
What One Cannot, Two Can: Two-Layer Transformers Provably
Represent Induction Heads on Any-Order Markov Chains

Chanakya Ekbote˚

cekbote@mit.edu
Marco Bondaschi

Nived Rajaraman Jason D. Lee Michael Gastpar

Ashok Vardhan Makkuva: Paul Pu Liang:

- Massachusetts Institute of Technology - École Polytechnique Fédérale de Lausanne

- University of California, Berkeley - Princeton University

Abstract

In-context learning (ICL) is a hallmark capability of transformers, through which
trained models learn to adapt to new tasks by leveraging information from the
input context. Prior work has shown that ICL emerges in transformers due to the
presence of special circuits called induction heads. Given the equivalence between
induction heads and conditional k-grams, a recent line of work modeling sequential
inputs as Markov processes has revealed the fundamental impact of model depth
on its ICL capabilities: while a two-layer transformer can efficiently represent a
conditional 1-gram model, its single-layer counterpart cannot solve the task unless
it is exponentially large. However, for higher order Markov sources, the best known
constructions require at least three layers (each with a single attention head) —
leaving open the question: can a two-layer single-head transformer represent any
kth-order Markov process? In this paper, we precisely address this and theoretically
show that a two-layer transformer with one head per layer can indeed represent any
conditional k-gram. Thus, our result provides the tightest known characterization
of the interplay between transformer depth and Markov order for ICL. Building
on this, we further analyze the learning dynamics of our two-layer construction,
focusing on a simplified variant for first-order Markov chains, illustrating how
effective in-context representations emerge during training. Together, these results
deepen our current understanding of transformer-based ICL and illustrate how even
shallow architectures can surprisingly exhibit strong ICL capabilities on structured
sequence modeling tasks. Code is available at the � link.

1 Introduction

“A complex system that works is invariably found to have evolved from a simple system that worked.”
— John Gall, Systemantics (1975)

Transformers, powered by the attention mechanism, have emerged as the dominant architecture in
machine learning, achieving state-of-the-art performance across a wide range of domains, including

˚Corresponding author.
:Equal contribution / equal mentorship. Authors listed alphabetically; either may be considered last author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/cekbote/what-one-cannot-two-can

natural language processing [6], computer vision [32], and complex reasoning tasks [23, 36]. A key
factor underpinning this success is their ability to efficiently model sequences and perform in-context
learning (ICL)—adapting to unseen tasks during inference by leveraging the relevant input context
[22]. It is well known that ICL emerges in transformers due to the presence of special circuits called
induction heads [22, 31].

Intuitively, these circuits enable transformers to implement a “copy-and-match” mechanism by
copying earlier tokens from the input and matching them with the desired context for next-token
prediction. For example, a first-order induction head mimics the functionality r. . . , A,B, . . . , As Ñ

B. Capitalizing on the connection between induction heads and conditional k-gram models, a recent
active line of work has leveraged kth-order Markov chains as a simple yet powerful framework to
analyze how transformers learn induction heads, with the framework referred to as Markov-ICL
[10, 20, 26, 7, 5]. In particular, using Markovian input sequences, the goal is to understand how
transformers learn to represent conditional k-grams–equivalent to kth-order induction heads (Def. 2).

Building upon the Markov-ICL setting, Bietti et al. [5], Edelman et al. [10], and Nichani et al. [20]
demonstrate that a conditional 1-gram model can be efficiently represented by a two-layer (i.e., two
attention layers), single-head transformer. In contrast, Sanford et al. [29] show that a one-layer,
single-head counterpart cannot solve this task unless its hidden dimension is exponentially larger than
that of the two-layer model. On the other hand, for higher-order processes, Edelman et al. [10] and
Nichani et al. [20] argue that low-depth transformers need the number of heads scaling linearly in k,
in order to learn kth-order Markov processes. However, Rajaraman et al. [26] establish a surprising
result that a three-layer, single-head transformer can represent the conditional k-gram model for any
k ě 1, and thereby learn kth-order Markov models in-context.

Together, these findings illustrate that while a 1-layer transformer cannot efficiently represent an
induction head, a 3-layer model with 1 head per layer suffices for all Markov orders k ě 1. However,
these results leave open a natural and important question:

Can a two-layer, single-head transformer learn kth-order Markov processes in-context?

In this paper, we approach this question from two perspectives—representational power and learning
dynamics. In particular, we affirmatively answer this on the representation front and make partial
progress on the learning dynamics through the following key contributions:

Main Contributions.

1. Improving upon the best known three-layer construction, we prove that a two-layer
single-head transformer is sufficient to represent the conditional k-gram model, and thus
can learn kth-order Markov chains in-context (Sec. 4). To the best of our knowledge,
this is the tightest characterization of transformer depth and Markov order for Markov-ICL.

2. In the course of establishing this result, we uncover an interesting tradeoff between depth
and width: the existing three-layer single-head construction (depth is three, width is one)
is equivalent to a two-layer architecture with two heads in the first layer and one in the
second (depth is two, width is two). (Sec. 3)

3. For first-order Markov chains, we prove that gradient descent on our simplified two-layer
transformer learns an induction head, and thereby the in-context conditional empirical
distribution. (Sec. 5)

Comparison with other Markov-ICL works vis-a-vis transformer architecture. In this paper,
as we focus on higher-order processes, we consider the general transformer architecture (Subsec. 2.2)
closer to real-world models with relative positional encodings [30], softmax attention [32], MLPs, and
layer normalization [2]. For first-order processes, past literature has considered simplified variants:
Bietti et al. [5] use frozen and fixed random embeddings with no MLPs in the first layer, Edelman
et al. [10] consider attention-only models with no MLPs and embeddings, and Nichani et al. [20]
study a variant called disentangled transformer, splitting the residual and attention streams, with
the hidden dimension scaling with depth. While our gradient descent result for first-order processes

2

(Sec. 5) is similar to that of Nichani et al. [20], the architecture is fundamentally different. In Tab. 1,
we compare the parameter counts of our construction against alternative constructions. Our results
show that, as both the order and sequence length increase, our architecture remains the most compact
in terms of parameter efficiency.

Previous works Markov order Architecture # Parameters

Bietti et al. [5] 1 2-layer, 1-head 9d2 ` dS ` Td

Edelman et al. [10] 1 2-layer, 1-head 21S2
` 3TS

Nichani et al. [20] k 2-layer, k-head pk ` pk ` 1q
2
qpS ` T q

2
` T pS ` T q

Rajaraman et al. [26] k 3-layer, 1-head 15p6S ` 3q
2

` p6S ` 3qp3T ` 2S ` 10q

Ours k 2-layer, 1-head 9p6S ` 3q
2

` p6S ` 3qp2T ` 2S ` 9q

Table 1: Comparison with prior works on transformers with Markov-ICL. Here k ě 1 is the Markov
order, T the sequence length, and S the state-space (vocabulary) size. Note that Bietti et al. [5] do not
explicitly state what d is and assume it to be large enough. To the best of our knowledge, our work
obtains the tightest known characterization of transformer depth and Markov order for higher-order
processes. The bit precision for our representation results is the same as that of Rajaraman et al.
[26]: it suffices to have ΩplogpT q ` kq bits per parameter, with Op1{T q additive approximation
error. A detailed breakdown of the parameter count computations can be found in App. I. Additional
experiments analyzing the effect of varying bit precisions are presented in Subsec. H.4.

Notation. Scalars are denoted by lowercase italic letters (e.g., x, y), vectors by lowercase bold
letters (e.g., x,y), and matrices by uppercase bold letters (e.g., A,B). The matrices 0mˆn and
1mˆn represent the all-zeros and all-ones matrices in Rmˆn, respectively. For norms and inner
products we use standard notation, i.e., norms are written as || ¨ ||, with ||x||2 denoting the Euclidean
norm. The inner product in Euclidean space between two vectors x and y is denoted by xx,yy.
The indicator function is denoted either by Ip¨q or 1p¨q, depending on the context. The vocabulary
S “ t1, 2, . . . , Su of cardinality |S| “ S denotes the finite state-space of the Markov Chains studied
in this paper. A sequence x0:T is defined as x0:T :“ x0, x1, . . . , xT , where T P N. For any x P S , its
one-hot embedding is denoted by eSx P RS . Op¨q denotes the big O notation.

1.1 Related Work

In recent years, transformers have been widely studied from both theoretical and mechanistic
perspectives [35, 14, 19]. Foundational results [37, 25, 33] have established their universality and
Turing-completeness, with further work examining their ability to model formal languages [4, 16]
and implement algorithmic behaviors such as induction heads [22]. Concurrently, recent studies have
explored how transformers perform ICL, including their learning dynamics and phase transitions
[31, 34, 3, 8, 27, 3, 1, 11, 15]. On this front, our work is most closely related to recent works studying
Markov-ICL, where the sequential inputs are modeled as Markov processes. In Bietti et al. [5] and
Edelman et al. [10], the authors discover a stage-wise learning procedure for first-order sources, and
show that a 2-layer, 1-head transformer can represent a first-order induction head. Makkuva et al.
[17, 18] study the optimization landscape and learning dynamics of a 1-layer, 1-head model for a
first-order global Markov chain, unveiling the significance of weight-tying and Markov switching
probabilities. Nichani et al. [20] studies the learning dynamics of 2-layer, 1-head disentangled
transformer, illustrating it learns to implement a first-order induction head. For higher-order sources,
Nichani et al. [20] constructs a 2-layer, k-head architecture, whereas Rajaraman et al. [26] shows
that a 3-layer, 1-head model suffices to represent a conditional k-gram model. In contrast, we show
that a 2-layer, 1-head transformer suffices to represent arbitrary-order Markov models in-context.

2 Background

In this section, we provide the requisite preliminaries on Markov processes, the conditional k-gram
model, and the Transformer.

3

2.1 Markov Processes and the Conditional k-gram Model

A D B A Q D A D C ?A D…

Match last 𝑘 symbols

Uniform Distribution

Input:

(a) The conditional k-gram model (Def. 2). It first
(1) identifies the positions in the sequence where the
preceding k tokens match the current context (blue),
and (2) returns the empirical distribution over the
symbols (green) that follow these matched positions.

…

0 1 2 3 4 5 6 7 8 T-1…

A D B A Q D A D C D…Input:

Positions

Attention:

A D

T

(b) kth-order induction head (Def. 4) The attention
pattern concentrates on positions in the sequence where
the preceding k tokens exactly match the final k tokens.
These are the positions the model attends to most
strongly, as they reflect the same context as the current
prediction target.

A kth-order Markov process is a time-homogeneous stochastic process over a finite state space, where
the probability of the next symbol depends only on the most recent k symbols in the sequence [21].
More formally, it is defined as follows:

Definition 1. (kth-order Markov Chains) A stochastic process x0:T :“ x0, x1, ¨ ¨ ¨ , xT over a
finite state space S is said to be a kth-order Markov Chain with transition kernel πp¨q if, for
all k ď n ď T , the following condition holds:

πpxn`1 “ s | xn, xn´1, . . . , x0q “ πpxn`1 “ s | xn, xn´1, . . . , xn´k`1q, @s P S.

We now define the empirical equivalent of the kernel π, the conditional k-gram model:

Definition 2. (Conditional k-gram model) Given a sequence x0:T :“ x0, x1, ¨ ¨ ¨ , xT in
ST`1, the conditional k-gram model pπkps | xT , xT´1, . . . , x0q computes the empirical
probability of observing a symbol s P S matching the last k tokens, i.e.

pπkps | x0, x1, ¨ ¨ ¨ , xT q :“

T
ř

i“k

Ipxi “ s, xi´1 “ xT , xi´2 “ xT´1, . . . , xi´k “ xT´k`1q

T
ř

i“k

Ipxi´1 “ xT , xi´2 “ xT´1, . . . , xi´k “ xT´k`1q

assuming the denominator is non-zero. Thus conditional k-gram can be interpreted as a simple
count-based estimator of the transition kernel π, using the in-context count estimate for the predictive
probability distribution.

Data generation (Random Markov sequences). To empirically generate the input data, i.e. random
Markov sequences of order k, we first sample each row of the transition matrix π independently
from a Dirichlet prior with parameter vector 1, which is equivalent to an uniform distribution on the
S-dimensional probability simplex. The initial k tokens of each sequence are sampled uniformly
from Sk, and the remaining tokens are generated according to the sampled kernel π. To sample an
input batch, we first sample multiple independent transition kernels, generate sequences from each,
and then aggregate these sequences to form a batch for training or evaluation.

2.2 Transformer Model

While there exist several attention-based transformer architectures in literature, we adopt the
formulation described in Shaw et al. [30] and Dai et al. [9], which employs relative positional
encodings. Each layer in our transformer comprises softmax-based self-attention, optionally followed
by a multilayer perceptron (MLP). Following the construction outlined in Rajaraman et al. [26], we
define a L-layer transformer with multi-headed attention as follows:

4

Definition 3. (Multi-head Attention Transformer)
Require: Input x0:T , number of layers L, number of attention heads per layer Hℓ

Ensure: Output distribution Pθp¨ | x0:T q

xp1q
n Ð Embpxnq for n “ 0, 1, . . . , T

for ℓ “ 1 to L do
for n “ 0 to T do

for h “ 1 to Hℓ do
rxpℓ,head:hq

n :“
řn

i“0 att
pℓ,head:hq

n,i ¨

´

W
pℓ,head:hq

V xpℓq

i ` p
pℓ,head:h,V q

n´i

¯

end for
rxpℓ`1q

n :“ xpℓq
n `

řHℓ

h“1 rx
pℓ,head:hq

n Ź Residual connection
xpℓ`1q
n :“ MLPpxpℓq

n ,rxpℓ`1q

n q Ź MLP with layer normalization and skip connections
end for

end for
logitsT :“ Wox

pL`1q

T ` bo
Pθp¨ | x0:T q :“ fplogitsT q,

Where the attention weights are defined as:

att
pℓ,head:hq

n,i :“ softmaxi
´A

W
pℓ,head:hq

K xpℓq

i ` p
pℓ,head:h,Kq

n´i , W
pℓ,head:hq

Q xpℓq

i

E¯

.

Here ℓ denotes the layer index and h the index of the attention head within a layer. The matrices
W

pℓ,head:hq

Q ,W
pℓ,head:hq

K ,W
pℓ,head:hq

V P Rdˆd are the query, key, and value projection matrices,

respectively The vectors p
pℓ,head:h,Kq

n´i and p
pℓ,head:h,V q

n´i P Rd represent the relative positional
encodings that modulate attention based on token distance. Finally, the output of the transformer is
projected using Wox

pL`1q

T ` bo P RS , mapping the representation from the embedding dimension d
to the output vocabulary size S. Although a softmax is typically used for output normalization, in our
setup we define fp¨q “ ReLUp¨q. Note that the attention mechanism described is causal self-attention.

3 Warm Up: Construction with Two Heads in Layer One, One in Layer Two

As a warm up, in this section, we prove our first main result that we can represent kth-order Markov
processes with a 2-layer, 2-head transformer. Towards the same, we recall that the kth-order in-context
counting estimator, i.e. conditional k-gram model, defined in Subsec. 2.1 is closely related to the
classical Laplacian smoothing, which in turn is the optimal Bayes estimator for the next-token
predictive distribution [12, 28]. In view of this fact, in order to estimate the optimal conditional
distribution of each token in-context, it is natural to ask: how does a transformer represent this
conditional k-gram model? To this end, Rajaraman et al. [26] introduces the notion of a k-th order
induction head. This mechanism enables the attention layer of a transformer to assign at each time
step the highest attention weight to past tokens whose length-k context matches that of the current
token. For the sake of completeness, we recall the formal definition.

Definition 4. (kth-order induction head) An attention layer with a single head is said to
implement a kth order induction head if, for any input sequence px0, x1, . . . , xT q P ST`1,
and for any fixed index i ď T , the attention score attT,i at position i is maximized if and only
if its preceding k tokens exactly match the final k tokens of the sequence. That is, attT,i is
maximized if and only if xi´j “ xT´j`1 for all i P t1, 2, . . . , ku.

The salience of this higher-order induction head is immediately reflected by the fact that such a
mechanism is indeed what is precisely needed to implement the conditional k-gram estimator from
Def. 2. Capitalizing on this, Rajaraman et al. [26] proves the best known result for higher-order
Markov processes, through a 3-layer, 1-head transformer architecture, which we recall below to
motivate our main result:

5

Theorem 1. (Theorem 4 in Rajaraman et al. [26]): The conditional k-gram model can be
represented using a transformer with three layers, each containing a single attention head.
The layers are separated by MLP blocks and include relative positional encodings as well as
layer normalization. The embedding dimension scales as OpSq.

Proof sketch. We provide a brief outline of the proof of Thm. 1. For each position n in the sequence
s0:T , the first attention layer effectively learns a hard attention map concentrated on the indices
tn, n ´ 1, . . . , n ´ k ` 1u. Specifically, within a subspace of its embedding space, this layer
computes un “

´

řk´1
i“0 3i ¨ eSxn´i

¯

{

´

řk´1
i“0 3i

¯

, with attention weights attnn,i “ 3i{
´

řk´1
j“0 3

j
¯

for i P tn, n ´ 1, . . . , n ´ k ` 1u, and zero otherwise. Intuitively, this un allows to capture the
past-k context starting at position n. Similarly, the second attention layer focuses on the positions
tn ´ 1, n ´ 2, . . . , n ´ ku, and computes vn “

´

řk
i“1 3

i ¨ eSxn´i

¯

{

´

řk
i“1 3

i
¯

, capturing the
context shifted by one position. After these two layers, the embedding at position n contains
both vn{}vn}2 and the normalized vector un{}un}2, assuming appropriate choices of embedding
dimensions, query/key/value matrices, positional encodings, and MLP layers with layer normalization.
In particular, the architecture can be configured to compute the ℓ2-norm via layer norm, as detailed
in Subsec. A.1. The third attention layer then functions as a k-th order induction head: at position
n, the attention score is made proportional to the cosine similarity xuT , vny{ p}uT }2}vn}2q. This
quantity equals 1 when uT “ vn, and is strictly less than 1 otherwise. As the softmax temperature
tends to infinity, or equivalently, as the attention logits are scaled by a constant tending to infinity, the
model approaches the behavior of a conditional k-gram estimator. Hence, the third layer effectively
implements a k-th order induction head.

We are now ready to prove our first main result. Specifically, we show that the aforementioned
construction with 3 layers and a single head can be adapted to a two-layer counterpart with two heads
in the first layer and one head in the second.

Theorem 2. (Two heads in the first layer, one in the second): The conditional k-gram model
can be represented using a transformer with two layers, the first containing two attention heads
and the second containing a single attention head. The layers are separated by MLP blocks
and include relative positional encodings as well as layer normalization. The embedding
dimension is 6S ` 3.

Remark 1. (Depth-width tradeoff) Thm. 2 thus reveals an interesting tradeoff between depth (number
of attention layers) and width (maximum number of attention heads per layer). While our construction
here has both depth and width two, its counterpart in Thm. 1 instead has depth three and width one.
Thus our new architecture trades off depth with an additional attention head, thereby increasing the
width.

Proof sketch. We provide a brief sketch of the proof for Thm. 2, using the same notation as that of
the Thm. 1, and focusing on the key differences between the two architectures.

Layer One. For each position n in the sequence s0:T , the first attention head in the first layer learns
a focused attention pattern over the positions tn, n´1, . . . , n´k`1u. In a subspace of the embedding
space, this head computes the representation un “

´

řk´1
i“0 3i ¨ eSxn´i

¯

{

´

řk´1
i“0 3i

¯

. On the other
hand, the second attention head in this layer focuses on the preceding context, attending to positions
tn ´ 1, n ´ 2, . . . , n ´ ku, and computes the representation vn “

´

řk
i“1 3

i ¨ eSxn´i

¯

{

´

řk
i“1 3

i
¯

.
After this layer, the embedding at position n contains both the vectors un{}un}2 and vn{}vn}2,
achieved by choosing an appropriate choice of embedding dimensions, query, key, and value matrices,
positional encodings, and MLPs with layer normalization.

Layer Two. The second attention layer now plays the role of an induction head, analogous to the
third layer in Theorem 1. At position n, this head computes an attention score that is proportional
to the cosine similarity xuT , vny{}uT }2}vn}2. This score attains the maximum value of one when

6

uT “ vn, and strictly less otherwise. As the temperature parameter in the softmax becomes large, or
equivalently as the inner product is multiplied by a large constant, the attention mechanism approaches
the behavior of a conditional k-gram estimator. Therefore, this two-layer transformer, with two heads
in the first layer and a single head in the second, is sufficient to represent the conditional k-gram
model. We refer to App. A for the full proof.

4 Main Result: Two-Layer Single-Head Construction

Learnt Attention Map

Layer - 1

Learnt Attention Map Optimal Attention Map

Layer - 2

Figure 2: Attention maps learnt by a two-layer, single-head transformer trained on sequences
generated by random Markov chains of order 3 (Subsec. 2.1). (i) in the first layer, the attention map
shows a clear pattern: attention weights increase monotonically along the first three lower-diagonals
and drop to zero beyond that. This suggests that the relative positional bias is maximized the diagonal
with an offset of ´k “ ´3, i.e., the third diagonal below the main diagonal, which is consistent
with the construction in Sec. 4, (ii) in the second layer, the attention map closely resembles the
ideal attention pattern required to approximate the conditional k-gram estimator. We note that all
experiments were conducted using standard initialization schemes. Additional experiments with
different orders of markov chains and experimental details are provided in App. H. In Subsec. H.2,
we also experimentally demonstrate that single-layer transformers fail to solve the induction head task
with the same order of parameters. Finally, in Subsec. H.3, we test the robustness of the two-layer,
single-head model to noise in the input sequences.

While Thm. 2 above demonstrates that the conditional k-gram can be represented by a two-layer
transformer, it however relies on a two-head construction, thus still leaving open our motivating
question: can a 2-layer, 1-head transformer represent the conditional k-gram? In this section, we
precisely address this gap and realize a 2-layer, 1-head model to represent kth-order Markov processes
for any k ě 1. The key idea behind our approach is to leverage the MLP—and specifically, the
non-linearities such as ReLU and LayerNorm—to isolate symbols at particular positions that are
useful for estimating induction heads. This contrasts with prior constructions, which primarily focused
on the attention mechanism while underutilizing the role of the MLP and its non-linear components.
As a result, our construction highlights how these non-linear MLP elements can play a critical role
in enabling in-context learning, demonstrating their significance. We now present our main result.

Theorem 3. (Two-layer, single-head construction): The conditional k-gram model can be
represented using a transformer with two layers, both containing a single attention head. The
layers are separated by MLP blocks and include relative positional encodings as well as layer
normalization. The embedding dimension is 6S ` 3.

Remark 2. (Parameter count and bit precision) We note that the above construction utilizes 9p6S `

3q2 `p6S`3qp2T `2S`9q parameters. A slightly more efficient construction in terms of parameter
count with 8p6S ` 3q2 ` p6S ` 3qp2T ` 2S ` 9q parameters can be found in App. B. For both these
results, it suffices to have ΩplogpT q ` kq bits per parameter, with Op1{T q additive approximation
error, where T is the sequence length.

Proof Sketch. We now provide an outline of the proof of Thm. 3, using notation consistent with the
constructions in Thm. 1 and Thm. 2.

7

Layer One. For each position n in the sequence s0:T , the attention head in the first layer attends to
the preceding context, focusing on positions tn´1, n´2, . . . , n´ku, and computes the representation
vn “

´

řk
i“1 3

i ¨ eSxn´i

¯

{

´

řk
i“1 3

i
¯

, with attention weights attnn,i “ 3i{
´

řk
j“1 3

j
¯

for i P

tn ´ 1, . . . , n ´ ku, and zero otherwise. This matches the optimal attention pattern for Layer-1
illustrated in Fig. 2.

MLP. In contrast to previous constructions, the MLP situated between the two attention layers plays
a central role in our proof and is structured to reconstruct the complementary representation un “
´

řk´1
i“0 3i ¨ eSxn´i

¯

{

´

řk´1
i“0 3i

¯

, which corresponds to a hard attention pattern over the positions
tn, n´ 1, . . . , n´ k ` 1u. Recall that this un was constructed in Thm. 2 thanks to a second attention
head, absent in our architecture.

Our main idea to tackle this issue is to isolate the one-hot embedding eSxn´k
from vn computed in the

first layer. This is achieved by embedding the entire one-hot vocabulary within the weight matrix
of the first MLP layer. When combined with a suitable bias and followed by a ReLU activation and
layer normalization, this configuration filters out all but the component aligned with xn´k, thereby
producing eSxn´k

. At this stage, the embedding also retains the representation vn, computed by the first
attention layer. Subsequent layers, along with appropriately configured skip connections, implement
a linear transformation that combines eSxn´k

, vn, and the token embedding eSxn
, the latter of which is

introduced via a skip connection. Since vn and eSxn´k
occupy orthogonal subspaces of the embedding,

and all required components are explicitly available, this construction yields the intermediate
representation un “

´

eSxn
{
řk´1

i“0 3i
¯

`

´

3eSxn´k
vn
¯

{

´

řk´1
i“0 3i

¯

´

´

3k ¨ eSxn´k

¯

{

´

řk´1
i“0 3i

¯

,

which simplifies exactly to the desired form un “

´

řk´1
i“0 3i ¨ eSxn´i

¯

{

´

řk´1
i“0 3i

¯

. With
appropriately chosen weights, layer normalization, and skip connections, the resulting embedding at
position n encodes both un{}un}2 and vn{}vn}2.

Layer Two. As in the second layer of Thm. 2, the attention mechanism in the second layer is
configured to act as a kth-order induction head by computing an attention score at position n that
is proportional to the cosine similarity pxuT , vny{}uT }2}vn}2q. This score reaches its maximum
value of one when uT “ vn, and is strictly less than one otherwise. As the softmax temperature
tends to infinity, or equivalently as the attention logits are scaled by a constant that tends to infinity,
the resulting distribution converges to that of a conditional k-gram estimator. App. B details the
complete proof.

Importance of non-linearities. This construction demonstrates that non-linear components such
as ReLU activations and layer normalization are not merely auxiliary, but play a critical role in
enabling the transformer architecture to express higher-order inductive structures that are essential
for in-context learning.

Note. Due to the problem’s non-convexity, multiple constructions may enable two-layer, single-head
transformers to implement a kth-order induction head; our approach offers one such construction
motivated by two key insights. First, empirical observation: for datasets generated from kth-order
Markov chains, we observe that in a trained transformer model, the first-layer attention weights
increase monotonically along the first k lower diagonals before dropping sharply to near-zero (see
Fig. 2 and Subsec. H.1). Second, prior theoretical construction: as demonstrated in Rajaraman
et al. [26], the attention pattern can be designed to be proportional to a dyadic sum representation.
Taken together, they offer both empirical and theoretical grounding for our construction of kth-order
induction heads.

5 Gradient Descent Analysis

Thm. 3 establishes a representation result showing that a two-layer transformer with single attention
heads can implement the conditional k-gram model. However, this does not guarantee that current
optimization algorithms such as gradient descent (or its stochastic variants) can recover such a
solution in practice. To this end, in this section we focus on first-order Markov chains and show

8

that gradient descent on a reduced variant of our two-layer transformer indeed learns an induction
head, and thereby the in-context conditional 1-gram. On this note, we would like to emphasize that
first-order Markov analysis a critical first-step and a building block for challenging higher-order
analysis [20].

Building towards our result, we quickly recall a few recent works [10, 20] that also analyze the
gradient dynamics on first-order Markov data with simplified transformer architectures. Specifically,
Edelman et al. [10] study an attention-only linear transformer without MLPs and softmax operations,
while Nichani et al. [20] analyze a disentangled transformer, with residual and attention streams split.
On the other hand, our transformer architecture in Def. 3 consists of relative positional encodings,
softmax attention, MLP with ReLU activations, and layer normalization. While non-linearities such
as ReLU and layer normalization play a crucial role in our representation result, as illustrated in
Sec. 4, at the same time, they make the gradient analysis challenging and intractable even for a simple
first-order Markov setup.

To tackle this, we study a reduced model wherein we only treat the salient components of our two-layer
architecture in Thm. 3, such as positional encodings and attention layer, as parameters, and treating
the rest as approximately optimal. This enables for a a faithful reproduction of the ICL phenomenon
exhibited by the parent model, whilst being tractable. This is akin to the reparameterization
strategies of Makkuva et al. [18] and Nichani et al. [20] for gradient-flow/gradient-descent analysis.
Alternatively, this can also be viewed as a form of good parameter initialization, similar to that of
[10, 20]. We now start with our technical assumptions on the data distribution and the transformer
architecture. We use notation from Subsec. 2.2, dropping the head-identifying superscript.

Assumptions.

(i) Data distribution assumptions: Following [20], we assume the prior over transition kernels
enforces non-degeneracy, positive transitions, and constant mean (see App. C).

(ii) The positional embeddings used for the keys in the first attention layer are scalar-valued, i.e.
pp1,Kq
n 9 pn, where pn is a scalar.

(iii) W
p1q

Q,K,V and pp1,V q are chosen so that the attention weight for position n ´ i is given

by att
p1q

n,n´i “ expppiq{

´

ři
j“0 expppjq

¯

P t0, 1u, and the corresponding value output is

vn “
řn

i“0 att
p1q

n,n´i ¨ eSxn´i
.

(iv) We assume the MLP is optimal—i.e., it outputs the correct un even from suboptimal vn;
this holds for first-order Markov chains via skip connections.

(v) W
p2q

Q,K are chosen such that the attention in this layer is defined as att
p2q

T,i “

exp pa2 ¨ xvi,uT yq {

´

řT
j“0 exppa2 ¨ xvj ,unyq

¯

, where a2 P R is the attention scalar.

(vi) W
p2q

V is chosen so that the final logit logitT “
řT

i“0 att
p2q

n,i exi
P RS ,

Loss function. We minimize the cross-entropy loss for next-token prediction [20]:

Lpθq “ ´Eπ„Pπ, x0:T „π

«

ÿ

sPS
π pxT`1 “ s | x0:T q log plogitT psq ` εq

ff

, (1)

where ε ą 0 is a small additive constant, Pπp¨q denotes the prior over Markov transition kernels, and
logitT psq is the logit corresponding to the symbol s.

Training algorithm. We denote the set of trainable parameters as θ “ pp, a2q, where the positional
scalars p “ rp0, p1, . . . , pT sT and a2 is the attention scalar. Similar to [20], we adopt a two-stage
training procedure. (i) In the first stage, we optimize the positional scalars p using gradient descent
for T1 steps with learning rate η1, (ii) in the second stage, we freeze p and train only a2 for an
additional T2 steps using a separate learning rate η2. A key distinction in our setup is how we treat
layer normalization during training. While in the first stage we omit all layer norms in the MLP,
during the second step we reintroduce them. This stage-wise enables a tractable theoretical analysis.
We refer to App. C for further details. We now present our main result:

9

Theorem 4. (Convergence of the training Algorithm): Suppose that Assumptions (i)- (vi)
hold and that the Markov sequence length T satisfies T `1 ě polypγ´1, Sq for some constant
γ ą 0. Then there exist ε ą 0, learning rates η1, η2, and step counts T1, T2, such that the
output of the above two-stage training algorithm, θ̂ “ ptp̂iu

T
i“0, â2q, satisfies

Lpθ̂q ´ L˚ À
logpT ` 1q

pT ` 1qcγ
,

for a constant c independent of pγ, Sq, and the optimal loss L˚ :“

´E
”

p1{Sq
ř

s,s1 πps1 | sq log πps1 | sq

ı

.

Thus Thm. 4 illustrates that the transformer model trained via the two-stage algorithm achieves
near-optimal loss asymptotically. Furthermore, we can also show that θ̂ approximates the conditional
1-gram model, i.e. first-order induction head, with vanishing error as sequence length grows (see
App. C). For completeness, perturbative analysis of the architecture consisting of two attention heads
in the first layer and one in the second (see Sec. 3) for any-order Markov chains can be found in
App. D.

6 Conclusion

In this paper, improving over prior three-layer constructions, we show that a two-layer, single-head
transformer can represent any k-th order Markov process. Thus our result gives the tightest known
depth characterization for in-context learning of conditional k-grams. Additionally, we provide a
gradient descent analysis of how such representations emerge during training on first-order Markov
data. While these results deepen our theoretical understanding of ICL and show that compact
transformer architectures can be both expressive and learnable, several open questions remain. In
particular, fully characterizing the learning dynamics for higher-order processes is an important
avenue of future research. Further, we view our contributions as a first step toward understanding the
fundamental limits of ICL in compact transformer architectures, offering not only a tractable setting
for theoretical analysis, but also a potential pathway toward more efficient model designs.

Acknowledgements

This work was supported in part by the Swiss National Science Foundation under Grant No. 200364.
We are grateful to Eshaan Nichani for insightful discussions and valuable input throughout the
preparation of this paper.

10

References
[1] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning

algorithm is in-context learning? investigations with linear models, 2023.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

[3] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection, 2023.

[4] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of
Transformers to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He,
and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL https://
aclanthology.org/2020.emnlp-main.576/.

[5] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth
of a transformer: A memory viewpoint. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=3X2EbBLNsk.

[6] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:
1877–1901, 2020.

[7] Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction
heads: Provable training dynamics and feature learning in transformers. arXiv preprint
arXiv:2409.10559, 2024.

[8] Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai.
In-context learning with transformers: Softmax attention adapts to function lipschitzness.
Advances in Neural Information Processing Systems, 37:92638–92696, 2024.

[9] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019. URL https:
//arxiv.org/abs/1901.02860.

[10] Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The
evolution of statistical induction heads: In-context learning markov chains. Advances in Neural
Information Processing Systems, 37:64273–64311, 2024.

[11] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. The developmental landscape of in-context learning. arXiv preprint arXiv:2402.02364,
2024.

[12] Pierre Simon Laplace. Essai philosophique sur les probabilités. Courcier, Paris, France, 1814.
Reprinted by Cambridge University Press, 2009. In the reprint, the estimator appears on page
23.

[13] David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American
Mathematical Soc., 2017.

[14] Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure:
Towards a mechanistic understanding. In International Conference on Machine Learning, pages
19689–19729. PMLR, 2023.

[15] Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning, 2024.

[16] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
Transformers learn shortcuts to automata, 2023.

11

https://arxiv.org/abs/1607.06450
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.emnlp-main.576/
https://openreview.net/forum?id=3X2EbBLNsk
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860

[17] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji
Kim, and Michael Gastpar. Attention with markov: A framework for principled analysis of
transformers via markov chains. arXiv preprint arXiv:2402.04161, 2024.

[18] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael
Gastpar, and Chanakya Ekbote. Local to global: Learning dynamics and effect of initialization
for transformers. Advances in Neural Information Processing Systems, 37:86243–86308, 2024.

[19] Timothy Nguyen. Understanding transformers via n-gram statistics. Advances in neural
information processing systems, 37:98049–98082, 2024.

[20] Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=jNM4imlHZv.

[21] James R Norris. Markov chains. Number 2. Cambridge university press, 1998.

[22] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning
and induction heads. arXiv preprint arXiv:2209.11895, 2022.

[23] OpenAI. Gpt-4 technical report, 2023. URL https://cdn.openai.com/papers/gpt-4.
pdf.

[24] Matteo Pagliardini. GPT-2 modular codebase implementation. https://github.com/epfml/
llm-baselines. Accessed: Jan. 2025.

[25] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of
Machine Learning Research, 22(75):1–35, 2021.

[26] Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkuva, Kannan Ramchandran, and
Michael Gastpar. Transformers on markov data: Constant depth suffices. Advances in Neural
Information Processing Systems, 37:137521–137556, 2024.

[27] Ruifeng Ren and Yong Liu. Towards understanding how transformers learn in-context through a
representation learning lens. Advances in Neural Information Processing Systems, 37:892–933,
2024.

[28] J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions on
Information Theory, 30(4):629–636, 1984. doi: 10.1109/TIT.1984.1056936.

[29] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the
induction heads task. arXiv preprint arXiv:2408.14332, 2024.

[30] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, 2018.

[31] Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie CY Chan, and Andrew M Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation. arXiv preprint arXiv:2404.07129, 2024.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[33] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study
on approximating Turing machines with transformers. In Advances in Neural Information
Processing Systems, volume 35, pages 12071–12083, 2022.

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[35] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International
Conference on Machine Learning, pages 11080–11090. PMLR, 2021.

12

https://openreview.net/forum?id=jNM4imlHZv
https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://github.com/epfml/llm-baselines
https://github.com/epfml/llm-baselines

[36] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[37] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

13

Appendix

Contents
1 Introduction 1

1.1 Related Work . 3

2 Background 3
2.1 Markov Processes and the Conditional k-gram Model 4
2.2 Transformer Model . 4

3 Warm Up: Construction with Two Heads in Layer One, One in Layer Two 5

4 Main Result: Two-Layer Single-Head Construction 7

5 Gradient Descent Analysis 8

6 Conclusion 10

A Two Heads in Layer One, One in Layer Two Construction 16
A.1 Modification of the Layer Norm . 16
A.2 Construction . 16

A.2.1 Two Layer MLP followed by Second Attention Layer 18
A.2.2 Layer Norms in the Second Attention Block 20

B Two-Layer Single-Head Construction 23
B.1 Three Layer MLP followed by the Second Attention Layer 24
B.2 Two Layer MLP followed by the Second Attention Layer 28

C Two-Layer Single-Head Gradient Analysis 33
C.1 Model Simplification . 35
C.2 Stage 1 Analysis . 37
C.3 Stage 2 Analysis . 41

D Two Heads in Layer One, One in Layer Two Perturbative Analysis 42
D.1 Construction . 43
D.2 Convergence Analysis . 45

D.2.1 Warmup: Second Order Markov Chain 48
D.2.2 Any-Order Markov Chain . 51

E Training Dynamics: Stage One Lemmas 53

F Higher Order Markov Chain Lemmas 60

G Additional Lemmas 64

H Experiments and Experimental Details 67
H.1 Additional Experiments . 67

H.1.1 First-Order Markov Chains . 67
H.1.2 Second-Order Markov Chains . 68
H.1.3 Third-Order Markov Chains . 69

H.2 Experiments on One Layer Transformers . 70
H.3 Experiments on Noisy Sequences . 71

H.3.1 Random Token Substitution . 71
H.3.2 Perturbation of Transition Dynamics . 71
H.3.3 Discussion . 72

H.4 Experiments on Bit Precision . 72
H.5 Experimental Details . 72

14

I Parameter Breakdown and Comparison 74

15

A Two Heads in Layer One, One in Layer Two Construction

A.1 Modification of the Layer Norm

Following Rajaraman et al. [26] (Appendix C.1 in Rajaraman et al. [26]), we use a modified version
of layer normalization to extract the ℓ2-normalized direction of the embedding xn. Specifically, we
augment the embedding by concatenating it with its negation to form rxn;´xns, which ensures that the
mean of the features is zero. Applying standard layer normalization to this vector yields

?
d ¨ xn{}xn}

in the first d components, since the standard deviation of the augmented vector is }xn}{
?
d. To recover

the unit-normalized embedding xn{}xn}, we simply divide the first d components of the output by?
d, and extract the first d components. Throughout this work, we assume this normalization and

scaling step is handled implicitly, and we interpret layer normalization as returning the normalized
embedding direction. In order to avoid explicitly repeating this transformation at each layer, we
redefine the layer norm to implicitly return v{}v}2 for any input vector v. Hence, v{}v}2 “ LNpvq,
where, LNp¨q denotes the modified layer norm operator. Note that this modified definition is used
throughout this paper.

A.2 Construction

Theorem 5. (Two Layer, Two Heads in the First Layer). We claim that there exists a two-layer
attention-based Transformer model fθ, consisting of two attention heads in the first layer and
a single attention head in the second layer, which can be configured in one of two equivalent
ways: (1) with two MLP layers inserted between the first and second attention blocks, or (2)
with no intermediate MLP layers, but with layer normalization applied to the query and key
projections in the second attention block, such that:

fθps1:T qs1 « π
`

s1 | s1:T
˘

@ ps1:T , s
1q „ π, π „ Pπ.

Note that Pπ denotes an arbitrary distribution over trajectories, where each trajectory is
generated using a Markovian transition kernel π. The kernel π corresponds to a kth-order
Markov chain.

Importantly, in both configurations, the input embeddings and the structure of the first layer (Layer
1) remain identical. We define the input embeddings as follows:

xp1q
n “ Embpxnq “

“

01ˆ3 eSxn
01ˆ5S

‰T
P R6S`3

In the first layer, for both the heads we use the following relative positional embeddings

pphead:1q,K
i “ pphead:2q,K

i “

$

’

’

’

’

&

’

’

’

’

%

κ ¨
“

1 0 01ˆp1`6Sq

‰T
, if i “ 0,

pi ¨ logp3q ` κq ¨
“

0 1 01ˆp1`6Sq

‰T
, if i P t1, 2, ¨ ¨ ¨ , k ´ 1u,

pi ¨ logp3q ` κq ¨
“

0 0 1 01ˆp6Sq

‰T
, if i “ k,

0, if i ą k

,

and the same, value embeddings,

pphead:1q,V
i “ pphead:2q,V

i “

#

3i
“

1 0
‰T

for i ď k

0 i ą k.

Layer 1, Head 1. Consider the key and query matrices,

Wphead:1q

K “

„

11ˆ2 01ˆ1 01ˆ6S

0p2`6Sqˆ2 0p2`6Sqˆ1 0p2`6Sqˆp2`6Sq

ȷ

Wphead:1q

Q “

„

01ˆ3 11ˆS 01ˆ5S

0p2`6Sqˆ3 0p2`6SqˆS 0p2`6Sqˆ5S

ȷ

16

On computing (for i “ 0 to i “ k ´ 1)

Wphead:1q

K Embpxn´iq “ 0

Wphead:1q

K pphead:1q,K
i “

“

pi ¨ logp3q ` κq 0p2`6Sqˆ1

‰T

Wphead:1q

Q Embpxnq “
“

11ˆ1 01ˆp2`6Sq

‰T

Then, observe that,

A

Wphead:1q

K

`

Embpxn´iq ` pphead:1q,K
i

˘

,Wphead:1q

Q Embpxnq

E

“ pi ¨ logp3q ` κq ¨ Ip0 ď i ď mintn, k ´ 1uq

Letting κ Ñ 8, this results in the attention pattern,

att
phead:1q

n,n´i “
3iIp0 ď i ď mintn, k ´ 1uq

řmintn,k´1u

i1“0 3i1
“

3iIp0 ď i ď mintn, k ´ 1uq
řmintn,ku´1

i1“0 3i1
“

3iIp0 ď i ď mintn, k ´ 1uq

Cattn

Choose the value matrix as,

Wphead:1q

V “

»

—

–

03ˆ3 03ˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

Hence, the output of the attention head is:

rxphead:1q

n “ r 0 01ˆ2 01ˆS un 01ˆ2S 01ˆ2S s
T
,

where, un “

mintn,k´1u
ÿ

i“0

atthead:1n,n´i e
S
xn´i

Layer 1, Head 2. Consider the key and query matrices,

Wphead:2q

K “

„

01ˆ1 11ˆ2 01ˆ6S

0p2`6Sqˆ1 0p2`6Sqˆ2 0p2`6Sqˆp2`6Sq

ȷ

Wphead:2q

Q “

„

01ˆ3 11ˆS 01ˆ5S

0p2`6Sqˆ3 0p2`6SqˆS 0p2`6Sqˆ5S

ȷ

On computing (for i “ 1 to i “ k)

Wphead:2q

K Embpxn´iq “ 0

Wphead:2q

K pp1q,K
i “

“

pi ¨ logp3q ` κq 0p2`6Sqˆ1

‰T

Wphead:2q

Q Embpxnq “
“

11ˆ1 01ˆp2`6Sq

‰T

Then, observe that,

A

Wphead:2q

K

`

Embpxn´iq ` pphead:2q,K
i

˘

,Wphead:2q

Q Embpxnq

E

“ pi ¨ logp3q ` κq ¨ Ip1 ď i ď mintn, kuq

17

Letting κ Ñ 8, this results in the attention pattern,

att
p1q

n,n´i “
3iIp1 ď i ď mintn, kuq

řmintn,ku

i1“1 3i1
“

3i´1Ip1 ď i ď mintn, kuq
řmintn,ku´1

i1“0 3i1
“

3i´1Ip1 ď i ď mintn, kuq

Cattn

Choose the value matrix as,

Wp1q

V “

»

—

–

I3ˆ3 03ˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

The output of the second attention head is,

rxphead:2q

n “ r Zn 01ˆ2 01ˆS 01ˆ2S vn 01ˆ2S s
T
,

where, vn “

mintn,ku
ÿ

i“1

attn,n´i e
S
xn´i

Zn “

mintk,n´1u
ÿ

i“1

attn,n´i 3
i,

It is straightforward to verify that Zn “ 3k`1{5 when n ě k ` 1, and that Zn ď 3k{5 otherwise.
This observation will be useful later, as the value of Zn serves as a signal for whether n ě k ` 1
or n ď k. In particular, this distinction enables the next layer to bypass attention computations for
indices i ď k, where the condition xn “ xi´1, . . . , xn´k`1 “ xi´k is not well defined.

Therefore, with skip connections:

rxp1q

n “ xp1q
n ` rxphead:1q

n ` rxphead:2q

n

“
“

Zn 01ˆ2 eSxn
un 01ˆS vn 01ˆ2S

‰T

A.2.1 Two Layer MLP followed by Second Attention Layer

MLP. The first layer for the MLP is :

Wp1q

mlp “

»

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq ISˆS 0Sˆ2S

03Sˆp3`3Sq 03SˆS 03Sˆ2S

fi

ffi

fl

bp1q

mlp “ 0p3`6Sqˆ1

Incorporating skip connections and applying non-linearities, we obtain:

rxp1q

n,mlp “ rxp1q

n ` LN
´

ReLU
´

Wp1q

mlprx
p1q

n

¯

` bp1q

mlp

¯

rxp1q

n,mlp “

”

Zn 01ˆ2 eSxn
un

un

}un}2
vn 01ˆS 01ˆS

ıT

The second layer for the MLP is :

18

Wp2q

mlp “

»

—

—

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq ISˆS 0Sˆ2S

02Sˆp3`3Sq 02SˆS 02Sˆ2S

fi

ffi

ffi

ffi

fl

bp2q

mlp “ 0p3`6Sqˆ1

Including skip connections and non-linearities, we get:

rxp2q

n,mlp “ rxp1q

n,mlp ` LN
´

ReLU
´

Wp2q

mlprx
p2q

n

¯

` bp2q

mlp

¯

rxp2q

n,mlp “

”

Zn 01ˆ2 eSxn
un

un

}un}2
vn vn

}vn}2
01ˆS

ıT

Layer 2. In this layer, all relative position encodings are set to 0, and we use the following query
and key matrices for the attention mechanism in the second layer:

Wp2q

Q “
?
κ

«

1 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

ff

Wp2q

K “
?
κ

«

1 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

ff

With these choices in place, we obtain:

A

pWp2q

K rxp2q

i,mlpq, pWp2q

Q rxp2q

n,mlpq

E

“ κ ¨ ZiZn `
κ ¨ xvi,uny

}vi}2 ¨ }un}2
“ κ ¨ ZiZn ` 2 ´ κ ¨

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

Applying the softmax function, we obtain:

att
p2q

n,i “

exp pκZiZn ` 2κ ´ κ
›

›

›

vi
}vi}2

´ un

}un}2

›

›

›

2

q

řn
j“0 exp pκZjZn ` 2κ ´ κ

›

›

›

vj
}vj}2

´ un

}un}2

›

›

›

2

q

We can see that for all k`1 ď i ď n, vi “ un if and only if the local context around position i matches
that of position n, i.e., txi´1´j “ xn´j for all j “ 0, . . . , ku. Moreover, for any k ` 1 ď i ď n, if
vi ‰ un, then the normalized vectors are separated by a non-negligible margin:

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

ě
1

3k
.

Note that while this gap is small, it is strictly non-zero. Recall that Zi “ 3k`1

5 for i ě k ` 1, and
Zi ď 3k

5 otherwise. As a result, the attention mechanism favors positions i such that vi “ un and
i ě k ` 1. In the limit as κ Ñ 8, this results in the following attention pattern:

attp2q
n,¨ “ UnifpInq,

19

where In denotes the set of all indices i P tk`1, . . . , nu whose local context matches that of position
n, formally defined as:

In :“ ti P tk, . . . , nu |xi´1´j “ xn´j for all j “ 0, . . . , ku .

Moreover, UnifpInq denotes the uniform distribution over the indices in In; that is, each position
i P In receives equal attention weight, and all other positions receive zero. We now choose the value
projection matrix in the second attention layer as:

Wp2q

V “

„

0 0 0
0Sˆ3 ISˆS 0

ȷ

.

With this choice, the output of the second attention layer becomes:

rxp2q

n “ rxp2q

n,mlp `

n
ÿ

i“0

att
p2q

n,i

„

0
eSxi

ȷ

“ rxp2q

n,mlp `
1

|In|

ÿ

iPIn

„

0
eSxi

ȷ

.

For the output linear layer, we choose:

Wo “
“

0Sˆp5S`3q ISˆS

‰

, bo “ 0.

This yields the output logits:

logitn “
1

|In|

ÿ

iPIn

eSxi
“

n
ÿ

i“k

I p@ 1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k I p@ 1 ď j ď k, xi1´j “ xn´j`1q
¨ eSxi

.

Finally, by adjusting the notation and setting n “ T to reflect prediction at the final time step, we
obtain:

logitT pxT`1q “

řT
n“k I p@ 0 ď i ď k, xn´i “ xT´i`1q

řT
n“k I p@ 1 ď i ď k, xn´i “ xT´i`1q

,

which precisely computes the conditional k-gram probability.

A.2.2 Layer Norms in the Second Attention Block

We start with rxp1q

n from the first layer as defined.

rxp1q

n “ xp1q
n ` rxphead:1q

n ` rxphead:2q

n

“
“

Zn 01ˆ2 eSxn
un 01ˆS vn 01ˆ2S

‰T

Layer 2. In this layer, all the relative position encodings are set as 0 and instead,

Wp2q

Q “

«

0 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

ff

Wp2q

K “

«

0 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

ff

20

With these choices, and adding a layer normalization after the output of the key linear layer and the
query linear layer

A

LNpWp2q

K rxp2q

i,mlpq,LNpWp2q

Q rxp2q

n,mlpq

E

“
2xvi,uny

}vi}2 ¨ }un}2

“ 2 ´

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

Taking the softmax with a temperature parameter κ,

att
p2q

n,i “

exp p2κ ´ κ
›

›

›

vi
}vi}2

´ un

}un}2

›

›

›

2

q

řn
j“0 exp p2κ ´ κ

›

›

›

vj
}vj}2

´ un

}un}2

›

›

›

2

q

Note that although this gap is small, it remains non-zero. In particular, as κ Ñ 8, the resulting
attention pattern approaches

attp2q
n,¨ “ UnifpIn Y Îkq,

where In denotes the set of indices i P tk, . . . , nu whose local context matches that of position n.
Formally,

In :“ ti P tk, . . . , nu |xi´1´j “ xn´j for all j “ 0, . . . , ku .

In contrast, Îk captures earlier positions i P t0, . . . , k ´ 1u whose (normalized) key vectors are
aligned with the normalized query at position n:

Îk :“

"

i P t0, . . . , k ´ 1u

ˇ

ˇ

ˇ

ˇ

vi

}vi}2
“

kn

}un}2

*

.

On choosing,

Wp2q

V “

„

0 0 0
0Sˆ3 ISˆS 0

ȷ

.

We obtain,

rxp2q

n “ xp2q
n `

n
ÿ

i“1

att
p2q

n,i

„

0
eSxi

ȷ

“ xp3q
n `

1

|In| ` |Îk|

ÿ

iPInYÎk

„

0
eSxi

ȷ

.

For the output linear layer, we choose:

Wo “
“

0Sˆp5S`3q ISˆS

‰

, bo “ 0.

which results in,

logitn “
1

|In| ` |Îk|

ÿ

iPInYÎk

eSxi
“

n
ÿ

i“k

Ip@1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k Ip@1 ď j ď k, xi1´j “ xn´j`1q ` Îk
¨ eSxi

21

`
ÿ

iPÎk

Ip@1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k Ip@1 ď j ď k, xi1´j “ xn´j`1q ` Îk
¨ eSxi

Now, by substituting n “ T , and aiming to predict the next symbol given the current context, we
obtain:

logitT pxT`1q “

řT
n“k Ip@0 ď i ď k, xn´i “ xT´i`1q

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q ` Îk

`

ř

iPÎk
xeST`1, e

S
i y

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q ` Îk

This corresponds to a biased conditional k-gram model, where the bias originates from the second
term in the expression above. Notably, this bias vanishes in the limit as T Ñ 8. The reason is that the
numerator of the second term remains constant with respect to sequence length, since Îk is fixed and
does not scale with T . In contrast, the denominator, given by

řT
n“k Ip@ 1 ď i ď k, xn´i “ xT´i`1q,

grows with T , assuming the underlying Markov chain is irreducible (i.e., every state is reachable
from every other state). Consequently, under this assumption of irreducibility, the influence of the
second term diminishes as T becomes large, yielding the approximation for a sufficiently large T q:

logitT pxT`1q «

řT
n“k Ip@0 ď i ď k, xn´i “ xT´i`1q

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q

22

B Two-Layer Single-Head Construction

Theorem 6. (Two-layer, single-head construction). We assert that there exists a two-layer,
single-head attention Transformer model fθ, which can be configured in one of two equivalent
ways: (1) with three MLP layers placed between the first and second attention blocks, or (2)
with two MLP layers between the attention blocks, but with layer normalization applied to
the query and key projections in the second attention block, such that:

fθps1:T qs1 « π
`

s1 | s1:T
˘

@ ps1:T , s
1q „ π, π „ Pπ.

Note that Pπ denotes an arbitrary distribution over trajectories, where each trajectory is
generated using a Markovian transition kernel π. The kernel π corresponds to a kth-order
Markov chain.

It is important to note that in both configurations, the input embeddings and the first layer (Layer 1)
remain identical. We choose the input embeddings as follows:

xp1q
n “ Embpxnq “

“

01ˆ3 eSxn
01ˆ5S

‰T
P R6S`3

In the first layer we use the following relative positional embeddings:

pp1q,K
i “

$

’

&

’

%

0, if i “ 0,

pi ¨ logp3q ` κq ¨
“

0 1 01ˆp1`6Sq

‰T
, if i P t1, 2, ¨ ¨ ¨ , ku,

0, if i ą k

,

and the value embeddings,

pp1q,V
i “

#

3i
“

1 0
‰T

for i ď k

0 i ą k.

Layer 1. Consider the key and query matrices,

Wp1q

K “

„

01ˆ1 11ˆ2 01ˆ6S

0p2`6Sqˆ1 0p2`6Sqˆ2 0p2`6Sqˆp2`6Sq

ȷ

Wp1q

Q “

„

01ˆ3 11ˆS 01ˆ5S

0p2`6Sqˆ3 0p2`6SqˆS 0p2`6Sqˆ5S

ȷ

On computing (for i “ 1 to i “ K)

Wp1q

K Embpxn´iq “ 0

Wp1q

K pp1q,K
i “

“

pi ¨ logp3q ` κq 0p2`6Sqˆ1

‰T

Wp1q

Q Embpxnq “
“

11ˆ1 01ˆp2`6Sq

‰T

Then, observe that,

A

Wp1q

K

`

Embpxn´iq ` pp1q,K
i

˘

,Wp1q

Q Embpxnq

E

“ pi ¨ logp3q ` κq ¨ Ip1 ď i ď mintn, kuq

Letting κ Ñ 8, this results in the attention pattern,

23

att
p1q

n,n´i “
3iIp1 ď i ď mintn, kuq

řmintn,ku

i1“1 3i1
“

3i´1Ip1 ď i ď mintn, kuq
řmintn,ku´1

i1“0 3i1
“

3i´1Ip1 ď i ď mintn, kuq

Cattn

Choose the value matrix as,

Wp1q

V “

»

—

–

I3ˆ3 03ˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

The output of the attention layer (with the residual connection) is,

rxp1q

n “
“

Zn 01ˆ2 eSxn
01ˆ2S vn 01ˆ2S

‰T
,

where, vn “

mintn,ku
ÿ

i“1

attn,n´i e
S
xn´i

Zn “

mintk,n´1u
ÿ

i“1

attn,n´i 3
i,

It is easy to verify that Zn “ 3k`1{5 for n ě k ` 1, and that Zn ď 3k{5 for n ă k ` 1. This
distinction will be useful later, as the value of Zn acts as a signal indicating whether n ě k ` 1 or
n ă k ` 1. In particular, this allows the subsequent layer to skip attention computations for indices
i ď k, where the condition xn “ xi´1, . . . , xn´k`1 “ xi´k is not well defined.

B.1 Three Layer MLP followed by the Second Attention Layer

+

𝑊𝑚𝑙𝑝
(1)

 ෤𝑥𝑛
(1)

+ 𝑏𝑚𝑙𝑝
(1)

Norm

ReLU

𝑊𝑚𝑙𝑝
(2)

 ෤𝑥𝑛,𝑚𝑙𝑝
(2)

+ 𝑏𝑚𝑙𝑝
(2)

+

𝑊𝑚𝑙𝑝
(3)

 ෤𝑥𝑛,𝑚𝑙𝑝
(3)

+ 𝑏𝑚𝑙𝑝
(3)

Norm

Norm

+

+

𝑊𝑚𝑙𝑝
(1)

 ෤𝑥𝑛
(1)

+ 𝑏𝑚𝑙𝑝
(1)

Norm

ReLU

+

𝑊𝑚𝑙𝑝
(2)

 ෤𝑥𝑛
(2)

+ 𝑏𝑚𝑙𝑝
(2)

Norm

ReLU

+

𝑊𝑚𝑙𝑝
(3)

 ෤𝑥𝑛
(3)

+ 𝑏𝑚𝑙𝑝
(3)

Norm

ReLU

Figure 3: The MLP Architecture

The architecture of the MLP is illustrated in Fig. 3. We now explain how the first layer of the MLP
extracts the symbol eSxn´k

from rxp1q

n . To achieve this, the first layer of the MLP is designed as follows:

24

Wp1q

mlp “

»

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq ASˆS 0Sˆ2S

0Sˆp3`3Sq 0SˆS 0Sˆ2S

03Sˆp3`3Sq 03SˆS 03Sˆ2S

fi

ffi

fl

bp1q

mlp “

”

01ˆp3`Sq ´
p3k´1

´1q

2¨Cattn
¨ 11ˆS 01ˆS 01ˆ2S

ıT

where, A “

»

—

—

—

–

eT1
eT2
...
eTS

fi

ffi

ffi

ffi

fl

Note that on computing, x̂p1q

n,mlp “ LN
´

ReLU
´

Wp1q

mlp rx
p1q

n ` bp1q

mlp

¯¯

, effectively isolates the
component associated with the symbol at position n ´ k in the sequence. This, in turn, allows
us to identify the value of eSxn´k

for a given xn. Before demonstrating this explicitly, we first state a
useful fact: in a triadic sum representation, the coefficient corresponding to position n ´ k is always
greater than the sum of all coefficients at earlier positions. To illustrate this, consider the scenario in
which several consecutive symbols, specifically those from positions n´ 1 to n´ k ` 1, are identical.
Observe that:

attn,n´k “
3k´1

Cattn
k´1
ÿ

i“1

attn,n´i “

k´1
ÿ

i“1

3i´1

Cattn
“

3k´1 ´ 1

2 ¨ Cattn

Hence, attn,n´k ą

k´1
ÿ

i“1

attn,n´i

The operation Wp1q

mlp rx
p1q

n ` bp1q

mlp computes the dot product of each symbol with vn and subtracts
3k´1

2¨Cattn
from each coefficient. This ensures that only the n ´ kth symbol retains a positive coefficient,

while the rest become negative. Passing this result through a ReLU function eliminates the negative
coefficients, leaving only the one corresponding to the n ´ kth symbol. Normalizing the output sets
the coefficient of the n ´ kth symbol to one. Concretely:

x̂p1q

n,mlp “ Wp1q

mlp rx
p1q

n ` bp1q

mlp “
“

01ˆp3`Sq c1ˆS 01ˆS 01ˆ2S

‰T

LN
´

ReLUpx̂p1q

n,mlpq

¯

“
“

01ˆp3`Sq rc1ˆS 01ˆS 01ˆ2S

‰T

Where, rc “

”

Ipc1 ą 3k´1
´1

2¨Cattn
q Ipc2 ą 3k´1

´1
2¨Cattn

q ¨ ¨ ¨ IpcS ą 3k´1
´1

2¨Cattn
q

ı

Note that in rc, exactly one entry is equal to 1—specifically, the entry associated with the symbol at
position n ´ k; all other entries are zero. After applying the skip connection, the final result becomes:

rxp1q

n,mlp “ rxp1q

n ` LN
´

ReLUpx̂p1q

n,mlpq

¯

“
“

Zn 01ˆ2 eSxn
rc1ˆS 01ˆS vn 01ˆ2S

‰T

The second layer of the MLP is designed to compute un from rxp1q

n,mlp. It does so by extracting eSxn
and

vn, and leveraging the binary mask rc together with the vocabulary embeddings stored in the second
layer to produce un. Hence, we define the second layer as follows:

25

Wp2q

mlp “

»

—

—

—

—

—

—

—

–

03ˆ3 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3
1

Cattn
¨ ISˆS ´ 3k

Cattn
¨ AT

SˆS 0SˆS 3 ¨ ISˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

bp2q

mlp “ 0p3`6Sqˆ1

Hence, on computing the output, we obtain:

x̂p2q

n,mlp “ Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

“ r 0 01ˆ2 01ˆS 01ˆS un 01ˆS 01ˆ2S s
T

Where, un “

k´1
ÿ

i“0

3i

Cattn
¨ eSxn´i

“

k´1
ÿ

i“0

attn,n´i ¨eSxn´i

To clarify how un is constructed, we show that it can be obtained directly from vn, eSxn
, and

eSxn´k
. The key observation is that eSxn´k

can be recovered using the binary mask rc as follows,
eSxn´k

“ AT
sˆsrc, where Asˆs is the vocabulary embedding matrix. This holds because rc is a one-hot

vector that selects the embedding corresponding to the symbol at position n ´ k. Using this, the final
representation un is computed as:

un “
1

Cattn
exS

n
` 3vn ´

3k

Cattn
eSxn´k

“
1

Cattn
eSxn

`

k
ÿ

i“1

3i

Cattn
eSxn´i

´
3k

Cattn
eSxn´k

“

k´1
ÿ

i“0

3i

Cattn
¨ eSxn´i

Hence, passing this through the normalization and with the skip connections we get:

rxp2q

n,mlp “ rxp1q

n ` LN
´

ReLU
´

Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

¯¯

“

”

Zn 01ˆ2 eSxn
0n un

}un}2
vn 01ˆ2S

ıT

Finally, on defining the third layer as follows:

Wp3q

mlp “

»

—

–

03ˆ3 0SˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

bp3q

mlp “ 0p3`6Sqˆ1

Passing the input to the layer through the non-linearities along with the skip connections, we get:

rxp3q

n,mlp “ rxp2q

n,mlp ` LN
´

ReLU
´

Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

¯¯

“

”

Zn 01ˆ2 eSxn
01ˆS

un

}un}2
vn vn

}vn}2
01ˆS

ıT

26

Layer 2. In this layer, all relative position encodings are set to 0, and we use the following query
and key matrices for the attention mechanism in the second layer:

Wp2q

Q “
?
κ

«

1 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

ff

Wp2q

K “
?
κ

«

1 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

ff

With these choices in place, we obtain:

A

pWp2q

K rxp3q

i,mlpq, pWp2q

Q rxp3q

n,mlpq

E

“ κ ¨ ZiZn `
κ ¨ xvi,uny

}vi}2 ¨ }un}2
“ κ ¨ ZiZn ` 2 ´ κ ¨

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

Applying the softmax function, we obtain:

att
p2q

n,i “
exp pκZiZn ` 2κ ´ κ

›

›

›

vi
}vi}2

´ un

}un}2

›

›

›

2

q

řn
j“0 exp pκZjZn ` 2κ ´ κ

›

›

›

vj
}vj}2

´ un

}un}2

›

›

›

2

q

We can see that for all k`1 ď i ď n, vi “ un if and only if the local context around position i matches
that of position n, i.e., txi´1´j “ xn´j for all j “ 0, . . . , ku. Moreover, for any k ` 1 ď i ď n, if
vi ‰ un, then the normalized vectors are separated by a non-negligible margin:

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

ě
1

3k
.

Note that while this gap is small, it is strictly non-zero. Recall that Zi “ 3k`1

5 for i ě k ` 1, and
Zi ď 3k

5 otherwise. As a result, the attention mechanism favors positions i such that vi “ un and
i ě k ` 1. In the limit as κ Ñ 8, this results in the following attention pattern:

attp2q
n,¨ “ UnifpInq,

where In denotes the set of all indices i P tk`1, . . . , nu whose local context matches that of position
n, formally defined as:

In :“ ti P tk, . . . , nu |xi´1´j “ xn´j for all j “ 0, . . . , ku .

Moreover, UnifpInq denotes the uniform distribution over the indices in In; that is, each position
i P In receives equal attention weight, and all other positions receive zero. We now choose the value
projection matrix in the second attention layer as:

Wp2q

V “

„

0 0 0
0Sˆ3 ISˆS 0

ȷ

.

With this choice, the output of the second attention layer becomes:

rxp2q

n “ rxp2q

n,mlp `

n
ÿ

i“0

att
p2q

n,i

„

0
eSxi

ȷ

27

“ rxp2q

n,mlp `
1

|In|

ÿ

iPIn

„

0
eSxi

ȷ

.

For the output linear layer, we choose:

Wo “
“

0Sˆp5S`3q ISˆS

‰

, bo “ 0.

This yields the output logits:

logitn “
1

|In|

ÿ

iPIn

eSxi
“

n
ÿ

i“k

I p@ 1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k I p@ 1 ď j ď k, xi1´j “ xn´j`1q
¨ eSxi

.

Finally, by adjusting the notation and setting n “ T to reflect prediction at the final time step, we
obtain:

logitT pxT`1q “

řT
n“k I p@ 0 ď i ď k, xn´i “ xT´i`1q

řT
n“k I p@ 1 ď i ď k, xn´i “ xT´i`1q

,

which precisely computes the conditional k-gram probability.

B.2 Two Layer MLP followed by the Second Attention Layer

+

𝑊𝑚𝑙𝑝
(1)

 ෤𝑥𝑛
(1)

+ 𝑏𝑚𝑙𝑝
(1)

Norm

ReLU

𝑊𝑚𝑙𝑝
(2)

 ෤𝑥𝑛,𝑚𝑙𝑝
(2)

+ 𝑏𝑚𝑙𝑝
(2)

Figure 4: The MLP Architecture

We restate the output of the first attention layer:

rxp1q

n “
“

Zn 01ˆ2 eSxn
01ˆ2S vn 01ˆ2S

‰T
,

where, vn “

mintn,ku
ÿ

i“1

attn,n´i e
S
xn´i

Zn “

mintk,n´1u
ÿ

i“1

attn,n´i 3
i,

The architecture of the MLP is illustrated in Fig. 4. We now explain how the first layer of the MLP
extracts the symbol eSxn´k

from rxp1q

n . To achieve this, the first layer of the MLP is designed as follows:

28

Wp1q

mlp “

»

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq ASˆS 0Sˆ2S

0Sˆp3`3Sq 0SˆS 0Sˆ2S

03Sˆp3`3Sq 03SˆS 03Sˆ2S

fi

ffi

fl

bp1q

mlp “

”

01ˆp3`Sq ´
p3k´1

´1q

2¨Cattn
¨ 11ˆS 01ˆS 01ˆ2S

ıT

where, A “

»

—

—

—

–

eT1
eT2
...
eTS

fi

ffi

ffi

ffi

fl

Note that on computing, x̂p1q

n,mlp “ LN
´

ReLU
´

Wp1q

mlp rx
p1q

n ` bp1q

mlp

¯¯

, effectively isolates the
component associated with the symbol at position n ´ k in the sequence. This, in turn, allows
us to identify the value of eSxn´k

for a given xn. Before demonstrating this explicitly, we first state a
useful fact: in a triadic sum representation, the coefficient corresponding to position n ´ k is always
greater than the sum of all coefficients at earlier positions. To illustrate this, consider the scenario in
which several consecutive symbols, specifically those from positions n´ 1 to n´ k ` 1, are identical.
Observe that:

attn,n´k “
3k´1

Cattn
k´1
ÿ

i“1

attn,n´i “

k´1
ÿ

i“1

3i´1

Cattn
“

3k´1 ´ 1

2 ¨ Cattn

Hence, attn,n´k ą

k´1
ÿ

i“1

attn,n´i

The operation Wp1q

mlp rx
p1q

n ` bp1q

mlp computes the dot product of each symbol with vn and subtracts
3k´1

2¨Cattn
from each coefficient. This ensures that only the n ´ kth symbol retains a positive coefficient,

while the rest become negative. Passing this result through a ReLU function eliminates the negative
coefficients, leaving only the one corresponding to the n ´ kth symbol. Normalizing the output sets
the coefficient of the n ´ kth symbol to one. Concretely:

x̂p1q

n,mlp “ Wp1q

mlp rx
p1q

n ` bp1q

mlp “
“

01ˆp3`Sq c1ˆS 01ˆS 01ˆ2S

‰T

LN
´

ReLUpx̂p1q

n,mlpq

¯

“
“

01ˆp3`Sq rc1ˆS 01ˆS 01ˆ2S

‰T

Where, rc “

”

Ipc1 ą 3k´1
´1

2¨Cattn
q Ipc2 ą 3k´1

´1
2¨Cattn

q ¨ ¨ ¨ IpcS ą 3k´1
´1

2¨Cattn
q

ı

Note that in rc, exactly one entry is equal to 1—specifically, the entry associated with the symbol at
position n ´ k; all other entries are zero. After applying the skip connection, the final result becomes:

rxp1q

n,mlp “ rxp1q

n ` LN
´

ReLUpx̂p1q

n,mlpq

¯

“
“

Zn 01ˆ2 eSxn
rc1ˆS 01ˆS vn 01ˆ2S

‰T

The second layer of the MLP is designed to compute un from rxp1q

n,mlp. It does so by extracting eSxn
and

vn, and leveraging the binary mask rc together with the vocabulary embeddings stored in the second
layer to produce un. Hence, we define the second layer as follows:

29

Wp2q

mlp “

»

—

—

—

—

—

—

—

–

I3ˆ3 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS

0Sˆ3 ISˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3
1

Cattn
¨ ISˆS ´ 3k

Cattn
¨ AT

SˆS 0SˆS 3 ¨ ISˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS ISˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

bp2q

mlp “ 0p3`6Sqˆ1

Hence, on computing the output, we obtain:

rxp2q

n,mlp “ Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

“
“

Zn 01ˆ2 eSxn
un 01ˆS vn 01ˆ2S

‰T

Where, un “

k´1
ÿ

i“0

3i

Cattn
¨ eSxn´i

“

k´1
ÿ

i“0

attn,n´i ¨eSxn´i

To clarify how un is constructed, we show that it can be obtained directly from vn, eSxn
, and

eSxn´k
. The key observation is that eSxn´k

can be recovered using the binary mask rc as follows,
eSxn´k

“ AT
sˆsrc, where Asˆs is the vocabulary embedding matrix. This holds because rc is a one-hot

vector that selects the embedding corresponding to the symbol at position n ´ k. Using this, the final
representation un is computed as:

un “
1

Cattn
exS

n
` 3vn ´

3k

Cattn
eSxn´k

“
1

Cattn
eSxn

`

k
ÿ

i“1

3i

Cattn
eSxn´i

´
3k

Cattn
eSxn´k

“

k´1
ÿ

i“0

3i

Cattn
¨ eSxn´i

Layer 2. In this layer, all the relative position encodings are set as 0 and instead,

Wp2q

Q “

«

0 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

ff

Wp2q

K “

«

0 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

ff

With these choices, and adding a layer normalization after the output of the key linear layer and the
query linear layer

A

LNpWp2q

K rxp2q

i,mlpq,LNpWp2q

Q rxp2q

n,mlpq

E

“
2xvi,uny

}vi}2 ¨ }un}2

“ 2 ´

›

›

›

›

vi
}vi}2

´
un

}un}2

›

›

›

›

2

Taking the softmax with a temperature parameter κ,

30

att
p2q

n,i “

exp p2κ ´ κ
›

›

›

vi
}vi}2

´ un

}un}2

›

›

›

2

q

řn
j“0 exp p2κ ´ κ

›

›

›

vj
}vj}2

´ un

}un}2

›

›

›

2

q

Note that although this gap is small, it remains non-zero. In particular, as κ Ñ 8, the resulting
attention pattern approaches

attp2q
n,¨ “ UnifpIn Y Îkq,

where In denotes the set of indices i P tk, . . . , nu whose local context matches that of position n.
Formally,

In :“ ti P tk, . . . , nu |xi´1´j “ xn´j for all j “ 0, . . . , ku .

In contrast, Îk captures earlier positions i P t0, . . . , k ´ 1u whose (normalized) key vectors are
aligned with the normalized query at position n:

Îk :“

"

i P t0, . . . , k ´ 1u

ˇ

ˇ

ˇ

ˇ

vi

}vi}2
“

kn

}un}2

*

.

On choosing,

Wp2q

V “

„

0 0 0
0Sˆ3 ISˆS 0

ȷ

.

We obtain,

rxp2q

n “ xp2q
n `

n
ÿ

i“1

att
p2q

n,i

„

0
eSxi

ȷ

“ xp3q
n `

1

|In| ` |Îk|

ÿ

iPInYÎk

„

0
eSxi

ȷ

.

For the output linear layer, we choose:

Wo “
“

0Sˆp5S`3q ISˆS

‰

, bo “ 0.

which results in,

logitn “
1

|In| ` |Îk|

ÿ

iPInYÎk

eSxi
“

n
ÿ

i“k

Ip@1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k Ip@1 ď j ď k, xi1´j “ xn´j`1q ` Îk
¨ eSxi

`
ÿ

iPÎk

Ip@1 ď j ď k, xi´j “ xn´j`1q
řn

i1“k Ip@1 ď j ď k, xi1´j “ xn´j`1q ` Îk
¨ eSxi

Now, by substituting n “ T , and aiming to predict the next symbol given the current context, we
obtain:

logitT pxT`1q “

řT
n“k Ip@0 ď i ď k, xn´i “ xT´i`1q

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q ` Îk

31

`

ř

iPÎk
xeST`1, e

S
i y

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q ` Îk

This corresponds to a biased conditional k-gram model, where the bias originates from the second
term in the expression above. Notably, this bias vanishes in the limit as T Ñ 8. The reason is that the
numerator of the second term remains constant with respect to sequence length, since Îk is fixed and
does not scale with T . In contrast, the denominator, given by

řT
n“k Ip@ 1 ď i ď k, xn´i “ xT´i`1q,

grows with T , assuming the underlying Markov chain is irreducible (i.e., every state is reachable
from every other state). Consequently, under this assumption of irreducibility, the influence of the
second term diminishes as T becomes large, yielding the approximation for a sufficiently large T q:

logitT pxT`1q «

řT
n“k Ip@0 ď i ď k, xn´i “ xT´i`1q

řT
n“k Ip@1 ď i ď k, xn´i “ xT´i`1q

32

C Two-Layer Single-Head Gradient Analysis

As discussed in Sec. 5, we analyze a simplified model that retains only the key components of the
two-layer architecture described in Thm. 3—specifically, the positional encodings and the attention
layer—while treating the remaining components as approximately optimal. This reduction enables
a tractable yet faithful reproduction of the in-context learning (ICL) behavior exhibited by the full
model. Our approach is closely related to the reparameterization techniques used by Makkuva et al.
[18] and Nichani et al. [20] in the context of gradient flow and gradient descent analysis. Alternatively,
it can be viewed as a form of optimal parameter initialization, in the spirit of Edelman et al. [10] and
Nichani et al. [20]. We reiterate the assumptions and provide additional details whenever necessary.

Data Assumptions. Following Nichani et al. [20], we assume a prior distribution Pπp¨q over
irreducible and aperiodic Markov transition kernels π, such that:

Assumption 1. (Assumption on Pπ): We consider a prior distribution over transition matrices
of first-order aperiodic and irreducible Markov chains such that there exists a constant γ ą 0
for which, over transition kernels drawn from Pπp¨q, the following conditions are satisfied:

1. Minimum transition probability: min
s,s1

πps1 | sq ą
γ

S

2. Non-trivial mixing:
ÿ

s

}πp¨ | sq ´ µπp¨q}
2
2 ě

γ2

S

3. Permutation invariance: For any permutation σ on rSs, σ´1πσ
d
“ π

4. Uniform expected transition matrix: Eπrπs “
1

S
1S1

J
S

Model Simplifications We simplify the model as follows. More details can be found in App. C.1.

(i) The positional embeddings used for the keys in the first attention layer are scalar-valued, i.e.
pp1,Kq
n 9 pn, where pn is a scalar.

(ii) The query, key and value matrices (Wp1q

Q,K,V) and positional encodings for the value (pp1,V q)
for the first layer, are chosen so that the attention weight for position n ´ i is given by
att

p1q

n,n´i “ expppiq{

´

ři
j“0 expppjq

¯

P t0, 1u, and the corresponding value output is

vn “
řn

i“0 att
p1q

n,n´i ¨ eSxn´i
.

(iii) We assume the MLP is optimal—i.e., it outputs the correct un even from suboptimal vn;
this holds for first-order Markov chains via skip connections.

(iv) The query and key matrices for the second layer (Wp2q

Q,K) are chosen such that the attention

in this layer is defined as attp2q

T,i “ exp pa2 ¨ xvi,uT yq {

´

řT
j“0 exppa2 ¨ xvj ,unyq

¯

, where
a2 P R is the attention scalar.

(v) W
p2q

V is chosen so that the final logit logitT “
řT

i“0 att
p2q

n,i exi
P RS ,

Loss function. We minimize the cross-entropy loss for next-token prediction [20]:

Lpθq “ ´Eπ„Pπ, x0:T „π

«

ÿ

sPS
π pxT`1 “ s | x0:T q log plogitT psq ` εq

ff

, (2)

where ε ą 0 is a small additive constant, Pπp¨q denotes the prior over Markov transition kernels, and
logitT psq is the logit corresponding to the symbol s.

Training algorithm. We denote the set of trainable parameters as θ “ pp, a2q, where p “

rp0, p1, . . . , pT sT represents the positional scalars and a2 is the attention scalar. Following the
approach of [20], we employ a two-stage training procedure. (i) In the first stage, we optimize the
positional scalars p using gradient descent for T1 steps with a learning rate η1; (ii) in the second

33

stage, we freeze p and train only a2 for an additional T2 steps using a distinct learning rate η2. A key
difference in our setup lies in the treatment of layer normalization: during the first stage, all layer
norms in the MLP are omitted, whereas in the second stage, they are reintroduced. This stage-wise
strategy facilitates a more tractable theoretical analysis. The training algorithm is:

Algorithm 1. (Training Algorithm).
Input: learning rates η1, η2; steps T1, T2; small scalar a2,0
Initialize p

p0q

i “ 0 for all i P t0, . . . , nu; a2 “ a2,0;
Freeze all other parameters of the network
Stage 1: Train pi without norms added to the MLP
for t “ 1, . . . , T1 do

pptq Ð ppt´1q ´ η1 ¨ ∇pLpθpt´1qq

θptq Ð

´

tp
ptq
i uni“0, a2 “ a2,0

¯

end for
Stage 2: Train a2 with norms added to the MLP
for t “ T1 ` 1, . . . , T1 ` T2 do

a
ptq
2 Ð a

pt´1q

2 ´ η2 ¨ ∇a2Lpθpt´1qq

θptq Ð

´

tp
pT1q

i uni“0, a
ptq
2

¯

end for
θ̂ Ð θpT1`T2q

Output: θ̂

Under the assumptions outlined above, we restate the main theorem presented in Section 5. In
addition, we introduce a new theorem that addresses the generalization properties of the model in the
inductive learning setting.

Theorem 7. (Convergence of the training Algorithm). Suppose that Assumptions (i)- (vi) hold
and that the Markov sequence length T satisfies T ` 1 ě polypγ´1, Sq for some constant
γ ą 0. Then there exist ε ą 0, learning rates η1, η2, and step counts T1, T2, such that the
output of the above two-stage training algorithm, θ̂ “ ptp̂iu

T
i“0, â2q, satisfies

Lpθ̂q ´ L˚ À
logpT ` 1q

pT ` 1qcγ
,

for a constant c independent of pγ, Sq, and the optimal loss L˚ :“

´E
”

p1{Sq
ř

s,s1 πps1 | sq log πps1 | sq

ı

.

Theorem 8. (Inductive Generalization): Let rπ be a transition matrix satisfying mins,s1
rπps1 |

sq ě γ{S, and let θ̂ denote the trained model from Thm. 7. Consider a sequence s0, . . . , sn
generated according to rπ. Then the model satisfies:

sup
s1

ˇ

ˇfθ̂ps0, . . . , snqs1 ´ rπps1 | snq
ˇ

ˇ À
logpn ` 1q

pn ` 1qcγ
.

This section is organized as follows. We begin by presenting the simplified construction in App.
C.1. Next, we demonstrate that during the first stage of training C.2, the model converges to the
optimal attention map for the first layer—specifically, it learns to attend to the previous token, which
is optimal under a first-order Markov chain. In the second stage of training C.3, the model sharpens
its attention, ultimately converging asymptotically to a near-deterministic distribution over the desired
token. Finally, we provide arguments for the result in the context of inductive generalization, utilizing
results from Nichani et al. [20]. We would like to note that our analysis for first-order processes is
similar to that of Nichani et al. [20], but the architecture is fundamentally different.

34

C.1 Model Simplification

We adopt a low-parameter regime by isolating the core components of the Transformer architecture
that are essential to our analysis, while keeping all remaining parameters fixed at their optimal values.
Here, optimality is defined with respect to a first order Markov chain setting. Under this setup, we
proceed by stating the following assumptions.

xp1q
n “ Embpxnq “

“

01ˆ3 eSxn
01ˆ5S

‰T
P R6S`3

In the first layer, we define the positional encodings corresponding to the key as follows, while
assuming that all other positional encodings remain fixed and set to zero.

pp1q,K
i “

!

pi ¨
“

0 1 01ˆp1`6Sq

‰T
, if i P t0, 1, 2, ¨ ¨ ¨ , nu, ,

Layer 1. We paramatrize the query and key matrice as follows:

Wp1q

K “

„

01ˆ1 11ˆ2 01ˆ6S

0p2`6Sqˆ1 0p2`6Sqˆ2 0p2`6Sqˆp2`6Sq

ȷ

Wp1q

Q “

„

01ˆ3 11ˆS 01ˆ5S

0p2`6Sqˆ3 0p2`6SqˆS 0p2`6Sqˆ5S

ȷ

This then leads to:

A

Wp1q

K

`

Embpxn´iq ` pp1q,K
i

˘

,Wp1q

Q Embpxnq

E

“ pi

Hence, on passing it through the softmax function:

att
p1q

n,n´i “
expppiq

řn
i“0 expppiq

Choosing the value matrix as,

Wp1q

V “

»

—

–

I3ˆ3 03ˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

Hence, we can obtain,

rxp1q

n “
“

01ˆ3 eSxn
01ˆ2S vn 01ˆ2S

‰T
,

where, vn “

n
ÿ

i“0

attn,n´i e
S
xn´i

MLP - Layer 1. The first layer of the MLP is defined as:

Wp1q

mlp “

»

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq 0SˆS 0Sˆ2S

03Sˆp3`3Sq 03SˆS 03Sˆ2S

fi

ffi

fl

bp1q

mlp “
“

01ˆp3`Sq 01ˆS 01ˆS 01ˆ2S

‰T

35

Hence, after applying the skip connections, we obtain:

rxp1q

n,mlp “ rxp1q

n ` LN
´

ReLU
´

Wp1q
rxp1q

n ` bp1q

mlp

¯¯

“
“

01ˆ3 eSxn
01ˆS 01ˆS vn 01ˆ2S

‰T

MLP - Layer 2. The second layer of the MLP is defined as:

Wp2q

mlp “

»

—

—

—

—

—

—

–

03ˆ3 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS 03ˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 ISˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

0Sˆ3 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS 0SˆS

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

bp2q

mlp “ 0p3`6Sqˆ1

Hence, on computing the output, we obtain:

rxp2q

n,mlp “ rxp1q

n ` LN
´

ReLU
´

Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

¯¯

“
“

01ˆ3 eSxn
01ˆS un vn 01ˆ2S

‰T

Where, un “ eSxn

Note that, in this setting, the optimality condition is well defined due to the first order Markov
property. In particular, un can be recovered directly via the skip connections, as it depends only on
the current token.

MLP - Layer 3. The third layer of the MLP is defined as:

Wp3q

mlp “

»

—

–

03ˆ3 0SˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

bp3q

mlp “ 0p3`6Sqˆ1

Passing the input to the layer through the non-linearities along with the skip connections, we get:

rxp3q

n,mlp “ rxp2q

n,mlp ` LN
´

ReLU
´

Wp2q

mlprx
p1q

n,mlp ` bp2q

mlp

¯¯

“

”

0 01ˆ2 eSxn
01ˆS

un

}un}2
vn vn

}vn}2
01ˆS

ıT

Layer 2. In this layer, all the relative position encodings are set as 0 and instead,

Wp2q

Q “ a2 ¨

«

1 0 0 0
0 0Sˆp2`3Sq ISˆS 0
0 0 0 0

ff

Wp2q

K “

«

1 0 0 0
0 0Sˆp2`4Sq ISˆS 0
0 0 0 0

ff

36

With these choices, and adding a normalization after the output of the key linear layer

A

Wp2q

K rxp3q

n,mlp,Wp2q

Q rxp3q

n,mlp

E

“ a2 ¨ xvi,uny

Taking the softmax, we obtain,

att
p2q

n,i “
exp pa2 ¨ xvi,unyq

řn
j“0 exppa2 ¨ xvj ,unyq

Finally the logit is computed as follows (selecting the optimal value and projection matrix):

logitn “

n
ÿ

i“0

att
p2q

n,i ¨exi

Motivated by this parameterization, we construct a simplified model that abstracts away the complex
transformations occurring within the intermediate layers of the network. During stage one of training,
we remove layer normalization; accordingly, we omit layer norms from the simplified model as
well. These can be reintroduced later during stage two of training. However, in the case of a first
order Markov chain, layer normalization does not affect the model’s behavior, since both un and
vn converge to one-hot embedding vectors. With these considerations, the model can be concretely
reduced as follows. Let Zn P Rn`1, where Zi “ xexn

, viy. Morever, let:

Xn “ rex0
ex1

ex2
¨ ¨ ¨ exns

Hence,

logits1
s,n

“ eTs1 rXn softmax pa2Znqs

Note that the logit computed above corresponds to the case where xn “ s. Using a slightly different
notation to account for causal masking, we obtain the following:

Ap1q “

»

—

—

–

p0 ´8 ´8 ´8 ´8

p1 p0 ´8 ´8 ´8
...

...
...

...
...

pn pn´1 pn´1 ¨ ¨ ¨ p0

fi

ffi

ffi

fl

Ap2q “ a2 ¨ I

Hence, logits1
s,n

“ eTs1 rXn softmax pa2Znqs

“ eTs1

»

—

—

—

–

Xn softmax
´

softmax
´

Ap1q
¯

XT
n A

p2qexn

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

Ap2q

θ pXn;1q

fi

ffi

ffi

ffi

fl

We now use this simplified model for the gradient analysis.

C.2 Stage 1 Analysis

We use the simplified model described in the previous section. We begin by quantifying the loss as
follows:

37

Lpθq “ ´
1

S
Eπ„Ppπq,Xn

»

–

ÿ

s1,sPrSs

π
`

sn`1 “ s1|s
˘

log
´

logits1
s,n

`ϵ
¯

fi

fl

Let 1n “ r1, 1, ¨ ¨ ¨ , 1s
T

P Rn. Hence, we can then define:

logits1
s,n

“ eTs1 rXn softmax pa2,0Znqs

Assuming, that a2,0 “ a2,0 is very small, we can use a first order taylor approximation. We also
assume that xn “ s:

logits1
s,n

« eTs1 ¨

„

Xn ¨

"

1n

n
` a2,0 ¨

ˆ

In
n

´
1

n2
¨ 1n1

T
n

˙

¨ Zn

*ȷ

«
eTs1Xn1n

n
` a2,0 ¨

„

eTs1XnZn

n
´

eTs1Xn1n

n
¨
1n

TZn

n

ȷ

«
eTs1Xn1n

n
`

a2,0
n

¨

„

eTs1XnZn ´
eTs1Xn1n

n
¨ 1n

TZn

ȷ

Note that, on computing the quantities separately:

eTs1Xn1n

n
“ µ̂π,nps1q

1n
TZn “

n
ÿ

i“0

xexn , viy

“

n
ÿ

i“0

xexn ,
i
ÿ

j“0

expppjq
ři

j“0 expppjq
exi´j y

“

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq
xexn

, exi´j
y

eTs1XnZn “

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq
xexn

, exi´j
yxexi

, esy

Hence, on substituting the above quantities:

logits1
s,n

« µ̂π,nps1q `
a2,0
n

¨

«

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq

␣

xexn , exi´j yxexi , es1 y ´ xexn , exi´j yµ̂π,nps1q
(

ff

« µ̂π,npsq `
a2,0
n

¨

«

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq

␣

1xi´j“s ¨ 1xi“s ´ 1xi´j“s ¨ µ̂π,nps1q
(

ff

Hence, on computing the derivatives of pm, keeping all the other variables constant, we obtain

dLpθq

dpm
“ ´

1

S
Eπ„Ppπq,Xn

»

–

ÿ

s1,s

π
`

sn`1 “ s1|s
˘

d log
´

logits1
s,n

¯

dpm

fi

fl

38

Note that for sufficiently long sequences, µ̂π,nps1q « µπps1q. Thus:

d log
´

logits1
s,n

¯

dpm
“

a2,0
S ¨ n ¨ µπps1q

¨

n
ÿ

i“m

expppmq
ři

j“0 expppjq
¨

«

qi,m ´

i
ÿ

j“0

expppj ¨ a1q
ři

j“0 expppj ¨ a1q
qi,j

ff

Where, qi,j “ 1xi´j“s ¨ 1xi“s1 ´ 1xi´j“s ¨ µπps1

Using the tower property of expectation,

dLpθq

dpm
“ ´

a2,0
S ¨ kn

¨ Eπ„Ppπq

«

n
ÿ

iěm

ÿ

s1,s

πps1|sq

µπps1q
¨

expppmq
ři

j“0 expppjq

¨
`

Ppxi “ s1, xi´m “ sq ´ Ppxi´m “ sqµπps1q
˘

ff

`
a2,0
S ¨ kn

¨ Eπ„Ppπq

«

n
ÿ

iěm

ÿ

s1,s

i
ÿ

j“0

πps1|sq

µπps1q
¨
expppjq expppmq
´

ři
j“0 expppjq

¯2

¨
`

Ppxi “ s1, xi´j “ sq ´ Ppxi´j “ sqµπps1q
˘

ff

We define a new quantity,

gi,jpπq “
ÿ

s1,s

πps1|sq

µπps1q

`

Ppxi “ s1, xi´j “ sq ´ Ppxi´j “ sqµπps1q
˘

“
ÿ

s1,s

πps1|sq

µπps1q

`

Ppxi “ s1, xi´j “ sq ´ µπpsqµπps1q
˘

(from stationarity)

“
ÿ

s1,s

πps1|sq

µπps1q
Ppxi “ s1, xi´j “ sq ´

ÿ

s1,s

πps1|sq

µπps1q
µπpsqµπps1q

“
ÿ

s1,s

πps1|sq

µπps1q
Ppxi “ s1, xi´j “ sq ´ 1 (by marginalization)

gi,j “ Eπ„Ppπq rgi,jpπqs

Hence, on substituting this back, we obtain,

dLpθq

dpm
“ ´

a2,0
S ¨ kn

¨ Eπ„Ppπq

«

n
ÿ

iěm

expppmq
ři

j“0 expppjq
gi,mpπq ´

n
ÿ

iěm

i
ÿ

j“0

expppjq expppmq
´

ři
j“0 expppjq

¯2 gi,jpπq

ff

Therefore, rather than considering the entire expression, we focus on a specific row (i.e., for a given
i), and obtain:

dLpθq

dpm

ˇ

ˇ

ˇ

ˇ

i

“ ´
a2,0
S ¨ kn

¨ Eπ„Ppπq

»

—

–

¨

˚

˝

expppmq
ři

j“0 expppjq
gi,mpπq ´

i
ÿ

j“0

expppjq expppmq
´

ři
j“0 expppjq

¯2 gi,jpπq

˛

‹

‚

fi

ffi

fl

39

To obtain the optimal attention map for a first-order Markov chain, the goal is to demonstrate that, for
every row, the gradient with respect to p1 is greater than that of any other token and is also positive.
Due to the properties of the softmax function, if this condition holds over the course of training,
then the model will asymptotically attend to the previous token, thereby converging to the optimal
attention map. Hence, the requirement is essentially, for every row:

dLpθq

dp1

ˇ

ˇ

ˇ

ˇ

i

ą
dLpθq

dpk

ˇ

ˇ

ˇ

ˇ

i

@ k P t0, 2, . . . , nu

dLpθq

dp1

ˇ

ˇ

ˇ

ˇ

i

ą 0

In this section, we will show that given the prior assumptions, this is indeed true. Towards this, we
denote dgm,i

“
dLpθq

dpm

ˇ

ˇ

ˇ

i
. With this notation, we can express:

dgm,i
“ ´

a2,0
S ¨ kn

¨

«

expppmq
ři

j“0 expppjq
¨

˜

gi,m ´

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨ gi,j

¸ff

Now, suppose we initialize all positional encoding scalars to zero as defined in the training algorithm.
Then, at initialization time t “ 0, we have:

dgm,i,t“0 “ ´
a2,0
S ¨ kn

¨
1

i ` 1

˜

gi,m ´

i
ÿ

j“1

1

i ` 1
¨ gi,j

¸

, @ i ě 0

Due to Lemma 7, we observe that at initialization time t “ 0 (when all positional encoding scalars are
initialized to zero), the gradient of the attention logits is maximized in the direction corresponding to
position 1. This implies that the model is initially biased to attend more strongly to the immediately
preceding token, aligning with the structure of a first-order Markov process. Concretely, we observe
that:

´dg1,i,0 ą ´dgk,i,0 @ k P t0, 2, . . . , nu, @ i P tk, . . . , nu

and ´ dg1,i,0 ě 0 @ i P tk, . . . , nu

Hence, under the given initialization and model assumptions, performing gradient descent yields the
update rule:

pt`1 “ pt ´ η1∇pt
Lpθq,

where pt “ rp0,t p1,t ¨ ¨ ¨ pn,ts
J

P Rn`1.

Here, pi,t denotes the i-th positional encoding scalar at iteration t. Therefore, after the first update
step (i.e., at t “ 1), we have:

p1,t“1 ą pk,t“1 @k P t0, 2, . . . , nu,

reflecting that the gradient is largest in the direction corresponding to position 1.

We need to show that this property holds for all iterates. By Lemma 3, we can show that for each
iterate of the preconditioned descent, the following holds:

p1,t ą pk,t @ k P t0, 2, . . . , nu

40

Furthermore, by Lemma 3 and Lemma 4, we observe that p1 tends to infinity as it increases
monotonically over time. In contrast, the other positional encodings do not diverge, as they do
not exhibit similar growth. Due to the nature of the softmax function, the rapid increase of p1
suppresses the relative influence of the other components, effectively preventing their growth. In
addition, Lemma 4 provides an estimate of the number of iterations required for the iterates to
converge to the optimal attention configuration. Therefore, assuming a sufficiently long training
period during the first stage, the model successfully recovers the ideal attention map corresponding to
a second-order Markov chain:

vi « exi´1

Hence, in the second stage of training, the inclusion of layer normalization does not significantly affect
the outcome, provided the Markov chain is sufficiently long and the training duration is adequate,
and hence, we will assume that vi{}vi} « exi´1 , which is the optimal attention map. We note that
the gradient analysis for the first stage of training closely mirrors that of the first stage in Nichani
et al. [20], and is directly inspired by their approach.

C.3 Stage 2 Analysis

We observe that, at this stage—assuming the attention map learned in the first stage is optimal by
having the appropriate sequence length and training time—our simplified model aligns with the one
presented in Nichani et al. [20]. This alignment arises because, after the first stage of training, both
models converge to the same optimal attention map in the first layer and subsequently train a single
scalar parameter in the second attention layer. Therefore, we can directly invoke the theorems from
Nichani et al. [20] to analyze the convergence behavior of our model during the second stage of
training. Accordingly, we state the relevant theorems below without proofs. Using the same set of
assumptions outlined in Appendix C, we restate the key lemmas and results from Nichani et al. [20]
as follows.

Lemma 1 (Lemma D.8 in Nichani et al. [20]). Let θ “

´

tp
pT1q

i uni“0, a
ptq
2

¯

, where tp
pT1q

i uni“0u denotes

the output after the first stage of training. If a2 satisfies exppa2q ď exppa˚
2 q :“ Cγ,S n1{12 log´1{6 n,

and a2,0 ą 0 (at initialization), then

1 ě ´
dLpθq

da2
ě

1

4
γ8S´6e´2a2 ą 0.

This clearly indicates that the negative gradient remains positive, causing a2 to increase indefinitely
under gradient descent. As a result, the attention mechanism progressively sharpens, effectively
converging to a hard attention regime. Over time, this leads to convergence to the optimal 1-gram
estimator as the number of training iterations grows. For a thorough discussion of the time taken
to converge, we refer readers to Nichani et al. [20] (see Lemma D.10). Furthermore, given the
equivalence between the models, once training is complete—assuming a sufficiently long sequence
and adequate training duration—they are essentially identical. Therefore, we defer the proof of
convergence of our model’s loss to the optimal loss (Theorem 4) to the corresponding argument in
Nichani et al. [20] (see D.7. Proof of Theorem 4.4). Finally, due to this model equivalence, and
after the completion of both training stages, we again refer to Nichani et al. [20] (see H.4. Proof of
Theorem 4.5) for the proof of Theorem 8.

41

D Two Heads in Layer One, One in Layer Two Perturbative Analysis

Understanding the convergence behavior of a Transformer on Markov chains of arbitrary order in the
prior setting (Appendix C) presents significant challenges. A central difficulty lies in the dependence
of accurately estimating un on the precise recovery of vn. In earlier constructions, this estimation was
enabled by complex non-linearities such as layer normalization, which makes direct gradient-based
analysis intractable. To facilitate analysis, we focus on a simplified architecture: a two-layer model
where the first layer includes two attention heads, as described in Section 3. Due to the intractability
of analyzing the full model, we adopt a perturbative approach in which only a subset of parameters is
trained, while the remainder of the network is fixed at optimal values. This aligns with our goal of
exploring the behavior of a low-parameterized version of the model. Within this setup, we consider
arbitrary-order Markov chains under the assumption that the first head is optimally initialized to
recover un. Consistent with the simplification in Appendix C, we limit learning to the key positional
vectors of the second head in the first layer, parameterized by a single scalar. All other network
components remain fixed. The second layer of attention is not assumed to be learnable; instead, we
begin with a softmax function at very low temperature, held constant during the initial training phase.
This temperature is later increased to infinity. Even under these constraints, analyzing convergence
of the positional encodings to their optimal values remains analytically intractable without strong
assumptions about initialization, training procedures, and the data distribution. Nonetheless, we
regard this work as a first step toward understanding convergence in higher-order Markov models
within more realistic Transformer architectures.

Training Algorithm We introduce a training algorithm that updates only the positional scalars pi
for the key vectors of the second attention head in the first layer, for all i P t0, . . . , nu. Here, D´1

pt´1q

denotes a data-dependent diagonal preconditioner.

Algorithm 2. (Training Algorithm).
Input: learning rates η1, steps T1,
Initialize p

p0q

i “ 0 for all i P t1, . . . , nu and p
p0q

0 “ ´8;
Freeze all other parameters of the network
Set the softmax temperature of the second attention head to a very low value.
Stage 1: Train pi without norms added to the MLP
for t “ 1, . . . , T1 do

pptq Ð ppt´1q ´ η1 ¨
`

Dpt´1q

˘´1 ∇pLpθpt´1qq

θptq Ð

´

tp
ptq
i uni“0

¯

end for
θ̂ Ð θpT1q

Output: θ̂
Add norms back to the MLP
Set the Set the softmax temperature of the second attention head to 8

Data Assumptions We introduce the following data assumptions on the prior over Markov transition
kernels, first for second-order Markov chains and subsequently for higher-order Markov chains.

Assumption 2. (Assumption on Pπ for Second-Order Markov Chains): We consider a prior
distribution Pπ over transition kernels of second-order Markov chains defined over a binary
state space S “ t0, 1u. Each transition kernel π „ Pπ specifies conditional probabilities
πps1 | s1, s2q, and satisfies the following assumptions along with stationarity:

1. Time Reversibility: There exists a stationary distribution µps1, s2q such that
µps1, s2qπps1 | s1, s2q “ µps2, s

1qπps1 | s2, s
1q.

2. Transition Preference: πp0 | 0, 0q ą πp0 | 1, 0q and πp1 | 1, 1q ą πp1 | 0, 1q.
3. Second-Hop Likelihood:

ř

sPt0,1u π
2ps | s, sq ě 1.

42

Assumption 3. (Assumption on Pπ for kth-Order Reversible Markov Chains):We consider
a prior distribution Pπ over transition kernels for kth-order Markov chains on a finite state
space S, with lifted space A “ Sk, such that each transition kernel π „ Pπ satisfies:

1. Irreducibility and Aperiodicity: The chain pXtq is irreducible and aperiodic;
2. Reversibility: The chain is reversible with respect to a stationary distribution π;
3. Lifted Representation: The chain admits a lifted first-order representation with

transition kernel P pa Ñ bq “ PrppXt, . . . , Xt´k`1q “ b | pXt´1, . . . , Xt´kq “

aq;
4. Spectral Assumptions: Under detailed balance with stationary distribution π, the

transition matrix P is self-adjoint on ℓ2pA, πq, with eigenvalues 1 “ λ1 ą λ2 ě

¨ ¨ ¨ ě λN ą 0 and orthonormal eigenfunctions tϕmu;
5. Non-degenerate Projection: The eigenfunction projections βm, defined by

βm “
ÿ

a,bPA
ϕmpaqϕmpbqπpbq fpaq,

satisfy βm ą 0 for all m, where f : A Ñ R is an observable function.

Under the assumptions outlined above, we state the following theorems.

Theorem 9. (Convergence of the Training Algorithm - Second Order): For all second-order
Markov chains satisfying Assumption 2, there exist, a learning rate η1, and a step count T1,
such that the output of the training algorithm (Alg. 2), θ̂ “ tp̂iu

n
i“0, satisfies the following as

T1 Ñ 8:

exppp1q
řn

i“0 expppiq
“

exppp2q
řn

i“0 expppiq
«

1

2
.

Moreover, as the softmax temperature is increased to infinity, the model reduces to a
conditional 2-gram estimator.

Theorem 10. (Convergence of the Training Algorithm - kth-order): For all kth-order Markov
chains satisfying Assumption 3, there exist a learning rate η1, and a step count T1, such that
the output of the training algorithm (Alg. 2), θ̂ “ tp̂iu

n
i“0, satisfies the following as T1 Ñ 8:

exppp1q
řn

i“0 expppiq
“

exppp2q
řn

i“0 expppiq
“ ¨ ¨ ¨

expppkq
řn

i“0 expppiq
«

1

k
.

Moreover, as the softmax temperature is increased to infinity, the model reduces to a
conditional k-gram estimator.

We begin by describing the model simplification and subsequently present the convergence analysis.

D.1 Construction

Note that we assume one of the heads (un to be optimal, we only need to focus on the other head.
Since, we are interested in understanding the perturbative analysis of the second head with regards to
the first, we define the layers as follows:

xp1q
n “ Embpxnq “

“

01ˆ3 eSxn
01ˆ5S

‰T
P R6S`3

In the first layer, for both the heads we use the following relative value embeddings

43

pphead:1q,V
i “ pphead:2q,V

i “

#

0 ¨
“

1 0
‰T

for i ď k

0 i ą k.

Layer 1, Head 1. We assume that the first head is optimal and hence, have an architecture that
outputs the optimal attention map. Specifically for a kth-order markov chain, we get the following
attention score:

un “
1

k

`

exn
` exn´1

` . . . ` exn´k`1

˘

Hence, the output of the attention head is:

rxphead:1q

n “ r 0 01ˆ2 01ˆS un 01ˆ2S 01ˆ2S s
T
,

Layer 1, Head 2. We will use the same relative position embeddings, in particular,

pphead:2q,K
i “

!

pi ¨
“

0 1 01ˆp1`6Sq

‰T
, if i P t0, 1, 2, ¨ ¨ ¨ , nu, ,

We paramatrize the query and key matrices such that:

A

Wphead:2q

K

`

Embpxn´iq ` pphead:2q,K
i

˘

,Wphead:2q

Q Embpxnq

E

“ pi

Hence, on passing it through the softmax function:

att
p1q

n,n´i “
expppiq

řn
i“0 expppiq

Hence, once we keep the value matrix fixed (not learnable):

Wp1q

V “

»

—

–

I3ˆ3 03ˆS 03ˆ4S

03Sˆ3 0SˆS 03Sˆ4S

0Sˆ3 ISˆS 0Sˆ4S

02Sˆ3 0SˆS 02Sˆ4S

fi

ffi

fl

The output of the second attention head is,

rxphead:2q

n “ r 0 01ˆ2 01ˆS 01ˆ2S vn 01ˆ2S s
T
,

where, vn “

mintn,ku
ÿ

i“1

attn,n´i e
S
xn´i

Therefore, with skip connections:

rxp1q

n “ xp1q
n ` rxphead:1q

n ` rxphead:2q

n

“
“

0 01ˆ2 eSxn
un 01ˆS vn 01ˆ2S

‰T

44

MLP. The layers of the MLP are defined as follows:

The first layer for the MLP is :

Wp1q

mlp “

»

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq ISˆS 0Sˆ2S

03Sˆp3`3Sq 03SˆS 03Sˆ2S

fi

ffi

fl

bp1q

mlp “ 0p3`6Sqˆ1

The second layer for the MLP is :

Wp2q

mlp “

»

—

—

—

–

0p3`Sqˆp3`3Sq 0p3`SqˆpSq 0p3`Sqˆp2Sq

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq 0SˆS 0Sˆ2S

0Sˆp3`3Sq ISˆS 0Sˆ2S

02Sˆp3`3Sq 02SˆS 02Sˆ2S

fi

ffi

ffi

ffi

fl

bp2q

mlp “ 0p3`6Sqˆ1

Hence, passing this through the normalization along with the skip connections, we obtain:

rxp2q

n,mlp “

”

0 01ˆ2 eSxn
un

un

}un}2
vn vn

}vn}2
01ˆS

ıT

Layer 2. In this layer, all the relative position encodings are set as 0 and instead, and paramaterize
W

p2q

Q ,W
p2q

K , such that

A

pWp2q

K rxp2q

i,mlpq, pWp2q

Q rxp2q

n,mlpq

E

“
2xvi,uny

}vi}2 ¨ }un}2

“

˜

2 ´

›

›

›

›

vi

}vi}2
´

un

}un}2

›

›

›

›

2
¸

Hence, the attention is computed as follows, using a softmax with temperature parameter κ:

att
p2q

n,i “

exp
´

κ¨2xvi,uny

}vi}2¨}un}2

¯

řn
i“0 exppκ ¨

2xvi,uny

}vi}2¨}un}2
q

Hence, we obtain,

logitn “

n
ÿ

i“0

att
p2q

n,i ¨exi

D.2 Convergence Analysis

We can effectively reduce the model described in App, D.1 to a simplified form, analogous to that in
App. C.1. Specifically, in this case, we obtain:

Let Zn P Rn`1, where

Zi “

B

1

k

`

exn ` exn´1 ` ¨ ¨ ¨ ` exn´k

˘

, vi

F

.

45

Moreover, define:
Xn “ rex0

ex1
ex2

¨ ¨ ¨ exns

Then,
logits1

sk
,n “ eTs1 rXn softmax pκZnqs

Using a slightly different notation, we can express the same as:

Ap1q “

»

—

—

–

p0 ´8 ´8 ´8 ´8

p1 p0 ´8 ´8 ´8
...

...
...

...
...

pn pn´1 pn´2 ¨ ¨ ¨ p0

fi

ffi

ffi

fl

Ap2q “ κ ¨ I

logits1
sk

,n “ eTs1 rXn softmax pκZnqs

“ eTs1Xn softmax

˜

κ ¨ softmaxpAp1qqXT
n ¨

1

k

˜

k´1
ÿ

i“0

exn´i

¸¸

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

Ap2q

θ pXn;kq

Clearly, the above expression closely mirrors the reduced model presented in Nichani et al. [20].
Since we have picked the softmax parameter κ to be very small, we can apply a first-order Taylor
approximation to simplify the expression. Let 1n “ r1, 1, ¨ ¨ ¨ , 1s P Rn`1. We also assume that
xn “ s1, xn´1 “ s2, . . ., xn´k “ sk.

logits1
sk

,n « eTs1 ¨

„

Xn ¨

ˆ

1n

n
` κ ¨

ˆ

In
n

´
1

n2
¨ 1n1

T
n

˙

¨ Zn

˙ȷ

«
eTs1Xn1n

n
` κ ¨

ˆ

eTs1XnZn

n
´

eTs1Xn1n

n
¨
1T
nZn

n

˙

«
eTs1Xn1n

n
`

κ

n
¨

ˆ

eTs1XnZn ´
eTs1Xn1n

n
¨ 1T

nZn

˙

Now, compute each term separately:

eTs1Xn1n

n
“ µ̂π,nps1q

1T
nZn “

n
ÿ

i“0

C

1

k

k´1
ÿ

l“0

exn´l
, vi

G

“

n
ÿ

i“0

C

1

k

k´1
ÿ

l“0

exn´l
,

i
ÿ

j“0

expppjq
ři

j“0 expppjq
exi´j

G

“

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq

C

1

k

k´1
ÿ

l“0

exn´l
, exi´j

G

eTs1XnZn “

n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq

C

1

k

k´1
ÿ

l“0

exn´l
, exi´j

G

xexi
, es1 y

Hence, substituting the expressions above,

logits1
sk

,n « µ̂π,nps1q `
κ

kn
¨

k´1
ÿ

l“0

„ n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨

46

`

xexn´l
, exi´j

yxexi
, es1 y ´ xexn´l

, exi´j
yµ̂π,nps1q

˘

ȷ

« µ̂π,nps1q `
κ

kn
¨

k
ÿ

l“1

„ n
ÿ

i“0

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨

`

1xi´j“sl ¨ 1xi“s1 ´ 1xi´j“sl ¨ µ̂π,nps1q
˘

ȷ

Hence, by computing the derivatives with respect to pm, while keeping all other variables constant,
we obtain:

dLpθq

dpm
“ ´

1

|S|k
Eπ„Ppπq, sn„π

»

–

ÿ

s1,s1,...,sk

πpsn`1 “ s1 | s1, . . . , skq ¨

d log
´

logits1
s,n

¯

dpm

fi

fl

Note that for sufficiently long sequences, µ̂π,nps1q « µπps1q. Thus:

d log
´

logits1
s,n

¯

dpm
“

κ

|S|k ¨ kn ¨ µπps1q
¨

k
ÿ

l“1

n
ÿ

i“m

expppmq
ři

j“0 expppjq
¨

«

qi,m,l ´

i
ÿ

j“0

expppjq
ři

j“0 expppjq
qi,j,l

ff

where

qi,j,l “ 1xi´j“sl ¨ 1xi“s1 ´ 1xi´j“sl ¨ µπps1q

Using the tower property of expectation,

dLpθq

dpm
“ ´

κ

|S|k ¨ kn
¨ Eπ„Ppπq

«

n
ÿ

iěm

k
ÿ

l“1

ÿ

s1,s1,...,sk

πps1|s1, . . . , skq

µπps1q
¨

expppmq
ři

j“0 expppjq

¨
`

Ppxi “ s1, xi´m “ slq ´ Ppxi´m “ slqµπps1q
˘

ff

`
κ

|S|k ¨ kn
¨ Eπ„Ppπq

«

n
ÿ

iěm

k
ÿ

l“1

ÿ

s1,s1,...,sk

i
ÿ

j“0

πps1|s1, . . . , skq

µπps1q
¨
expppjq expppmq
´

ři
j“0 expppjq

¯2

¨
`

Ppxi “ s1, xi´j “ slq ´ Ppxi´j “ slqµπps1q
˘

ff

(3)

Hence, instead of looking at this in totality, for a particular row (i.e. for a particular i, we obtain:)

dLpθq

dpm

ˇ

ˇ

ˇ

ˇ

i

“ ´
κ

|S|k ¨ kn
¨ Eπ„Ppπq

«

k
ÿ

l“1

ÿ

s1,s1,...,sk

πps1|s1, . . . , skq

µπps1q
¨

expppmq
ři

j“0 expppjq

¨
`

Ppxi “ s1, xi´m “ slq ´ Ppxi´m “ slqµπps1q
˘

ff

`
κ

|S|k ¨ kn
¨ Eπ„Ppπq

«

k
ÿ

l“1

ÿ

s1,s1,...,sk

i
ÿ

j“0

πps1|s1, . . . , skq

µπps1q
¨
expppjq expppmq
´

ři
j“0 expppjq

¯2

¨
`

Ppxi “ s1, xi´j “ slq ´ Ppxi´j “ slqµπps1q
˘

ff

(4)

47

We define a new quantity,

gi,j,l “
ÿ

s1,s1,¨¨¨ ,sk

πps1|s1, ¨ ¨ ¨ , skq

µπps1q

`

Ppxi “ s1, xi´j “ slq ´ Ppxi´j “ slqµπps1q
˘

“
ÿ

s1,s1,¨¨¨ ,sk

πps1|s1, ¨ ¨ ¨ , skq

µπps1q

`

Ppxi “ s1, xi´j “ slq ´ µπpslqµπps1q
˘

(from stationarity)

“
ÿ

s1,s1,¨¨¨ ,sk

πps1|s1, ¨ ¨ ¨ , skq

µπps1q
Ppxi “ s1, xi´j “ slq ´

ÿ

s1,s1,¨¨¨ ,sk

πps1|s1, ¨ ¨ ¨ , skq

µπps1q
µπpslqµπps1q

“
ÿ

s1,s1,¨¨¨ ,sk

πps1|s1, ¨ ¨ ¨ , skq

µπps1q
Ppxi “ s1, xi´j “ slq ´ |S|k´1 (by marginalization)

Moroever, we also define:

gi,j “

k
ÿ

l“1

gi,j,l

Hence, on substituting this back to the original equation:

dLpθq

dpm

ˇ

ˇ

ˇ

ˇ

i

“ ´
κ

|S|k ¨ kn
¨ Eπ„Ppπq

»

—

–

¨

˚

˝

expppmq
ři

j“0 expppjq
gi,m, ´

i
ÿ

j“0

expppjq expppmq
´

ři
j“0 expppjq

¯2 gi,j

˛

‹

‚

fi

ffi

fl

D.2.1 Warmup: Second Order Markov Chain

We begin by presenting the dynamics for a second-order Markov chain as a warm-up. Since the
vocabulary is binary, we have |S| “ 2. Therefore,

gi,j “

k
ÿ

l“1

gi,j,l

“
ÿ

s1,s1,s2

ˆ

πps1 | s1, s2q

µπps1q
Ppxi “ s1, xi´j “ s1q `

πps1 | s1, s2q

µπps1q
Ppxi “ s1, xi´j “ s2q

˙

´ 4

Enumerating all possible values of s1, s2 P t0, 1u, we get:

gi,j “
ÿ

s1

ˆ

πps1 | 0, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q `

πps1 | 0, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q

˙

`
ÿ

s1

ˆ

πps1 | 1, 0q

µπps1q
Ppxi “ s1, xi´j “ 1q `

πps1 | 1, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q

˙

`
ÿ

s1

ˆ

πps1 | 0, 1q

µπps1q
Ppxi “ s1, xi´j “ 0q `

πps1 | 0, 1q

µπps1q
Ppxi “ s1, xi´j “ 0q

˙

`
ÿ

s1

ˆ

πps1 | 1, 1q

µπps1q
Ppxi “ s1, xi´j “ 1q `

πps1 | 1, 1q

µπps1q
Ppxi “ s1, xi´j “ 1q

˙

´ 4

Using marginalization, we can simplify terms such as:

48

ÿ

s1

ˆ

πps1 | 1, 0q

µπps1q
Ppxi “ s1, xi´j “ 1q `

πps1 | 1, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q

˙

“
ÿ

s1

ˆ

πps1 | 1, 0q ¨
Ppxi “ s1, xi´j “ 1q ` Ppxi “ s1, xi´j “ 0q

µπps1q

˙

“
ÿ

s1

ˆ

πps1 | 1, 0q ¨
µπps1q

µπps1q

˙

(by marginalization)

“
ÿ

s1

πps1 | 1, 0q

“ 1

Similarly, we obtain:

ÿ

s1

ˆ

πps1 | 0, 1q

µπps1q
Ppxi “ s1, xi´j “ 0q `

πps1 | 0, 1q

µπps1q
Ppxi “ s1, xi´j “ 1q

˙

“ 1

Therefore, substituting these identities back into the expression for gi,j , we obtain:

gi,j “ 2 ¨

˜

ÿ

s1

πps1 | 0, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q `

ÿ

s1

πps1 | 1, 1q

µπps1q
Ppxi “ s1, xi´j “ 1q ´ 1

¸

In an ideal second-order Markov chain scenario, we expect the positional scalars p1 and p2 to
approach infinity, while the remaining positional weights remain relatively small. This reflects ideal
attention behavior: the model should focus primarily on the two preceding tokens, consistent with the
structure needed for an accurate k-gram (specifically, bigram) estimator. Hence, the requirement is
essentially:

dLpθq

dp1

ˇ

ˇ

ˇ

ˇ

i

“
dLpθq

dp2

ˇ

ˇ

ˇ

ˇ

i

ą
dLpθq

dpk

ˇ

ˇ

ˇ

ˇ

i

@ k P t0, 3, . . . , nu

We denote dgm,i
“

dLpθq

dpm

ˇ

ˇ

ˇ

i
. With this notation, we can express:

dgm,i
“ ´

a2,0
|S|k ¨ kn

¨ Eπ„Ppπq

«

expppmq
ři

j“0 expppjq
¨

˜

gi,m ´

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨ gi,j

¸ff

According to assumptions (Assump. 2), the chain satisfies detailed balance. Additionally, by Lemma.
5, we know that the values gi,j decrease monotonically:

gi,0 ą gi,1 ą gi,2 ą ¨ ¨ ¨ ą gi,n

Using this monotonicity, we can bound the weighted average:

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨ gi,j ď

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨ sup

j
gi,j

ď sup
j

gi,j “ gi,0 (by monotonicity)

49

Now, suppose we initialize all positional encoding scalars to zero except for p0 “ ´8. Then, at
initialization time t “ 0, we have:

dgm,i,t“0 “ ´
a2,0

|S|k ¨ kn
¨

1

i ´ 1

˜

Eπ„Ppπqrgi,ms ´

i
ÿ

j“1

1

i ´ 1
¨ Eπ„Ppπqrgi,js

¸

, @ i ě 1

dgm,0,t“0 “ 0

Since we assume detailed balance (Assump. 2) we can now deduce:

gi,j “ 2 ¨

˜

ÿ

s1

πps1 | 0, 0q

µπps1q
Ppxi “ s1, xi´j “ 0q `

ÿ

s1

πps1 | 1, 1q

µπps1q
Ppxi “ s1, xi´j “ 1q ´ 1

¸

“ 2 ¨

˜

ÿ

s1

Ppxi´j “ 0 | xi “ s1q ¨ πps1 | 0, 0q `
ÿ

s1

Ppxi´j “ 1 | xi “ s1q ¨ πps1 | 1, 1q ´ 1

¸

“ 2 ¨

˜

ÿ

s

P |i´j|ps | s, sq ´ 1

¸

(by time-homogeneity and detailed balance)

Under the assumptions on the Markov chain (Assump. 2), we observe that at initialization time t “ 0
(when all positional encoding scalars are initialized to zero, except for p0 “ ´8), the monotonicity
property gi,1 ą gi,2 ą ¨ ¨ ¨ ą gi,n holds.

Moreover, by assumption (Assump. 2), we know gi,1 ą 1, which implies:

´dg1,i,0 ą ´dg2,i,0 ą ¨ ¨ ¨ ą ´dgk,i,0 for all k ě 0

This contradicts the ideal case described earlier, where we would prefer:

´dg1,i,0 “ ´dg2,i,0 ą ´dgk,i,0,

@ k P t0, 3, . . . , nu, @ i P tk, . . . , nu,

and ´ dg1,i,0 ě 0

(5)

Towards this, we first define a row-summed quantity:

dgm,t “

n
ÿ

iěm

dgm,i,t

To satisfy the condition in the ideal case (Eq. 5), we now introduce a preconditioner-based optimizer:

pt`1 “ pt ´ ηt D
´1
t ∇pt

Lpθq

where

pt “ rp0,t p1,t ¨ ¨ ¨ pn,ts
J

P Rn`1

D´1
t “ diag

ˆ

0, 1,
dg1,t
dg2,t

, 1, 1, . . . , 1

˙

P Rpn`1qˆpn`1q

Here, pi,t denotes the ith positional encoding scalar at iteration t. Therefore, after the first update
step (i.e., at t “ 0), we obtain:

p1,1 “ p2,1 ą pk,1 @k P t0, 3, . . . , nu

50

Note that while we assumed p0 “ ´8 for analysis, in practice we can set it to a large negative
constant to ensure that ´dgm,i,t“0 ą 0. We need to show that this property holds for all iterates. By
Lemma 3, we can show that for each iterate of the preconditioned descent, the following holds:

p1,t “ p2,t ą pk,t @ k P t0, 3, . . . , nu

Furthermore, by Lemma 3 and Lemma 4, we observe that p1 and p2 tend to infinity, as they increase
monotonically over time, whereas the remaining positional scalars grow at a much slower rate and
thus either diverge to ´8 or converge to a finite constant. In addition, Lemma 4 characterizes the
approximate time required for the iterates to reach the optimal attention configuration. Therefore, by
the end of the first stage of training (as T1 Ñ 8), we recover the ideal attention map corresponding
to a second-order Markov chain:

vi «
1

2
pexi´1

` exi´2
q

By reintroducing the layer normalization and taking the limit k Ñ 8, we recover the conditional
2-gram estimator, as shown in Appendix A.

D.2.2 Any-Order Markov Chain

Following up from the previous section, we follow the same philosophy as before. Similar to before,
we expect that in an ideal scenario, we expect the positional scalars p1, p2, ¨ ¨ ¨ pk to approach infinity,
while the remaining positional weights remain relatively small. This reflects ideal attention behavior
consistent with the structure needed for an accurate k-gram estimator. Hence, the requirement is
essentially:

dLpθq

dp1

ˇ

ˇ

ˇ

ˇ

i

“
dLpθq

dp2

ˇ

ˇ

ˇ

ˇ

i

¨ ¨ ¨ “
dLpθq

dpk

ˇ

ˇ

ˇ

ˇ

i

ą
dLpθq

dpq

ˇ

ˇ

ˇ

ˇ

i

@ q P t0, k ` 1, . . . , nu

We denote dgm,i “
dLpθq

dpm

ˇ

ˇ

ˇ

i
. With this notation, we can express:

dgm,i
“ ´

a2,0
|S|k ¨ kn

¨ Eπ„Ppπq

«

expppmq
ři

j“0 expppjq
¨

˜

gi,m ´

i
ÿ

j“0

expppjq
ři

j“0 expppjq
¨ gi,j

¸ff

Now, suppose we initialize all positional encoding scalars to zero except for p0 “ ´8. Then, at
initialization time t “ 0, we have:

dgm,i,t“0 “ ´
a2,0

|S|k ¨ kn
¨

1

i ´ 1

˜

Eπ„Ppπqrgi,ms ´

i
ÿ

j“1

1

i ´ 1
¨ Eπ„Ppπqrgi,js

¸

, @ i ě 1

dgm,0,t“0 “ 0

Under the assumptions on the Markov chain (Assump. 3) and Lemma. 6, we observe that at
initialization time t “ 0 (when all positional encoding scalars are initialized to zero, except for
p0 “ ´8), the monotonicity property gi,1 ą gi,2 ą ¨ ¨ ¨ ą gi,n holds. Moreover, by Assump. 3, we
know gi,1 ą 1, which implies:

´dg1,i,0 ą ´dg2,i,0 ą ¨ ¨ ¨ ą ´dgk,i,0 @ ě 0, @i ě 0

This contradicts the ideal case described earlier, where we would prefer:

´dg1,i,0 “ ´dg2,i,0 “ ¨ ¨ ¨ “ ´dgk,i,0 ą ´dgq,i,0,

@ q P t0, k ` 1, . . . , nu, @ i P tk, . . . , nu,

and ´ dg1,i,0 ě 0

(6)

51

Towards this, we first define a row-summed quantity:

dgm,t “

n
ÿ

iěm

dgm,i,t

To satisfy the condition in the ideal case (Eq. 6), we now introduce a preconditioner-based optimizer:

pt`1 “ pt ´ ηt D
´1
t ∇pt

Lpθq

where

pt “ rp0,t p1,t ¨ ¨ ¨ pn,ts
J

P Rn`1

D´1
t “ diag

ˆ

0, 1,
dg1,t
dg2,t

,
dg1,t
dg3,t

, ¨ ¨ ¨ ,
dg1,t
dgk,t

, 1, . . . , 1

˙

P Rpn`1qˆpn`1q

Here, pi,t denotes the ith positional encoding scalar at iteration t. Therefore, after the first update
step (i.e., at t “ 0), we obtain:

p1,1 “ p2,1 “ ¨ ¨ ¨ “ pk,1 ą pq,1 @q P t0, k ` 1, . . . , nu

Note that while we assumed p0 “ ´8 for analysis, in practice we can set it to a large negative
constant to ensure that ´dgm,i,t“0

ą 0. We need to show that this property holds for all iterates. By
Lemma 3, we can show that for each iterate of the preconditioned descent, the following holds:

p1,t “ p2,t “ ¨ ¨ ¨ “ pk,t ą pq,t @ q P t0, k ` 1, . . . , nu

Furthermore, by Lemma 3 and Lemma 4, we observe that p1 and p2 tend to infinity as they increase
monotonically over time, whereas the other positional scalars either tend to ´8 or converge to a
constant. In addition, Lemma 4 provides the approximate time required for the iterates to reach the
optimal attention configuration. Therefore, by the end of the first stage of training (as T1 Ñ 8), we
can recover the ideal attention map corresponding to a kth-order Markov chain:

vi «
1

k
pexi´1

` exi´2
¨ ¨ ¨ ` exi´k

q

By reintroducing the layer normalization and taking the limit κ Ñ 8, we recover the conditional
k-gram estimator, as shown in Appendix A.

52

E Training Dynamics: Stage One Lemmas

We use the following notation:

logits1
sk

,n “ eTs1 rXn softmax pa2Znqs (7)

“ eTs1

«

Xn softmax

˜

softmax
´

Ap1q
¯

XT
n A

p2q 1

k

˜

k´1
ÿ

i“0

exn´i

¸¸ff

(8)

Initially, we know that Ap2q “ a2,0 ¨ I

Hence, we can rewrite this as:

logitsk,n “ Xn softmax

˜

a2,0 ¨ softmax
´

Ap1q
¯

XT
n

1

k

˜

k´1
ÿ

i“0

exn´i

¸¸

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Ap2q

θ pXn;kq

(9)

Lemma 2 (Exension of Lemma G.1. in Nichani et al. [20] to kth-order). Let θ “ pAp1q, a2,0Iq,
θ̂ “ pAp1q, 0q, for a2,0 ď 1. Define g˚

i , ĝi P Ri by

g˚
i :“ n

ÿ

s1,s1,¨¨¨sk

Eπ„Ppπq

»

–πps1 | s1, ¨ ¨ ¨ , skq
eJ
s1XnDpAp2q

θ pXn; kqqei ¨ XT
n

´

řk´1
i“0

1
kexn´i“si`1

¯

logits1
sk

,n,θ `ϵ

fi

fl ,

ĝi :“ n
ÿ

s1,s1,¨¨¨sk

Eπ„Ppπq

»

–πps1 | s1, ¨ ¨ ¨ , skq
eJ
s1XnDpAp2q

θ̂
pXn; kqqei ¨ XT

n

´

řk´1
i“0

1
kexn´i“si`1

¯

logits1
sk

,n,θ̂ `ϵ

fi

fl .

Then, it holds that

}g˚
i ´ ĝi}8 ď 3Sk`1ϵ´2pea2,0 ´ 1q ď 6Sk`1ϵ´2a2,0

Proof. The proof follows similarly to the proof of Lemma G.1 in Nichani et al. [20]. We begin by
bounding the difference inside the expectation.

We first apply the triangle inequality to separate the difference between the two fractions:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

eJ
s1XnDpAp2q

θ pXn; kqqei
logits1

sk
,n,θ `ϵ

´
eJ
s1XnDpAp2q

θ̂
pXn; kqqei

logits1
sk

,n,θ̂ `ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

1

logits1
sk

,n,θ `ϵ
´

1

logits1
sk

,n,θ̂ `ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ
eJ
s1XnDpAp2q

θ pXn; kqqei

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

1

logits1
sk

,n,θ̂ `ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ
eJ
s1Xn

´

DpAp2q

θ pXn; kqq ´ DpAp2q

θ̂
pXn; kqq

¯

ei

ˇ

ˇ

ˇ
.

To bound this expression, we begin by bounding the logit difference in the numerator of the first term.

| logits1
sk

,n,θ ´ logits1
sk

,n,θ̂ | “

ˇ

ˇ

ˇ
eJ
s1XnpAp2q

θ pXn; kq ´ Ap2q

θ̂
pXn; kqq

ˇ

ˇ

ˇ

ď }eJ
s1Xn}8 ¨ }Ap2q

θ pXn; kq ´ Ap2q

θ̂
pXn; kqq}

ď }Ap2q

θ pXn; kq ´ Ap2q

θ̂
pXn; kqq}1,

53

where the last inequality uses the fact that }eJ
s1Xn}8 ď 1.

We now recall the definition of Ap2q

θ and analyze its properties.

Ap2q

θ pXn; kqq “ softmax

˜

a2,0 ¨ softmaxpAp1qqXT
n ¨

1

k

k´1
ÿ

i“0

exn´i

¸

In particular, if a2,0 “ 0, the argument to softmax is zero, and we obtain the uniform distribution:

Ap2q

θ pXn; kqq “ softmaxp0q

Since the entries of the softmax input are in r0, 1s, we can bound the minimum and maximum values
of any softmax output entry as follows:

1

pn ´ 1qea2,0 ` 1
ď Ap2q

θ pXn; kqqi ď
ea2,0

pn ´ 1q ` ea2,0

These bounds let us now quantify the maximum possible deviation between corresponding softmax
outputs.

|sup Ap2q

θ pXn; kqqi ´ Ap2q

θ̂
pXn; kqqi| “

ˇ

ˇ

ˇ

ˇ

ea2,0

pn ´ 1q ` ea2,0
´

1

n

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pn ´ 1qpea2,0 ´ 1q

nppn ´ 1q ` ea2,0q

ˇ

ˇ

ˇ

ˇ

ď
ea2,0 ´ 1

n

Similarly, for the lower bound:

|inf Ap2q

θ pXn; kqqi ´ Ap2q

θ̂
pXn; kqqi| “

ˇ

ˇ

ˇ

ˇ

1

pn ´ 1qea2,0 ` 1
´

1

n

ˇ

ˇ

ˇ

ˇ

ď
ea2,0 ´ 1

n

Thus, we conclude:

|Ap2q

θ pXn; kqqi ´ Ap2q

θ̂
pXn; kqqi| ď

ea2,0 ´ 1

n

Next, we simplify the derivative expression using the identity for the softmax Jacobian.

eJ
s1XnDpAp2q

θ pXn; kqqei “ Ap2q

θ pXn; kqipIxi“es1 ´ logits1
sk

,n,θq

We now bound the difference in these derivative expressions using triangle inequality:

ˇ

ˇ

ˇ
eJ
s1XnDpAp2q

θ pXn; kqqei ´ eJ
s1XnDpAp2q

θ̂
pXn; kqqei

ˇ

ˇ

ˇ

ď |Ap2q

θ pXn; kqi ´ Ap2q

θ̂
pXn; kqi| ¨ |Ixi“es1 ´ logits1

sk
,n,θ |

54

` Ap2q

θ̂
pXn; kqi ¨ | logits1

sk
,n,θ ´ logits1

sk
,n,θ̂ |

ď 2 ¨
ea2,0 ´ 1

n

Here we used that |Ixi“es1 ´ logit | ď 1 and Ap2q

θ ď 1.

Combining the bounds for the numerator and denominator differences, we obtain:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

eJ
s1XnDpAp2q

θ pXn; kqqei
logits1

sk
,n,θ `ϵ

´
eJ
s1XnDpAp2q

θ̂
pXn; kqqei

logits1
sk

,n,θ̂ `ϵ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 3 ¨
ea2,0 ´ 1

ϵ2n

Finally, we bound the overall error }g˚
i ´ ĝi}8 by summing over all possible state sequences:

}g˚
i ´ ĝi}8 ď n

ÿ

s1,s1,¨¨¨ ,sk

Eπ„Ppπq

„

πps1 | s1, ¨ ¨ ¨ , skq ¨
3pea2,0 ´ 1q

ϵ2n

ȷ

“ 3 ¨
pea2,0 ´ 1q

ϵ2

ÿ

s1,s1,¨¨¨ ,sk

Eπ

“

πps1 | s1, ¨ ¨ ¨ , skq
‰

ď 3Sk`1 ¨ ϵ´2 ¨ pea2,0 ´ 1q

Using the inequality ea2,0 ´ 1 ď 2a2,0 for a2,0 P r0, 1s, we conclude:

}g˚
i ´ ĝi}8 ď 6Sk`1ϵ´2a2,0

Lemma 3 (Extension of Lemma D.3 in Nichani et al. [20]). Let Ap2q “ a2,0I . There exist constants
cγ,S , Cγ,S such that, if a2,0 ď cγ,Spnp1´λqq´3{2. If r P I , where I “ t1, ¨ ¨ ¨ , ku, where k denotes
the order of the markov chain:

Gp1qpAp1q, Ap2qqi,r ď Gp1qpAp1q, Ap2qqi,j ´ softmaxpA
p1q

i qrp1 ´ softmaxpA
p1q

i qrq ¨
Cγ,Sa2,0

n
.

Note that the subscript i in this case denotes the ith row and the subscript i, j denotes the jth element
in the ith row.

Proof. The proof follows similarly to Nichani et al. [20]. The gradient Gp1qpAp1q, Ap2qqi can be
expanded as

Gp1qpAp1q, Ap2qqi “ ´a2,0DpsoftmaxpA
p1q

i qq ¨
1

S

ÿ

s1,s1,¨¨¨ ,sk

Eπ,X

“

πps1 | s1, ¨ ¨ ¨ , skq ξs1,s1,¨¨¨ ,skpXq
‰

,

where

ξs1,s1,¨¨¨ ,skpXq “
1

logits1
sk

,n `ϵ
eJ
s1XnDpAp2q

θ pXn; kqqei

˜

k´1
ÿ

i“0

1

k
exn´i“si`1

¸

.

Define

g˚
i :“ n

ÿ

s1,s1,¨¨¨ ,sk

Eπ„Ppπq

“

πps1 | s1, ¨ ¨ ¨ , skq ξs1,s1,¨¨¨ ,skpXq
‰

,

ĝi :“ n
ÿ

s1,s1,¨¨¨ ,sk

Eπ„Ppπq

”

πps1 | s1, ¨ ¨ ¨ , skq ξ̂s1,s1,¨¨¨ ,skpXq

ı

,

55

where ξ̂s,s1 pXq is evaluated at θ̂ “ pAp1q, 0q.

Thus,

Gp1qpAp1q, Ap2qqi “ ´
a2,0
Sn

DpsoftmaxpA
p1q

i qqg˚
i .

Since a2,0 ď cγ,Spnp1 ´ λqq´3{2 and applying Lemma 2, we obtain

}ĝi ´ g˚
i }8 ď

C
a

np1 ´ λq
.

For some arbitrary constant C. Thus, it suffices to analyze ĝi.

Computation of ĝi under θ̂. Under θ̂,

Ap2q

θ̂
pXn; kq “

1

n
1n,

thus,

logitθ̂s1,n “ µ̂Xps1q

Therefore,

eJ
s1XnDpAp2q

θ̂
pXn; kqqei “

1

n
pIxi“s1 ´ µ̂Xps1qq.

Thus, the j-th coordinate satisfies

ĝi,j “
ÿ

s1,s1,¨¨¨ ,sk

Eπ„Ppπq

«

πps1 | s1, ¨ ¨ ¨ , skq

pµ̂Xps1q ` ϵq
pIxi“s1 ´ µ̂Xps1qq

k´1
ÿ

i“0

1

k
Ixj“si`1

ff

.

Applying Lemma 11

|ĝi,j ´ gi,j | ď
Cγ,S

a

np1 ´ λq
.

By Lemma 7 (for first order Markov chains) or by (App. D.2.1, Lemma. 5 and Assump. 2 for
second-order Markov chains) or by (App. D.2.2, Lemma. 6 and Assump. 3 for any-order Markov
chains) , for all j ‰ r P I,

g˚
i,j ´ g˚

i,r ď gi,j ´ gi,r ` |gi,j ´ g˚
i,j | ` |gi,ppiq ´ g˚

i,r|

ď ´δ `
C 1

γ,S
a

np1 ´ λq

ď ´δ{2.

Note that, in the last inequality, we assume n to be long enough for this to hold.

Now expanding:

Gp1qpAp1q, Ap2qqi,j “ ´
a2,0
Sn

´

softmaxpA
p1q

i qjg
˚
i,j ´ psoftmaxpA

p1q

i qqJg˚
i softmaxpA

p1q

i qj

¯

,

Gp1qpAp1q, Ap2qqi,r “ ´
a2,0
Sn

´

softmaxpA
p1q

i qrg
˚
i,r ´ psoftmaxpA

p1q

i qqJg˚
i softmaxpA

p1q

i qr

¯

.

Thus the difference is

Gp1qpAp1q, Ap2qqi,j ´ Gp1qpAp1q, Ap2qqi,r

56

“
a2,0
Sn

«

`

softmaxpA
p1q

i qr ´ softmaxpA
p1q

i qj
˘`

g˚
i,r ´ psoftmaxpA

p1q

i qqJg˚
i

˘

` softmaxpA
p1q

i qj
`

g˚
i,r ´ g˚

i,j

˘

ff

@r P I

Applying bounds:

g˚
i,r ´ g˚

i,j ě
δ

2
,

thus,

Gp1qpAp1q, Ap2qqi,j ´ Gp1qpAp1q, Ap2qqi,r ě
a2,0
Sn

softmaxpA
p1q

i qrp1 ´ softmaxpA
p1q

i qr
δ

2
.

Lemma 4 (Extension of Lemma D.5 in [20]: Bounding the time of convergence). Let Ap2qp0q “

a2,0IS , where a2,0 ď cγ,S n´3{2p1 ´ λq´3{2. Let I “ t1, ¨ ¨ ¨ , ku. Then there exists

τ1 À nη´1
1 a´1

2,0

˜

n logp2nq ` α´1 log

˜

`

1
k ´ α

˘

pn ´ kq

1 ´ k
`

1
k ´ α

˘

¸¸

such that for any t ě τ1,

softmaxpAp1qptqqi,r ě
1

k
´ α

for all i and all r P I.

Proof. The proof follows similarly to the proof of Lemma D.5 in Nichani et al. [20]. Let I “

t1, . . . , ku. Then, by Lemma 3, we have that throughout training,

Ap1qptqi,r ě Ap1qptqi,j for all j R I,

for all r P I.

Moreover, by Lemma 3, the quantity softmaxpAp1qptqqi,r is monotonically increasing in t for all
r P I.

For a fixed row i, define the gap function:

∆ptq :“ Ap1qptqi,r ´ max
jRI

Ap1qptqi,j .

By properties of the softmax function, we can compute the lower bound:

softmaxpAp1qptqqi,r ě
expp∆ptqq

n ´ k ` k expp∆ptqq
.

Now, consider the first time τ`p1{2q such that

softmaxpAp1qpτ`p1{2qqqi,r ą
1

2k
.

For all t ă τ`p1{2q, we have

1 ´ softmaxpAp1qptqqi,r ě
1

2k
.

Thus, by Lemma 3, the gap ∆ptq evolves as

∆pt ` 1q ě ∆ptq `
Cγ,Sa2,0

n2
η1.

57

Consequently, by successive addition over time,

∆pτ`p1{2qq Á
a2,0η1
n2

τ`p1{2q.

Suppose for contradiction that

∆pτ`p1{2qq ě logp2nq.

Then we have

softmaxpAp1qpτ`p1{2qqqi,r ě
expplogp2nqq

n ´ k ` k expplogp2nqq

“
2n

n ´ k ` 2kn

“
2

2k ` 1 ´ k{n
.

Since k ě 1 and n is large, we have

2k ` 1 ´
k

n
ď 4k,

and thus
2

2k ` 1 ´ k{n
ě

1

2k
.

This contradicts the definition of τ`p1{2q as the first time when softmaxpAp1qptqqi,r ą 1
2k . Therefore,

we must have

∆pτ`p1{2qq ď logp2nq,

and hence

τ`p1{2q À n2η´1
1 a´1

2,0 logp2nq.

Now define τ`pαq as the first time t such that

softmaxpAp1qptqqi,r ă
1

k
´ α, for all r P I.

This implies that, for a sufficiently small positive α, to reach a contradiction, we would require:

e∆pτ`pαqq

n ´ k ` k ¨ e∆pτ`pαqq
ě

1

k
´ α,

∆pτ`pαqq ě log

˜

`

1
k ´ α

˘

pn ´ kq

1 ´ k
`

1
k ´ α

˘

¸

.

For t P rτ`p1{2q, τ`pαqq, the gap ∆ptq evolves according to

∆pt ` 1q ě ∆ptq `
Cγ,Sa2,0α

n
η1.

Therefore, in order to achieve the required increase in ∆ptq, we must satisfy

τ`pαq ´ τ`p1{2q À nα´1a´1
2,0 log

˜

`

1
k ´ α

˘

pn ´ kq

1 ´ k
`

1
k ´ α

˘

¸

.

Combining with the earlier phase where

τ`p1{2q À n2η´1
1 a´1

2,0 logp2nq,

58

we conclude

τ`pαq À n2η´1
1 a´1

2,0 logp2nq ` nα´1η´1
1 a´1

2,0 log

˜

`

1
k ´ α

˘

pn ´ kq

1 ´ k
`

1
k ´ α

˘

¸

.

Grouping terms, we obtain

τ`pαq À nη´1
1 a´1

2,0

˜

n logp2nq ` α´1 log

˜

`

1
k ´ α

˘

pn ´ kq

1 ´ k
`

1
k ´ α

˘

¸¸

.

59

F Higher Order Markov Chain Lemmas

Lemma 5 (Successive Markov Chain Lemmas). For a second-order Markov Chain, if πp0 | 0, 0q ´

πp0 | 1, 0q ě δ1 and πp1|1, 1q ´ πp1|0, 1q ě δ1 then the probability P ip0 | 0, 0q and P ip1 | 1, 1q

decreases with increasing i. Moreover,

Eπ„P
“

P 1p0 | 0, 0q ` P 1p1 | 1, 1q
‰

´ Eπ„P
“

P kp0 | 0, 0q ` P kp1 | 1, 1q
‰

ě δ @k ě 4

Proof. We begin by establishing the condition for two steps and then generalize by induction.

P 2p0 | 0, 0q “ πp0 | 0, 0qπp0 | 0, 0q ` πp0 | 1, 0qπp1 | 0, 0q

Given the assumption πp0 | 0, 0q ą πp0 | 1, 0q, we multiply both sides by 1 ´ πp0 | 0, 0q:

πp0 | 0, 0q p1 ´ πp0 | 0, 0qq ą πp0 | 1, 0q p1 ´ πp0 | 0, 0qq

πp0 | 0, 0q ą πp0 | 0, 0q2 ` πp0 | 1, 0qπp1 | 0, 0q

πp0 | 0, 0q ą P 2p0 | 0, 0q (by definition)

Now, we apply induction.

P 3p0 | 0, 0q “ πp0 | 0, 0qP 2p0 | 0, 0q ` πp0 | 1, 0qp1 ´ P 2p0 | 0, 0qq

“ πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqP 2p0 | 0, 0q

ă πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqπp0 | 0, 0q

ă P 2p0 | 0, 0q

Hence, by induction:

P i`1p0 | 0, 0q “ πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqP ip0 | 0, 0q

ă πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqP i´1p0 | 0, 0q

ă P ip0 | 0, 0q

Now, using the recursive relation derived above, we can express P ip0 | 0, 0q explicitly. The recurrence
is:

P i`1p0 | 0, 0q “ πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqP ip0 | 0, 0q

We separate this into a homogeneous and a particular solution:

Homogeneous Solution:

P i`1
h p0 | 0, 0q “ pπp0 | 0, 0q ´ πp0 | 1, 0qqP i

hp0 | 0, 0q

P i
hp0 | 0, 0q “ C pπp0 | 0, 0q ´ πp0 | 1, 0qq

i

Particular Solution:

Pp “ πp0 | 1, 0q ` pπp0 | 0, 0q ´ πp0 | 1, 0qqPp

60

Pp “
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

Using the initial condition P 1p0 | 0, 0q “ πp0 | 0, 0q, we solve for the constant:

C “
πp0 | 0, 0q ´ Pp

πp0 | 0, 0q ´ πp0 | 1, 0q

Final Solution

P ip0 | 0, 0q “
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

`

ˆ

πp0 | 0, 0q ´
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

˙

pπp0 | 0, 0q ´ πp0 | 1, 0qq
i´1

Similarly, we obtain:

P i`1p1 | 1, 1q ă P ip1 | 1, 1q @i P N

Now, we can first express

P ip1 | 1, 1q “
πp1 | 0, 1q

1 ´ πp1 | 1, 1q ` πp1 | 0, 1q

`

ˆ

πp1 | 1, 1q ´
πp1 | 0, 1q

1 ´ πp1 | 1, 1q ` πp1 | 0, 1q

˙

pπp1 | 1, 1q ´ πp1 | 0, 1qq
i´1

.

Now, define

G0 “

ˆ

πp0 | 0, 0q ´
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

˙

,

G1 “

ˆ

πp1 | 1, 1q ´
πp1 | 0, 1q

1 ´ πp1 | 1, 1q ` πp1 | 0, 1q

˙

.

Thus, we can write

P 3p0 | 0, 0q “
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q
` G0 ¨ pπp0 | 0, 0q ´ πp0 | 1, 0qq

2
,

P ip0 | 0, 0q “
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q
` G0 ¨ pπp0 | 0, 0q ´ πp0 | 1, 0qq

i´1
,

and therefore

P 3p0 | 0, 0q ´ P ip0 | 0, 0q “ G0 pπp0 | 0, 0q ´ πp0 | 1, 0qq

´

1 ´ pπp0 | 0, 0q ´ πp0 | 1, 0qq
i´2

¯

.

We can further simplify G0:

G0 “ πp0 | 0, 0q ´
πp0 | 1, 0q

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

“
p1 ´ πp0 | 0, 0q ` πp0 | 1, 0qq pπp0 | 0, 0q ´ πp0 | 1, 0qq

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q

“
pπp0 | 0, 0q ´ πp0 | 1, 0qq p1 ´ πp0 | 0, 0qq

1 ´ πp0 | 0, 0q ` πp0 | 1, 0q
.

61

By assumption, πp0 | 0, 0q ´ πp0 | 1, 0q ě δ1 and 1 ´ πp0 | 0, 0q ě ϵ1, thus

G0 ě ϵ2

for some positive constant ϵ1.

Hence, substituting back, we obtain

P 3p0 | 0, 0q ´ P ip0 | 0, 0q ě δ3 (Where δ3 is a positive constant)

Taking expectation over π „ P, we have

Eπ„P
“

P 3p0 | 0, 0q ´ P ip0 | 0, 0q
‰

ě δ,

where δ2 is defined formally as follows:

The constant δ represents a uniform lower bound on the expected gap between the third-step and
@i-th-step transition probabilities across all Markov chains sampled from the prior distribution P. It
is defined as

δ2 “ inf
π„P

E
“

P 3p0 | 0, 0q ´ P ip0 | 0, 0q
‰

,

and satisfies δ ą 0. This ensures that, even after taking expectations, the separation between transition
probabilities remains bounded away from zero across all sampled chains.

Similarly, for the other case, we obtain

P 3p1 | 1, 1q ´ P ip1 | 1, 1q ě δ4,

Eπ„P
“

P 3p1 | 1, 1q ´ P ip1 | 1, 1q
‰

ě δ.

Therefore, using linearity of expectation, we conclude

Eπ„P
“

P 3p0 | 0, 0q ` P 3p1 | 1, 1q
‰

´ Eπ„P
“

P kp0 | 0, 0q ` P kp1 | 1, 1q
‰

ě δ @k ě 4.

Lemma 6 (Monotonicity via spectral decomposition). Let pXtq be a reversible, irreducible, aperiodic
kth-order Markov chain on state-space S, and let A “ Sk. For integers i, ℓ ě 1, define the return
count

gi,ℓ “
ÿ

ps1,...,skqPSk

k
ÿ

j“1

Pr
`

Xi`ℓ “ sj | Xi´1 “ s1, . . . , Xi´k “ sk
˘

.

Equivalently, one can view the chain as a lifted first-order markov chain on A, where a “

pa1, . . . , akq, b “ pb1, . . . , bkq P A and

P pa Ñ bq “ Pr
`

pXt, . . . , Xt´k`1q “ b | pXt´1, . . . , Xt´kq “ a
˘

,

fpaq “ |a| (where | ¨ | denotes the cardinality),

gi,ℓ “
ÿ

a,bPA
P ℓpa Ñ bq fpaq.

Under detailed balance with stationary distribution π. If P is self-adjoint on ℓ2pA, πq with
eigenvalues 1 “ λ1 ą λ2 ě ¨ ¨ ¨ ě λN ą 0 and if βm ą 0 where orthonormal eigenfunctions are
defined as tϕmu and βm is defined as:

βm “
ÿ

a,bPA
ϕmpaqϕmpbqπpbq fpaq.

Then for all ℓ ě 0:

gi,ℓ ´ gi,ℓ`1 “

N
ÿ

m“2

λℓ
mp1 ´ λmqβm ě 0,

62

gi,1 ´ gi,ℓ “

N
ÿ

m“2

pλ2
m ´ λℓ

mqβm ą 0.

Hence, gi,1 ą gi,2 ą gi,3 ą ¨ ¨ ¨.

Moreover, gi,1 ě 2k´1 if
řN

m“1 λ
2
mβm ě 2k´1

Proof. From spectral expansion, we know that:

P ℓpa Ñ bq “
ÿ

m

λℓ
mϕmpaqϕmpbqπpbq

Therefore, we obtain (on substitution)

gi,ℓ “
ÿ

a,b

P ℓpa Ñ bqfpa, bq “
ÿ

m

λℓ`1
m βm

Hence, finally we obtain monotonicity, due to the assumptions:

gi,ℓ ´ gi,ℓ`1 “
ÿ

mě2

λℓ`1
m p1 ´ λmqβm ě 0

The last condition is obtained by direct substitution.

63

G Additional Lemmas

Lemma 7 (Lemma D.2 in Nichani et al. [20]). For all j ě 0, j ‰ 1, we have

gi,1 ě gi,j `
γ3

2S
.

Where:

gi,jpπq “
ÿ

s1,s

πps1 | sq

µπps1q
Ppxi “ s1, xi´j “ sq ´ 1,

gi,j “ Eπ„Ppπq rgi,jpπqs .

Lemma 8 (Levin and Peres [13]). Let pztqtě0 be a stationary, reversible, ergodic Markov chain
with stationary distribution π, and let P denote its Markov operator on L2pπq. For any function
f : Z Ñ R with Eπrf2s ă 8 and all t, t1 ě 0,

Covpfpztq, fpzt1 qq “

A

rf, P |t´t1
|
rf
E

π
,

where rf “ f ´ Eπrf s and xg, hyπ :“ Eπrgpzqhpzqs.

Proof. By stationarity and the Markov property,

Erfpzt1 q | zts “ pP t1
´tfqpztq, (10)

Eπrfpztqfpzt1 qs “ xf, P t1
´tfyπ. (11)

Thus,

Covpfpztq, fpzt1 qq “ xf, P |t´t1
|fyπ ´ pEπrf sq

2
. (12)

Expanding f “ rf ` Eπrf s and using that P preserves constants,

xf, P |t´t1
|fyπ “ x rf, P |t´t1

|
rfyπ ` pEπrf sq

2
, (13)

which gives

Covpfpztq, fpzt1 qq “ x rf, P |t´t1
|
rfyπ. (14)

Applying Cauchy–Schwarz inequality,

|Covpfpztq, fpzt1 qq| ď } rf}L2pπq}P |t´t1
|
rf}L2pπq. (15)

If the spectral gap satisfies }P }op ď λ on centered functions, then

}P |t´t1
|
rf}L2pπq ď λ|t´t1

|} rf}L2pπq, (16)
thus

|Covpfpztq, fpzt1 qq| ď λ|t´t1
| Varπpfq. (17)

Lemma 9 (Variance Lemma similar to Cor. F.6 in Nichani et al. [20]). Suppose:

1. pstqtě0 is a stationary, irreducible, aperiodic k-th order Markov chain on a finite state
space S of size S,

2. Define the lifted process zt “ pst, st´1, . . . , st´k`1q P Sk,

3. Assume the transition matrix P of pztq has second-largest eigenvalue modulus λ ă 1.

Then, if

µ̂Xps1q “
1

n

n
ÿ

t“1

Izi“s1 ,

is the empirical frequency of observing s1, we have the variance bound

E
”

`

µ̂Xps1q ´ µπps1q
˘2
ı

À
1

np1 ´ λq
,

where:

64

• µπps1q “ πZptz : z1 “ s1uq is the stationary probability of s1,

• and the hidden constant is universal (independent of T).

Proof. Let zn “ pxn, xn´1, ¨ ¨ ¨ , q.

Therefore, we can see that:

µ̂π,Xps1q “
1

n

n
ÿ

i“1

Izi“s1 (18)

Therefore:

Varpµ̂π,Xps1qq “ Var

˜

1

n

n
ÿ

t“1

Izt“s1

¸

(19)

“
1

n2

n
ÿ

t“1

n
ÿ

t1“1

Cov
`

Izt“s1 , Izt1 “s1

˘

(20)

From Lemma 8, we can see that,

Varpµ̂π,Xps1qq À
1

n2

ÿ

t,t1

λ|t´t1
| (21)

À
1

np1 ´ λq
(22)

Lemma 10 (Extension-1 to kth-order of Lemma G.2 in Nichani et al. [20]). For any s, s1 P S and
any kth-order transition kernel, π with spectral gap 1 ´ λpπq ě 1 ´ λ , and with µπps1q ě 0, and
i ą jthere exists a sufficiently large constant Cγ,S such that if ϵ ě Cγ,S pnp1 ´ λqq

´1{2, then:
ˇ

ˇ

ˇ

ˇ

EX

„

pIxi“s1 ´ µ̂Xps1qqIxj“s

µ̂Xps1q ` ϵ

ȷ

´

ˆ

PX rsi “ s1, sj “ ss

µπps1q
´ PX rsj “ ss

˙
ˇ

ˇ

ˇ

ˇ

À
1

a

np1 ´ λq
.

Proof. The proof is the same as the proof of Lemma G.2 in Nichani et al. [20], where to control the
variance term, we use 9. For completeness, we desribe the proof below:

Define

Eπps, s1q :“ EX

„

pIxi“s1 ´ µ̂Xps1qqIxj“s

µ̂Xps1q ` ϵ

ȷ

´
PX rxi “ s1, xj “ ss

µπps1q
` PX rxj “ ss.

Expanding:
pIxi“s1 ´ µ̂Xps1qqIxj“s “ Ixi“s1Ixj“s ´ µ̂Xps1qIxj“s.

Thus:

Eπps, s1q “ EX

„

Ixi“s1Ixj“s

µ̂Xps1q ` ϵ

ȷ

´
PX rxi “ s1, xj “ ss

µπps1q
´ EX

„

µ̂Xps1qIxj“s

µ̂Xps1q ` ϵ

ȷ

` PX rxj “ ss.

Grouping terms:

Eπps, s1q “ EX

„

Ixi“s1Ixj“s

ˆ

1

µ̂Xps1q ` ϵ
´

1

µπps1q

˙ȷ

` EX

„

Ixj“s

ˆ

1 ´
µ̂Xps1q

µ̂Xps1q ` ϵ

˙ȷ

.

Grouping terms:
1

µ̂Xps1q ` ϵ
´

1

µπps1q
«

µπps1q ´ µ̂Xps1q ´ ϵ

pµ̂Xps1q ` ϵqµπps1q
,

65

and

1 ´
µ̂Xps1q

µ̂Xps1q ` ϵ
“

ϵ

µ̂Xps1q ` ϵ
.

Thus by the triangle inequality and boundedness of indicator variables Ixi“s1 , Ixj“s P t0, 1u, we get

|Eπps, s1q| À EX

„

|Ixi“s1Ixj“s||µ̂Xps1q ´ µπps1q| ` ϵp|Ixi“s1Ixj“s| ` µπps1q|Ixj“s|q

pµ̂Xps1q ` ϵqµπps1q

ȷ

À EX

„

|µ̂Xps1q ´ µπps1q| ` ϵ

µπps1q2

ȷ

` ϵ´1PX

„

µ̂Xps1q ď
µπps1q

2

ȷ

.

Using concentration inequalities (Lemma 9):

EX

“

pµ̂Xps1q ´ µπps1qq2
‰

À
1

np1 ´ λq
, PX

„

µ̂Xps1q ď
µπps1q

2

ȷ

À
1

np1 ´ λq
,

and ϵ „ pnp1 ´ λqq´1{2, we conclude:

|Eπps, s1q| À
1

np1 ´ λq
.

Lemma 11 (Extension-2 to kth-order of Lemma G.2 in Nichani et al. [20]). For any s1, s1, s2, ¨ ¨ ¨ sk P

S and any kth-order transition kernel, π with spectral gap 1 ´ λpπq ě 1 ´ λ , and with µπps1q ě 0,
and i ą j, there exists a sufficiently large constant Cγ,S such that if ϵ ě Cγ,S pnp1 ´ λqq

´1{2, then:

k
ÿ

l“1

1

k

"

EX

„

pIxi“s1 ´ µ̂Xps1qqIxj“sl

µ̂Xps1q ` ϵ

ȷ

´

ˆ

PX rsi “ s1, sj “ sls

µπps1q
´ PX rsj “ sls

˙*

À
1

a

np1 ´ λq
.

Proof. The proof follows immediatly from Lemma 10. Let:

k
ÿ

l“1

1

k

"

EX

„

pIxi“s1 ´ µ̂Xps1qqIxj“sl

µ̂Xps1q ` ϵ

ȷ

´

ˆ

PX rsi “ s1, sj “ sls

µπps1q
´ PX rsj “ sls

˙*

loomoon

Ql

À
1

a

np1 ´ λq
.

We know from Lemma 10 that Ql À 1?
np1´λq

and hence it immediatly follows that
řk

l“1
1
kQl À

1?
np1´λq

.

66

H Experiments and Experimental Details

H.1 Additional Experiments

In this section, we present additional attention map visualizations obtained by training a two-layer,
single-head transformer on first, second, and third-order Markov chains, respectively. Attention maps
from both the first and second layers are shown. For the first layer, we compute the average attention
map over multiple sequences to understand the expected attention pattern. For the second layer, we
display the attention map for a specific sequence. Additionally, we include a Pseudo Attention Map,
which highlights the tokens that would ideally be attended to under a k-gram estimator. To assess
alignment, we also plot the absolute difference between the actual attention map and the pseudo
attention map. Note that for the first layer, we do not compute a pseudo attention map; hence, the
pseudo attention and the corresponding absolute difference are not meaningful in that context.

H.1.1 First-Order Markov Chains

The following plots show the attention maps learned from first-order Markov chains.

Figure 5: Layer 1: Average attention map computed over multiple sequences.

Figure 6: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–1)

Figure 7: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–2)

67

Figure 8: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–3)

H.1.2 Second-Order Markov Chains

The following plots show the attention maps learned from second-order Markov chains.

Figure 9: Layer 1: Average attention map computed over multiple sequences.

Figure 10: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–1)

Figure 11: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–2)

68

Figure 12: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–3)

H.1.3 Third-Order Markov Chains

The following plots show the attention maps learned from third-order Markov chains.

Figure 13: Layer 1: Average attention map computed over multiple sequences.

Figure 14: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–1)

Figure 15: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–2)

69

Figure 16: Layer 2: Attention map corresponding to a randomly sampled sequence (denoted as
sequence–3)

H.2 Experiments on One Layer Transformers

To assess whether single-layer transformers can implement induction heads, we trained one-layer
models on sequences generated from second-order Markov chains, using the same hyperparameter
ranges as in our two-layer baselines.

Quantitative results. As shown in Tab. 2, the gap between the true loss (computed from the
ground-truth transition probabilities) and the loss achieved by the trained model remains significantly
larger for one-layer transformers than for their two-layer counterparts. This difference persists across
hyperparameter settings and indicates that deeper models capture the underlying structure more
effectively.

Number of Layers Excess Cross-Entropy Loss
1 0.131 ˘ 0.000
2 0.100 ˘ 0.003

Table 2: Excess cross-entropy loss (loss obtained by the model subtracted with the true loss) for one
and two-layer transformers trained on sequences from a second-order Markov chain.

Qualitative results. Examination of the attention maps (Fig. 17, Fig. 18, Fig. 19) confirms this
finding: one-layer transformers converge to a qualitatively different structure than the pseudo-attention
map required for a k-gram estimator (see Fig. 1b). Specifically, attention mass concentrates along the
two to three lower diagonals, rather than following the induction-like pattern.

These results are consistent with prior observations [22] that one-layer transformers are insufficient
for representing induction heads, while two-layer models succeed in doing so (albeit on different
datasets).

Figure 17: Attention map corresponding to a randomly sampled sequence (denoted as sequence–1)

70

Figure 18: Attention map corresponding to a randomly sampled sequence (denoted as sequence–2)

Figure 19: Attention map corresponding to a randomly sampled sequence (denoted as sequence–3)

Figure 20: Attention map corresponding to a randomly sampled sequence (denoted as sequence–4)

H.3 Experiments on Noisy Sequences

We evaluate the robustness of our k-gram framework under non-ideal conditions by introducing
stochastic noise into synthetic sequences generated from second-order Markov chains. We consider
two noise processes: (i) random token substitution and (ii) perturbation of the transition dynamics.
Models are two-layer, single-head transformers trained with three random seeds. Performance is
reported as the difference between the model’s cross-entropy loss and the cross-entropy computed
under the true transition probabilities over a large evaluation batch.

H.3.1 Random Token Substitution

We corrupt sequences at the token level with probability pn. For each token, with probability pn we
replace it with a uniformly sampled alternative; with probability 1 ´ pn it is left unchanged. The
results can be found in Tab. 3. In the noiseless case (pn “ 0), the learned second-layer attention
map closely aligns with the pseudo-attention map (the optimal attention pattern for an ideal k-gram
estimator). As pn increases, the alignment degrades and the loss gap widens.

H.3.2 Perturbation of Transition Dynamics

We next perturb the sequence dynamics directly. Let Pd denote the true transition probability matrix.
Before each prediction step we interpolate between Pd and a randomly generated transition matrix
Pr, defining

P “ p1 ´ αqPd ` αPr, α P r0, 1s, (23)

71

pn Difference in Cross-Entropy Loss

0.0 0.10 ˘ 0.003
0.1 0.15 ˘ 0.010

0.25 0.18 ˘ 0.002
0.5 0.21 ˘ 0.005

Table 3: Cross-entropy loss difference under token substitution noise. Values are mean ˘ std. across
three seeds.

α Difference in Cross-Entropy Loss

0.0 0.100 ˘ 0.003
0.1 0.101 ˘ 0.003

0.25 0.141 ˘ 0.005
0.5 0.181 ˘ 0.004

Table 4: Cross-entropy loss difference under transition perturbations defined in Eq. (23). Values are
mean ˘ std. across three seeds.

where a new transition matrix Pr is resampled at every time step. As in the previous setting, we
measure the difference between the model’s cross-entropy and the true loss. Note that the results can
be found in Tab. 4. The loss gap increases with α. For α ď 0.1, attention maps remain close to the
pseudo-attention pattern; at α “ 0.25 and beyond, alignment deteriorates substantially. The model is
more robust to this transition noise than to token-level corruption.

H.3.3 Discussion

These results complement our theory: when the data-generating process is close to Markovian, the
learned attention structure approximates the pseudo-attention map; as noise increases, alignment
degrades in tandem with cross-entropy performance. Overall, transformer-based estimators are
sensitive to deviations from ideal k-gram dependencies, with greater robustness observed for transition
perturbations than for token substitution.

H.4 Experiments on Bit Precision

Our bit-precision results are the same as those of [26], which show that Ωplog T ` kq bits per
parameter suffice for an additive error of Op1{T q, where T is the sequence length and k the Markov
order. To validate this, we quantize weights and activations of a model trained on a second-order
Markov chain with sequence length 32. We then compute the Frobenius norm between the pseudo
(optimal) attention map and the second-layer attention map of the quantized model across 10 random
sequences (each from a different Markov transition kernel), and report the mean and variance:

Quantization (Bits) Frobenius Norm (Mean ˘ Std)
2 4.6108 ˘ 0.7190
4 4.5842 ˘ 0.9826
8 3.8615 ˘ 0.4590

32 (No quantization) 3.7700 ˘ 0.4725

These results suggest that 8-bit quantization preserves the attention structure (as measured by the
Frobenius norm) almost as well as full precision (32-bit), and aligns with the theoretical bounds.

H.5 Experimental Details

The table below provides details of the hyperparameters used across all experiments in the paper.
Each experiment was conducted on a single NVIDIA A100 GPU, with runtimes ranging from 30
minutes to 2 hours.

72

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in [24]

Batch size Grid-searched in t16, 32, 64u

Accumulation steps 1

Optimizer AdamW (β1 P t0.85, 0.9u, β2 P t0.9, 0.95u)
Learning rate Grid-searched in t0.0001, 0.001, 0.01u

Scheduler Cosine
Iterations 30000
Weight decay Grid-searched in t0, 10´4, 10´3

u

Dropout 0 or 0.1
Sequence length 8, 32, 64
Embedding dimension Grid-searched in t32, 64, 128u

Transformer layers 2
Attention heads 1 or 2 depending on the experiment

Repetitions 5

Table 5: Settings and parameters for the transformer model used in the experiments.

73

I Parameter Breakdown and Comparison

In this section, we present a comprehensive comparison of parameter counts that explicitly accounts
for all components of the models under consideration. Our analysis shows that our construction
achieves greater parameter efficiency than the design of Rajaraman et al. [26] and also improves upon
the approach proposed by Nichani et al. [20]. To make this concrete, we provide a full parameter
breakdown for both our model and that of Rajaraman et al. [26], detailing the contributions of
embeddings, attention layers, feed-forward modules, and output projection.

Our Construction

The total parameter count of our construction is: 9p6S ` 3q2 ` p6S ` 3qp2T ` 2S ` 9q

Component Parameters

Token Embedding p6S ` 3q ˆ S

Attention Layer 1
Positional Encoding p6S ` 3q ˆ T

Query, Key, Value Projections 3p6S ` 3q2

MLP — (Three Layers)
Weights 3p6S ` 3q2

Biases 3p6S ` 3q

Layer Norms 6p6S ` 3q

Attention Layer 2
Positional Encoding p6S ` 3q ˆ T

Query, Key, Value Projections 3p6S ` 3q2

Output Projection p6S ` 3q ˆ S

Total 9p6S ` 3q2 ` p6S ` 3qp2T ` 2S ` 9q

Table 6: Parameter breakdown for our construction.

Construction in Rajaraman et al. [26]

The total parameter count of the construction in Rajaraman et al. [26] is: 15p6S ` 3q2 ` p6S `

3qp3T ` 2S ` 10q

Component Parameters

Token Embedding p6S ` 3q ˆ S

Transformer Layer 1
Positional Encoding p6S ` 3q ˆ T

Query, Key, Value Projections 3p6S ` 3q2

MLP (2 layers) Weights 2p6S ` 3q2

MLP (2 layers) Biases 2p6S ` 3q

Layer Norms 2p6S ` 3q

Transformer Layer 2
Same as Transformer Layer 1: p6S ` 3q ˆ T ` 5p6S ` 3q2 ` 4p6S ` 3q

Transformer Layer 3
Positional Encoding p6S ` 3q ˆ T

Query, Key, Value Projections 3p6S ` 3q2

MLP (2 layers) Weights 2p6S ` 3q2

MLP (2 layers) Biases 2p6S ` 3q

Layer Norms 2p6S ` 3q

Output Projection p6S ` 3q ˆ S

Total 15p6S ` 3q2 ` p6S ` 3qp3T ` 2S ` 10q

Table 7: Parameter breakdown for the construction in Rajaraman et al. [26].

74

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are thoroughly addressed in the main text.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations and future work are discussed in the Introduction and Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

75

Justification: Complete proofs of the theorems of Sections 3, 4, and 5 are provided in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details and hyperparameters are provided in the Appendix.
A link to the complete code used is provided in the abstract.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

76

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: A link to the complete code and instructions to run it is included in the abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: All training details and hyperparameters are included in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All empirical results have been obtained via multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

77

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: The experiments of the paper require minimal computation and memory
capacity. Details have been included in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Ours is a mainly theoretical analysis, and the NeurIPS Code of Ethics has been
fully respected.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Ours is a mainly theoretical work which should not have any important societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

78

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model is trained from scratch from synthetic data, which does not pose
any risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original authors of the considered model are properly mentioned and cited
in the main text.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

79

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsearching or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

80

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research did not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

81

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work

	Background
	Markov Processes and the Conditional k-gram Model
	Transformer Model

	Warm Up: Construction with Two Heads in Layer One, One in Layer Two
	Main Result: Two-Layer Single-Head Construction
	Gradient Descent Analysis
	Conclusion
	Two Heads in Layer One, One in Layer Two Construction
	Modification of the Layer Norm
	Construction
	Two Layer MLP followed by Second Attention Layer
	Layer Norms in the Second Attention Block

	Two-Layer Single-Head Construction
	Three Layer MLP followed by the Second Attention Layer
	Two Layer MLP followed by the Second Attention Layer

	Two-Layer Single-Head Gradient Analysis
	Model Simplification
	Stage 1 Analysis
	Stage 2 Analysis

	Two Heads in Layer One, One in Layer Two Perturbative Analysis
	Construction
	Convergence Analysis
	Warmup: Second Order Markov Chain
	Any-Order Markov Chain

	Training Dynamics: Stage One Lemmas
	Higher Order Markov Chain Lemmas
	Additional Lemmas
	Experiments and Experimental Details
	Additional Experiments
	First-Order Markov Chains
	Second-Order Markov Chains
	Third-Order Markov Chains

	Experiments on One Layer Transformers
	Experiments on Noisy Sequences
	Random Token Substitution
	Perturbation of Transition Dynamics
	Discussion

	Experiments on Bit Precision
	Experimental Details

	Parameter Breakdown and Comparison

