fleet2D:
floorplan, human activity schedule, and robot behavior, along
with algorithm-specific parameters to be fine-tuned.

Reproducibility is an essential feature for HRI research and
will serve as a guiding principle in the simulator design.

Manual adjustment pertains to the capability to manually
configure a scenario based on high-level semantics. A key
ingredient for enabling this is providing a simulator interface
at the appropriate level of abstraction.

TABLE I
LIST OF CAPABILITIES FOR A SUBSET OF GENERAL HRI FEATURES.

Capabilities

Feature Long-term
simulation

Diverse
scenarios Reproducibility Manual

adjustment

Prototyping
LTP [3] ✓ ✓ ✓

RTP [16] ✓ ✓

Cross-functional interaction
Find [17] ✓ ✓ ✓ ✓

Hangout [4] ✓ ✓ ✓ ✓

Manual
testing ✓ ✓ ✓

Data
generation ✓ ✓ ✓

✓= Requirement ✓= Desirable feature

C. Guiding principles

Based on the capabilities we seek, we prioritize the follow-
ing characteristics in the simulator architecture:

Fast and light: High-speed simulation is a top priority as
many use-cases need both long-term simulation and diverse
scenarios. Roughly speaking, we seek a speedup on the order
of 10,000x to allow performing 30-day simulations in under
5 minutes on a PC without specialized hardware acceleration.
This is highly desirable from the standpoint of quick and
iterative prototyping.

3



Consider a large-scale evaluation with 10 variants each for
the floorplan, robot and human motion. This would result in
1,000 variants overall, requiring about 3.5 days of compute
that may be executed in parallel. Fine-tuning models would
incur additional expense due to the model parameters. For
example, a minimal search over 10 hyperparameters would
require over 35 days. We note in passing that this precludes
the use of ROS-based simulators that primarily target distri-
bution of a single (compute-heavy) experiment over multiple
machines. There the (de)serialization of messages alone would
slow the simulator down to significantly below the 10,000x
threshold.

Reproducibility: We seek to bake reproducibility into the
design of Fleet2D. Seeded experiments must be reproducible.
Further, even when randomness is desired (and no seed is set),
the design ensures that traceability is maintained to reproduce
any run.

Modularity: We seek a modular design that is easy to fol-
low, extend, and stitch with external modules for developers.
Further, we seek to reflect this modularity in configuration
files to enable a facile interface with high-level semantics. We
make an effort to maintain this simplicity - a benefit to all
users - over expanding functionality to narrow use-cases.

D. Key Decisions

We end this section by identifying key design decisions
baked into Fleet2D.

Abstracting low-level functionality: is an important mech-
anism through which we increase speed, lower compute and
reduce complexity. At a high level, our strategy has been to
significantly simplify the compute-heavy operations using, say,
data-driven heuristics.
● Mimic perception signals: The fine-grained details of

human detection models do not matter to the higher-
level robot functions we described in Table I. Rather,
what matters is if the user was detected, identified and
their high-level attributes (e.g. location, pose, activity).
We mimic this process probabilistically, by randomly
creating false positive/negative detection/identification as
a function of the relative distance and orientation. We
match these rates to the reported on-device error profile.
Similarly, we mimic the robot’s visual perception in both
its angular and distance range (min and max).

● 2D world: Once the above heuristics are employed, the
value of operating in a 3D simulation world quickly
diminishes, especially given the significant compute it
takes.

Extensive caching: Even after abstracting low-level com-
plexity using heuristics, there are important compute-heavy
operations such as FOV computations (in 2D) that still remain.
An option in Fleet2D allows precomputing the visibility poly-
gons [19] for a given floorplan (see Fig. 2). The experiments
show an order of magnitude speedup by leveraging this cache.
Note that visibility polygons depend only on the floorplan, and
crucially, not on robot characterisitcs. This permits scalable
experimentation over robot parameters.

Fig. 2. An illustrative example of the 2D world in Fleet2D, here with 1
robot, 2 users and a synthetically-generated floorplan. The (black) dashed line
corresponds to the visibility polygon from the robot’s x-y location, which is
agnostic to the robot’s orientation. The (red) dotted line shows the heuristic
used to approximate the range of the robot’s visual perception. An entity must
be within both these regions to be observable by the robot.

Hierarchical components: We adopt a hierarchical
component-based design across all components (to be de-
scribed shortly). Adding new components entails creating new
classes under the relevant component. Modifying behaviors
entails subclassing components. Each component is separately
configured from its specific section within the configuration
file (Fig. 4).

IV. ARCHITECTURE

A. Organization

The high-level framework of Fleet2D is shown in Fig. 3. A
single N -day trajectory is defined by the scenario (inputs),
runs in the simulation engine (processing), and generates
artifacts (outputs).

Scenario: represent the long-running scene to simu-
late. Its core components such as the floorplan, users,
robots and their behaviors, are discussed in Section IV-B.
A scenario is defined via the configuration file (Fig. 4)
that provides a high level interface suitable for the
HRI functions we study. For example, we often use
simulation.duration.days=30 and HouseExpo [20]
floorplans by setting floorplan.type="he" and select-
ing one of the many floorplans. Finer options, such as robot
speed and FOV parameters, can be controlled from deeper
within its nested structure.

Simulation engine: is the workhorse of Fleet2D and exe-
cutes a discrete-time simulation representing the scenario. It is
fast, light and reproducible. The execution sequence within a
single simulation step is described in detail in Fig. 5. The sim-
ulation parameters, such as the time granularity (default 1sec)
and a seed for pseudorandomness, are set in the configuration
file.

Artifacts: may be generated by each component of Fleet2D,
although the metrics are tasked solely with that. These artifacts
are organized and stored for downstream analysis.

4



Fig. 3. High-level framework of Fleet2D. A scenario defines a long-
running scene of interest using its different components. It is executed by
the simulation engine, which runs a multi-entity long-term simulation and
generates artifacts stored for downstream analysis.

Fig. 4. (left) The hierarchical code structure of the scenario components
in Fleet2D. It is extensible, and new functionality continues to be integrated
continually. (right) The configuration file offers a high-level interface to define
this scenario (details folded to conserve space). It mirrors the code components
for ease of use and development.

B. Core Components

Fleet2D has four core components: floorplan, entities (users,
robots, objects), algorithms, and metrics. While the simulator
functionality is continually expanding, this section emphasizes
the significance of each component and identifies key aspects
facilitating speed, reproducibility and modularity in Fleet2D.

Floorplan: defines the structural layout of a home and
captures the semantics of rooms (e.g. kitchen) and objects (e.g.
bed, door) to support HRI use-cases. Fleet2D offers both real
and synthetic (e.g. HouseExpo [20]) floorplans that can be
configured from the configuration file (Fig. 4). Typically, a
floorplan is meant to be static, although our design allows for
dynamic non-structural elements (e.g. updating room seman-
tics). Floorplan enables entities and algorithms in Fleet2D
to create customizable layers, which is a general mechanism
to support several use-cases. For example, the robot may use

Fig. 5. Execution within a single simulation step in Fleet2D. As shown by
the top arrows, each component updates sequentially from left to right and
has access to the components updated prior to it (e.g. the entities may use the
updated floorplan when updating). Upon completion, the algorithm updates
feed back into the entities and the floorplan for consumption in the next
step, as indicated by the bottom dashed arrows. These are crucial for cap-
turing interactions between entities (e.g. HRI). Components within a bucket
update independently (e.g. metrics), except for the algorithms (discussed in
Section IV-B). All updates are executed in lock-step for reproducibility.

an explored layer to incrementally map its environment and a
costmap layer for path planning.

Internally, a floorplan is modeled using a grid of cells with
configurable cell sizes (e.g. 5cm x 5cm), with additional layers
for room semantics. It optimizes for speed by streamlining
common operations. The most important amongst these is
the FOV computation, where it precomputes a cache that
is employed for downstream FOV operations by an entity
(robot or human). This results in a speed gain of several
orders of magnitude. Users can configure Fleet2D to use
Visibility Polygons or the Flashlight algorithm to leverage this
(Section IV-C discusses this further).

Entities: represent users, robots, and objects in the simu-
lation environment. Relative to floorplan elements, they are
more dynamic and often interact with each other. Each entity
type has a set of attributes (e.g. location, orientation, moving)
constituting its current state and comes with default behaviors
that can be configured easily. These behaviors are responsible
for both updating/expanding the state and for interactions
across entities.

Fleet2D provides several default behaviors, primarily cen-
tered around presence-related HRI use-cases, as discussed in
Section III-A.
● The robot can move around based on set schedules, it

can proactively find users and hang out with them, or
it can opportunistically interact with them when they are
seen. We prototype these on-device behaviors in Fleet2D.
We also provide the alternative of consuming actual data
collected from a device operating in a home. Finally, as
mentioned before, the robot’s FOV parameters and errors
in visual perception are matched to reality using data-
driven heuristics (and available as configurable defaults).

● The users in Fleet2D can move across rooms based on
either set or randomly generated schedules. To facilitate

5



a large variety of user behaviors, we allow randomly
sampled activity schedules, room selection and pose
selection within a room. The extensible user class also
allows consuming data collected from a real-time location
system (RTLS) and a human activity simulator [21].

● Objects are distinct from users and robots in that they
do not natively possess an FOV and cannot interact or
take actions. They might still possess sensors and expose
additional state attributes (e.g. to mimic a smart home
device).

Algorithms and Metrics: Algorithm is a function that
consumes the entire simulation state (with its history) to
produce an output feeds into the entities and the floorplan; this
is shown in Fig. 5. This broad construct supports a variety
of use-cases (e.g. to mimic ROS messages for testing robot
software). However, it is typically used in narrower settings
to enable key functionalities in Fleet2D. In the simplest case,
an algorithm simply consumes a current state and generates
summary statistics that are stored (e.g. accuracy); these are
simply called Metrics. More complex algorithms influence
an entity; they provide robot behaviors like Hangout (discussed
in Section III-A) and user behaviors like activity schedules.
Further, algorithms can influence other algorithms (e.g. LTP
feeds into Hangout) and Fleet2D support such chaining (see
Fig. 5). Algorithms enable even more complex behaviors, such
as social activities (e.g., dinner) influencing multiple users.

We briefly note two important design aspects that greatly
affect the utility of Fleet2D for downstream tasks, such as
integration with other simulators/components and for scien-
tific analyses. First, the storage of artifacts produced by the
algorithms and the metrics is provided by the data persistence
modules, as illustrated in Fig. 3. Second, the algorithms
have access to the entire simulation state and thus provide
a customizable mechanism to create bindings for downstream
components.

C. Salient aspects

We mention some salient aspects of Fleet2D that make it a
versatile tool in the development of a home robot:

Mixed Reality Simulation: Fleet2D’s modular architec-
ture permits individual components, such as the floorplan, to
be either synthetically generated or sourced from real-world
datasets. Consequently, real data from a specific component,
like robot-obtained floorplans, can be seamlessly combined
with simulated data from other elements. This amplifies the
utility of even modest data collections. Fig. 6 depicts a robot-
collected floorplan where a wide variety of simulated robot
and user behaviors can be studied.

Methods for Calculating FoV: We offer two distinct meth-
ods for FOV computations. The primary distinction between
these methods is their approach to speed optimization. (Fig. 6)

● Visibility Polygon: This method prioritizes precompu-
tation of a persistent shared cache proportional to the
floorplan’s size (Fig. 2). Once formulated, it facilitates
conducting multiple experiments on an identical floorplan

Fig. 6. A real-world captured floorplan built from a robot-guided exploration,
with simulated robot and human in Fleet2D. FoV computations using (left)
VisibilityPolygon in dashed line, and (right) Flashlight algorithm shaded
bright green.

while varying all other parameters. This is the fastest
approach for a single floorplan.

● Flashlight: precomputes a cache that grows with the size
of an entity’s pose sequence as opposed to the size of
the floorplan. This method is optimal when we wish to
study performance across floorplans such that only a few
experiments are run on any one floorplan.

V. RESULTS

A. Fleet2D Performance

Setup: We discuss the performance of Fleet2D for our use-
cases from Section III. Our experiments ran 30-day simula-
tions with a single robot and a single simulated user on a 2000
sq-ft HouseExpo floorplan, at a granularity of 1 second over
time and 5cm x 5cm over space. The robot relied on two key
algorithms: LTP to determine human presence, and Hangout
which used LTP to proactively approach the user periodically.
The user is modeled with varying degrees of fidelity - mean-
dering using 2-D Brownian motion, room-level sampling given
the LTP distribution, and randomly sampled activity schedules
employing room semantics - that do not affect the run time
significantly. The base configuration used Visibility Polygons
(VP) for FOV computation with the (default) robot parameters,
ran without visualization (headless mode) and saved artifacts
every hour of simulation time. We tried variations of this base
setup with a combination of: turning off robot algorithms,
introducing multiple users, employing Flashlight, using real-
world floorplans, and turning visualization on. These results
are summarized next.

Results: The base experiment took 194.4±4.6s, where load-
ing a precomputed FOV cache took 45.1±2.5s and the simula-
tion 127.2±5.3s (the rest being overhead). This corresponds to
a speedup of ∼ 13,000x over real time. Turning off the robot
algorithms (and using a meandering robot motion) reduced
the duration to 140.8s (28% faster, speedup of ∼ 18,500x).
Increasing the number of users in the simulation resulted in
linear growth of the experiment duration, taking ∼ 28 minutes
for a 50-user experiment. More users could not be introduced
due to memory limitations. Visualization significantly slowed
down the simulator, resulting in a reduced 8 − 12x speedup.

6



This is not particularly limiting since visualization is usually
restricted to debugging scenarios.

VP versus Flashlight: Flashlight is ∼ 8x slower than VP
on HouseExpo floorplans and ∼ 1.25x on real-world ones.
The speedup from VP is most noticeable in smooth-walled
environments like HouseExpo where visibility polygons are
sparse. FlashLight is suited for real-world floorplans with
jagged edges. Both algorithms scale linearly with the simu-
lation duration (say, from 30 to 60 days). Flashlight scales
better with the floorplan size (constant vs linear time). While
VP requires computing a cache once per floorplan (∼ 1hr for
HouseExpo and ∼ 6hrs for real-world), Flashlight does not. We
recommend using Flashlight for real-world floorplans and for
large-scale experiments where studying the floorplan variation
is important. VP should be reserved for experimenting over
user and robot behaviors with a few synthetically-generated
floorplans.

B. Comparing Simulators

We consider the viability of employing existing simulators
for our use-cases and compare their performance with Fleet2D.
Recall that our primary motivation is to simulate long-term
scenarios for long running robot functions and to scale these
up for large-scale experimentation (e.g for model fine-tuning).

Setup: In a series of experiments we tested two well-
established simulators, Gazebo and WeBots. While it is hard
to replicate exactly the setup across all simulators, we note
that our experimental setup gives an edge to other simulators
in every comparison (e.g. by reducing complexity, employing
GPU) and minimizes the use of fine-grained computations
that are not required for our application. For Gazebo, we
used ROS2 Humble and Gazebo 11, and placed a small two-
wheeled robot equipped with a single LiDAR sensor (per
[22]) in a small house world environment provided by AWS
Robotics [23]. For WeBots, we placed a small two-wheeled
robot with a LiDAR sensor (sourced from rosbot [24]) in
a small apartment provided by WeBots for the iRobot Create
demo. All experiments ran in headless mode and employed
the NVIDIA GeForce RTX 2080 GPU that was required for
optimal performance; no GPU was employed by Fleet2D.

TABLE II
SPEED COMPARISON ACROSS SIMULATORS

Conditions
Simulator Sim Time Speedup Ease of Setup GPU

Gazebo 8 hours 12.07× ☀☀☆ ✓

WeBots 8 hours 15.9× ☀☀☀ ✓

Gazebo 32 hours 12.58× ☀☀☆ ✓

WeBots 32 hours 15.1× ☀☀☆ ✓

Fleet2D 30 days 13,343× ☀☆☆ ◯

a Experiments conducted on 500m2 floorplan with a single robot.
b We acknowledge that the ease of setup is subjective.

Results: Table II summarizes the results. Based on our
findings above, for simulations up to 48 hours, the costs
of setting up, configuring, and running 3D simulators such
as Gazebo or WeBots are tractable. However, for scenarios

spanning time horizons over 48 hours, Fleet2D is strongly
preferred. From a prototyping standpoint, we recommend
using Fleet2D, reserving 3-D simulators such as WeBots and
Gazebo, for scenarios requiring higher fidelity (e.g. end-to-end
testing).

Note that with both Gazebo and WeBots, the GPU was
utilized extensively even in headless mode; this complicates
containerization as the GPU becomes a contentious resource.
For example, consider a set of experiments varying the robot
behavior (e.g. exploration policy). With Fleet2D, these can
be run in parallel (on CPU) on a single machine. In contrast,
spawning these in separate Gazebo or WeBots instances causes
GPU contention and leads to defaulting to the much slower
CPU-only mode.

C. Versatility across Use-cases

Fleet2D was employed across a suite of use-cases described
in Section III-A. We briefly summarize the results here.
● Long-Term Presence: Fleet2D was used to conduct

large-scale experimentation to characterize our LTP algo-
rithm. We tested across a diverse set of user and robot be-
haviors on a single floorplan. The main takeaway was that
our LTP algorithm worked well and gradually approached
the true long-term probabilities of the user. Fig. 7 shows
the gap between the actual and the estimated probabilities
over the rooms averaged over a set of 100 randomly
sampled robot behaviors (for a fixed user behavior and
floorplan). A similar trend was observed across different
user behaviors.

● ML-based Real-Term Presence: We used Fleet2D for
data generation and successfully used that to train ML-
based RTP models (work under review). These models
predict where inside the home a user is from their sparse
observation history. They are trained on a large set of
simulated user and robot motion data. Fig. 7 indicates the
superiority of our model over the baseline in scenarios
where the user was not seen for several minutes (large
last seen gaps).

Fig. 7. (Left) Long-term Presence analysis using Fleet2D, showing the LTP
distribution over rooms. (Right) The comparison of RTP accuracy with a naive
baseline for different parameter value called ”last seen gap” that denotes how
long ago the user was observed.

VI. CONCLUSION

The rapidly evolving domain of home robotics presents
unique challenges especially over long time horizons. With

7



this new challenge, there is a new need for effective simulators
that can facilitate the development and validation of long time
horizon robot functions. In this work, we introduced Fleet2D,
a novel simulator specifically designed for long-term human-
robot interactions within home environments.

Fleet2D strategically sidesteps the limitations of exist-
ing simulators in this domain. By abstracting the low-level
physics, caching compute-intensive tasks, and simplifying the
operational world to 2-D, Fleet2D offers an environment
that is both computationally efficient and adequate for the
simulation of high-level functions. Our findings show that
Fleet2D can operate at speeds exceeding 10,000x times real
time, a benchmark that underscores its potential in significantly
accelerating the home robot development cycle. Our simula-
tor’s architecture is flexible and can be adapted to a wide array
of robots and tasks, making it a valuable tool for the broader
research community.

REFERENCES

[1] Amazon, “Introducing amazon astro, household robot for home
monitoring.” [Online]. Available: https://https://amazon.com/astro

[2] P. Rane, V. Mhatre, and L. Kurup, “Study of a home robot: Jibo,”
International journal of engineering research and technology, vol. 3,
no. 10, pp. 490–493, 2014.

[3] T. Vintr, Z. Yan, T. Duckett, and T. Krajnı́k, “Spatio-temporal represen-
tation for long-term anticipation of human presence in service robotics,”
2019.

[4] J. J. Lee, A. Atrash, D. F. Glas, and H. Fu, “Developing autonomous
behaviors for a consumer robot to be near people in the home,” 2023.

[5] H. Choi, C. Crump, C. Duriez, A. Elmquist, G. Hager, D. Han, F. Hearl,
J. Hodgins, A. Jain, F. Leve et al., “On the use of simulation in robotics:
Opportunities, challenges, and suggestions for moving forward,” PNAS,
2021.

[6] C. Breazeal, Designing sociable robots. MIT press, 2004.
[7] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an

open-source multi-robot simulator,” in IROS 2004. IEEE, 2004.
[8] O. Michel, “Cyberbotics webots™: professional mobile robot simula-

tion,” International Journal of Advanced Robotic Systems, 2004.
[9] E. Coumans and Y. Bai, “Pybullet, a python module for physics

simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

[10] I. Tursynbek and A. Shintemirov, “Modeling and simulation of spherical
parallel manipulators in coppeliasim (v-rep) robot simulator,” in NIR
2020. IEEE, 2020.

[11] J. P. R. Belo and R. A. Romero, “A social human-robot interaction
simulator for reinforcement learning systems,” in ICAR 2021. IEEE.

[12] A. Farley, J. Wang, and J. A. Marshall, “How to pick a mobile robot
simulator: A quantitative comparison of coppeliasim, gazebo, morse
and webots with a focus on accuracy of motion,” Simulation Modelling
Practice and Theory, 2022.

[13] B. Gerkey, R. T. Vaughan, A. Howard et al., “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in ICRA 2003.

[14] K. Johns and T. Taylor, Professional microsoft robotics developer studio.
John Wiley & Sons, 2009.

[15] L. Wen, D. Fu, S. Mao, P. Cai, M. Dou, Y. Li, and Y. Qiao, “Limsim:
A long-term interactive multi-scenario traffic simulator,” 2023.

[16] F. Jovan, M. Tomy, N. Hawes, and J. Wyatt, “Efficiently exploring
for human robot interaction: partially observable poisson processes,”
Autonomous Robots, 2023.

[17] E. A. Sisbot, L. F. Marin, and R. Alami, “Spatial reasoning for
human robot interaction,” in 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2007, pp. 2281–2287.

[18] A. Bihlmaier and H. Wörn, “Robot unit testing,” in International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2014, pp. 255–266.

[19] F. Bungiu, M. Hemmer, J. Hershberger, K. Huang, and A. Kröller,
“Efficient computation of visibility polygons,” arXiv preprint
arXiv:1403.3905, 2014.

[20] L. Tingguang, H. Danny, L. Chenming, Z. Delong, W. Chaoqun,
and M. Q.-H. Meng, “Houseexpo: A large-scale 2d indoor layout
dataset for learning-based algorithms on mobile robots,” arXiv preprint
arXiv:1903.09845, 2019.

[21] I. Idrees, S. Singh, K. Xu, and D. F. Glas, “A framework for realistic
simulation of daily human activity,” 2023.

[22] A. Sears-Collins. How to load a robot model (sdf format) into gazebo
– ros 2. [Online]. Available: https://automaticaddison.com/page/12/

[23] A. Robotics. Aws robomaker small house world ros
package. [Online]. Available: https://github.com/aws-robotics/
aws-robomaker-small-house-world

[24] Cyberbotics. Webots. [Online]. Available: https://github.com/
cyberbotics/webots/

8

https://https://amazon.com/astro
http://pybullet.org
https://automaticaddison.com/page/12/
https://github.com/aws-robotics/aws-robomaker-small-house-world
https://github.com/aws-robotics/aws-robomaker-small-house-world
https://github.com/cyberbotics/webots/
https://github.com/cyberbotics/webots/

	Introduction
	Related Work
	Design
	Use-cases
	Capabilities
	Guiding principles
	Key Decisions

	Architecture
	Organization
	Core Components
	Salient aspects

	Results
	Fleet2D Performance
	Comparing Simulators
	Versatility across Use-cases

	Conclusion
	References

