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ABSTRACT

Large language models (LLMs) could be valuable personal AI agents across var-
ious domains, provided they can precisely follow user instructions. However, re-
cent studies have shown significant limitations in LLMs’ instruction-following ca-
pabilities, raising concerns about their reliability in high-stakes applications. Ac-
curately estimating LLMs’ uncertainty in adhering to instructions is critical to mit-
igating deployment risks. We present, to our knowledge, the first systematic eval-
uation of uncertainty estimation abilities of LLMs in the context of instruction-
following. Our study identifies key challenges with existing instruction-following
benchmarks, where multiple factors are entangled with uncertainty stemming
from instruction-following, complicating the isolation and comparison across
methods and models. To address these issues, we introduce a controlled evalu-
ation setup with two benchmark versions of data, enabling comprehensive com-
parison of uncertainty estimation methods under various conditions. Our findings
show that existing uncertainty methods struggle, particularly when models make
subtle errors in instruction following. While internal model states provide some
improvement, they remain inadequate in more complex scenarios. The insights
from our controlled evaluation setups provide crucial understanding of LLMs’
limitations and potential for uncertainty estimation in instruction-following tasks,
paving the way for more trustworthy AI agents.

1 INTRODUCTION

Large language models (LLMs) have garnered interest for their potential as personal AI agents
across various domains, such as healthcare, fitness, nutrition, and psychological counseling (Li et al.,
2024; Wang et al., 2023a; Tu et al., 2024). A key to building safe and useful personal AI agents
with LLMs lies in their ability to follow instructions precisely. Deployed models must adhere to
the constraints and guidelines provided by users to ensure that the outputs are both aligned with
user intentions and safe. Yet recent research has exposed significant limitations in LLMs’ ability
to follow instructions (Zhou et al., 2023; Zeng et al., 2023; Qin et al., 2024; Xia et al., 2024; Kim
et al., 2024; Yan et al., 2024). For example, even large models like GPT-4 achieve only around 80%
instruction-following accuracy on simple and non-ambiguous instructions from benchmark datasets,
and smaller models perform even worse, with accuracy less than 50% (Sun et al., 2024).

Since LLMs are prone to errors, their ability to accurately assess and communicate their own uncer-
tainty is essential. This becomes particularly important in high-stakes applications, where mistakes
can have serious consequences. For instance, an LLM developed for personal psychological coun-
seling must strictly adhere to guidelines that avoid topics that might potentially cause trauma. If
the LLM misinterprets or deviates from these instructions but accurately recognizes and signals
high uncertainty, it could prompt further review or intervention, thereby preventing the delivery of
potentially harmful advice.

∗This work was done during an Apple internship.
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However, uncertainty estimation in instruction-following tasks has received limited attention, with
most research focusing on fact-based tasks like question answering and summarization (Fadeeva
et al., 2023; Kuhn et al., 2023; Xiong et al., 2023; Ye et al., 2024), where factual correctness is the
primary concern. In contrast, as shown in Figure 1, instruction-following tasks focus on whether a
model’s response adheres to a set of given instructions, rather than estimating the factual accuracy.
Given these different source of uncertainty, it is unclear whether existing methods, which are typ-
ically designed for estimating factual uncertainty, can accurately capture uncertainty in instruction
following. For example, while semantic entropy (Farquhar et al., 2024) is considered the gold stan-
dard for fact-based tasks, it may not be suitable for instruction-following. Both responses, ‘Regular
exercise strengthens muscles’ and ‘Regular exercise reduces stress’, follow the given instruction
in Figure 1 but convey different semantic meanings, leading to a high semantic uncertainty score,
which inaccurately reflects instruction-following performance. This example highlights the need
for frameworks tailored to evaluating methods and models for uncertainty estimation in instruction-
following tasks.

To evaluate how well existing uncertainty estimation methods and models perform on instruction-
following tasks, we evaluate six uncertainty estimation methods across four LLMs on the IFEval
benchmark dataset (Zhou et al., 2023). However, we find that multiple factors are entangled in exist-
ing benchmarks. For instance, uncertainty can stem from both task execution quality and instruction
following, making it difficult to isolate and directly compare methods and models based solely on
their ability to estimate instruction-following uncertainty. To address these issues, we design a new
benchmark dataset with two versions to enable a more controllable and fine-grained evaluation. The
Controlled version provides a structured assessment by removing confounding factors and offering
tasks with varying difficulty levels, split into Controlled-Easy, where correct and incorrect responses
are easy to distinguish, and Controlled-Hard, which focuses on more subtle errors. In contrast, the
Realistic version uses naturally generated LLM responses, retaining real-world signals. Together,
these datasets provide a comprehensive framework for evaluating uncertainty estimation methods
and models under both controlled and real-world conditions.

Our analysis revealed several key findings from the controlled evaluation: 1) Verbalized method con-
sistently outperforms dsclogit-based methods like perplexity in the Controlled-Easy setting, where
correct and incorrect responses are relatively easier to distinguish. Specifically, normalized p(true)
(Kadavath et al., 2022) proves to be a reliable uncertainty method across both Controlled-Easy and
Realistic settings. 2) Smaller models often outperform larger ones in verbalized confidence, sug-
gesting that factors beyond model size, such as tuning or architecture, may contribute to better
uncertainty estimation in certain tasks. 3) Probes relying on the internal states of LLMs outperform
logit-based and verbalized confidence, highlighting promising directions for future work. 4) In more
challenging tasks like Controlled-Hard, which involve subtle off-target responses, all approaches
including internal representations struggle to estimate uncertainty accurately, pointing to inherent
limitations in LLMs’ ability to handle complex uncertainty. These findings from our controlled
evaluation setups provide crucial insights into the limitations and potential of LLMs for uncertainty
estimation in instruction-following tasks, towards more trustworthy AI agents.

1.1 CONTRIBUTIONS

• Systematic Evaluation: We present the first systematic evaluation of uncertainty estimation
methods in instruction-following tasks, addressing a gap in existing research.

• Benchmark Dataset: We identify key challenges in existing datasets and introduce a new bench-
mark dataset specifically tailored for direct comparison and fine-grained analysis of uncertainty
estimation methods and models in both controlled and real-world conditions.

• Findings: Our evaluation results highlight the potential of self-evaluation and probing methods
and point out limitations in handling more complex tasks, underscoring the need for further re-
search to advance uncertainty estimation in instruction-following tasks.
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Figure 1: Why evaluating uncertainty estimation ability in instruction-following matters. Un-
certainty in instruction-following distinct from factual correctness, as illustrated by this example.
While both responses shown are factually correct, the first fails to follow the instruction, resulting
in high uncertainty from instruction-following despite low uncertainty from factuality. The second
response adheres to the instruction, with low uncertainty in both areas. Prior work on uncertainty
has focused primarily on factual correctness, underscoring the need for an evaluation framework for
instruction-following tasks.

2 UNCERTAINTY ESTIMATION ABILITY IN INSTRUCTION-FOLLOWING ON
IFEVAL

In this section, we evaluate LLMs’ uncertainty estimation abilities using the IFEval dataset (Zhou
et al., 2023), applying six baseline methods across four LLMs. We selected IFEval because it is
designed so that a simple and deterministic program can verify whether a response follows the in-
structions. This enables a fully automatic and accurate assessment of a model’s instruction-following
capability, thereby minimizing uncertainties from ambiguous evaluation criteria.

2.1 METHODS

Data We evaluate uncertainty estimation with the IFEval dataset (Zhou et al., 2023), which is de-
signed to evaluate the instruction-following ability of LLMs on 25 verifiable instruction types under
9 categories across 541 total prompts. Each prompt consists of two components: a task and an
instruction, where the instruction specifies the action (e.g., “please do not use keywords”, “please
start/finish your response with exact sentence”) and the task provides the context for executing the
instruction (e.g., “please write a resume”, “please give a summary about solar system”).

Models and Metrics We evaluate four LLMs of varying sizes: LLaMA2-chat-7B (Touvron et al.,
2023), LLaMA2-chat-13B (Touvron et al., 2023), Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), and
Phi-3-mini-128k-instruct (Abdin et al., 2024). To avoid randomness in decoding, we employ greedy
decoding without sampling. Area Under the Receiver Operating Characteristic curve (AUROC) (Pe-
dregosa et al., 2011) is used to measure if the models’ uncertainty estimation matches the ground
truth labels on correctness in instruction following, generated using the automated evaluation func-
tions from IFEval.

Baseline uncertainty estimation methods To evaluate uncertainty in instruction-following, we em-
ploy several baseline methods, including self-evaluation of their own uncertainty (verbalized confi-
dence, normalized p(true) and p(true)), logits-based method (perplexity, sequence probability, and
mean token entropy), and internal states of model (probe):

• Verbalized confidence (Lin et al., 2022): The model’s self-reported confidence, scored from 0
to 9, indicating its perceived likelihood that the response correctly follows instructions. Detailed
prompts are in the Appendix.

• Normalized p(true) and p(true) (Kadavath et al., 2022): These methods assess the probability of
the ‘true’ token, calculated from a binary choice prompt. We modified the calculation to determine
the probability of token ‘A’ given the prompt: “Does the response: (A) Follow instructions (B) Not
follow instructions. The answer is: ”. Normalized p(true) adjusts for biases by considering both
tokens of ’true’ and ‘false’ probabilities: p(true)/(p(true)+p(false)), here is p(A)/(p(A)+p(B))
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AUC of uncertainty methods SR
Model Verbal Perplexity Sequence Nor-p(true) p(true) Entropy

LLaMA2-chat-13B 0.53 0.44 0.61 0.47 0.51 0.48 0.57
LLaMA2-chat-7B 0.53 0.43 0.54 0.52 0.51 0.44 0.59

Mistral-7B-Instruct-v0.3 0.50 0.48 0.56 0.57 0.47 0.50 0.64
Phi-3-mini-128k-instruct 0.53 0.43 0.48 0.55 0.45 0.45 0.54

Table 1: AUROC for baseline uncertainty estimation methods applied to the IFEval dataset
(Zhou et al., 2023). AUROC measures how well each method’s uncertainty estimates align with
the ground truth regarding correct or incorrect instruction-following across four LLMs. Success
Rate (SR) represents the model’s instruction-following accuracy, calculated using the IFEval evalu-
ation function. Notably, LLMs struggle to estimate uncertainty in instruction-following tasks hover
around chance levels (between 0.43 and 0.53).

• Perplexity and Sequence probability (Jelinek et al., 1977; Fomicheva et al., 2020): Perplex-
ity measures the likelihood of generating a given sequence: exp

{
− 1

t

∑t
i=1 log pθ(xi | x<i)

}
where t is the sequence length. Sequence probability, an unnormalized version, is calculated as:
exp

{
−
∑t

i=1 log pθ(xi | x<i)
}

, making it more sensitive to the length of the response, with
longer sequences generally having lower probabilities.

• Mean token entropy for LLMs (Fomicheva et al., 2020): Entropy measures uncertainty based
on token prediction variability: H = − 1

t

∑t
i=1 pθ(xi | x<i) log pθ(xi | x<i)

• Probe Drawing inspiration from Liu et al. (2024), we trained a linear model as an uncertainty es-
timation function that maps the internal representations of LLMs to instruction-following success
labels, where the probability predicted by the linear model used as uncertainty scores.

2.2 FINDINGS

Table 1 summarizes uncertainty evaluation results using IFEval.

LLMs struggle to estimate uncertainty in instruction-following. Average AUROC values across
models and uncertainty estimation methods hover around chance levels (between 0.43 and 0.53),
indicating that the models consistently fail to reliably assess their own uncertainty in instruction-
following. This underscores the challenge LLMs face in detecting when their responses deviate
from the instructions.

Sequence probability outperforms perplexity, revealing a length signal in uncertainty estima-
tion. Sequence probability consistently achieves higher AUROC scores than perplexity across most
models. Sequency probability is tied to by sequence length, whereas perplexity is not. For example,
in LLaMA2-chat-13B, the AUROC for sequence probability averages 0.61 (above chance) across
instruction types, whereas perplexity lags at 0.44. This finding implies that response length may in-
advertently provide a signal in some uncertainty estimation metrics, even though it may not correlate
directly with the correctness of the response in instruction-following.

No model or method consistently excels across instruction types. As shown in Table 3 in Ap-
pendix, there is no consistent pattern of performance of uncertainty estimation method or model
across different instruction types. This lack of consistency indicates that none of the uncertainty
estimation methods evaluated reliably capture uncertainty across all instruction types and models.

2.3 CHALLENGES IN EVALUATING UNCERTAINTY ESTIMATION USING EXISTING DATASETS

An instruction-following dataset with clear evaluation criteria, like IFEval, is important for evaluat-
ing instruction-following. However, we identified the importance of several additional factors to aid
in comparatively evaluating instruction-following uncertainty of LLMs.

1) Uncertainty estimation methods and models are only evaluated in length-biased settings
in existing instruction-following datasets, missing comparisons on controlled, length-neutral
conditions. We observe that token length significantly impacts uncertainty estimation in instruction-
following tasks in existing datasets, where responses are not controlled but are generated as part of
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(a) Length distribution on IFEval (b) Length differences by instruction types (c) Length in Controlled version

Figure 2: Existing instruction-following datasets only evaluate uncertainty estimation methods
in length-biased settings, missing comparisons on controlled, length-neutral conditions. (a)
Token lengths distribution for LLaMA-2-chat-7B shows that incorrect responses tend to be longer
than correct ones. (b) Token length differences broken down by instruction type and model, with
positive values showing that incorrect responses tend to be longer. (c) Token length distribution in
the Controlled version of our benchmark, where token length is balanced across all responses.

the evaluation. With datasets like IFEval, naturally generated incorrect responses tend to be longer
than correct ones across models in Figure 2a and Appendix Figure 10.

If this pattern holds across instruction types, length could arguably be a reliable signal in evaluating
instruction-following uncertainty. However, we found that the relationship between response length
and correctness is not uniform (Figure 2b). These varying patterns are not surprising, as response
length is related to what the instruction requires. For instance, an instruction like “please elaborate”
would naturally result in a longer response, whereas “make it concise” would lead to a shorter one.

These inconsistencies suggest that length is not a reliable or generalizable signal for uncertainty es-
timation across all instruction types and models. This highlights the need for a controlled evaluation
framework that includes a set of length-neutralized responses. By comparing LLMs and uncertainty
estimation methods in both length-biased and length-neutral settings, we can more accurately assess
their true performance, independent of confounding factors like token length.

2) Uncertainty sourced from task execution quality is entangled with uncertainty stemming
from instruction-following, complicating accurate evaluation. In the IFEval data, each prompt
consists of two parts: the task context (e.g., “Write a brief summary about the solar system”) and the
specific instruction (e.g., “Please do not mention any planet names”). When measuring uncertainty
with baseline methods, uncertainty can stem from both task execution quality (i.e., how well the
task itself is accomplished – clear, detailed, and informative) and instruction-following accuracy
(i.e., whether the instruction is followed). This creates an entanglement that complicates evaluation.
For example, consider the response “Objects in space around a star”, which is vague and unclear with
low task quality but adheres to the instruction of avoiding mentioning planet names. Alternatively,
“The solar system consists of a central star surrounded by various celestial bodies, including Earth
and Mars” is informative with high task quality but fails to follow the instruction. We observe that
task execution quality also influences the models’ uncertainty scores. For example, in Table 5 in the
Appendix, the LLaMA-2-chat-7B model assigns an average verbalized confidence score of 7.0 to
the first response grouping (low task quality but correct instruction-following) and 7.4 to the second
(high task quality but incorrect instruction-following).

This shows that task quality can confound uncertainty estimation in instruction-following. When
task execution quality is not controlled, the uncertainty arising from task completion can over-
shadow the uncertainty associated with following instructions, leading to inaccurate evaluations of
the model’s true instruction-following uncertainty.

3) Differences in the severity of instruction-following mistakes across models create incon-
sistent difficulty levels, complicating model comparisons. Our primary objective is to assess
LLMs’ uncertainty estimation capabilities, independent of their instruction-following accuracy in
generating responses. However, when using the IFEval dataset, these two factors are entangled,
making it difficult to isolate uncertainty estimation from the model’s overall instruction-following
performance. For example, LLaMA-2-chat-13B, which generally has a higher instruction-following
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accuracy, tends to make more obvious errors when it fails to follow instructions. On the other hand,
LLaMA-2-chat-7B not only makes these obvious mistakes but also exhibits more subtle instruction-
following errors, where responses partially follow the instructions but miss specific details. As a
result, uncertainty estimation becomes more challenging for LLaMA-2-chat-7B, where it has to
measure uncertainty in more nuanced instruction violations, compared to LLaMA-2-chat-13B.

To quantify the difference in task difficulty, we use GPT-4 to score the responses on a scale from 0
to 9 based on their adherence to instructions. Table 5 shows that the score gap between correct and
incorrect responses is smaller for LLaMA-2-chat-7B compared to LLaMA-2-chat-13B, highlighting
the more subtle nature of 7B’s errors. In contrast, 13B’s errors are more drastic, making them
easier to identify and be recognized as having high uncertainty. This variation in task difficulty
across models complicates direct comparisons of their uncertainty estimation abilities. To ensure
fair comparisons across models, it is necessary to evaluate models under controlled difficulty levels.

3 UNCERTAINTY ESTIMATION ABILITY IN INSTRUCTION-FOLLOWING ON
OUR BENCHMARK DATA

The challenges identified in the previous section—length bias, the entanglement of task execution
quality with instruction-following, and varying difficulty levels across models—underscore the need
for a controlled and robust framework for evaluating uncertainty estimation. To address these issues,
we develop a new benchmark dataset comprising two versions: a Controlled version and a Realistic
version. These versions allow for the evaluation of uncertainty estimation under controlled condi-
tions (Controlled) and real-world scenarios (Realistic).

3.1 BENCHMARK DATASET FOR CONTROLLED EVALUATION SETUPS

To disentangle the complexities that can obscure uncertainty estimation, we design two distinct
versions of the dataset: Controlled and Realistic. The Controlled version neutralizes the influence
of token length. Meanwhile, the Realistic version leverages actual LLM-generated responses that
naturally incorporate real-world signals, including length signal, without manual intervention.

In both versions, we use GPT-4 to filter out low-quality responses, ensuring that the uncertainty
being measured comes from instruction-following, not poor task execution. We apply a filtering
process using GPT-4 evaluations of task quality of each response on a scale 0-9. Only responses that
received a high task quality score (>8) are included. These datasets enable using the same responses
with all models in the uncertainty evaluation task, controlling the difficulty of uncertainty evaluation
across models. This allowing for direct comparisons in uncertainty estimation.

3.1.1 CONTROLLED VERSION

In this version, we eliminate the length effect, along with ensuring consistent levels of difficulty
across responses to ensure that the evaluation focuses purely on uncertainty estimation. To neu-
tralize the impact of token length, we use GPT-4 to generate both correct and incorrect responses
with similar token length (see Appendix for the prompt used to generate responses). Figure 2c
shows the absence of length bias in the token length distribution. We introduce two levels of
controlled difficulty–Controlled-Easy and Controlled-Hard–by generating three categories of re-
sponses: completely incorrect, correct, and subtly off-target. In the Controlled-Easy, we calculate
AUROC based on distinguishing between correct and completely incorrect responses, while in the
Controlled-Hard, we calculate AUROC based on distinguishing between correct and subtly off-
target responses. These are more challenging cases where the responses only slightly deviate from
the instructions, testing the model’s ability to recognize subtle mistakes. While these mistakes are
subtle, they could still be important in real-world deployments. Table 4 in the Appendix shows an
example from this version. Additional statistics are provided in Table 6 in the Appendix.

3.1.2 REALISTIC VERSION

In the Realistic version, we retain the natural length and signals inherent in responses generated by
multiple LLMs (LLaMA2-chat-7B, LLaMA2-chat-13B, Mistral-7B-Instruct-v0.3, Phi-3-mini-128k,
and LLaMA2-chat-70B). Here, the goal is to evaluate uncertainty estimation methods in a scenario
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Model Controlled-Easy Controlled-Hard Realistic
Verb Ppl Seq N-p(t) p(t) Ent Probe Verb Ppl Seq N-p(t) p(t) Ent Probe Verb Ppl Seq N-p(t) p(t) Ent Probe

LLaMa2-13B 0.67 0.62 0.48 0.61 0.46 0.57 0.79 0.52 0.60 0.52 0.54 0.44 0.57 0.58 0.51 0.52 0.61 0.53 0.48 0.46 0.64
LLaMa2-7B 0.64 0.61 0.48 0.54 0.45 0.54 0.72 0.53 0.57 0.51 0.51 0.45 0.53 0.51 0.48 0.51 0.62 0.53 0.47 0.50 0.61
Mistral-7B 0.71 0.59 0.44 0.66 0.48 0.43 0.75 0.56 0.55 0.49 0.56 0.48 0.46 0.56 0.53 0.46 0.63 0.51 0.51 0.49 0.66
Phi-3-mini 0.64 0.58 0.42 0.72 0.56 0.55 0.79 0.55 0.53 0.47 0.62 0.48 0.52 0.53 0.49 0.42 0.63 0.56 0.51 0.51 0.72

Table 2: Average AUC across instruction types for different LLMs and uncertainty estimation
methods in three settings. Different uncertainty estimation methods includes Verbalized confidence
(Verb), Perplexity (Ppl), Sequence probability (Seq), Normalized p(true) (N-p(t)), p(true), Entropy
(Ent), and linear probing on internal states (Probe). Bold values indicate the best-performing method
for each model and condition, while underlined values denote the second-best performing method.

that reflects actual model behavior. In this version, we do not control for token length, allowing for
the natural variance found in actual model-generated responses. Though, we still control for task
execution quality and provide generated responses to enable clear comparisons between models.

3.2 RESULTS ON OUR BENCHMARK DATA

Table 2, Figure 5, and Appendix Table 8 show findings from our evaluation of uncertainty estima-
tion methods on the crafted dataset. By analyzing performance across different uncertainty meth-
ods, models, and instruction types, we gain insights into the strengths and limitations of various
approaches under both controlled and realistic conditions.

3.2.1 COMPARISON OF UNCERTAINTY METHODS

Controlled-Easy: Self-evaluation methods outperform logit-based ones In simpler tasks, self-
evaluation methods such as verbalized confidence (short answer) and normalized-p(true) (binary
choice) consistently outperformed logit-based approaches like perplexity, sequence probability, and
entropy. Furthermore, for models like LLaMA2-chat-7B, LLaMA2-chat-13B, and Mistral-7B-
Instruct, verbalized confidence performed better than normalized p(true), meaning short-form an-
swer verbalized scores were more calibrated than binary choices in these cases. This overall trend
indicates that for Controlled-Easy tasks, models are better at assessing their own correctness using
self-evaluation methods compared to logit-based uncertainty estimation.

Controlled-Hard: Mixed performance between logit-based methods and self-evaluation meth-
ods In the instruction-following samples with more nuanced mistakes, there was a mixed perfor-
mance between logit-based methods and Normalized p(true). For LLaMA2-chat-7B and LLaMA2-
chat-13B, logit-based methods like perplexity and entropy outperformed verbalized confidence and
normalized p(true), suggesting that as task complexity increased, logit-based methods became more
reliable with those models. However, for Mistral-7B-Instruct and Phi-3-mini, normalized p(true)
continued to provide better uncertainty estimation than logit-based methods, demonstrating that the
best method can vary depending on the model and its underlying architecture in Controlled-Hard
tasks. Uncertainty estimation scores in Controlled-Hard were consistently lower than in other set-
tings and no methods had reliably estimated uncertainty in this setting.

Realistic: Sequence probability excels, but normalized p(true) remains a strong contender In
the Realistic evaluation, where models were evaluated on responses with realistic patterns (includ-
ing length effect), sequence probability performed best across all models, likely due to its ability to
exploit the length effect in incorrect responses. However, aside from sequence probability, normal-
ized p(true) consistently ranked as the second-best method across all models, outperforming other
logit-based methods like perplexity and mean token entropy. This demonstrates that while sequence
probability can take advantage of length bias, normalized p(true) offers a more balanced and reliable
uncertainty estimation when length effect is less prominent.

Probe generally outperformed baseline methods in both Controlled-Easy and Realistic ver-
sion, as shown in Table 2. Probe consistently outperformed even self-evaluation methods such as
verbalized confidence and normalized-p(true). This gap between what the internal states of the
model “know” and what they are able to express suggests that their internal layers hold richer, more
reliable indicators of uncertainty, which are not fully captured in the model’s explicit responses. This
points to promising directions for future work, specifically in improving self-evaluation methods by
leveraging the rich information within a model’s internal representations.
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Probe still struggles with uncertainty estimation in more challenging scenarios. In Controlled-
Hard, Probe AUROC scores drop below 0.60 across all models, revealing that even the internal
representations struggle to estimate uncertainty accurately when the task complexity increases. This
suggests a limitation in LLMs’ ability to handle nuanced or complex uncertainty, highlighting the
need for further model fine-tuning or the development of more sophisticated uncertainty estimation
methods to improve uncertainty estimation in these difficult tasks.

3.2.2 COMPARISON OF MODELS

Mistral-7B-Instruct consistently demonstrates the strongest performance in verbalized confi-
dence across all tasks (Controlled-Easy, Controlled-Hard, and Realistic), outperforming even the
larger LLaMA2-13B model, highlighting its effective internal calibration for self-assessment. On
the other hand, Phi-3-mini-128k leads in normalized p(true), consistently achieving the best AU-
ROC across both easy and hard tasks in Controlled, as well as in Realistic versions, showcasing
its strength in binary choice settings. In contrast, LLaMA-2-13B excels in Perplexity, indicating
its proficiency in logit-based uncertainty estimation. These findings are particularly interesting be-
cause smaller models, such as Mistral-7B-Instruct and Phi-3-mini-128k outperform the larger
LLaMA-2-chat-13B in self-evaluation methods. This suggests that factors beyond model size,
such as tuning or architecture, may contribute to better uncertainty quantification in certain tasks.
However, LLaMA2-13B still shines in logit-based approaches like perplexity, indicating that differ-
ent methods may favor different models.

4 RELATED WORK

Uncertainty estimation in LLMs. Existing uncertainty estimation methods can be broadly cate-
gorized into four types based on the source of information: verbalized, logit-based, multi-sample,
and probing-based methods. Among them, verbalized methods (Lin et al., 2022; Xiong et al., 2023;
Tian et al., 2023) rely on model’s self-evaluation by prompting LLMs to explicitly express their
uncertainty in theiroutput. Logit-based methods, such as perplexity (Jelinek et al., 1977), sequence
probability (Fomicheva et al., 2020), and mean token entropy (Fomicheva et al., 2020) mainly uti-
lize information from the next token prediction distribution. Multi-sample methods (Aichberger
et al., 2024; Kuhn et al., 2023; Farquhar et al., 2024) generate multiple responses for the same
question, estimating uncertainty through the semantic diversity among the responses. However,
these multi-sample methods are less applicable to instruction-following tasks, which only focus on
strict adherence to instructions rather than variations in semantic meaning. Lastly, probing-based
methods (Liu et al., 2024; Ahdritz et al., 2024) train external supervised model on model repre-
sentations to infer uncertainty. In addition, it is worth noting that most existing works focus on
factuality-related tasks such as question answering (Xiong et al., 2023; Tian et al., 2023) and sum-
marization tasks (Kuhn et al., 2023), with little attention on instruction-tuning tasks. Our work seek
to bridge this gap by evaluating how well current uncertainty metrics capture uncertainties specific
to instruction-following scenarios.

Further related work on instruction-following in LLMs and benchmark datasets for evaluating LLMs
as evaluators is available in Appendix A.6.

5 CONCLUSION

In this paper, we conduct the first comprehensive evaluation of uncertainty estimation in LLMs
specifically in the context of instruction-following tasks, addressing a gap in existing research that
primarily focuses on fact-based tasks. We identify limitations associated with existing benchmark
datasets and introduce a new benchmark with two versions—Controlled and Realistic—designed to
provide a comprehensive framework for evaluating uncertainty estimation methods and models un-
der both controlled and real-world conditions. Our analysis revealed that verbalized self-evaluation
methods outperform logit-based approaches in Controlled-Easy tasks, while internal model states
provide more reliable uncertainty signals in both Controlled-Easy and Realistic settings. However,
all methods struggle with more complex tasks in Controlled-Hard, highlighting the limitations of
LLMs and future direction for uncertainty estimation in instruction-following.
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Limitations and Future Work One limitation is the narrow scope of instruction types and domains
included in the benchmark, which may not fully capture the diversity of real-world tasks. Further-
more, similar to other research evaluating LLMs, there is a potential risk of leakage, where the
models may have been exposed to similar tasks during pre-training, potentially affecting the results.
In future work, expanding the benchmark to include a broader range of domains and evaluating
more LLMs would furthen deepen understanding of uncertainty estimation in instruction-following.
Additional analysis could also investigate why LLMs tend to fail to provide accurate uncertainty
estimates in instruction-following, which could lead to the development of trustworthy AI agents.
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A APPENDIX

A.1 DETAILED RESULTS ON IFEVAL DATASET

In the main paper, Table 1 presented the average AUROC scores across all instruction types, pro-
viding an overview of how well the baseline uncertainty estimation methods perform in instruction-
following tasks. This section provides detailed AUROC results for each individual instruction type
in the IFEval dataset in Table 3.

IFEval AUC of uncertainty method SR
Model Instructions Verbal Ppl Seq N-p(t) p(t) Ent

LLaMA2-
chat-13B

startend 0.58 0.33 0.66 0.47 0.50 0.36 0.58
detectable content 0.51 0.37 0.60 0.39 0.56 0.37 0.89
detectable format 0.51 0.46 0.62 0.46 0.51 0.50 0.68
language 0.51 0.49 0.61 0.48 0.53 0.52 0.58
change case 0.55 0.48 0.60 0.50 0.50 0.52 0.52
keywords 0.53 0.50 0.61 0.49 0.50 0.53 0.71
length constraints 0.53 0.46 0.59 0.50 0.49 0.51 0.48
punctuation 0.53 0.45 0.58 0.50 0.48 0.51 0.14
Average 0.53 0.44 0.61 0.47 0.51 0.48 0.57

LLaMA2-
chat-7B

startend 0.55 0.30 0.56 0.57 0.52 0.32 0.67
detectable content 0.48 0.25 0.55 0.48 0.47 0.29 0.85
detectable format 0.55 0.47 0.49 0.51 0.52 0.47 0.66
language 0.53 0.50 0.50 0.51 0.49 0.51 0.68
change case 0.52 0.49 0.55 0.54 0.52 0.50 0.48
keywords 0.53 0.48 0.57 0.53 0.52 0.49 0.68
length constraints 0.54 0.47 0.58 0.52 0.50 0.48 0.46
punctuation 0.54 0.47 0.57 0.53 0.50 0.49 0.24
Average 0.53 0.43 0.54 0.52 0.51 0.44 0.59

Mistral-7B-
Instruct-v0.3

startend 0.57 0.48 0.70 0.51 0.57 0.51 0.63
detectable content 0.51 0.39 0.63 0.61 0.43 0.56 0.79
detectable format 0.46 0.49 0.54 0.61 0.43 0.54 0.78
language 0.46 0.50 0.50 0.57 0.47 0.49 0.87
change case 0.49 0.48 0.53 0.58 0.47 0.48 0.62
keywords 0.50 0.48 0.52 0.57 0.47 0.47 0.73
length constraints 0.50 0.49 0.53 0.56 0.47 0.49 0.55
punctuation 0.51 0.50 0.52 0.56 0.48 0.49 0.17
Average 0.50 0.48 0.56 0.57 0.47 0.50 0.64

Phi-3-mini-
128k-instruct

startend 0.62 0.47 0.60 0.53 0.49 0.38 0.22
detectable content 0.53 0.35 0.41 0.56 0.46 0.46 0.89
detectable format 0.53 0.39 0.45 0.59 0.42 0.42 0.67
language 0.49 0.43 0.47 0.53 0.41 0.48 0.97
change case 0.50 0.45 0.48 0.56 0.43 0.46 0.29
keywords 0.51 0.45 0.49 0.55 0.48 0.46 0.75
length constraints 0.51 0.45 0.49 0.56 0.47 0.47 0.41
punctuation 0.51 0.45 0.49 0.56 0.48 0.48 0.11
Average 0.53 0.43 0.48 0.55 0.45 0.45 0.54

Table 3: Detailed AUROC for baseline uncertainty estimation methods applied to individual
instruction types in the IFEval dataset (Zhou et al., 2023). This table presents AUROC scores for
six uncertainty estimation methods (verbalized confidence, perplexity, sequence probability, normal-
ized p(true), p(true), and Entropy) across four LLMs on all instruction types in the IFEval dataset.
The AUROC evaluates how well each method’s uncertainty estimates align with the ground truth on
correct or incorrect instruction-following. Ppl represents perplexity, Seq stands for sequence prob-
ability, N-p(t) is normalized p(true), p(t) refers to p(true), and Ent indicates entropy. Success Rate
(SR) represents the model’s instruction-following accuracy, as calculated using IFEval’s evaluation
function. These detailed results reveal variations in performance across instruction types, providing
deeper insights into the challenges of estimating uncertainty in instruction-following tasks.

A.2 PROMPT OF UNCERTAINTY ESTIMATION METHODS

To evaluate uncertainty in instruction-following tasks, we employed several baseline methods, in-
cluding self-evaluation methods (verbalized confidence, normalized p(true), and p(true)) and logits-
based methods (perplexity, sequence probability, and mean token entropy). For self-evaluation meth-
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ods, we used specific prompts to engage the models in assessing their own uncertainty. Below, we
provide the exact prompts used in our experiments for both verbalized confidence and p(true) meth-
ods.

Prompt for Verbalized Confidence is used to assess the model’s self-reported confidence, asking
the model to score its perceived likelihood that its response follows the given instructions. The model
is instructed to provide a confidence score ranging from 0 (no confidence) to 9 (high confidence).

Prompt for p(true) and Normalized p(true) evaluates the model’s probability estimate of whether
its previous response correctly followed the instructions. The model is prompted to assign probabili-
ties to a binary choice, with p(true) reflecting the likelihood that the response is correct. Normalized
p(true) adjusts the raw probabilities of both options to account for biases, normalizing the confidence
scores.

Prompt for verbalized confidence

You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to score a given output for the given instruction.

Score the output for the given instruction. The output is generated by an AI chatbot.
You should give an overall score (an integer) on a scale of 0 to 9, where a higher score
indicates better overall performance.

Do NOT provide any explanation for your evaluation. Your response should be ONLY the
score, an integer between 0 and 9.

# Instruction: {input}
# Output: {instruction following response}
# Score of the Output (Your response should be ONLY the score, an integer between 0 and
9):

Prompt for p(true) and Normalized p(true)

You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to score a given output for the given instruction.

Question: {instruction input}
Response: {instruction following response}
Does the response: (A) Follow instructions (B) Not follow instructions.
The answer is: (

A.3 EXAMPLES OF CONTROLLED VERSION OF THE BENCHMARK DATA

Case Example
Correct “Experienced Refinery Operator with 5 years in the chemical industry. Skilled in overseeing refinery op-

erations, maintaining safety protocols, and optimizing processes. Collaborated with friends at Hanson
Chemicals to enhance efficiency. Proven track record of improving production quality.”

Incorrect “Professional Refinery Operator with 10 years in the chemical industry. Expert in managing refinery oper-
ations. Demonstrated history of elevating production quality.”

Subtle Error “Experienced Refinery Operator with 5 years in the chemical industry. Proficient in managing refinery
operations, ensuring safety protocols, and enhancing processes. Worked closely with colleagues at Hanson
Chemicals to boost efficiency. Demonstrated history of elevating production quality.”

Table 4: Examples of three response types in the Controlled version of our benchmark dataset.
Illustrate responses to the prompt: “Write a short resume for a refinery operator with 5 years of
experience in the chemical industry. Include the keywords friends and Hanson”. The examples show
a Correct response that fully follows instructions, an Incorrect response that omits the keywords, and
a Subtle Error that includes only one keyword, highlighting varying degrees of instruction-following.
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A.4 PROMPTS FOR GENERATING OUR CONTROLLED BENCHMARK DATASET

To create the Controlled version of our benchmark dataset, we employed carefully designed prompts
that generate responses with controlled token lengths, varying difficulty levels, and high task quality.
The aim was to ensure that the evaluation focuses solely on uncertainty from instruction-following,
without interference from factors such as task execution quality or response length. Below, we
provide the full prompts used to generate both subtle off-target and completely wrong responses, as
well as the prompt for scoring task quality.

Prompt for generating subtle off-target responses

I want to generate synthetic data to test LLM’s ability to evaluate instruction following.
There are three types of responses in instruction-following; correct, subtly off-target,
totally wrong. Your task involves generating subtly off-target responses that are subtly
disregard the instruction. Subtly off-target response should be classified as false according
to pre-defined evaluation functions based on evaluation focus provided below.

For example, if the instruction is “Make sure to include at least 10 placeholders...”
and kwargs is “number-placeholders 10” then subtly off-target response might include only
8 placeholders. Another example, if the instruction is “Make sure to include keywords:
love, hate” and kwargs is “keywords:love, hate”, then subtly off-target response may include
only one of them.

Make sure the length of your generated subtly off-target response matches the length
of the correct response provided below, aiming for a similar level of detail and complexity.

# Instruction: {Instruction-input}
# Evaluation focus: {Type}
# Details of evaluation criterion: {Kwargs}
# Correctly followed response: {Correct Response}
# Subtly off-target response:

Prompt for generating totally wrong responses

I want to generate synthetic data to test LLM’s ability to evaluate instruction following.
There are three types of responses in instruction-following; correct, confusingly wrong,
totally wrong. Your task involves generating totally wrong responses that are clearly
disregards the instruction. Your totally wrong response should be classified as false
according to pre-defined evaluation functions based on evaluation focus provided below.

For example, if the instruction is “Make sure to include at least 10 placeholders...”
and kwargs is “number-placeholders:10” then wrong response might include only 2
placeholders. Another example, if the instruction is “Make sure to include keywords: love,
hate” and kwargs is “keywords:love, hate”, then wrong response may include none of them.

Make sure the length of your generated confusing response matches the length of the
correct response provided below, aiming for a similar level of detail and complexity.

# Instruction: {Instruction-input}
# Evaluation focus: {Type}
# Details of evaluation criterion: {Kwargs}
# Correctly followed response: {Correct Response}
# Confusingly wrong response:
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Prompt for scoring task quality

You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to score a given output for the given instruction. You should give an overall score
(an integer) on a scale of 0 to 9, where a higher score indicates better overall performance.
Do NOT provide any explanation for your evaluation.

# Instruction: {Task-only-input}
# Output:{Response}
# Score of the Output (Your response should be ONLY the score, an integer between 0 and
9):

A.5 CHALLENGE IN EVALUATING UNCERTAINTY ESTIMATION ABILITY USING EXISTING
DATASETS

We provide the table related to the second challenge: 2) Uncertainty sourced from task execution
quality is entangled with uncertainty stemming from instruction-following, complicating accurate
evaluation.

Case Task quality entanglement
Inst-following Task quality Verbalized confidence

Case 1 o H 7.53± 0.49
Case 2 o L 7.00± 0.63
Case 3 x H 7.42± 0.51
Case 4 x L 6.64± 0.33

Model Instruction-following eval
Correct Wrong Diff

Llama-2-chat-13B 7.48± 2.78 6.37± 3.40 1.11
Llama-2-chat-7B 7.10± 3.24 6.56± 3.15 0.54
Mistral-7B-Inst-v0.3 7.54± 2.95 6.77± 3.29 0.77
Phi-3-mini-128k-instruct 6.10± 3.61 5.12± 3.77 0.98

Table 5: Left Verbalized confidence from the LLaMA-2-chat-7B model on four cases of instruction-
following and task quality. GPT-4 evaluates task quality(0-9), where H and L represent high and
low task quality(threshold 8), respectively, and o and x indicate whether the responses successfully
follow the instructions. It shows that verbalized confidence is affected by task quality, revealing
the entanglement between uncertainty from task execution quality and instruction-following. Right
GPT-4 evaluates instruction-following scores for correct and incorrect responses across four LLMs.
The Diff represents the gap between correct and incorrect cases, showing different levels of difficulty
in distinguishing between correct and incorrect responses across models.

A.6 ADDITIONAL RELATED WORK

Instruction-following in LLMs Recent studies have introduced benchmark datasets to evaluate
the instruction-following capabilities of LLMs, which includes assessments of general instruction-
following (Zhou et al., 2023; Zeng et al., 2023; Qin et al., 2024), refutation tasks (Yan et al., 2024),
and format adherence (Xia et al., 2024). Among them, we chose the IFEval dataset (Zhou et al.,
2023) as the foundation for our work due to its objective evaluation framework, which uses verifiable
instructions to minimize ambiguity in assessment criteria. Additionally, several methods have been
explored to enhance instruction-following performance (Zhang et al., 2023a; He et al., 2024; Sun
et al., 2024). They highlight the growing interest in LLMs’ ability in instruction-following.

Benchmark datasets for evaluating LLM-as-evaluator Recent benchmarks (Zeng et al., 2023;
Zheng et al., 2024; Zhang et al., 2023b; Wang et al., 2023b) focus on evaluating LLMs’ ability to act
as evaluators, assessing how well they compare responses in instruction-following. However, our
work differs by concentrating on estimating uncertainty in instruction-following, comparing vari-
ous baseline uncertainty estimation methods under controlled conditions. While previous research
addresses evaluation biases when LLMs are used as evaluators—such as sensitivity to presentation
order (Wang et al., 2023b; Pezeshkpour & Hruschka, 2023) —our benchmark uniquely tackles the
challenges posed by entangled factors in evaluating uncertainty estimation ability of LLMs, such as
length bias, task execution quality, and varying difficulty levels.
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A.7 STATS OF OUR BENCHMARK DATA

This section provides comprehensive statistics for our benchmark datasets, detailing the number of
data points and token length distributions. These statistics illustrate the construction and character-
istics of both the Controlled and Realistic versions of our benchmark dataset.

Figures 3a and Figures 3b show the token length distributions for the Controlled and Realistic
datasets, respectively, highlighting the absence of length bias in the Controlled version and the
presence of natural length variation in the Realistic version. Figures 4a and Figures 4b display the
model contribution to total correct and incorrect responses in the Realistic version, ensuring diverse
data sources. Table 6 presents the number of correct and incorrect responses in both the Controlled
and Realistic versions. Table 7 provides the mean token lengths across different instruction types,
underscoring the careful balancing of token lengths in the Controlled version.
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Figure 3: Token length distributions for the Controlled and Realistic versions of our bench-
mark dataset. (a) Token length distribution in the Controlled version, where token lengths are
carefully balanced between correct and incorrect responses. (b) Token length distribution in the Re-
alistic version, where token length reflects the natural variability of model-generated responses.
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Figure 4: Model contributions to the Realistic version of the benchmark dataset. (a) Pie chart
representing the model contribution to correct responses. (b) Pie chart representing the model contri-
bution to incorrect responses. These contributions ensure that the Realistic dataset captures diverse
responses from various LLMs.
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Controlled Realistic
correct wrong subtle off-target wrong correct

startend 58 49 58 49 60
detectable content 43 46 45 21 15
detectable format 127 111 107 123 130
language 27 28 14 5 7
change case 61 78 74 60 61
keywords 127 134 109 102 108
length constraints 95 107 108 94 92
punctuation 40 56 52 20 12
Sum 578 609 567 474 485
Total 429 411 381 345 369

Table 6: Summary of the number of data points for correct and incorrect cases in both the
Controlled and Realistic versions. One example may contain multiple instructions, so the total
number of examples is less than the sum of data points across all instruction types.

Controlled Realistic
correct wrong confusing wrong correct

startend 242.81 216.29 267.47 411.08 243.03
detectable content 282.72 270.15 272.27 366.86 296.20
detectable format 244.69 244.16 233.14 349.14 320.44
language 91.37 115.75 144.57 238.00 140.29
change case 229.97 291.04 247.73 273.82 288.25
keywords 232.47 247.34 247.34 315.70 254.56
length constraints 260.89 317.97 286.83 336.82 285.45
punctuation 142.50 182.54 177.81 173.70 50.75

Average 215.93 235.65 234.64 308.14 234.87

Table 7: Mean token length for each instruction type in both the Controlled and Realistic
versions of the dataset. The Controlled version neutralizes the impact of token length, while the
Realistic version reflects natural length variation.

A.8 MORE RESULTS ON OUR BENCHMARK DATA

In this section, we provide additional results on uncertainty estimation performance using our crafted
benchmark datasets. These results offer deeper insights into how different LLMs and uncertainty
estimation methods perform across various evaluation scenarios, both controlled and realistic. The
radar charts and tables present a detailed comparison of models’ performance, using AUROC av-
eraged across instruction types for different uncertainty estimation methods. Figure 5 and Figure 6
shows the radar charts on IFEval data and our benchmark data. Table 8 provides detailed AUROC
scores for each instruction type.
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Figure 5: Model comparison of uncertainty estimation across different evaluation scenarios. Radar
charts illustrate the performance of four LLMs on six uncertainty metrics, with AUROC averaged
across instruction types. (a) Results based on IFEval data. (b) Results on Controlled-Easy version
of our crafted data (distinguishing correct and incorrect responses).
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Figure 6: Model comparison of uncertainty estimation across different evaluation scenarios. Radar
charts illustrate the performance of four LLMs on six uncertainty metrics, with AUROC averaged
across instruction types. (a) AUROC on the Controlled-Hard (distinguishing correct and subtle off-
target responses) and (b) AUROC on the Realistic version of our crafted data.
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Controlled-Easy Controlled-Hard Realistic
Model Instructions Verbal Ppl Seq N-p(t) p(t) Ent Verbal Ppl Seq N-p(t) p(t) Ent Verbal Ppl Seq N-p(t) p(t) Ent

LLaMA2-
chat-13B

startend 0.65 0.58 0.50 0.67 0.44 0.58 0.52 0.58 0.54 0.56 0.43 0.59 0.52 0.49 0.67 0.53 0.54 0.40
detectable content 0.67 0.63 0.49 0.64 0.48 0.59 0.50 0.59 0.51 0.54 0.44 0.56 0.52 0.53 0.67 0.54 0.52 0.44
detectable format 0.66 0.62 0.48 0.59 0.45 0.59 0.51 0.61 0.52 0.53 0.43 0.58 0.51 0.53 0.62 0.54 0.46 0.48
language 0.67 0.64 0.46 0.59 0.44 0.60 0.53 0.62 0.51 0.53 0.42 0.57 0.50 0.52 0.62 0.53 0.46 0.47
change case 0.66 0.62 0.47 0.59 0.46 0.56 0.51 0.60 0.50 0.51 0.43 0.57 0.51 0.51 0.58 0.51 0.46 0.47
keywords 0.68 0.62 0.49 0.61 0.46 0.56 0.53 0.60 0.51 0.53 0.45 0.56 0.52 0.51 0.57 0.51 0.47 0.48
length constraints 0.68 0.61 0.50 0.62 0.46 0.55 0.55 0.59 0.52 0.55 0.45 0.56 0.51 0.51 0.57 0.52 0.48 0.48
punctuation 0.68 0.61 0.50 0.61 0.46 0.56 0.54 0.59 0.52 0.54 0.45 0.56 0.51 0.52 0.57 0.52 0.48 0.48
Average 0.67 0.62 0.48 0.61 0.46 0.57 0.52 0.60 0.52 0.54 0.44 0.57 0.51 0.52 0.61 0.53 0.48 0.46

LLaMA2-
chat-7B

startend 0.64 0.59 0.50 0.55 0.43 0.55 0.52 0.57 0.54 0.49 0.43 0.56 0.41 0.52 0.74 0.54 0.44 0.46
detectable content 0.65 0.63 0.49 0.53 0.41 0.56 0.52 0.58 0.52 0.49 0.43 0.55 0.43 0.55 0.72 0.52 0.42 0.50
detectable format 0.61 0.62 0.48 0.53 0.44 0.57 0.51 0.58 0.52 0.51 0.45 0.54 0.50 0.50 0.60 0.54 0.48 0.51
language 0.63 0.62 0.46 0.52 0.43 0.54 0.51 0.59 0.51 0.50 0.45 0.52 0.49 0.50 0.61 0.53 0.48 0.50
change case 0.63 0.60 0.47 0.54 0.46 0.52 0.52 0.57 0.50 0.51 0.45 0.53 0.50 0.49 0.57 0.53 0.48 0.50
keywords 0.65 0.61 0.49 0.55 0.48 0.52 0.54 0.57 0.51 0.52 0.47 0.52 0.51 0.50 0.57 0.53 0.49 0.50
length constraints 0.66 0.60 0.49 0.56 0.48 0.51 0.55 0.57 0.51 0.52 0.47 0.53 0.51 0.50 0.56 0.51 0.48 0.50
punctuation 0.65 0.60 0.50 0.56 0.49 0.52 0.55 0.57 0.51 0.51 0.47 0.53 0.51 0.50 0.57 0.51 0.48 0.51
Average 0.64 0.61 0.48 0.54 0.45 0.54 0.53 0.57 0.51 0.51 0.45 0.53 0.48 0.51 0.62 0.53 0.47 0.50

Mistral-7B-
Instruct-v0.3

startend 0.69 0.59 0.46 0.64 0.46 0.47 0.54 0.54 0.51 0.56 0.43 0.46 0.59 0.40 0.76 0.52 0.53 0.51
detectable content 0.70 0.60 0.43 0.65 0.46 0.46 0.53 0.56 0.49 0.54 0.45 0.48 0.53 0.43 0.72 0.49 0.53 0.53
detectable format 0.71 0.63 0.44 0.66 0.48 0.45 0.56 0.57 0.49 0.57 0.48 0.48 0.53 0.48 0.62 0.52 0.51 0.49
language 0.71 0.61 0.41 0.67 0.49 0.41 0.56 0.55 0.48 0.56 0.49 0.44 0.53 0.47 0.62 0.51 0.51 0.48
change case 0.70 0.57 0.43 0.65 0.49 0.42 0.56 0.54 0.48 0.54 0.50 0.45 0.50 0.46 0.58 0.51 0.51 0.46
keywords 0.72 0.58 0.45 0.66 0.49 0.40 0.58 0.54 0.49 0.55 0.50 0.45 0.52 0.48 0.58 0.51 0.51 0.47
length constraints 0.73 0.58 0.45 0.68 0.48 0.41 0.59 0.55 0.49 0.57 0.50 0.45 0.52 0.49 0.57 0.50 0.51 0.48
punctuation 0.73 0.58 0.46 0.67 0.49 0.41 0.58 0.55 0.49 0.57 0.49 0.45 0.52 0.49 0.57 0.51 0.50 0.48
Average 0.71 0.59 0.44 0.66 0.48 0.43 0.56 0.55 0.49 0.56 0.48 0.46 0.53 0.46 0.63 0.51 0.51 0.49

Phi-3-mini-
128k-instruct

startend 0.62 0.59 0.47 0.74 0.53 0.56 0.56 0.55 0.46 0.64 0.40 0.50 0.47 0.39 0.70 0.65 0.48 0.48
detectable content 0.66 0.64 0.40 0.71 0.55 0.58 0.53 0.55 0.44 0.59 0.43 0.49 0.47 0.40 0.65 0.61 0.48 0.50
detectable format 0.64 0.57 0.41 0.73 0.53 0.57 0.55 0.52 0.48 0.62 0.47 0.53 0.48 0.43 0.64 0.55 0.52 0.52
language 0.63 0.58 0.41 0.72 0.55 0.57 0.55 0.52 0.47 0.61 0.49 0.52 0.49 0.42 0.65 0.56 0.51 0.52
change case 0.62 0.56 0.41 0.70 0.57 0.55 0.55 0.50 0.47 0.59 0.51 0.53 0.48 0.44 0.63 0.54 0.53 0.52
keywords 0.65 0.59 0.39 0.72 0.59 0.54 0.56 0.52 0.48 0.61 0.52 0.52 0.50 0.42 0.60 0.53 0.53 0.50
length constraints 0.65 0.58 0.41 0.73 0.58 0.53 0.57 0.53 0.48 0.61 0.52 0.00 0.50 0.44 0.58 0.53 0.52 0.51
punctuation 0.65 0.57 0.43 0.73 0.58 0.54 0.57 0.53 0.48 0.63 0.52 0.52 0.50 0.43 0.58 0.54 0.52 0.51
Average 0.64 0.58 0.42 0.72 0.56 0.55 0.55 0.53 0.47 0.62 0.48 0.52 0.49 0.42 0.63 0.56 0.51 0.51

Table 8: AUC for each instruction type for different LLMs and uncertainty estimation methods
across three settings. The uncertainty estimation methods include Verbalized confidence (Verb),
Perplexity (Ppl), Sequence probability (Seq), Normalized p(true) (N-p(t)), p(true), Entropy (Ent),
and linear probing on internal states (Probe). Bold values indicate the best-performing method for
each model and condition, while underlined values denote the second-best performing method.

A.9 MORE RESULTS ON INTERNAL STATES OF LLMS

This section presents additional results on the effectiveness of linear probing (Probe) on the internal
states of different LLMs across various instruction types. As outlined in the main paper, we applied
linear models to early, middle, and late layers of each model to determine how well internal states
capture uncertainty in instruction-following tasks.

Table 9 provides the AUROC performance of probes across different instruction types and layers for
several models. Results are shown for both linear and projection-based methods. Figure 7, Figure 8,
and Figure 9 visualizes these results through heatmaps, showing performance across early, middle,
and late layers for each instruction type.
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Controlled-Easy Controlled-Hard Realistic
Model Instructions Early Middle Last Early Middle Last Early Middle Last

LLaMA-2-chat-13B

startend 0.74 0.88 0.81 0.53 0.48 0.39 0.74 0.83 0.80
detectable content 0.83 0.86 0.81 0.74 0.57 0.52 0.63 0.44 0.56
detectable format 0.87 0.84 0.84 0.57 0.63 0.51 0.54 0.58 0.51
language 0.98 0.84 0.97 0.97 0.89 0.81 1.00 1.00 0.50
change case 0.77 0.69 0.63 0.46 0.50 0.45 0.55 0.39 0.51
keywords 0.78 0.80 0.82 0.53 0.64 0.59 0.54 0.55 0.46
length constraints 0.83 0.80 0.71 0.62 0.57 0.54 0.63 0.59 0.56
punctuation 0.58 0.62 0.54 0.51 0.34 0.36 0.78 0.75 1.00
Average 0.80 0.79 0.76 0.62 0.58 0.52 0.68 0.64 0.61

LLaMA-2-chat-7B

startend 0.86 0.73 0.56 0.50 0.56 0.44 0.84 0.85 0.70
detectable content 0.88 0.92 0.88 0.47 0.45 0.45 0.93 0.73 0.44
detectable format 0.74 0.73 0.71 0.53 0.50 0.48 0.57 0.58 0.59
language 0.76 0.75 0.71 0.86 0.72 0.58 0.33 0.67 0.50
change case 0.63 0.51 0.54 0.41 0.49 0.56 0.60 0.60 0.58
keywords 0.58 0.67 0.70 0.50 0.44 0.48 0.56 0.61 0.46
length constraints 0.77 0.75 0.75 0.54 0.51 0.55 0.53 0.42 0.51
punctuation 0.51 0.67 0.55 0.39 0.44 0.49 0.44 0.44 1.00
Average 0.72 0.72 0.67 0.52 0.51 0.50 0.60 0.61 0.60

Mistral-7B-Instruct-v0.3

startend 0.80 0.79 0.76 0.33 0.43 0.54 0.54 0.53 0.76
detectable content 0.67 0.80 0.88 0.47 0.21 0.38 0.81 0.63 0.60
detectable format 0.75 0.75 0.79 0.58 0.68 0.51 0.52 0.59 0.59
language 0.98 0.83 0.88 0.94 0.94 0.81 1.00 1.00 0.59
keywords 0.57 0.59 0.66 0.61 0.50 0.58 0.44 0.48 0.43
change case 0.73 0.87 0.85 0.49 0.58 0.58 0.59 0.66 0.58
length constraints 0.82 0.86 0.84 0.61 0.73 0.65 0.49 0.60 0.53
punctuation 0.47 0.48 0.49 0.43 0.41 0.56 0.78 0.78 0.88
Average 0.73 0.75 0.77 0.56 0.56 0.58 0.65 0.66 0.62

Phi-3-mini-128k-instruct

startend 0.68 0.82 0.78 0.48 0.47 0.45 0.80 0.89 0.93
detectable content 0.78 0.84 0.95 0.47 0.45 0.45 0.93 0.81 0.92
detectable format 0.78 0.82 0.83 0.55 0.61 0.68 0.50 0.52 0.49
language 0.72 0.97 0.90 0.54 0.56 0.86 1.00 1.00 0.67
change case 0.55 0.60 0.61 0.54 0.50 0.63 0.46 0.51 0.46
keywords 0.61 0.88 0.85 0.43 0.46 0.65 0.72 0.49 0.43
length constraints 0.58 0.84 0.85 0.60 0.60 0.58 0.60 0.62 0.73
punctuation 0.65 0.57 0.47 0.49 0.64 0.47 0.44 0.89 0.67
Average 0.67 0.79 0.78 0.51 0.53 0.60 0.68 0.72 0.66

Table 9: AUROC performance of linear probing (Probe) applied to internal states of early,
middle, and late layers for various models and instruction types. Results are reported for both linear
and projection methods, showing that middle layers generally offer more informative representations
for uncertainty estimation.
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Figure 7: Controlled-Easy: Heatmaps showing the AUROC performance of probes on early, middle,
and late layers for different instruction types across various LLMs.
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Figure 8: Controlled-Hard: Heatmaps showing the AUROC performance of probes on early, middle,
and late layers for different instruction types across various LLMs.
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Figure 9: Realistic version: Heatmaps showing the AUROC performance of probes on early, middle,
and late layers for different instruction types across various LLMs.

A.10 LENGTH EFFECT MODELS

This section analyzes the impact of token length on uncertainty estimation across different instruc-
tion types and models. We examine the relationship between token length and correctness in both
correct and incorrect responses, revealing a prevalent length signal in existing instruction-following
datasets like IFEval. This effect can introduce biases in uncertainty estimation methods that rely on
token length, complicating accurate assessments of model performance.

Table 10 presents the mean and standard deviation of token lengths for both correct and incorrect
responses across four LLMs. The results show that, on average, incorrect responses are consistently
longer than correct ones, further underscoring the influence of token length on uncertainty estima-
tion. Figure 10 provides a visual representation of the token length distributions for three models:
LLaMA-2-chat-13B, Mistral-7B-Inst-v0.3, and Phi-3-128k-inst. The figure illustrates how incor-
rect responses tend to be longer than correct responses, reinforcing the presence of a length signal
in naturally generated datasets like IFEval(Zhou et al., 2023).
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Length of responses (token) Llama-2-7b-chat-hf Llama-2-13b-chat-hf Mistral-7B-Inst-v0.3 Phi-3-mini-128k-instruct
correct wrong correct wrong correct wrong correct wrong

startend 210.03± 146.93 314.59± 185.24 221.00± 154.75 338.29± 198.16 211.67± 151.23 284.67± 187.17 614.00± 206.95 634.28± 226.97
detectable content 269.54± 129.69 400.63± 176.84 276.65± 156.09 376.05± 124.84 282.20± 147.75 309.71± 151.69 593.28± 188.23 582.24± 196.44
detectable format 279.28± 201.31 305.40± 180.85 316.56± 203.45 309.54± 173.21 263.00± 191.05 246.26± 176.43 619.03± 213.78 610.06± 220.98
language 159.86± 118.60 192.29± 100.09 137.14± 81.71 204.71± 103.24 155.25± 81.34 119.50± 74.39 249.20± 152.07 240.09± 176.64
change case 210.77± 138.66 338.36± 179.42 265.11± 174.03 270.75± 122.33 202.49± 150.06 296.98± 179.04 569.87± 152.97 601.41± 206.22
keywords 272.45± 179.84 296.84± 164.83 282.40± 188.00 280.42± 172.82 280.89± 200.39 249.15± 164.24 600.66± 238.87 590.06± 235.95
length constraints 262.62± 205.11 334.77± 174.38 294.72± 233.91 334.29± 174.02 296.21± 236.77 333.06± 185.42 546.00± 258.54 639.02± 208.89
punctuation 49.20± 42.39 245.63± 175.68 46.43± 22.86 254.76± 169.97 119.60± 102.96 209.50± 153.83 301.80± 173.12 570.31± 231.27

Average 241.34± 181.00 298.47± 177.91 275.22± 190.57 287.36± 177.74 250.58± 189.78 257.59± 178.88 566.59± 240.22 613.86± 223.58

Table 10: Mean and standard deviation of token lengths for correct and incorrect responses across
four LLMs, broken down by instruction type. The consistent length difference between correct and
incorrect responses indicates that length bias is prevalent in naturally generated responses, poten-
tially affecting uncertainty estimation.
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Figure 10: Token length distributions for LLaMA-2-chat-13B, Mistral-7B-Inst-v0.3, and Phi-3-
128k-inst. The distributions show that incorrect responses tend to be longer than correct ones, a
pattern observed in existing datasets like IFEval, where naturally generated responses are used. This
length signal highlights the potential bias in uncertainty estimation methods that are sensitive to
token length.
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