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Abstract

Regret Matching+ (RM+) and its variants are important algorithms for solving
large-scale games [35]. However, a theoretical understanding of their success in
practice is still a mystery. Moreover, recent advances [34] on fast convergence
in games are limited to no-regret algorithms such as online mirror descent, which
satisfy stability. In this paper, we first give counterexamples showing that RM+

and its predictive version [12] can be unstable, which might cause other players
to suffer large regret. We then provide two fixes: restarting and chopping off the
positive orthant that RM+ operates in. Combined with RM+ with predictions, we
show that restarting is sufficient to get O(T 1/4) individual regret and that chop-
ping off achieves O(1) social regret in normal-form games. We also apply our
stabilizing techniques to clairvoyant updates in the uncoupled learning setting for
RM+, introduced Extragradient RM+, and prove desirable results akin to recent
works for Clairvoyant online mirror descent [31, 14]. Our experiments show the
advantages of our algorithms over vanilla RM+-based algorithms in matrix and
extensive-form games.

1 Introduction

Regret minimization is an important framework for solving games. Its connection to game theory
provides a practically efficient way to approximate game-theoretic equilibria [16, 19]. Moreover, it
provides a scaleable way to solve large-scale sequential games, for example using the Counterfactual
Regret Minimization (CFR) decomposition [37]. Consequently, regret minimization algorithms are
a central component in recent superhuman poker AIs [2, 28, 3]. Regret Matching+ (RM+) [35]
is the most prevalent regret minimizer in these applications. In theory, it guarantees an O(1/

√
T )

convergence rate after T iterations, but its practical performance is usually significantly faster.

On the other hand, a line of recent works show that regret minimizers based on follow the regular-
ized leader (FTRL) or online mirror descent (OMD) enjoy faster convergence rates in theory when
combined with the concept of optimism/predictiveness [32, 34]. The result was originally proven
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Algorithms Social regret in multi-player NFGs

RM+ [19] O
(
T 1/2

)
Predictive RM+ [10] O

(
T 1/2

)
Stable Predictive RM+ (Alg. 1) O

(
T 1/4

)
Smooth Predictive RM+ (Alg. 2) O(1)
Conceptual RM+ (Alg. 3 ) O(1)
Approximate Conceptual RM+ (Alg. 4 with k = log(T )) O(1)
Extragradient RM+ (Alg. 5) O(1)

Table 1: Summary of regret guarantees for the algorithms studied in this paper. The constants hidden
in the O(·) notations depends on initialization and the dimensions of the games and are given in our
theorems.

in matrix games [32], and later extended to multiplayer normal-form games [34, 6, 7], extensive-
form games [8, 10, 15, 1], and general convex games [22, 13]. However, despite their favorable
properties in theory, optimistic algorithms based on FTRL/OMD are usually numerically inferior
to RM+ when applied to solving large-scale sequential games. It remains a mystery whether some
optimistic variant of RM+ enjoys a theoretically faster convergence rate, considering the strong em-
pirical performance of RM+. It is also an open question whether there exists an algorithm that has
both favorable theoretical guarantees similar to FTRL/OMD algorithms and practical performance
comparable to RM+. Inspired by recent work on the connection between OMD and RM+ [12], we
provide new insights on the theoretical and empirical behavior of RM+-based algorithms, and we
show that the analysis of fast convergence for OMD can be extended to RM+ with some simple
modifications to the algorithm. Specifically, our main contributions can be summarized as follows.

1. We provide a detailed theoretical and empirical analysis of the potential for slow performance
of RM+ and predictive RM+. We start by showing that, in stark contrast to FTRL/OMD al-
gorithms that are stable inherently, there exist loss sequences that make RM+ and its variants
unstable, leading to cycling between very different strategies. The key reason for such insta-
bility is that the decisions of these algorithms are chosen by normalizing an aggregate payoff
vector; thus, in a region close to the origin, two consecutive aggregate payoffs may point in
very different directions, despite being close, resulting in unstable iterations. Surprisingly,
note that this can only happen when the aggregate payoff vectors, which essentially measure
the algorithm’s regret against each action, are small, so instability can only happen when one’s
regret is small and thus is seemingly not an issue. However, in a game setting, such instability
might cause other players to suffer large regret because they have to learn in an unpredictable
environment. Indeed, we identify a 3 × 3 matrix game where this is the case and both RM+

and predictive RM+ converge slowly at a rate of O(1/
√
T ) (Fig. 1). We emphasize that very

little is known about the properties of (predictive) RM+ and we are the first to show concrete
examples of stability issues in matrix games and in the adversarial setting.

2. Motivated by our counterexamples, we propose two methods to stabilize RM+: restarting,
which reinitializes the algorithms when the aggregate payoffs are all below a threshold, and
chopping off the origin from the nonnegative orthant to smooth the algorithms. When apply-
ing these techniques to online learning with RM+, we show improved regret and fast con-
vergence similar to predictive OMD: we obtain O(T 1/4) individual regrets for Stable Predic-
tive RM+ (which uses restarting) and O(1) social regret for Smooth Predictive RM+ (which
chops off the origin). We also consider conceptual prox and extragradient versions of RM+

for normal-form games. We show that our stabilizing ideas also provide the required stabil-
ity in these settings and thus give strong theoretical guarantees: Conceptual RM+ achieves
O(1) individual regrets (Theorem 5.3) while Extragradient RM+ achieves O(1) social regret
(Theorem 5.6). See Table 1 for a summary of our results for normal-form games. We further
extend Conceptual RM+ to extensive-form games (EFG), yielding O(1) regret in T iterations
with O(T log(T )) gradient computation. The key step here is to show the Lipschitzness of
the CFR decomposition (Lemma J.1).

3. We apply our algorithms to solve matrix games and EFGs. For the 3 × 3 matrix game in-
stability counterexample, our algorithms indeed perform significantly better than (predictive)
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RM+. For random matrix games, we find that Stable and Smooth Predictive RM+ have very
strong empirical performance, on par with (unstabilized) Predictive RM+, and greatly out-
performing RM+ in all our experiments; Extragradient RM+ appears to be more sensitive to
the choice of step sizes and sometimes performs only as well as RM+. Our experiments on
4 different EFGs show that our implementation of clairvoyant CFR outperforms predictive
CFR in some, but not all, instances.

2 Preliminaries

Notations. For d ∈ N, we write 1d ∈ Rd the vector with 1 on every component. The simplex of
dimension d− 1 is ∆d = {x ∈ Rd

+ | ⟨x,1d⟩ = 1}. The vector 0 has 0 on every component and its
dimension is implicit. For x ∈ R, we write [x]+ for the positive part of x : [x]+ = max{0, x}, and
we overload this notation to vectors component-wise. For two vectors a and b, a ≥ b means a is at
least b component-wise. We write ∥ · ∥∗ for the dual norm of a norm ∥ · ∥.

Online Linear Minimization. In online linear minimization, at every decision period t ≥ 1, an
algorithm chooses a decision xt from a convex decision set X . A loss vector ℓt is chosen arbitrarily
and an instantaneous loss of ⟨ℓt,xt⟩ is incurred. The regret of an algorithm generating the sequence
of decisions x1, ...,xT is defined as the difference between the cumulative loss generated and that
of any fixed strategy x̂ ∈ X : RegT (x̂) =

∑T
t=1 ⟨ℓt,xt − x̂⟩. A regret minimizer guarantees that

RegT (x̂) = o(T ) for any x̂ ∈ X .

Online Mirror Descent. A famous regret minimizer is Online Mirror Descent (OMD) [30], which
generates the decisions x1, ...,xT as follows (with a learning rate η > 0):

xt+1 = Πxt,X
(
ηℓt

)
(OMD)

where for any x ∈ X , and any loss ℓ, the proximal operator ℓ 7→ Πx,X (ℓ) is defined as
Πx,X (ℓ) = argminx̂∈X ⟨ℓ, x̂⟩ + D(x̂,x) where D is the Bregman divergence associated with
φ : X → R, a 1-strongly convex regularizer (with respect to some norm ∥ · ∥): D(x̂,x) =
φ(x̂) − φ(x) − ⟨∇φ(x), x̂− x⟩ ,∀ x̂,x ∈ X . OMD guarantees that the worst-case regret against
any x̂ grows as O(

√
T ) (omitting other dependence for simplicity; the same below). Other popular

regret minimizers include Follow-The-Regularized-Leader (FTRL), and adaptive variants of OMD
and FTRL; we refer the reader to [20] for an extensive survey on regret minimizers.

Regret Matching and Regret Matching+. Regret Matching (RM) and Regret Matching+ (RM+)
are two regret minimizers that achieve O(

√
T ) worst-case regret when X = ∆d. RM [19] maintains

a sequence of aggregate payoffs (Rt)t≥1: R1 = R01d, and for t ≥ 1,

xt = [Rt]+/∥[Rt]+∥1, Rt+1 = Rt +
〈
xt, ℓt

〉
1d − ℓt,

where R0 ≥ 0 specifies an initial point and 0/0 is defined as the uniform distribution for conve-
nience. The original RM sets R0 = 0, making the algorithm completely parameter-free, a very
appealing property in practice. RM+ is a simple variation of RM, where the aggregate payoffs
are thresholded at every iteration [35]. In particular, RM+ only keeps track of the non-negative
components of the aggregate payoffs to compute a decision: R1 = R01d, and for t ≥ 1,

xt = Rt/∥Rt∥1, Rt+1 = [Rt +
〈
xt, ℓt

〉
1d − ℓt]+.

We highlight that very little is known about the theoretical properties of RM+, despite its strong em-
pirical performances: [36] show that RM+ is a regret minimizer (and enjoys the stronger K-tracking
regret property), and [4] show that it can safely be combined with alternation ([18] prove strict im-
provement when using alternation). Farina et al. [12] show an interesting connection between RM+

and Online Mirror Descent: the update Rt+1 = [Rt + ⟨xt, ℓt⟩1d − ℓt]+ of RM+ can be rewritten
as

Rt+1 = ΠRt,X
(
ηf(xt, ℓt)

)
for X = Rd

+, φ = 1
2∥ · ∥

2
2, η = 1, and f(xt, ℓt) defined as f(xt, ℓt) = ℓt − ⟨xt, ℓt⟩1d. Therefore,

RM+ generating a sequence of decisions x1, ...,xT facing a sequence of losses (ℓt)t≥1, is closely
connected to OMD instantiated with the non-negative orthant as the decision set and facing a se-
quence of losses (f(xt, ℓt))t≥1. We have the following relation for the regret in x1, ...,xT and the
regret in R1, ...,RT (the proof follows [12] and is deferred to the appendix).
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Lemma 2.1. Let x1, ...,xT ∈ ∆d be generated as xt = Rt/∥Rt∥1 for some sequence
R1, ...,RT ∈ Rd

+. The regret RegT (x̂) of x1, ...,xT facing a sequence of losses ℓ1, ..., ℓT is equal
to RegT (R̂), the regret of R1, ...,RT facing the sequence of losses f

(
x1, ℓ1

)
, ...,f

(
xT , ℓT

)
,

compared against R̂ = x̂: RegT
(
R̂
)
=

∑T
t=1

〈
f (xt, ℓt) ,Rt − R̂

〉
.

Since OMD is a regret minimizer guaranteeing RegT (R̂) = O(
√
T ), Lemma 2.1 directly shows

that RM+ is also a regret minimizer: RegT (x̂) = O(
√
T ).

Multiplayer Normal-Form Games. In a multiplayer normal-form game, there are n ∈ N players.
Each player i has di strategies and their decision space ∆di is the probability simplex over the di
strategies. We denote ∆ = ×n

i=1∆
di as the joint decision space of all players and d = d1+ · · ·+dn.

The utility function for player i is a concave function ui : ∆ → [−1, 1] that maps every joint strategy
profile x = (x1, ...,xn) ∈ ∆ to a payoff. We assume bounded gradients and Lu-smoothness for the
utilities of the players: there exists Bu > 0, Lu > 0 such that for any x,x′ ∈ ∆ and any player i,

∥∇xi
ui(x)∥2 ≤ Bu, ∥∇xi

ui(x)−∇xi
ui(x

′)∥2 ≤ Lu∥x− x′∥2. (1)

The function mapping joint strategies to negative payoff gradients for all players is a vector-valued
function G : ∆ → Rd such that G(x) = (−∇x1

u1(x), . . . ,−∇xn
un(x)). It is well known that

running a regret minimizer for (xt
1, ...,x

t
n) ∈ ∆ = ×n

i=1∆
di facing the loss G(xt) = (ℓt1, . . . , ℓ

t
n)

leads to strong game-theoretic guarantees (e.g., the average iterate being an approximate coarse cor-
related equilibrium). However, in light of Lemma 2.1, we will instead perform regret minimization
on (Rt

1, ...,R
t
n) ∈ X = ×n

i=1R
di
+ with the losses (f(xt

1, ℓ
t
1), . . . ,f(x

t
n, ℓ

t
n)). For conciseness, we

thus define the operator F : X → Rd as, for z = (R1, ...,Rn), F (z) = (f(x1, ℓ1), ...,f(xn, ℓn))
where xi = Ri/∥Ri∥1,∀ i = 1, ..., n, (ℓi)i∈[n] = G(x).

Predictive OMD and Its RVU Bounds. The predictive version of OMD proceeds as follows:

xt = Πx̃t,X
(
ηmt

)
x̃t+1 = Πx̃t,X

(
ηℓt

)
When setting mt = ℓt−1, predictive OMD satisfies RegT (x̂) ≤ D(x̂,x̃1)

η + η
∑T

t=1 ∥ℓt − ℓt−1∥2∗ −
1
8η

∑T−1
t=1 ∥xt+1−xt∥2. This regret bound satisfies the RVU (regret bounded by variation in utilities)

condition, introduced in [34]. The authors show that this type of bound guarantees that the social
regret (i.e., sum of the regrets of all players) is O(1) when all players apply this special instance
of predictive OMD. Syrgkanis et al. [34] further prove that each player has improved O(T 1/4)
individual regret by the stability of predictive OMD. Specifically, they show that predictive OMD
guarantees ∥xt+1 − xt∥ = O(η) against any adversarial loss sequence, i.e., the algorithm is stable
in the sense that the change in the iterates can be controlled by choosing η appropriately.

Predictive RM+ Similar to OMD, we can generalize RM+ to Predictive Regret Matching+[12]:
define R1 = m1 = R01d (with R0 = 0 by default), and for t ≥ 1,

xt = R̂t/∥R̂t∥1, for R̂t = [Rt +mt]+,

Rt+1 = [Rt − f(xt, ℓt)]+, for f(xt, ℓt) = ℓt −
〈
xt, ℓt

〉
1d.

We call the algorithm predictive RM+ (PRM+) when mt = −f(xt−1, ℓt−1), and it recovers RM+

when mt = 0. A regret bound with a similar RVU condition is attainable for predictive RM+ by its
connection to predictive OMD [12], but only in the non-negative orthant space instead of the actual
strategy space. To make a connection between them, stability is required as we show later. A natural
question is then whether (predictive) RM+ is also always stable. We show that the answer is no by
giving an adversarial example in the next section.

3 Instability of (Predictive) Regret Matching+

We start by showing that there exist adversarial loss sequences that lead to instability for both
RM+ and predictive RM+. Our construction starts with an unbounded loss sequence ℓt so that
xt alternates between (1/2, 1/2) and (0, 1): we set ℓt = (ℓt, 0), where ℓ1 = 2, and for t ≥ 2,
ℓt = −2(t−2)/2 if t is even and ℓt = 2(t−1)/2 if t is odd. Our proof is completed by normalizing the
losses to [−1, 1] given a fixed time horizon (see Appendix B for details).
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Figure 1: Left plots show the iterate-to-iterate variation in the last 100 iterates of predictive RM+.
Center plots show the regret for the x and y players under predictive RM+. Right plots show
empirical convergence speed of RM+ (top row) and Predictive RM+ (bottom row).

Theorem 3.1. There exist finite sequences of losses in R2 for RM+ and its predictive version such
that xt = ( 12 ,

1
2 ) when t is odd and xt = (0, 1) when t is even.

This is in stark contrast to OMD which always ensures ∥xt+1 − xt∥ = O(η) and is thus inherently
stable. However, a somewhat surprising property about (predictive) RM+ is that instability actually
implies low regret. To see this, we first present the following Lipschitz property of the normalization
function g : x 7→ x/∥x∥1 for x ∈ Rd

+.

Proposition 1. Let x,y ∈ Rd
+, with 1⊤x ≥ 1. Then, ∥g(y)− g(x)∥2 ≤

√
d · ∥y − x∥2.

This proposition shows that the normalization step has a reasonable Lipschitz constant (
√
d) as long

as its input is not too close to the origin, which further implies the following corollary.

Corollary 3.2. RM+ with ∥Rt∥1 ≥ R0 satisfies
∥∥xt+1 − xt

∥∥
2
≤

√
d

R0
·
∥∥Rt+1 −Rt

∥∥
2
≤ 2dBu

R0
.

Put differently, the corollary states that instability can happen only when the cumulative regret vector
Rt is small. For example, if ∥xt+1 − xt∥ = Ω(1), then we must have ∥Rt∥1 = O(dBu) and thus
the regret at that point is at most O(dBu). A similar argument holds for predictive RM+ as well.
Therefore, instability is in fact not an issue for these algorithms’ own regret.

However, when using these algorithms to play a game, what could happen is that such instabil-
ity leads to other players learning in an unpredictable environment with large regret. We show
this phenomenon via an example of a 3 × 3 matrix game maxx∈∆(3) miny∈∆(3)⟨x,Ay⟩, where
A = ((3, 0,−3), (0, 3,−4), (0, 0, 1)). The first column of Fig. 1 shows the squared ℓ2 norm of the
consecutive difference of the last 100 iterates of Predictive RM+ for the x player (top) and the y
player (bottom). The iterates of the x player are rapidly changing in a periodic fashion while the
iterates of the y player are stable with changes on the order of 10−5. In the center plots where we
show the individual regret for each player, we indeed observe that the cumulative regret of the x
player is near zero as implied by instability, but it causes large regret (close to T 0.5 empirically) for
the y player. (We show the same plots for RM+ in Fig. 4 in Appendix B; there, the iterates of both
players are stable, but since RM+ lacks predictivity, it still leads to larger regret for one player.)

The right column of Fig. 1 shows the duality gap achieved by the linear average (x̄t, ȳt) =(
2

T (T+1)

∑T
t=1 tx

t, 2
T (T+1)

∑T
t=1 ty

t
)

, when the iterates are generated by RM+ with alternation

(top) and predictive RM+ (bottom). For both algorithms the convergence rate slows down around
104 iterations. A linear regression estimate on the rate for the last 106 iterates shows rates of −0.497
and −0.496 for RM+ and predictive RM+ respectively. To the best of our knowledge, this is the
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first known case of empirical convergence rates on the order of T−0.5 for either RM+ or predictive
RM+; the worst prior instance for RM+ was T−0.74 in Farina et al. [10]; no hard instance was
known for predictive RM+.

4 Stabilizing RM+ and Predictive RM+.

Based on the discussions in the previous section, we aim to make every player stable despite the
fact that being an unstable player may actually be good for that particular player. By Corollary 3.2,
it suffices to make sure that ∥Rt∥1 is never too small. We provide two approaches to ensure this
property and thereby stabilize (predictive) RM+.

Stable Predictive RM+. One way to maintain the required distance to the origin is via restarting:
We initialize the algorithm with the cumulative regret vector equal to some non-zero amount, instead
of the usual initialization at zero. Then, when the cumulative regret vector gets below the initial-
ization point, we restart the algorithm from the initialization point. Applying this idea to predictive
RM+ yields Algorithm 1. Player i starts with R1

i = R01di
, runs predictive RM+, and restarts

whenever Rt
i ≤ R01di

. In the algorithm we write (Rt
1, ...,R

t
n) compactly as wt (similarly for zt).

Note, though, that the updates are decentralized for each player, as in vanilla predictive RM+.

Given this modification, Stable PRM+ achieves improved individual regret in multiplayer games, as
stated in Theorem 4.1. We defer the proof to the appendix. One key step in the analysis is to note
that by definition, the regret against any action is negative when the restarting event happens, so it
is sufficient to consider the regret starting from the last restart. Thanks to the stability enforced by
the restarts, the regret from the last restart is also well controlled and the results follow by tuning η
and R0 optimally. In fact, since the algorithm is scale-invariant up to the relative scale of the two
parameters, it is without loss of generality to always set R0 = 1.

Algorithm 1 Stable Predictive RM+

1: Input: R0 > 0, step size η > 0
2: Initialization: w0 = R01d

3: for t = 1, . . . , T do
4: zt = Πwt−1,X (ηmt)
5: wt = Πwt−1,X (ηF (zt))
6: (xt

1, . . . ,x
t
n) = (g(zt

1), . . . , g(z
t
n))

7: for i = 1, ..., n do
8: if wt

i ≤ R01di then
9: wt

i = R01di

Algorithm 2 Smooth Predictive RM+

1: Input: Step size η > 0
2: Initialization: w0 ∈ X≥
3: for t = 1, . . . , T do
4: zt = Πwt−1,X≥ (ηmt)

5: wt = Πwt−1,X≥ (ηF (zt))

6: (xt
1, . . . ,x

t
n) = (g(zt

1), . . . , g(z
t
n))

Theorem 4.1. Let η =
(
d2T

)−1/4
and R0 = 1. Let (f t

i )i∈[n] = F (zt) for t ≥ 1. For
each player i, set the sequence of predictions mt

i = 0 when t = 0 or restart happens at
t − 1; otherwise, mt

i = f t−1
i ,∀ t ≥ 1. Then Algorithm 1 guarantees that the individual regret

RegTi (x̂i) =
∑T

t=1 ⟨∇xiui(x
t), x̂i − xt

i⟩ of each player i is bounded by O
(
d3/2T 1/4

)
in multi-

player normal-form games.

Although the restarting idea successfully stabilizes the RM+ algorithm, the discontinuity created by
asynchronous restarts causes technical difficulty for bounding the social regret by O(1). Next we
introduce an alternative stabilization idea to fix this issue.

Smooth Predictive RM+. Our second stabilization idea is to restrict the decision space to a subset
where we “chop off” the area that is too close to the origin, that is, project the vector Rt

i onto the set
∆di

≥ = {R ∈ Rdi
+ | ∥R∥1 ≥ 1}. We denote the joint chopped-off decision space as X≥ = ×n

i=1∆
di

≥ .
We call the resulting algorithm smooth predictive RM+ (Algorithm 2). Besides a similar result to
Theorem 4.1 on the individual regret (omitted for simplicity), Algorithm 2 also guarantees that the
social regret is bounded by a game-dependent constant, as shown in Theorem 4.2.

Theorem 4.2. Let η =
(
2
√
2(n− 1)maxi{d3/2i }

)−1

. Using the sequence of predic-

tions m0 = 0,mt = F (zt−1),∀ t ≥ 1, Algorithm 2 guarantees that the so-

6



Algorithm 3 Conceptual RM+

1: Input: Step size η > 0 with η < 1/LF

2: Initialization: z0 ∈ X≥
3: for t = 1, . . . , T do
4: zt = Πzt−1,X≥ (ηF (zt))

5: (xt
1, . . . ,x

t
n) = (g(zt

1), . . . , g(z
t
n))

Algorithm 4 Conceptual RM+ with approximate
fixed-point

1: Input: Step size η > 0 with η < 1/LF

2: Initialization: z0 ∈ X≥
3: for t = 1, . . . , T do
4: w0 = zt−1

5: for j = 0, . . . , k − 1 do
6: wj+1 = Πzt−1,X≥

(
ηF (wj)

)
7: zt = Πzt−1,X≥

(
ηF (wk)

)
8: (xt

1, . . . ,x
t
n) =

(
g(wk

1 ), . . . , g(w
k
n)
)

cial regret
∑n

i=1 Reg
T
i (x̂i) =

∑n
i=1

∑T
t=1 ⟨∇xi

ui(x
t), x̂i − xt

i⟩ is upper bounded by

O
(
n2 maxi=1,...,n{d3/2i }maxi=1,...,n{∥w0

i − x̂i∥22
)

in multiplayer normal-form games.

Algorithm 2 dominates Algorithm 1 in terms of our theoretical results so far, but it has one drawback:
it requires occasional projection onto X≥. In Appendix K we show that this can be done with a
sorting trick in O(d log d) time, whereas the restarting procedure is implementable in linear time.

5 Conceptual Regret Matching+

In this section, we depart from the predictive OMD framework and develop new smooth variants
of RM+ from a different angle. Instead of using predictive OMD to compute the iterates (Rt

i)t≥1,
we consider the following regret minimizer that we call cheating OMD, defined for some arbitrary
closed decision set Z and an arbitrary sequence of losses (ℓt)t≥1: zt = Πzt−1,Z (ηℓt) for t ≥ 1,
and z0 ∈ X≥. Cheating OMD is inspired by the Conceptual Prox method for solving variational
inequalities associated with monotone operators [5, 23, 29]. We call it cheating OMD because at
iteration t, the decision zt is chosen as a function of the current loss ℓt, which is revealed after the
decision zt has been chosen. It is well-known that cheating OMD yields a sequence of decisions
with constant regret; we show it for our setting in the following lemma.

Lemma 5.1. The Cheating OMD iterates {zt}t satisfy
∑T

t=1 ⟨ℓt, zt − ẑ⟩ ≤ 1
2η∥z

0− ẑ∥22,∀ẑ ∈ Z.

To instantiate RM+ with Cheating OMD as a regret minimizer for the sequence (Rt
i)t≥1 of each

player i, we need to show the existence of a vector zt ∈ X≥ such that

zt = Πzt−1,X≥

(
ηF (zt)

)
. (2)

Equation (2) can be interpreted as a fixed-point equation for the map z 7→ Πzt−1,X≥ (ηF (z)).
For any z′ ∈ X≥, the map z 7→ Πz′,X≥ (ηF (z)) is ηL-Lipschitz continuous as long as F is L-
Lipschitz continuous. Therefore, it is a contraction when η < 1/L, and then the fixed-point equation
z = Πz′,X≥ (ηF (z)) has a unique solution. Recall that for z = (R1, ...,Rn) ∈ X≥, the operator F
is defined as F (z) = (f(x1, ℓ1), . . . ,f(xn, ℓn)) where xi = g(Ri) and ℓi = −∇xiui(x), for all
i ∈ {1, ..., n}. We now show the Lipschitzness of F over X≥ for normal-form games.

Lemma 5.2. For a normal-form game, the operator F is LF -Lipschitz continuous over X≥, with
LF = (maxi di)

√
2B2

u + 4L2
u with Bu, Lu defined in (1).

For LF defined as in Lemma 5.2 and η < 1/LF , the existence of the fixed-point zt =
Πzt−1,X≥ (ηF (zt)) is guaranteed. This yields Conceptual RM+, defined in Algorithm 3. In the
following theorem, we show that Conceptual RM+ ensures constant regret for each player.

Theorem 5.3. Let LF > 0 be defined as in Lemma 5.2. For η < 1/LF , Algorithm 3 guarantees
that the individual regret RegTi (x̂i) =

∑T
t=1 ⟨∇xi

ui(x
t), x̂i − xt

i⟩ of each player i is bounded by
1
2η∥z

0
i − x̂i∥22 in multiplayer normal-form games.
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Note that the requirement of η < 1/LF in Theorem 5.3 and Algorithm 3 is only needed in order
to ensure existence of a fixed-point. If the fixed-point condition holds for some larger η, then the
algorithm is still well-defined and the same convergence guarantee holds.
Remark 5.4. Piliouras et al. [31] propose the clairvoyant multiplicate weights updates (MWU)
algorithm, based on the classical MWU algorithm, but where the rescaling at iteration t involves the
payoff of the players at iteration t. The connection with the conceptual prox method is made explicit
by [14], where they show how to extend clairvoyant MWU for normal-form games to clairvoyant
OMD for general convex games. Our algorithm uses the same idea but for RM+.

For z′ ∈ X≥, we can approximate the fixed-point of z 7→ Πz′,X≥ (ηF (z)) by performing k ∈ N
fixed-point iterations. This results in Algorithm 4. We give the guarantees for Algorithm 4 below.
Theorem 5.5. Let LF > 0 be defined as in Lemma 5.2 and η < 1/LF . Assume that in Algorithm
4, we ensure ∥wk − Πzt−1,X≥

(
ηF (wk)

)
∥2 ≤ ϵ(t), for all t ≥ 1. Then Algorithm 4 guarantees

that the individual regret RegTi (x̂i) =
∑T

t=1 ⟨∇xiui(x
t), x̂i − xt

i⟩ of each player i is bounded by
1
2η∥z

0
i − x̂i∥22 + 2Bu

√
di

∑T
t=1 ϵ

(t) in multiplayer normal-form games.

By Theorem 5.5, if we ensure error ϵ(t) = 1/t2 in Algorithm 4 then the individual regret of each
player is bounded by a constant. Since w 7→ Πzt−1,X≥ (ηF (w)) is a contraction for η < 1/LF , this
only requires k = O (log(t)) fixed-point iterations at each time t. If the number of iterations T is
known in advance, we can choose k = O(log(T )), to ensure ϵ(t) = O(1/T ) and therefore that the
individual regret of each player i is bounded by the constant 1

2η∥z
0
i − x̂i∥22 +O

(
2Bu

√
di
)
.

Recall that the uniform distribution over a sequence of strategy profiles {xt}Tt=1 is a
(maxi Reg

T
i )/T -approximate coarse correlated equilibrium (CCE) of a multiplayer normal-form

game (see e.g. Theorem 2.4 in Piliouras et al. [31]). Therefore, Algorithm 3 guarantees O(1/T )
convergence to a CCE after T iterations. With the setup from Theorem 5.5 and k = O(log(T )),
Algorithm 4 guarantees O(log(T )/T ) convergence to a CCE after T evaluations of the operator F .

Algorithm 5 Extragradient RM+ (ExRM+)

1: Input: Step size η > 0 with η < 1/LF

2: Initialization: z0 ∈ X≥
3: for t = 1, . . . , T do
4: wt = Πzt−1,X≥

(
ηF (zt−1)

)
5: zt = Πzt−1,X≥ (ηF (wt))

6: (xt
1, . . . ,x

t
n) = (g(wt

1), . . . , g(w
t
n))

Extragradient RM+. We now consider the
case of Algorithm 4 but with only one fixed-
point iteration (k = 1). This is similar to the
mirror prox algorithm [29] or the extragradient
method [24]. We call this algorithm extragra-
dient RM+(ExRM+, Algorithm 5). We show
that one fixed-point iteration (k = 1) at every
iteration ensures constant social regret.
Theorem 5.6. Define LF as in Lemma 5.2
and let η = (

√
2LF )

−1. Algorithm 5 guarantees that the social regret
∑n

i=1 Reg
T
i (x̂i) =∑n

i=1

∑T
t=1 ⟨∇xiui(x

t), x̂i − xt
i⟩ is bounded by 1

2η

∑n
i=1 ∥z0

i − x̂i∥22 in multiplayer normal-form
games.

We now apply Theorem 5.6 to the case of matrix games, where the goal is to solve

min
x∈∆d1

max
y∈∆d2

⟨x,Ay⟩

for Ad1×d2 . The operator F is defined as

F

[
R1

R2

]
=

[
f (g(R1),Ag(R2))

f
(
g(R2),−A⊤g(R1)

)]
and X≥ = ∆d1

≥ ×∆d2

≥ . The next lemma gives the Lipschitz constant of the operator F in the case
of matrix games.
Lemma 5.7. For matrix games, the operator F is LF -Lipschitz over X≥, with LF =√
6∥A∥op max{d1, d2} with ∥A∥op = sup{∥Av∥2/∥v∥2 | v ∈ Rd2 ,v ̸= 0}.

Combining Lemma 5.7 with Theorem 5.6, ExRM+ for matrix games with X≥ as a decision set and
η =

(√
2LF

)−1
guarantees constant social regret, so that the average of the iterates computed by

ExRM+ converges to a Nash Equilibrium at a rate of O(1/T ) [16].
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Extensive-form games Our convergence results for Conceptual RM+ apply beyond normal-form
games, to EFGs. Briefly, a EFG is a game played on a tree, where each node belongs to some player,
and the player chooses a probability distribution over branches. Moreover, players have information
sets, which are groups of nodes belonging to a player such that they cannot distinguish among them,
and thus they must choose the same probability distribution at all nodes in an information set. As is
standard, we assume that each player never forgets information. Below, we describe the main ideas
behind the extension; details are given in Appendix J.

In order to extend our results, we use the CFR regret decomposition [37, 9]. CFR defines a notion
of local regret at each information set, using so-called counterfactual values. By minimizing the
regret incurred at each information set with respect to counterfactual values, CFR guarantees that
the overall regret over tree-form strategies is minimized. Importantly, counterfactual values are
multilinear in the strategies of the players, and therefore they are Lipschitz functions of the strategies
of the other players. Hence, using Algorithm 4 at each information set with counterfactual value and
applying Theorem 5.5 begets a smooth-RM+-based algorithm that computes a sequence of iterates
with regret at most ϵ in at O(1/ϵ) iterations and using O(log(1/ϵ)/ϵ) gradient computations.

6 Numerical experiments

Matrix games. We compute the performance of ExRM+, Stable and Smooth PRM+ on the 3 × 3
matrix game instance from Section 2 (with step size η = 0.1) and on 30 random matrix games of
size (d1, d2) = (30, 40) with normally distributed coefficients of the payoff matrix and with step
sizes η ∈ {0.1, 1, 10}. We initialize our algorithms at (1/d1)1d, all algorithms use linear averaging,
and all algorithms (except ExRM+) use alternation. The results are shown in Figure 2. Our new
algorithms greatly outperform RM+ and PRM+ in the 3 × 3 matrix game; linear regression finds
an asymptotic convergence rate of O(1/T 2). More detailed results for this instance are given in
Appendix K.1. For random matrix games, our algorithms ExRM+, Smooth PRM+ and Stable
PRM+ all outperform RM+ for stepsize η = 0.1. ExRM+ performs on par with RM+ for larger
values of η, while Stable PRM+ and Smooth PRM+ remain very competitive, performing on par
with the unstabilized version of PRM+. We note that we use step sizes that are larger than the
theoretical ones since the latter may be overly conservative [10, 25].
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3x3 matrix game

101 102 103 104
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101 102 103 104
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Figure 2: Empirical performances of RM+, PRM+, ExRM+, Stable PRM+ and Smooth PRM+on
our 3× 3 matrix game (left plot) and on random instances for different step sizes.

Extensive-form games. We implemented and evaluated our CFR-based clairvoyant algorithm
(henceforth ‘Clairvoyant CFR’) for extensive-form games. To our knowledge, it is the first time
that clairvoyant algorithms are evaluated in extensive-form games. Overall, we were unable to ob-
serve the same strong performance observed in normal-form games (Figure 2), for a combination
of reasons. First, we observe that the stepsize η calculated in Appendix J to make the operator F a
contraction in extensive-form games is prohibitively small in the games we test on, each of which
has a number of sequences on the order of tens of thousands. At the same time, we observe that
ignoring the issue by setting a large constant stepsize in practice often leads to non-convergence of
the fixed point iterations. To sidestep both issues, we considered a variant of the algorithm which
only performs a single fixed-point iteration, and uses a stepsize hyperparameter η, where we pick
the best from the set {1, 10, 20}. We remark that this variant of the algorithm is clairvoyant only in
spirit, and while it is a sound regret-minimization algorithm, we expect that the strong theoretical
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Figure 3: Practical performance of our variant of clairvoyant CFR (‘Cvynt CFR’) compared to
predictive CFR, across four multiplayer extensive-form games. Note that on Liar’s dice, both algo-
rithms are down to machine-precision accuracy immediately, which explains the jittery plot.

guarantees of constant per-player regret do not apply. Nevertheless, in Fig. 3 we show that we are
able to sometimes observe superior performance to (non-clairvoyant) predictive CFR in the four
games we tried, which are described in the appendix. For both algorithms, we ignore the first 100
iterations, in which the iterates are very far from convergence. To compensate for the increased
amount of computation needed at each iteration by our clairvoyant algorithm, we plot on the x-axis
not the number of iterations but rather the number of gradients of the utility functions computed for
each player. On the y-axis, we measure the gap to a coarse correlated equilibrium, which is equal to
the maximum regret across the players, divided by the number of iterations.

7 Conclusion

We initiated the study of stability for RM+, and showed that both RM+and predictive RM+suffer
from stability issues that can lead to slow convergence in games. We introduced two simple ideas,
restarting and chopping off, that ensure stability. Consequently, we introduced stable/smooth Pre-
dictive RM+, conceptual RM+ and Extragradient RM+, all with strong regret guarantees. Our
results yield the first RM+-based algorithms with better than O(

√
T ) regret guarantees, thus par-

tially resolving the open question of whether optimism can yield theoretical speedup for RM+.
Future directions include understanding whether our stability observations can be leveraged more
directly in RM+ without adding our stability tricks, extending our results to general convex games,
for which a regret minimizer based on Blackwell approachability similar to RM+ has been proposed
recently [17], and combining clairvoyant updates with alternation.
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A Proof of Lemma 2.1

Proof of Lemma 2.1. Let us write R̂ = x̂. Note that

RegT (x̂) =

T∑
t=1

〈
xt, ℓt

〉
−

T∑
t=1

〈
x̂, ℓt

〉
= −

T∑
t=1

〈
x̂,f(xt, ℓt)

〉
(3)

= −
T∑

t=1

〈
R̂,f(xt, ℓt)

〉
=

T∑
t=1

〈
Rt,f(xt, ℓt)

〉
−

T∑
t=1

〈
R̂,f(xt, ℓt)

〉
(4)

= RegT
(
R̂
)

(5)

where (3) follows from x̂⊤1d = 1 and the definition of the map f(·, ·), (4) follows from
⟨Rt,f(xt, ℓt)⟩ = 0 because xt = Rt/∥Rt∥1 (note that this is also trivially true when Rt = 0),
and (5) follows from the definition of RegT

(
R̂
)

.

B Instability of RM+ and predictive RM+

B.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We first prove the case for RM+. Since we consider xt ∈ R2, we can express
xt = (pt, 1 − pt) for some scalar pt ∈ [0, 1] (starting with p1 = 1/2). In our counterexample, we
set ℓt = (ℓt, 0) for some scalar ℓt to be specified. Consequently, we have

f(xt, ℓt) = ℓt −
〈
xt, ℓt

〉
12 = ((1− pt)ℓt, − ptℓt).

To make the algorithm highly unstable, we first provide an unbounded sequence of ℓt so that the
resulting Rt alternates between vectors with the same value on both entries and vectors with only
the first entry being 0, which means pt by definition alternates between 1/2 and 0. Noting that RM+
is scale-invariant to the loss sequence, our proof is completed by normalizing the losses so that they
all lie in [−1, 1].

Specifically, we set ℓ1 = 2, which gives f(x1, ℓ1) = (1,−1), R2 = (0, 1), and p2 = 0. Then for
t ≥ 2 we set ℓt = −2(t−2)/2 when t is even and ℓt = 2(t−1)/2 when t is odd. By direct calculation
it is not hard to verify that

f(xt, ℓt) = (−2(t−2)/2, 0), Rt+1 = (2(t−2)/2, 2(t−2)/2),

pt+1 = 1
2 when t is even, and

f(xt, ℓt) = (2(t−3)/2,−2(t−3)/2), Rt+1 = (0, 2(t−1)/2),

pt+1 = 0 when t is odd, completing the counterexample for RM+.

It remains to prove the case for predictive RM+, where mt = f(xt−1, ℓt−1). Initially, let ℓ1 =
4, ℓ2 = −1. Recall that

f(xt, ℓt) = ℓt −
〈
xt, ℓt

〉
12 = ((1− pt)ℓt, − ptℓt).

By direct calculation, we have

f(x1, ℓ1) = (2,−2), R2 = (0, 2), R̂2 = (−2, 4), p2 = 0

f(x2, ℓ2) = (−1, 0), R3 = (1, 2), R̂3 = (2, 2), p3 =
1

2
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Thereafter, we set ℓt = 2(t+1)/2 when t is odd and ℓt = −2(t−2)/2 when t is even. The updates for
the next 4 steps are:

f(x3, ℓ3) = (2,−2), R4 = (0, 4), R̂4 = (0, 6), p4 = 0

f(x4, ℓ4) = (−2, 0), R5 = (2, 4), R̂5 = (4, 4), p5 =
1

2

f(x5, ℓ5) = (4,−4), R6 = (0, 8), R̂6 = (0, 12), p6 = 0

f(x6, ℓ6) = (−4, 0), R7 = (4, 8), R̂7 = (8, 8), p7 =
1

2
.

It is not hard to verify (by induction) that

f(xt, ℓt) = (2(t−1)/2,−2(t−1)/2), Rt+1 = (0, 2(t+1)/2), R̂t+1 = (0, 2(t+1)/2 + 2(t−1)/2), pt+1 = 0

when t is odd and

f(xt, ℓt) = (−2(t−2)/2, 0), Rt+1 = (2(t−2)/2, 2t/2), R̂t+1 = (2t/2, 2t/2), pt+1 =
1

2

when t is even. This completes the proof.

Remark B.1. The losses are unbounded in the examples, but note that the update rules for
the algorithms imply that all the algorithms remain unchanged after scaling the losses, so we
can rescale them accordingly. Specifically, if we have a loss sequence ℓ1, . . . , ℓT , we can de-
fine LT = max{|ℓ1|, . . . , |ℓT |} and consider another loss sequence ℓ1/LT , . . . , ℓ

T /LT , which is
bounded in [−1, 1] and will make the algorithms produce the same outputs.

B.2 Counterexample on 3× 3 matrix game for RM+
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Figure 4: ∥xt+1 − xt∥22 (Figure 4a) and ∥yt+1 − yt∥22 (Figure 4b) for RM+.
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Figure 5: Individual regret of each player for RM+.

C Proof of Proposition 1 and Corollary 3.2

We start with a couple of technical lemmas.
Lemma C.1. Given any y ∈ Rd

+ and x ∈ Rd such that 1⊤x = 0,

(x⊤y)2 ≤ d− 1

d
∥x∥22 ∥y∥22.
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Proof. If x = 0 the claim is trivial, so we focus on the other case. Let ξ be the (Euclidean) projection
of y onto the orthogonal complement of span{x,1}. Since by hypothesis 1 ⊥ x, it holds that

y =
y⊤x

∥x∥22
x+

1⊤y

∥1∥22
1+ ξ

and therefore

∥y∥22 =
(y⊤x)2

∥x∥22
+

(1⊤y)2

∥1∥22
+ ∥ξ∥22 ≥ (y⊤x)2

∥x∥22
+

(1⊤y)2

∥1∥22
(6)

Using the hypothesis that y ≥ 0, we can bound

1⊤y = ∥y∥1 ≥ ∥y∥2,

where we used the well-known inequality between the ℓ1-norm and the ℓ2-norm. Substituting the
previous inequality into (6), and using the fact that ∥1∥22 = d,

∥y∥22 ≥ (y⊤x)2

∥x∥22
+

∥y∥22
d

.

Rearranging the terms yields the statement.

Lemma C.2. For any ŷ ∈ Rd
+ such that ∥ŷ∥2 = 1, 1⊤ŷ ̸= 0 and for any x ∈ Rd such that

1⊤x = 1, (
1

1⊤ŷ
− x⊤ŷ

)2

≤ (d− 1) ·
∥∥(x⊤ŷ)ŷ − x

∥∥2
2
.

Proof. The main idea of the proof is to introduce

z := x− ŷ

1⊤ŷ
.

Note that 1⊤z = 1⊤x− 1 = 0. Furthermore,

x⊤ŷ =

(
z +

ŷ

1⊤ŷ

)⊤

ŷ = z⊤ŷ +
1

1⊤ŷ
.

Substituting the previous equality in the statement, we obtain(
1

1⊤ŷ
− x⊤ŷ

)2

− (d− 1) ·
∥∥(x⊤ŷ)ŷ − x

∥∥2
2

= (z⊤ŷ)2 − (d− 1) ·
∥∥∥∥(z⊤ŷ +

1

1⊤ŷ

)
ŷ − z − ŷ

1⊤ŷ

∥∥∥∥2
2

= (z⊤ŷ)2 − (d− 1) ·
∥∥(z⊤ŷ)ŷ − z

∥∥2
2

= (z⊤ŷ)2 − (d− 1)

(
(z⊤ŷ)2 + ∥z∥22 − 2(z⊤ŷ)2

)
= d

(
(z⊤ŷ)2 − d− 1

d
∥z∥22

)
,

where we used the hypothesis that ∥ŷ∥22 = 1 in the third equality. Using the inequality of Lemma C.1
concludes the proof.

We are now ready to prove Proposition 1.

Proof of Proposition 1. If y = 0, the statement holds trivially. Hence, we focus on the case y ̸= 0.
Let ŷ := y/∥y∥2 be the direction of y; clearly, ∥ŷ∥2 = 1. Note that

∥y − x∥22 =
(
∥y∥2 − x⊤ŷ

)2
+

∥∥x− (x⊤ŷ) ŷ
∥∥2
2

≥
∥∥x− (x⊤ŷ) ŷ

∥∥2
2
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= (1⊤x)2
∥∥g(x)− (

g(x)⊤ŷ
)
ŷ
∥∥2
2

≥
∥∥g(x)− (

g(x)⊤ŷ
)
ŷ
∥∥2
2
, (7)

where we used the hypothesis that 1⊤x ≥ 1 in the last step. On the other hand, using Lemma C.2
(note that 1⊤ŷ ̸= 0 since y ̸= 0 by hypothesis),∥∥g(x)− (

g(x)⊤ŷ
)
ŷ
∥∥2
2

=
1

d

∥∥g(x)− (g(x)⊤ŷ) ŷ
∥∥2
2

+
d− 1

d

∥∥g(x)− (g(x)⊤ŷ) ŷ
∥∥2
2

≥ 1

d

∥∥g(x)− (g(x)⊤ŷ) ŷ
∥∥2
2
+

1

d

(
1

1⊤ŷ
− g(x)⊤ŷ

)2

=
1

d

(
∥g(x)∥22 +

1

(1⊤ŷ)2
− 2

g(x)⊤ŷ

1⊤ŷ

)
=

1

d

(
∥g(x)∥22 + ∥g(y)∥22 − 2g(x)⊤g(y)

)
=

1

d
∥g(y)− g(x)∥22. (8)

Combining (7) and (8), we obtain the statement.

Proof of Corollary 3.2. The condition means that 1⊤Rt

R0
≥ 1 and∥∥xt+1 − xt

∥∥
2
≤

√
d

∥∥∥∥Rt+1

R0
− Rt

R0

∥∥∥∥
2

(by Proposition 1)

≤
√
d

R0

∥∥f(xt, ℓt)
∥∥
2

≤
√
d

R0

(∥∥ℓt∥∥
2
+

∥∥〈xt, ℓt
〉
1d

∥∥
2

)
≤

√
d

R0

(
Bu +

√
d
∥∥xt

∥∥
2

∥∥ℓt∥∥
2

)
(by (1))

≤ 2dBu

R0

D Proof of Theorem 4.1

Proof of Theorem 4.1. When the algorithm restarts, the accumulated regret is negative to all actions,
so it is sufficient to consider the regret from T0, the round when the last restart happens to the end.
In that case, we can analyze the algorithm as a normal predictive regret matching algorithm. By
Proposition 5 in [12], we have that the regret for player i is bounded by

RegTi (x
∗) ≤ ∥x∗ − zT0

i ∥22
2η

+ η

T∑
t=T0

∥∥f t
i −mt

i

∥∥2 − 1

8η

T∑
T=T0

∥∥zt+1
i − zt

i

∥∥2 , (9)

where zT0
i = (R0, . . . , R0) and

(
f t−1
i

)
i∈[n]

= F (zt−1). When setting mt
i = f t−1

i , then
∥f t

i −mt
i∥ can be bounded by

∥∥f t
i −mt

i

∥∥
2
=

∥∥〈xt
i, ℓ

t
i

〉
1di

−
〈
xt−1
i , ℓt−1

i

〉
1di

−
(
ℓti − ℓt−1

i

)∥∥
2
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=
∥∥〈xt

i − xt−1
i , ℓti

〉
1di −

〈
xt−1
i , ℓt−1

i − ℓti
〉
1di −

(
ℓti − ℓt−1

i

)∥∥
2

≤
∥∥xt

i − xt−1
i

∥∥
2

∥∥ℓti∥∥2 ∥1di
∥2 +

∥∥xt−1
i

∥∥
2

∥∥ℓt−1
i − ℓti

∥∥
2
∥1di

∥2 +
∥∥ℓti − ℓt−1

i

∥∥
2

≤ Bu

√
di

∥∥xt
i − xt−1

i

∥∥
2
+

√
di

∥∥ℓti − ℓt−1
i

∥∥
2
+
∥∥ℓti − ℓt−1

i

∥∥
2

(by (1))

≤ Bu

√
di

∥∥xt
i − xt−1

i

∥∥
2
+

√
di

∑
i′ ̸=i

2Lu

∥∥xt
i′ − xt−1

i′

∥∥
2

(by (1))

≤ 2
√
di(Bu + Lu)

∑
i′∈[n]

∥∥xt
i′ − xt−1

i′

∥∥
2

≤
12η

√
diBu(Bu + Lu)

∑
i′∈[n] di′

R0

≤ 12ηBu(Bu + Lu)d
3/2

R0

where the last-but-one inequality is because∥∥xt
i − xt−1

i

∥∥
2
=

∥∥g(zt
i)− g(zt−1

i )
∥∥
2

≤
∥∥g(zt

i)− g(wt−1
i )

∥∥
2
+
∥∥g(wt−1

i )− g(wt−2
i )

∥∥
2
+

∥∥g(wt−2
i )− g(zt−1

i )
∥∥
2

≤ 3 · 2ηdiBu

R0
=

6ηdiBu

R0

and we bound each of RHS of the first inequality using a restatement of Corollary 3.2, shown in
Lemma D.1. Therefore, we can further bound (9) it by dropping the negative terms and bounding
the rest by

∥x∗∥22 + ∥zT0
i ∥22

η
+ η

T∑
t=T0

∥∥f t
i − f t−1

i

∥∥2 ≤ 1 +R2
0d

η
+ η3T · 144B

2
u(Bu + Lu)

2d3

R2
0

.

Choosing R0 = 1 and η =
(
d2T

)−1/4
finishes the proof.

Lemma D.1. Let z = Πw,X (ηf(x, ℓ)) for x ∈ ∆d, ℓ ∈ Rd, ∥ℓ∥2 ≤ Bu. Suppose ∥w∥1 ≥ R0,
then we have

∥g(z)− g(w)∥2 ≤
√
d

R0
· ∥z −w∥2 ≤ 2ηdBu

R0
.

Proof. The proof is essentially the same as Corollary 3.2. The condition means that 1⊤ w
R0

≥ 1 and

∥g(z)− g(w)∥2 = ∥g(z/R0)− g(w/R0)∥2

≤
√
d

∥∥∥∥ z

R0
− w

R0

∥∥∥∥
2

(by Proposition 1)

≤
√
d

R0
∥ηf(x, ℓ)∥2

≤ η
√
d

R0
(∥ℓ∥2 + ∥⟨x, ℓ⟩1d∥2)

≤ η
√
d

R0

(
Bu +

√
d ∥x∥2 ∥ℓ∥2

)
(by (1))

≤ 2ηdBu

R0
.
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E Proof of Theorem 4.2

We write (Rt
1, ...,R

t
n) = zt. Let us consider the regret RegTi (x̂i) of player i ∈ {1, ..., n}. Lemma

2.1 shows that
RegTi (x̂i) = RegTi

(
R̂i

)
with RegTi

(
R̂i

)
the regret against R̂i = x̂i incurred by a decision-maker choosing the decisions

(Rt
i)t≥1 and facing the sequence of losses (f t

i )t≥1, with f t
i = ℓti − ⟨xt

i, ℓ
t
i⟩1di :

RegTi

(
R̂i

)
=

T∑
t=1

〈
f t
i ,R

t
i − R̂i

〉
(10)

Note that R1
i , ...,R

T
i is computed by Predictive OMD with ∆di

≥ as a decision set, f1
i , ...,f

T
i as the

sequence of losses and m1
i , ...,m

T
i as the sequence of predictions. Therefore, Proposition 5 in [12]

applies, and we can write the following regret bound:

RegTi

(
R̂i

)
≤ ∥w0

i − x̂i∥22
2η

+ η

T∑
t=1

∥∥f t
i −mt

i

∥∥2
2

− 1

8η

T∑
t=1

∥∥Rt+1
i −Rt

i

∥∥2
2
.

(11)

Since we maintain Rt
i ∈ ∆di

≥ at every iteration, using Proposition 1 we find that

∥xt+1
i − xt

i∥22 ≤ di
∥∥Rt+1

i −Rt
i

∥∥2
2
.

Plugging this into (11), we obtain

RegTi

(
R̂i

)
≤ ∥w0

i − x̂i∥22
2η

+ η

T∑
t=1

∥∥f t
i −mt

i

∥∥2
2

− 1

8diη

T∑
t=1

∥xt+1 − xt∥22.

Using ∥ · ∥2 ≤ ∥ · ∥1 ≤
√
di∥ · ∥2, we obtain

RegTi

(
R̂i

)
≤ α+ β

T∑
t=1

∥∥f t
i −mt

i

∥∥2
1

− γ

T∑
t=1

∥xt+1 − xt∥21.

with α =
∥w0

i−x̂i∥2
2

2η , β = diη, γ = 1
8d2

iη
. To conclude as in Theorem 4 in [34] we need β ≤

γ/(n − 1)2, i.e., η = 1

2
√
2(n−1)d

3/2
i

. Therefore, using η = 1

2
√
2(n−1)maxi{d3/2

i }
, we conclude that

the sum of the individual regrets is bounded by

O

(
n2 max

i=1,...,n
{d3/2i } max

i=1,...,n
{∥w0

i − x̂i∥22
)
.

F Proof of Theorem 5.3

Proof of Lemma 5.1. The first-order optimality condition gives

⟨ηℓt + zt − zt−1, ẑ − zt⟩ ≥ 0 ∀ẑ ∈ Z.
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Rearranging gives that for any ẑ ∈ Z , we have

⟨ηℓt, ẑ − zt⟩ ≥ ⟨zt−1 − zt, ẑ − zt⟩ = 1

2
∥zt − ẑ∥22 −

1

2
∥zt−1 − ẑ∥22 +

1

2
∥zt − zt−1∥22.

Multiplying by −1 and summing over all t = 1, ..., T gives the regret bound:
T∑

t=1

⟨ηℓt, zt − ẑ⟩ ≤ 1

2
∥z0 − ẑ∥22 −

1

2
∥zT − ẑ∥22 −

T∑
t=1

1

2
∥zt − zt−1∥22 ≤ 1

2
∥z0 − ẑ∥22.

Proof of Lemma 5.2. Let x,x′ ∈ ∆ and i ∈ {1, ..., n}. Let us write ℓi = −∇xi
ui(x), ℓ

′
i =

−∇xi
ui(x

′). We have, for i ∈ {1, ..., n},

∥f (xi, ℓi)− f (x′
i, ℓ

′
i) ∥22

=

di∑
j=1

(
(xi − ej)

⊤ℓi − (x′
i − ej)

⊤ℓ′i
)2

=

di∑
j=1

((xi − ej)
⊤ℓi − (x′

i − ej)
⊤ℓi + (x′

i − ej)
⊤ℓi − (x′

i − ej)
⊤ℓ′i)

2

=

di∑
j=1

(
(xi − x′

i)
⊤ℓi + (x′

i − ej)
⊤(ℓi − ℓ′i)

)2
≤ 2di

(
(xi − x′

i)
⊤ℓi

)2
+ 2

di∑
j=1

(
(x′

i − ej)
⊤(ℓi − ℓ′i)

)2
≤ 2di∥xi − x′

i∥22∥ℓi∥22 + 2

di∑
j=1

∥x′
i − ej∥22∥ℓi − ℓ′i∥22,

where the last inequality follows from Cauchy-Schwarz inequality. Now from (1) and the definition
of ℓi, ℓ′i, we have

∥ℓi∥2 ≤ Bu, ∥ℓi − ℓ′i∥2 ≤ Lu∥x− x′∥2.
This yields

∥f (xi, ℓi)− f (x′
i, ℓ

′
i) ∥22 ≤ 2diB

2
u∥xi − x′

i∥22 + 4diL
2
u∥x− x′∥22

≤
(
2diB

2
u + 4diL

2
u

)
∥x− x′∥22.

Since the function g is
√
di-Lipschitz continuous over each decision set ∆di

≥ (Proposition 1), we
have shown that the Lipschitz constant of F is LF = (maxi di)

√
2B2

u + 4L2
u.

We are now ready to prove Theorem 5.3. We write (Rt
1, ...,R

t
n) = zt.

Proof of Theorem 5.3. We use the fact that (zt)t≥1 is computed following the Cheating OMD up-
date with ℓt = F (zt) at every iteration t ≥ 1. Therefore, the first-order optimality condition in
zt = Πzt−1,X≥(ηF (zt)) yields

⟨ηF (zt) + zt − zt−1, ẑ − zt⟩ ≥ 0 ∀ẑ ∈ X≥.

Similarly as for the proof of Lemma 5.1, we obtain that for any ẑ ∈ X≥, we have

⟨ηF (zt), ẑ − zt⟩ ≥ 1

2
∥zt − ẑ∥22 −

1

2
∥zt−1 − ẑ∥22 +

1

2
∥zt − zt−1∥22.

Let i ∈ {1, ..., n}. We apply the inequality above to the vector ẑ ∈ X≥ = ×n
i=1∆

di

≥ defined
as ẑj = zt

j for j ̸= i and ẑi = R̂i for some R̂i ∈ ∆di

≥ . This yields, for any R̂i ∈ ∆di

≥ , for
xt
j = g(Rt

j) and (ℓt1, ..., ℓ
t
n) = G(xt) for all j ∈ {1, ..., n},

⟨ηf(xt, ℓt), R̂i −Rt
i⟩ ≥

1

2
∥Rt

i − R̂i∥22 −
1

2
∥Rt−1

i − R̂i∥22 +
1

2
∥Rt

i −Rt−1
i ∥22.
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Summing the above inequality for t = 1, ..., T , we obtain our bound on the individual regrets of
each player: for any R̂i ∈ ∆di

≥ , we have

T∑
t=1

⟨ηf(xt, ℓt),Rt
i − R̂i⟩ ≤

1

2
∥R0

i − R̂i∥22 −
1

2
∥RT

i − R̂i∥22 −
T∑

t=1

1

2
∥Rt

i −Rt−1
i ∥22 ≤ 1

2
∥R0

i − R̂i∥22.

Note that from Lemma 2.1, we have that the individual regret of player i

RegTi (x̂i) =

T∑
t=1

〈
∇xi

ut
i(x

t), x̂i − xt
i

〉
against a decision x̂i ∈ ∆di is equal to

∑T
t=1⟨f(xt, ℓt),Rt

i − R̂i⟩ for R̂i = x̂i. Therefore, we
conclude that

RegTi (x̂i) ≤
1

2η
∥ẑ0

i − x̂i∥22.

This concludes the proof of Theorem 5.3.

G Proof of Theorem 5.5

Proof of Theorem 5.5. At iteration t ≥ 1, let wt ∈ X≥ such that ∥wt − Πzt−1,X≥ (ηF (wt)) ∥2 ≤
ϵ(t). Then the first order optimality condition gives, for zt = Πzt−1,X≥(ηF (wt)),

⟨ηF (wt), ẑ − zt⟩ ≥ 1

2
∥zt − ẑ∥22 −

1

2
∥zt−1 − ẑ∥22 +

1

2
∥zt − zt−1∥22,∀ ẑ ∈ X≥.

Let us fix a player i ∈ {1, ..., n}. We apply the inequality above with ẑj = zt
j for j ̸= i. This yields,

for xp = g(wt
p),∀ p ∈ {1, ..., n} and ℓti = −∇xi

ui(x),

⟨ηf(g(wt
i), ℓ

t
i), ẑi − zt

i⟩ ≥
1

2
∥zt

i − ẑi∥22 −
1

2
∥zt−1

i − ẑi∥22 +
1

2
∥zt

i − zt−1
i ∥22,∀ ẑi ∈ ∆di .

We now upper bound the left-hand side of the previous inequality. Note that

⟨ηf(g(wt
i), ℓ

t
i), ẑi − zt

i⟩ = ⟨ηf(g(wt
i), ℓ

t
i), ẑi −wt

i⟩+ ⟨ηf(g(wt
i), ℓ

t
i),w

t
i − zt

i⟩.
Cauchy-Schwarz inequality ensures that

⟨ηf(g(wt
i), ℓ

t
i),w

t
i − zt

i⟩ ≤ η∥f(g(wt
i), ℓ

t
i)∥2∥wt

i − zt
i∥2.

Note that Πzt−1,X≥ (ηF (wt)) = zt, so that ∥wt
i − zt

i∥2 ≤ ϵ(t). To bound ∥f(g(wt
i), ℓ

t
i)∥2, we

note that by definition,

∥f(xi, ℓi)∥22 =

di∑
j=1

(
(xi − ej)

⊤ℓi
)2 ≤

di∑
j=1

∥xi − ej∥22∥ℓi∥22 ≤ 4diB
2
u.

This gives
∥f(g(wt

i), ℓ
t
i)∥2 ≤ 2Bu

√
di.

Overall, we have obtained that for all ẑi ∈ ∆di

≥ , we have

⟨ηf(g(wt
i), ℓ

t
i),w

t
i − ẑi⟩ ≤ −1

2
∥zt

i − ẑi∥22 +
1

2
∥zt−1

i − ẑi∥22 −
1

2
∥zt

i − zt−1
i ∥22 + η2Bu

√
diϵ

(t).

We sum the previous inequality for t = 1, ..., T to obtain that for all ẑi ∈ ∆di

≥ , we have

T∑
t=1

⟨ηf(g(wt
i), ℓ

t
i),w

t
i − ẑi⟩ ≤

1

2
∥z0

i − ẑi∥22 −
1

2
∥zT

i − ẑi∥22 −
T∑

t=1

1

2
∥zt

i − zt−1
i ∥22 + η2Bu

√
di

T∑
t=1

ϵ(t).

Overall, we conclude that
T∑

t=1

⟨f(g(wt
i), ℓ

t
i),w

t
i − ẑi⟩ ≤

1

2η
∥z0

i − ẑi∥22 + 2Bu

√
di

T∑
t=1

ϵ(t),∀ ẑi ∈ ∆di

≥ .

From Lemma 2.1 the left-hand side is equal to RegTi (x̂i) for x̂i = ẑi. This concludes the proof of
Theorem 5.5.
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H Proof of Theorem 5.6

Proof of Theorem 5.5. We will show that for any ŵ ∈ X≥, we have

T∑
t=1

〈
F (wt),wt − ŵ

〉
≤ 1

2η
∥w0 − ŵ∥22.

Since xt
i = wt

i ,∀ t ≥ 1,∀ i ∈ {1, ..., n}, this is enough to prove Theorem 5.5. Note that〈
F (wt),wt − ŵ

〉
=

〈
F (wt), zt − ŵ

〉
+

〈
F (wt),wt − zt

〉
.

We will independently analyze each term of the right-hand side of the above equality.

For the first term, we note that the first-order optimality condition for zt = Πzt−1,X≥ (ηF (wt))
gives, for any ŵ ∈ X≥,〈

ηF (wt), zt − ŵ
〉
≤ 1

2
∥ŵ − zt−1∥22 −

1

2
∥ŵ − zt∥22 −

1

2
∥zt − zt−1∥22. (12)

For the second term, we will prove the following lemma.

Lemma H.1. Let η > 0 such that w 7→ ηF (w) is 1/
√
2 Lipschitz continuous over X≥. Then〈

ηF (wt),wt − zt
〉
≤ 1

2
∥zt − zt−1∥22. (13)

Proof of Lemma H.1. We write〈
ηF (wt),wt − zt

〉
=

〈
ηF (zt−1),wt − zt

〉
+
〈
ηF (wt)− ηF (zt−1),wt − zt

〉
.

We will bound independently each term in the above equation. From wt = Πzt−1,X≥

(
ηF (zt−1)

)
we have 〈

ηF (zt−1),wt − zt
〉
≤ 1

2
∥zt − zt−1∥22 −

1

2
∥zt −wt∥22 −

1

2
∥wt − zt−1∥22,

which gives〈
ηF (zt−1),wt − zt

〉
≤ 1

2
∥zt − zt−1∥22 −

1

2
∥zt −wt∥22 −

1

2
∥wt − zt−1∥22, (14)

From Cauchy-Schwarz inequality, we have〈
ηF (wt)− ηF (zt−1),wt − zt

〉
≤ ∥ηF (wt)− ηF (zt−1)∥2∥wt − zt∥2.

Recall that

wt = Πzt−1,X
(
ηF (zt−1)

)
zt = Πzt−1,X

(
ηF (wt)

)
Since the proximal operator is 1-Lipschitz continuous, and since w 7→ ηF (w) is 1/

√
2-Lipschitz

continuous, we obtain 〈
ηF (wt)− ηF (zt−1),wt − zt

〉
≤ 1

2
∥wt − zt−1∥22. (15)

We can now sum (14) and (15) to obtain〈
ηF (wt),wt − zt

〉
≤ 1

2
∥zt − zt−1∥22 −

1

2
∥zt −wt∥22 ≤ 1

2
∥zt − zt−1∥22.

We have shown in Lemma 5.2 that F is LF -Lipschitz continuous for normal-form games. Our
choice of step size η = 1

LF

√
2

ensures that that ω 7→ ηF (w) is 1/
√
2-Lipschitz continuous as in the

assumptions of Lemma H.1.
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Combining (12) with (13) yields〈
ηF (wt),wt − ŵ

〉
≤ 1

2
∥ŵ − zt−1∥22 −

1

2
∥ŵ − zt∥22.

Summing this inequality for t = 1, ..., T and telescoping, we obtain
T∑

t=1

〈
ηF (wt),wt − ŵ

〉
≤ 1

2
∥ŵ − z0∥22 −

1

2
∥ŵ − zT ∥22

which directly yields
T∑

t=1

〈
ηF (wt),wt − ŵ

〉
≤ 1

2
∥ŵ − z0∥22. (16)

Overall, for any
(
R̂1, ..., R̂n

)
∈ X≥ we obtain that

∑T
i=1 Reg

T
i (R̂i) is upper bounded by∑n

i=1
1
2η∥w

0
i − R̂i∥22. Now from Lemma 2.1, for any (x̂1, ..., x̂n) ∈ ∆, we conclude that

T∑
i=1

RegTi (x̂i) ≤
n∑

i=1

1

2η
∥w0

i − x̂i∥22.

This concludes the proof of Theorem 5.6.

I Proof of Lemma 5.7

Proof of Lemma 5.7. The proof of Lemma 5.7 follows the lines of the proof of Lemma 5.2. Clearly,
for matrix games we have F = h ◦ g with h : Rd1 × Rd2 → Rd1 × Rd2 defined as Proposition 1.

h

[
x
y

]
=

[
f (x,Ay)

f
(
y,−A⊤x

)] (17)

The function g is Lipschitz continuous over ∆d1

≥ (Proposition 1), with a Lipschitz constant of Lg =√
d1. Let us now compute the Lipschitz constant of h. Observe that:

∥f (x,Ay)− f (x′,Ay′) ∥22

=

d1∑
i=1

(
(x− ei)

⊤Ay − (x′ − ei)
⊤Ay′)2

=

d1∑
i=1

((x− ei)
⊤Ay − (x′ − ei)

⊤Ay + (x′ − ei)
⊤Ay − (x′ − ei)

⊤Ay′)2

=

d1∑
i=1

(
(x− x′)⊤Ay + (x′ − ei)

⊤A(y − y′)
)2

≤ 2d1
(
(x− x′)⊤Ay

)2
+ 2

d1∑
i=1

(
(x′ − ei)

⊤A(y − y′)
)2

≤ 2d1∥A∥2op∥x− x′∥22 + 4d1∥A∥2op∥y − y′∥22.

Similarly, we have that ∥f
(
y,−A⊤x

)
− f

(
y′,−A⊤x′) ∥22 is upper bounded by

2d2∥A∥2op∥y − y′∥22 + 4d2∥A∥2op∥x− x′∥22,
and thus ∥∥∥∥h [xy

]
− h

[
x′

y′

]∥∥∥∥
2

≤ ∥A∥op
√
6max{d1, d2}

∥∥∥∥[xy
]
−

[
x′

y′

]∥∥∥∥
2

.

Therefore, the Lipschitz constant of h is Lh = ∥A∥op
√

6max{d1, d2}.

Since F = h ◦ g, we obtain that the Lipschitz constant LF of F is LF = Lh × Lg =√
6∥A∥op max{d1, d2}.
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J Extensive-Form Games

In this section we show how to extend our convergence results for Conceptual RM+ from normal-
form games to EFGs. Briefly, an EFG is a game played on a tree, where each node belongs to some
player, and the player chooses a probability distribution over branches. Moreover, players have in-
formation sets, which are groups of nodes belonging to a player such that they cannot distinguish
among them, and thus they must choose the same probability distribution at all nodes in an infor-
mation set. When a leaf h is reached, each player i receives some payoff vi(h) ∈ [0, 1]. In order to
extend our results, we will use the CFR regret decomposition [37, 9], and then show how to run the
Conceptual RM+ algorithm on the resulting set of strategy spaces (which will be a Cartesian prod-
uct of positive orthants). The CFR regret decomposition works in the space of behavioral strategies,
which represents the strategy space of each player as a Cartesian product of simplices, with each
simplex corresponding to the set of possible ways to randomize over actions at a given information
set for the player. Formally, we write the polytope of behavioral-form strategies as

X = ×i∈[n],j∈Di
∆nj ,

where Di is the set of information sets for player i and nj is the number of actions at information
set j. Let P =

∑
i∈[n],j∈Di

nj be the dimension of X . In EFGs with perfect recall, meaning that a
player never forgets something they knew in the past, the sequence-form is an equivalent represen-
tation of the set of strategies, which allows one to write the payoffs for each player as a multilinear
function. This in turn enables optimization and regret minimization approaches that exploit multi-
linearity, e.g. bilinearity in the two-player zero-sum setting [21, 25, 10]. Instead of working on this
representation, the CFR approach minimizes a notion of local regret at each information set, using
so-called counterfactual values. The weighted sum of counterfactual regrets at each information
set is an upper bound on the sequence-form regret [37], and thus a player in an EFG can minimize
their regret by locally minimizing each counterfactual regret. Informally, the counterfactual value
is the expected value of an action at a information set, conditional on the player at the information
set playing to reach that information set and then taking the corresponding action. The counter-
factual value associated to each tuples of player i, information set j ∈ Di, and action a ∈ Aj is
Gija(x) :=

∑
h∈Lja

∏
(ĵ,â)∈Pj(h)

x[ĵ, â]vi(h), where Lja is the set of leaf nodes reachable from
information set j after taking action a, and Pj(h) is the set of pairs of information sets and actions
(ĵ, â) on the path from the root to h, except that information sets belonging to player i are excluded,
unless they occur after j, a.

We will be concerned with the counterfactual regret, given by the operator H : X → R
∑

i∈[n],j∈Di
nj

defined as Hija(x) := Gija(x) − ⟨Gij(x),x
j⟩. Now we can show that the counterfactual regret

operator H is Lipschitz continuous. Intuitively, this should hold since H is multilinear.

Lemma J.1. For any behavioral strategies x,x′ ∈ X , ∥H(x)−H(x′)∥2 ≤
√
2P∥x− x′∥2.

Proof. We start by showing a bound for G. We first analyze the change in a single coordinate of G
for a given i ∈ [n], j ∈ Di, a ∈ Aj . We focus on how Gija changes with respect to the change in
|x[ĵ, â]− x′[ĵ, â]| for some arbitrary information set-action pair (ĵ, â) ∈ Pj(h) for some h ∈ Lja.

To alleviate inline notation, let P ĵ,â
j (h) = Pj(h) \ {(ĵ, â)}.

Gija(x) = x[ĵ, â]
∑

h∈Lĵâ∩Lja

∏
(j̄,ā)∈P ĵ,â

j (h)

x[j̄, ā]vi(h)

+
∑

h∈Lja\Lĵâ

∏
(j̄,ā)∈Pj(h)

z[j̄, ā]vi(h)

≤ |x[ĵ, â]− x′[ĵ, â]|
∑

h∈Lĵâ∩Lja

∏
(j̄,ā)∈P ĵ,â

j (h)

x[j̄, ā]vi(h)

+ x′[ĵ, â]
∑

h∈Lĵâ∩Lja

∏
(j̄,ā)∈Pj(h)

x[j̄, ā]vi(h)

+
∑

h∈Lja\Lĵâ

∏
(j̄,ā)∈Pj(h)

x[j̄, ā]vi(h)
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Now let us bound the error term by noting that vi(h) ≤ 1 for all h by assumption:

|x[ĵ, â]− x′[ĵ, â]|
∑

h∈Lĵâ∩Lja

∏
(j̄,ā)∈P ĵ,â

j (h)

x[j̄, ā]vi(h)

≤|x[ĵ, â]− x′[ĵ, â]|
∑

h∈Lĵâ∩Lja

∏
(j̄,ā)∈P ĵ,â

j (h)

x[j̄, ā]

≤|x[ĵ, â]− x′[ĵ, â]|,
where the last inequality is because the sum of reach probabilities on leaf nodes in Lĵâ ∩ Lja after
conditioning on player i playing to reach (j, a) and (ĵ, â) being played with probability one, is less
than or equal to one.

By iteratively applying this argument to each (ĵ, â) ∈ Pj(h), we get

Gija(x) ≤ Gija(x
′) +

∑
h∈Lja

∑
(ĵ,â)∈Pj(h)

|x[ĵ, â]− x′[ĵ, â]| (18)

≤ Gija(x
′) + ∥x− x′∥1.

Repeating the same argument for x′ gives

|Gija(x)−Gija(x
′)| ≤ ∥x− x′∥1.

Secondly, we bound the difference in the inner product terms.

⟨Gij(x),x
j⟩ =

∑
a∈Aj

x[j, a]Gija(x)

≤
∑
a∈Aj

[
|x[j, a]− x′[j, a]|+ x′[j, a]Gija(x)

]
≤ ∥xj − xj′∥1 +

∑
a∈Aj

x′[j, a]Gija(x
′) +

∑
a∈Aj

x′[j, a]
∑

h∈Lja

∑
(ĵ,â)∈Pj(h)

|x[ĵ, â]− x′[ĵ, â]|

≤ ⟨Gij(x
′),x′⟩+ ∥x− x′∥1

where the second-to-last line is by Eq. (18). Again we can start from x′ instead to get

|⟨Gij(x),x
j⟩ − ⟨Gij(x

′),x′⟩| ≤ ∥x− x′∥1.

Putting together all our bonds and applying norm equivalence, we get that

∥H(x)−H(x′)∥22 ≤
∑
i∈[n]

∑
j∈Di,a∈Aj

2∥x− x′∥21

≤ 2P∥x− x′∥22.
Taking square roots completes the proof.

Since we want to run smooth RM+, we will need to consider the lifted strategy space for each
decision point. Let Z be the Cartesian product of the positive orthants for each information set, i.e.
Z = ×i∈[n],j∈Di

Rnj

+ . Now let ĝ : Z → X be the function that normalizes each vector from the
positive orthant to the simplex such that we get a behavioral strategy, i.e. ĝj(z) = g(zj), where zj

is the slice of z corresponding to information set j. The function ĝ is also Lipschitz continuous.
Lemma J.2. Suppose that z, z′ ∈ Z satisfy ∥zj∥1 ≥ R0,j , ∥zj′∥1 ≥ R0,j for all i ∈ [n], j ∈ Di.
Then, ∥ĝ(z)− ĝ(z′)∥2 ≤ maxi∈[n],j∈Di

√
nj/R0,j∥z − z′∥2.

Proof. We have from Proposition 1 that

∥ĝ(z)− ĝ(z′)∥22 =
∑

i∈[n],j∈Di

∥g(z)− g(z′)∥22
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≤
∑

i∈[n],j∈Di

nj/R0,j∥zj − zj′∥22

≤ max
i∈[n],j∈Di

nj/R0,j∥z − z′∥22

Now let us introduce the operator F : Z → R
∑

i∈[n],j∈Di
nj for EFGs. For a given z ∈ Z , the

operator will output the regret associated with the counterfactual values for each decision set j. F
will be composed of two functions, first ĝ maps a given z to some behavioral strategy x = ĝ(z),
and then the operator H : X → R

∑
i∈[n],j∈Di

nj outputs the regrets for the counterfactual values.

Now we can apply our bounds on the Lipschitz constant for ĝ and H to get that F is Lipschitz
continuous with Lipschitz constant 2P maxi∈[n],j∈Di

√
nj/R0,j . Combining our Lipschitz result

with our setup of X and F , we can now run Algorithm 4 on X and F and apply Theorem 5.5 to get
a smooth-RM+-based algorithm that allows us to compute a sequence of iterates with regret at most
ϵ in at O(1/ϵ) iterations and using O(log(1/ϵ)/ϵ) gradient computations.

K Details on the Numerical Experiments

Efficient orthogonal projection on ∆n
≥. Recall that ∆n

≥ = {R ∈ Rn | R ≥ 0,1⊤
nR ≥ 1}. Let

y ∈ Rn and let us consider

min
x≥0,1⊤

n x≥1

1

2
∥x− y∥22.

Introducing a Lagrange multiplier µ ≥ 0 for the constraint 1− 1⊤
nx ≤ 0, we arrive at

min
x≥0

max
µ≥0

1

2
∥x− y∥22 + µ

(
1− 1⊤

nx
)
.

Let us call (x, µ) ∈ Rn
+ × R+ an optimal solution to the above saddle-point problem. Stationarity

of the Lagrangian function shows that xi = [yi + µ]+,∀ i ∈ [n]. Therefore, we could simply use
binary search to solve the following univariate concave problem:

max
µ≥0

µ− 1

2
∥[y + µ1n]

+∥22.

Let us use the Karush-Kuhn-Tucker conditions. Complementary slackness gives µ ·
(
1− 1⊤

nx
)
= 0.

If µ = 0, then x = [y]+, and by primal feasibility we must have 1⊤
nx ≥ 1, i.e., 1⊤

n [y]
+ ≥ 1. If

that is not the case, then we can not have µ = 0, and we must have 1 − 1⊤
nx = 0, i.e., x ∈ ∆n. In

this case, we obtain that x is the orthogonal projection of y on ∆n. Overall, we see that x is always
either [y]+, the orthogonal projection of y on Rn

+, or x is the orthogonal projection of y on ∆n.
Since ∆n

≥ ⊂ Rn
+, we can compute the orthogonal projection on ∆n

≥ as follows:

Compute x = [y]+. If 1⊤
nx ≥ 1, then we have found the orthogonal projection of y on ∆n

≥. Else,
return the orthogonal projection of y on the simplex ∆n.

K.1 Performances of ExRM+, Stable PRM+and Smooth PRM+on our small matrix game
example

In this section we provide detailed numerical results for ExRM+, Stable PRM+, and Smooth PRM+

on our 3 × 3 matrix-game counterexample. All algorithms use linear averaging and Stable and
Smooth PRM+ use alternation. We choose a step size of η = 0.1 for our implementation of these
algorithms. The results are presented in Figure 6 for ExRM+, in Figure 7 for Stable PRM+ and in
Figure 8 for Smooth PRM+.

K.2 Extensive-form game used in the experiments

We used the following games in the experiments:
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Figure 6: Empirical performance of ExRM+ (with linear averaging) on our 3× 3 matrix game from
Section 2.
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Figure 7: Empirical performance of Stable PRM+ (with alternation and linear averaging) on our
3× 3 matrix game from Section 2.
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Figure 8: Empirical performance of Smooth PRM+ (with alternation and linear averaging) on our
3× 3 matrix game from Section 2.

• 2-player Sheriff is a two-player general-sum game inspired by the Sheriff of Nottingham
board game. It was introduced as a benchmark for correlated equilibria by Farina et al.
[11]. The variant of the game we use has the following parameters:

– maximum number of items that can be smuggled: 10
– maximum bribe amount: 3
– number of bargaining rounds: 3
– value of each item: 5
– penalty for illegal item found in cargo: 1
– penalty for Sheriff if no illegal item found in cargo: 1

The number of nodes in this game is 9648.
• 3-player Leduc poker is a 3-player version of the standard benchmark of Leduc poker [33].

The game has 15659 nodes.
• 4-player Kuhn poker is a 4-player version of the standard benchmark of Kuhn poker [26].

We use a larger variant the standard one, to assess the scalability of our algorithm. The
variant we use has six ranks in the deck. The game has 23402 nodes.

• 4-player Liar’s dice is a 4-player version of the game Liar’s dice, already used as a bench-
mark by Lisỳ et al. [27]. We use a variant with 1 die per player, each with two distinct
faces. The game has 8178 nodes.
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