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Abstract

We show that LLMs hallucinate because their
output is not constrained to be synonymous
with claims for which they have evidence: a
condition that we call evidential closure. Infor-
mation about the truth or falsity of sentences
is not statistically identified in the standard
neural language generation setup, and so can-
not be conditioned on to generate new strings.
We then show how to constrain LLMs to pro-
duce output that satisfies evidential closure. A
multimodal LLM must learn about the exter-
nal world (perceptual learning); it must learn
a mapping from strings to states of the world
(extensional learning); and, to achieve fluency
when generalizing beyond a body of evidence,
it must learn mappings from strings to their
synonyms (intensional learning). The output
of a unimodal LLM must be synonymous with
strings in a validated evidence set. Finally, we
present a heuristic procedure, Learn-Babble-
Prune, that yields faithful output from an LLM
by rejecting output that is not synonymous with
claims for which the LLM has evidence.

1 Introduction

There is a growing body of evidence that LLMs
systematically hallucinate (Ji et al., 2023; Maynez
et al., 2020; Bang et al., 2023; Guerreiro et al.,
2023; Dale et al., 2023). Hallucinations may limit
the utility of LLMs, in addition to having signif-
icant implications for safety (Müller et al., 2020;
Martindale and Carpuat, 2018; Martindale et al.,
2019; Bender et al., 2021).

It has been suggested that hallucinations occur
because language models do not interpret training
inputs semantically (Bender and Koller, 2020; Xiao
and Wang, 2021; McKenna et al., 2023). We of-
fer a new formalization of this notion that allows
us to explain why LLMs are inherently prone to
hallucination, and what any faithful LLM must do:
its output must be closed under synonymy with
its evidence about the world, a condition we call

evidential closure. An LLM is factual if it is faith-
ful, and, in addition, its evidence about the world
is correct.1

Many of the conceptual issues now studied in
natural language processing have received exten-
sive treatment in the analytic philosophy of lan-
guage (Quine, 1960; Davidson and Harman, 1972;
Evans, 1982; McFetridge et al., 1992; McDowell,
1998). Conveniently, these treatments are often
mathematically tractable.

One set of fundamental distinctions is between
intension or meaning; extension or reference; and
facts or states of the world, respectively.2 Words
and sentences have meanings, which are equiv-
alence classes of other words or sentences with
which they are synonymous. They also have
referents: states of the world that they map onto.
Finally, there is an external reality that the agent
has access to, equipped with a valuation function
that assigns states of the world to true or false. Sen-
tences are true when they correctly refer to states
of the world that are true.

A popular theory of meaning in the philosophy
of language that links these three notions is the
extensional semantics of Davidson (1967). This
theory holds that the meaning of a sentence is just
the set of states of the world in which that sentence
is true.

Using this account, we can characterize a faithful
speaker of a language as one who 1) uses their
knowledge about the world 2) to describe states
of the world 3) using a variety of equivalent sen-
tences. This entails that a faithful speaker must per-
form three tasks: they must learn about the world

1We study intrinsic (Huang et al., 2023), or input-
conflicting hallucinations (Zhang et al., 2023); and extrinsic,
or fact-conflicting hallucinations. This conception of hallu-
cination does not include all conceptions of hallucination in
the literature: LLMs may produce output that is ill-formed or
contextually irrelevant, for instance (Guerreiro et al., 2023).

2For accessible overviews, see Fitting (2022), Michaelson
and Reimer (2022), David (2022).



(perceptual learning); they must learn which
sentences map onto which states of the world
(extensional learning); and they must learn which
sentences have the same meaning (intensional
learning). A factual speaker performs the same
tasks, with the difference that their evidence about
the world is correct. Here, faithfulness to model
inputs is conceptually prior to factuality, since, def-
initionally, the information the model has about the
world is contained in its inputs.

We use this setup to state an impossibility result:
neural probabilistic language models in the vein of
Bengio et al. (2003) are not factual (Theorem 4.5).
LLMs maximize the conditional probability of the
generated strings given the corpus and the prompt.
They do not explicitly learn states of the world, do
not explicitly learn the meanings of words, and do
not explicitly learn the referents of sentences. Each
of these types of information is unobserved. As a re-
sult, the conditional distributions learned by LLMs
can be statistically independent of, or invariant to,
their semantic content: that is, of the referents and
the truth-conditions of the sentences in the corpus
and prompts. So we may have variation in the truth
or falsity of a state of the world without variation
in the solution to a predictive model that generates
the next sentence given a prompt.

Because this semantic information is not con-
tained in the conditional distribution from which
an output string is generated, simulating from the
learned distribution does not preserve this infor-
mation, even when it is contained in the corpus
(Theorem 4.6). Hence there is no guarantee that
LLMs are faithful to the semantic content of their
inputs, either. We can think of this as the cause of
hallucination in LLMs.

Second, we show conceptually how to build a
faithful or factual LLM. The output of such an
LLM must satisfy evidential closure: that is, its
output must be synonymous with claims for which
the LLM has evidence. This ensures that every
claim made by the model is either directly corrobo-
rated by evidence, or is a paraphrase of a directly
corroborated claim. We first define the objective
functions for faithful and factual LLMs using the-
ory from the philosophy of language. We then
decompose those objective functions into learnable
distributions (Model 5.9). We show that the output
of these models is faithful or factual, because it
solves the constrained learning task that incorpo-
rates semantic information about the truth or fal-

sity of sentences for which the model has evidence
(Theorem 5.10 and Theorem 5.11).

Third, we provide heuristic framework for build-
ing factual or faithful LLMs, which we call Learn-
Babble-Prune. In this setup, the output of an LLM
is cross-checked against its evidence, and discarded
if it is not a paraphrase of a claim that it has evi-
dence for. This ensures that the output of an LLM
is consistent with its evidence. This ensures that
the LLM is faithful to its evidence, and hence, does
not hallucinate.

We consider two applications: when the evi-
dence is a corpus of strings, and when the evidence
is in the form of sensor information.

If the evidence is in the form of text, as in some
retrieval-augmented language models (Guu et al.,
2020; Chen et al., 2017), then an LLM’s output is
consistent with its retrieved body of evidence if its
output is a paraphrase of a string in its evidence
base. In this application, the model must learn
paraphrases of sentences in order to cross-check
the output of an LLM with its evidence base.3

If the evidence is in the form of information
about the world gathered by sensors, as in some
multimodal LLMs (Lian et al., 2023; Zhao et al.,
2023b; Yuan et al., 2022), then, in addition to in-
tensional learning, the LLM must learn a mapping
from perceptual information to strings. Thus a mul-
timodal LLM is faithful if its output paraphrases
information acquired by its perceptual learner, and
factual if that perceptual learner is unbiased and
consistent.

A final point is that, like any language speaker,
an LLM can only make as many true claims as are
semantically entailed by the evidence it possesses
(Williamson, 2000). Collecting and interpreting
large bodies of evidence is a vitally important task
for the next generation of LLMs.

2 Related work

2.1 Retrieval-Augmented Generation

Several approaches ground LLMs in external tex-
tual knowledge bases (Chen et al., 2017; Lee et al.,
2019; Guu et al., 2020), in which a retriever model

3Intensional learning allows the speaker to say true things
that they have never heard before: given a candidate string ℓ,
the speaker can verify it by first verifying the state of the world
underpinning a different string ℓ+, and then verifying that ℓ is
intensionally equivalent to ℓ+. This is an example of semantic
entailment (Beth, 1955). A fluent speaker of a language must
be able to generalize beyond a set of observed sentence-use
instances, and intensional learning allows speakers to do this.



is trained in order to learn subsets of the training
data that are more relevant for conditional text gen-
eration. Asai et al. (2022) and Lee et al. (2021)
highlight the role of evidence in controlling inci-
dence of hallucination: models are less likely to
hallucinate if they focus attention on passages with
a high evidential value. Our approach provides
theory to formalize the notion of evidential rele-
vance, and proposes ex post consistency with the
evidence to enforce the factuality or faithfulness of
the output of an LLM.

2.2 Generalizable RL

Methods for generalizing reinforcement learning
models in complex environments are also closely
related (Agarwal et al., 2021; Zhao et al., 2023b;
Belyaeva et al., 2023; Lian et al., 2023). We can un-
derstand differences in semantic content as a form
of distribution shift, in which the desired output
distribution and the observed input distribution dif-
fer. Hence, generalizing across contexts in an RL
setting is analogous to the problem of factual lan-
guage generation: in each case, the output must be
conditioned on the correct semantic information.
This is not possible when that information is not
observed.4

2.3 Causal Inference

The ability to generalize across semantic contexts
is also closely connected to the identifiability of se-
mantic information. Identifiability is a well-studied
problem in causal inference in both computer sci-
ence (Pearl, 1995; Shpitser and Pearl, 2012; Barein-
boim and Pearl, 2012; Lee and Bareinboim, 2020;
Li et al., 2023) and in statistics, epidemiology, and
the social sciences (Holland, 1986; Petersen and
van der Laan, 2014; Lewbel, 2019). One moral
from this paper is that a grounded LLM is one that
is causally connected to its environment. This also
has a philosophical foundation in causal theories of
perception (Grice and White, 1961; Hyman, 1992).

3 Setup and theory

3.1 A very brief philosophical overview

Aristotle (350 BCE [1989]), in Metaphysics, gave
the following definition of truth: “To say of what

4Agarwal et al. (2021) point out that generalization failures
can happen even when the input and the output contexts are
the same context. This is because, even though the contexts
are identical, the model did not learn the relevant semantic
information in each context, so its output is not conditioned
on the relevant information. See Section 4.4.

is that it is, or of what is not that it is not.” This is
a correspondence theory of truth, in which truth is
a property of sentences that correspond to states of
the world (Schmitt, 2003).

Davidson (1967), building on work by Tarski
(1936), equated the meaning of a sentence with
the circumstances in which that sentence was true:
that the meaning of the sentence “p” is just that the
state of the world p obtains. This is an extensional
semantics: that the meaning of a sentence is the
circumstances in which it is true.

Frege (1892) noticed that distinct terms in a lan-
guage with the same referent could have different
meanings associated with them. He described the
meaning (intension) and reference (extension) of
a term, noticing that it could count as nontrivial
knowledge for a person to note that “the Morning
Star”, and “the Evening Star”, two terms with seem-
ingly different senses in fact referred to the same
object, Venus. It is one type of knowledge to learn
about objects; it is a different type of knowledge
to learn about the names of objects. To a language
user, learning about intensions is different from
learning about extensions. As Quine (2008) put it:
“truth depends in general on language and fact.”

Learning about the world, learning which words
refer to which states of the world, and learning
which words are synonymous together allow a
speaker to attain fluency, by making true statements
beyond a finite phrasebook of verified claims. A
speaker whose utterances are constrained to be con-
sistent with their evidence remains faithful to their
knowledge about the world.

We now formalize these ideas.

3.2 Formalization

Consider a stock of syntactically well-formed
strings of a natural language ℓ ∈ L; a set of possible
states of the world ω ∈ Ω; and a set of extensional
or reference maps R : L→ Ω, which map strings
onto states of the world. We write R(ℓ) = ω, to
show that ℓ is the string of natural language that
has as its referent the state ω. We say that the pair
⟨ℓ, R(ℓ)⟩ is a sentence, or interpreted string.

We require that the language L is fully-
interpreted and unambiguous: for each sentence
ℓ ∈ L, there exactly one element of ω ∈ Ω such
that R(ℓ) = ω. We also require that the domain Ω
is non-empty.

A semantic structure s ∈ S assigns to each
state of the world Ω a binary value. We associate



each distinct structure s with a unique mapping
Vs : Ω→ {0, 1}, which we call a valuation func-
tion. Each structure s represents a possible assign-
ment of values to states of the world.

We are interested in pairs ⟨ℓ, R(ℓ)⟩ evaluated
under structures s ∈ S. That is, we are interested
in strings and their referents – sentences – and the
assignment of truth-values to those sentences.

We start with states of the world.

Definition 3.1. A state of the world ω ∈ Ω obtains
under a structure s if Vs(ω) = 1.

We take a particular structure s0 as the one that
describes the actual world, and denote its valuation
function V0. We say that a state of the world ω
actually obtains if V0(ω) = 1. Learning about the
real world therefore involves learning which facts
actually obtain, or ∀ω : V0(ω).5

We next describe reference. The extensional
map R : L→ Ω maps strings of a natural language
onto states of the world. For example, the sentence
“Joe Biden won the 2020 President election” is a
string that refers to the state of the world in which
Joe Biden won the 2020 Presidential election.

Definition 3.2 (Reference/Extension). A string ℓ
refers to, has as its extension, or describes ω ∈ Ω,
if R(ℓ) = ω.

Truth is a property of strings and the states of
the world that they describe. If the sentence suc-
cessfully describes a state of the world that in fact
obtains, we say that the sentence is true.

Definition 3.3 (Truth). A sentence ⟨ℓ, R(ℓ)⟩ is
true under a structure s if and only if the state
of the world it describes obtains under s, that is,
Vs[R(ℓ)] = 1.

We are specifically interested in the privileged
structure that describes reality, s0. That is, we are
interested in sentences that are actually true, be-
cause they refer to states of the world that actually
obtain.

The meaning of a sentence, in Davidson’s ac-
count, is just the set of circumstances in which a
sentence is true. We say that two sentences are syn-
onymous, or intensionally equivalent, if they are
true on all and only the same structures.

Definition 3.4 (Synonymy/Intensional Equivalence
(Davidson)). Sentences ⟨ℓi, R(ℓi)⟩, ⟨ℓj , R(ℓj)⟩ are
synonymous, or intensionally equivalent, if
∀s : Vs[R(ℓi)] = Vs[R(ℓj)].

5We use the word ‘obtains’ to distinguish valuations on
states of the world from valuations on sentences.

Equivalently, two sentences are synonymous if
there exists no assignment of values to states of the
world that would make one sentence true and the
other false. For example, “The Eiffel Tower is the
tallest building in France”, and “It is not the case
that the Eiffel Tower is not the tallest building in
France” are true in all and only the same circum-
stances – they are synonymous. There is no set
of possible assignments of values to states of the
world that would make one of these claims true and
the other false.

Because meaning, on this account, is defined in
terms of truth, synonymy is truth-preserving. That
is, if we know that a particular sentence is true,
then we know that any sentence synonymous with
that sentence is also true.

Proposition 3.5 (Closure under synonymy).
∀ℓ, ℓ′ ∈ L : V0[R(ℓ)] = 1 and R(ℓ) = R(ℓ′) =⇒
V0[R(ℓ′)] = 1

Proof. Apply Definition 3.4.

Proposition 3.5 says that if we start with a sen-
tence that is true, then any sentence that has the
same meaning as that sentence is also true. This is
important for allowing language models to make
claims beyond an existing knowledge base of ver-
ified claims: to ensure than an LLM is faithful,
its output must be closed under synonymy with its
evidence.

4 Why LLMs Hallucinate

4.1 Setup

Consider a neural language generation task, as mo-
tivated by Bengio et al. (2003) and others. The
analyst observes a training corpus of strings C =
{xi}ni=1, and learns a (possibly masked) model that
maximizes:

f̂(C) =
∏
i

argmax
xi

Pr(xi|xi′ ̸=i) (1)

Then, given a prompt P , the model generates an
output string ŷ:

ŷ = argmax
x

f̂(x|C,P ) (2)

Good out-of-sample performance on conventional
benchmarks is taken as evidence that f̂(x|C,P ) ≈
f(x|P ) (Zhao et al., 2023a).



4.2 Characterizing Factual and Faithful
LLMs

A factual LLM is one that produces only true sen-
tences.

Definition 4.1 (Factual LLMs). An LLM is factual
if ∀ŷ : V0[R(ŷ)] = 1.

That is, an LLM is factual if every string out-
put of the LLM refers to a state of the world that
actually obtains.

A factual LLM therefore solves (using Defini-
tion 3.3):

Problem 4.2 (Factual LLMs).

max
x

f(x|C,P ) s.t. V0[R(x)] = 1

This constraint encodes two additional pieces
of information: what state of the world the output
sentence ŷ refers to, and whether or not it obtains.

A faithful LLM is one that produces sentences
that are semantically entailed by the agent’s evi-
dence. Suppose that we have an estimator of V̂0.
Then,

Definition 4.3 (Faithful LLMs). An LLM is faithful
if ∀ŷ : V̂0[R(ŷ)] = 1.

A faithful LLM solves:

Problem 4.4 (Faithful LLMs).

max
x

f(x|C,P ) s.t. V̂0[R(x)] = 1

Here the constraint is that the output is consistent
with an estimated truth-value. If V̂0 is a biased esti-
mator of V0, consistency with the model’s evidence
does not guarantee that its output is true.

A natural way to state this is that an LLM is faith-
ful if its output is consistent with its information
about the world. An LLM is factual, if, in addi-
tion, that information is accurate. In this formaliza-
tion, we can say that a faithful LLM is factual if
V̂0 = V0.6

4.3 Truth as an unidentified nuisance
parameter

The solution to Problem 4.2 depends on informa-
tion that is not learned in the setup of Equation (2).
This leads to an identification problem (van der

6In practice, we might be interested in different asymptotic
conceptions of factuality: for instance, an LLM could be
almost surely factual if V̂0

a.s.→ V0.

Vaart, 1998, 62), in the sense that, for two possible
structures s, s′, and for any given output string ŷ:

Vs[R(ŷ)] ̸= Vs′ [R(ŷ)] ≠⇒
argmax

x
f̂(x|C,P, Vs[R(x)]) ̸=

argmax
x

f̂(x|C,P, Vs′ [R(x)])

(3)

That is, we may have different assignments of truth-
values to states of the world, without any difference
in which sentence is generated by the LLM. Joe
Biden in fact won the 2020 Presidential election,
but given a particular prompt and corpus, "Donald
Trump won the 2020 Presidential election" may
be the sentence that has the highest conditional
probability of being observed. This is because the
language model does not observe the state of the
world referred to by either string, and does not
output a sentence conditional on this information.

Truth-values of states of the world are not ob-
served or identified in the model. Hence we
have ∀s : f̂(x|C,P, Vs) = f̂(x|C,P ). And in
particular, it follows that, for every s ̸= s0 :
f̂(x|C,P, Vs) = f̂(x|C,P ). The model solution is
invariant to assignments of truth-values to states of
the world. To put it another way, V0 is an unidenti-
fied nuisance parameter (Basu, 1977). This entails
that:

argmax
x

f̂(x|C,P ) = ŷ ≠⇒ V0[R(ŷ)] = 1

(4)
Or, in other words, a sentence may be the solution
to the maximization problem even if it is false. And
hence, there is no guarantee than an LLM will be
strictly truthful. In general, for any ϵ > 0:

DKL{f̂(x|C,P )||f(x|C,P )} < ϵ ≠⇒
DKL{f̂(x|C,P, V0)||f(x|C,P, V0)} < ϵ

(5)

Statistical similarity of any two distributions
does not imply statistical similarity of two distribu-
tions that depend on additional semantic informa-
tion about the world.

4.4 A verified training corpus is not enough:
Similarity does not entail synonymy

It might be hoped that a model of the type of Equa-
tion (2) solves Problem 4.2 indirectly. After all,
doesn’t the training corpus contain information
about states of the world (Akyürek et al., 2022)?
And don’t LLMs seem to generate useful informa-
tion, or correctly summarize existing information,
some of the time (Petroni et al., 2019)?



Firstly, if the training corpus contains statements
that are false, ambiguous, or fail to refer to any
entity, it is straightforward to see that any set of
generated sentences can also contain false, ambigu-
ous statements, or exhibit referential failure.

We say that a training corpus is verified if it
contains only true, unambiguous statements with
no referential failure. But it is still possible for
a model that solves Equation (2) to fail to solve
Problem 4.2.

A major innovation in the LLM literature has
been to create models that successfully generate
sentences that have not been previously observed,
via encoder-decoder representations of the space of
sentences (Wu et al., 2016; Vaswani et al., 2017).
Interestingly, however, this actually makes it more
likely that LLMs will produce false sentences,
since it makes it possible for the model to gen-
erate sentences that go beyond the information
contained within the verified training corpus. If
these previously-unseen sentences are not also con-
strained to refer to facts about the world, there is
no guarantee that these will be true, even when the
training corpus is verified.

The problem is that similarity does not entail
synonymy: we have no guarantee that a generated
sentence is synonymous with any sentence in the
training corpus (see Proposition 3.5). Distribution
shift from the training context to the desired output
context is always possible when the LLM does not
learn the correct distribution.

4.5 Formal results
Theorem 4.5 (LLMs are not factual).

argmax
x

f̂(x|C,P ) = ŷ ≠⇒ V0[R(ŷ)] = 1

Proof. Consider structures s, s′ such that
Vs[R(ŷ)] = 1 and Vs′ [R(ŷ)] = 0. Since
Vs, Vs′ are unobserved, we have that
f̂(x|C,P, Vs) = f̂(x|C,P, Vs′) = f̂(x|C,P ).
Set V0 = Vs′ . Then argmax

x
f̂(x|C,P ) = ŷ but

V0[R(ŷ)] = 0, and the claim follows.

Theorem 4.6 (Training on verified information
does not induce factuality).

argmax
x

f̂(x|C,P ) = ŷ ∧

∀xi ∈ C : V0[R(xi)] = 1 ≠⇒
V0[R(ŷ)] = 1

Proof. Suppose ∀xi ∈ C,R(ŷ) ̸= R(xi), and
consider the structures s, s′ such that ∀xi ∈ C :

Vs[R(xi)] = Vs′ [R(xi)] = V0[R(xi)] = 1. Sup-
pose ∃x′ /∈ C, Vs[R(x′)] = 1 and Vs′ [R(x′)] = 0.
Then take ŷ = x′ and V0 = Vs′ , and the claim
follows.

The key step in each argument is that no infor-
mation about V0 is learned by the model. So a
structure can always exist on which the output sen-
tence is false. And since we do not observe the
truth-values of states of the world, we have no way
of ruling out the possibility that the structure on
which the sentence is false is in fact s0.

This result does not say that LLMs always hallu-
cinate. But it does say that, when an LLM learns a
distribution that does not incorporate explicit fac-
tual or extensional information, it is always possi-
ble for an LLM to hallucinate.

5 Building Factual/Faithful LLMs:
How To Get (Evidential) Closure

How do we go beyond the negative result above?
We require that the output of an LLM is equal to
the closure under synonymy of strings that refer to
verified information. That is, every string output
by the LLM either refers to a claim that is verified,
or is a synonym of a claim that is verified. By
Proposition 3.5, all such sentences will be true.
Any LLM that satisfies this property is then factual.
If we require only that the output is closed under
synonymy with strings that are synonymous with
the agent’s evidence, irrespective of its credibility,
the LLM is faithful.

5.1 A Symmetry Group Semantics

It is helpful to use the technology of symmetry
groups to formally motivate intensional and exten-
sional learning. This section restates and develops
results in Kiddon and Domingos (2005).

Definition 5.1 (Symmetry). A function g : X → X
is a symmetry of a set X if {g(x) | x ∈ X} = X .

Definition 5.2 (Symmetry Group). A symmetry
group of a set X is an ordered pair (G, ◦) such
that if g is a symmetry of X then g ∈ G, and ◦ is
function composition.

Definition 5.3 (Orbit). The orbit of x ∈ X under
a symmetry group G is the set {g(x) | g ∈ G}

We motivate paraphrases as functions that, given
a list of strings, permute pairs of strings that have
the same referent.



Definition 5.4 (Paraphrase Map). A bijective func-
tion π : L→ L is a paraphrase map if ∀ℓ : R(ℓ) =
R(π(ℓ))

Essentially, π is a permutation, with the added
constraint that it can permute only strings in a list
that have the same referent. We collect the set of
paraphrases in the collection Π. This is a symmetry
group of L, since, every π in Π is a permutation
of the elements of L, and hence applying π to L
returns the same list of strings, that is, L.

Proposition 5.5. The set of paraphrase maps
(Π, ◦) is a symmetry group of the set L.

Proof. We suppose that that Ω is non-empty, and
that L is fully-interpreted and unambiguous, so that,
for each ℓ ∈ L,∃! ω ∈ Ω : R(ℓ) = ω. Then, since
each π ∈ Π is a bijection, and hence is a permuta-
tion, we have that, ∀π ∈ Π, {π(ℓ) : ℓ ∈ L} = L,
so that each π is a symmetry of L. It is straightfor-
ward to show that (Π, ◦) satisfies the group axioms:
any composition of permutations π, π′ ∈ Π defines
a permutation π′′ ∈ Π; composition is associative;
there is a trivial permutation; and each permuta-
tion has an inverse permutation. Hence (Π, ◦) is a
symmetry group of the set L.

Definition 5.6 (Semantic Orbit). The orbit of ℓ ∈ L
under Π is the set I(ℓ) = {π(ℓ)|π ∈ Π}.

That is, the semantic orbit of a sentence is the set
of sentences that refer to the same state of the world
as that sentence.7 We collect the set of unique
orbits of a language L in the set I .

5.2 Factual LLMs

With this setup in place, we are now in a position to
decompose the constrained learning task described
in Problem 4.2. We introduce a source language
L+, which contains the strings in some source set
of sentences, and I + the set of unique orbits of
L+. We can then rewrite the objective function as
follows:

7Note that the set of unique orbits of L partitions L into
sets of strings that have the same referent. Further, for each
unique orbit, there is a unique state of the world to which
every sentence in that orbit refers. We can extend the notation
of a valuation function so that it takes the set of unique orbits
as its pre-image. We write: V0[I(ℓ)] = 1 ⇐⇒ ∀ℓ ∈ I(ℓ) :
V0[R(ℓ)] = 1.

Proposition 5.7.

f(ℓ|C,P, V0[R(ℓ)] = 1)

=
∑

I∈I +

f(ℓ|C,P, ℓ ∈ I(ℓ+) ∩ V0[I(ℓ
+)] = 1)

=
∑

I∈I +

f(ℓ|C,P )︸ ︷︷ ︸
LLM

f(ℓ|I(ℓ+))︸ ︷︷ ︸
Intensional

Learner

f(V0[I(ℓ
+)] = 1)︸ ︷︷ ︸

Ground truth
or Evidence

Here, f(V0[I(ℓ
+)] = 1) represents the informa-

tion about the world in each string ℓ+ of the source
language L+.8

If we do not have a ground truth set of strings, but
instead learn about the world via sensors (a vision
model, for example), we can further decompose
f(V0[I(ℓ

+)] = 1) as follows:

Proposition 5.8.

f(V0[I(ℓ
+)] = 1)

= f(R[I(ℓ+)] = ω ∩ V0(ω) = 1)

=
∑
ω∈Ω

f(I(ℓ+)|V0(ω) = 1)Pr(V0(ω) = 1)

=
∑
ω∈Ω

f(I(ℓ+)|ω)︸ ︷︷ ︸
Extensional

Learner

f(ω)︸︷︷︸
Perceptual

Learner

Model 5.9 (A Factual/Faithful Multimodal LLM).

f(ℓ|C,P, V0[R(ℓ)] = 1) =∑
I∈I +

∑
ω∈Ω

f(ℓ|C,P )︸ ︷︷ ︸
LLM

f(ℓ|I(ℓ+))︸ ︷︷ ︸
Intensional

Learner

f(I(ℓ+)|ω)︸ ︷︷ ︸
Extensional

Learner

f(ω)︸︷︷︸
Perceptual

Learner

In words, this models the constraint that ω ob-
tains, there is a sentence in the source language that
refers to ω, and that the output sentence ℓ is syn-
onymous with a sentence in the source language.
Hence Model 5.9 satisfies evidential closure. The
representation in Model 5.9 above covers both fac-
tual and faithful LLMs.

Theorem 5.10. Suppose f̂(ω) is an oracle percep-
tual learner, we have consistent intensional and
extensional learners, and an LLM that solves Equa-
tion (2). Then Model 5.9 is factual.

Proof. We have shown in Proposition 5.7 and
Proposition 5.8 that f(ℓ|C,P, V0[R(ℓ)] = 1) =
f(ℓ|C,P )f(ℓ|I(ℓ+))f(I(ℓ+)|ω)f(ω). Hence

8Encyclopedia authors have essentially already done the
extensional and perceptual learning for us: they have encoded
information about the environment as text. It is in this sense
that perceptual and extensional learning are necessary for
truthful language generation even in the textual case.



Problem 4.2 is solved if and only if this
model can be consistently estimated. Since
f̂(ω) is an oracle, V0(ω) = 1 ⇐⇒
f̂(ω) = 1, and since f̂(ℓ|I(ℓ+))f̂(I(ℓ+)|ω) →
f(ℓ|I(ℓ+))f(I(ℓ+)|ω) by assumption, we have
that f̂(ℓ|C,P )f̂(ℓ|I(ℓ+))f̂(I(ℓ+)|ω)f̂(ω) →
f(ℓ|C,P, V0[R(ℓ)] = 1), solving Problem 4.2.

Theorem 5.11. If we have a perceptual learner
that is not an oracle, consistent intensional and
extensional learners, and an LLM that solves Equa-
tion (2), then Model 5.9 is faithful to its perceptual
learner.

Proof. Define V̂0(ω) ≡ f̂(ω). Then,
V̂0(ω) = 1 ⇐⇒ f̂(ω) = 1, and
f̂(ℓ|C,P )f̂(ℓ|I(ℓ+))f̂(I(ℓ+)|ω)f̂(ω) →
f(ℓ|C,P, V̂0[R(ℓ)] = 1), solving Prob-
lem 4.4.

5.3 Evidence Set Representation
We can state these results even more simply, how-
ever. Consider the following set:

Definition 5.12 (Evidence Set).

Ê ≡ {ℓ|V̂0[Î(ℓ)] = 1}

We say that Î is the output of an intensional
learner: the set of learned paraphrases of strings.
V̂0 is the set of stipulated or learned labels attached
to strings and their paraphrases. In either case, this
is the set of strings that comprise, or are synony-
mous with, a body of verified information about
the world.

This definition is helpful, because it allows us to
re-express Model 5.9 as:

Model 5.13 (An Evidence-Grounded LLM).

f(ℓ|C,P )I{ℓ ∈ Ê}

Theorem 5.14. Suppose Î → I . Then Model 5.13
is faithful.

Proof. Î → I =⇒ I{ℓ ∈ Ê} → 1 ⇐⇒
V̂0[R(ℓ)] = 1, so Model 5.13 solves Prob-
lem 4.4.

Theorem 5.15. Suppose Î → I and V̂0 → V0.
Then Model 5.13 is factual.

Proof. V̂0[Î(ℓ)] → 1 =⇒ V0[Î(ℓ)] = 1, and
Î → I =⇒ I{ℓ ∈ Ê} → 1 ⇐⇒ V0[I(ℓ)] = 1,
so Model 5.13 solves Problem 4.2.

Ê denotes the set of strings that consist of both
model’s explicit evidence about the world, and their
paraphrases. This set is evidentially closed, by
Proposition 3.5. So the output of Model 5.13 is
evidentially closed, and the model is faithful to its
evidence.

The moral is that a faithful or factual LLM must
learn about the world, directly (through sensor per-
ception) or indirectly (through text corpora); and
that its output must be constrained to be synony-
mous with claims that are contained within its evi-
dence set. This provides theoretical motivation for
grounding, and clarifies specifically what ground-
ing is intended to accomplish.

5.4 Learn-Babble-Prune: A framework for
factual/faithful LLMs via rejection
sampling

We propose a procedure we call Learn-Babble-
Prune9 to implement this.

In the Learn phase, an agent learns about the
world, either directly through perceptual learning,
or indirectly by observing some stock of verified
information. If this information is acquired through
perception, these sentences are translated into natu-
ral language, via multimodal encoder-decoder sys-
tem. The agent additionally learns a stock of para-
phrases of sentences, via paraphrase corpora meth-
ods (Ormazabal et al., 2022), or via contrastive
learning methods (Yang et al., 2021).

In the Babble phase, an LLM generates a stock
of candidate sentences.

In the Prune phase, a generated sentence is cross-
checked against the its Evidence Set. If the sen-
tence is verified, or if it is a paraphrase of a verified
sentence, it is printed. Otherwise, it is rejected.

5.5 Applications of Learn-Babble-Prune

5.5.1 Example 1: Text-To-Text

Learn Ground truth. Scrape an online encyclope-
dia, and designate this as the Evidence Set Ê.
Intensional learning. Learn a set of paraphrases of
strings in the Evidence Set, and add them to the
Evidence Set.
Babble An LLM generates a response to a query.
Prune The response is rejected if it is not a para-
phrase of a sentence in the Evidence Set.

9This was inspired by He (2018).



5.5.2 Example 2: Image-To-Text

Learn Extensional learning. Pre-train a visual en-
coder, which learns a mapping from images (states
of the world) to strings.
Perceptual learning. Designate a test set of images
as ground truth about the environment. Apply the
visual encoder to this test set of images. Designate
its output as our Evidence Set.
Intensional learning. Learn a set of paraphrases of
strings in the Evidence Set, and add them to the
Evidence Set.
Babble An LLM generates a response to a query.
Prune The response is rejected if it is not a para-
phrase of a sentence in the Evidence Set.

Algorithm 1 LBP: Text-to-Text

1: Input: (L, Ê, C, P )
2: Learn: f̂(x|C,P ) ▷ Learn
3: Learn: ∀ℓ+ ∈ Ê,∀ℓ ∈ L: f̂(ℓ ∈ I(ℓ+))
4: for ℓ ∈ L do
5: if ℓ ∈ I(ℓ+) ∧ ℓ+ ∈ Ê then
6: Ê ← Ê ∪ ℓ
7: end if
8: end for
9: Generate: ŷ ∼ f̂(x|C,P ) ▷ Babble

10: if ŷ ∈ Ê then ▷ Prune
11: Print: ŷ
12: else
13: Print: “I don’t know.”
14: end if

Since the source domain is arbitrary, Example 2
covers a wide variety of use cases, which can of
course be combined. The output of these proce-
dures is faithful, because if a given candidate out-
put is not synonymous with a claim for which the
model has have explicit evidence, it is not printed.10

5.6 The Limits of Factual or Faithful LLMs

Any model of the type of Model 5.13 is limited
in what it can say by the size of its evidence base.
In practice, the dimension of Ê may be consider-
ably smaller than the parametric knowledge of the
language stored in many LLMs. Any use-case for
factual LLMs requires the collection and verifica-
tion of a large amount of factual information. Any
factual or faithful LLM can only generate as much
output as it can verify.

10Wittgenstein (1922, 189): “Whereof one cannot speak,
thereof one must remain silent.” This also applies to LLMs.

6 Conclusions

LLMs hallucinate because their output is not con-
strained to be semantically consistent with their
inputs, so there is no guarantee that any evidence
about the world contained in their inputs is pre-
served in their outputs.

To build a faithful or factual LLM it is necessary
to constrain the output of a model to be consis-
tent with claims for which the model has explicit
evidence.

In practice, this means acquiring large bodies of
machine-readable string evidence or using sensors
(perceptual learning) combined with sensor-to-text
encoders (extensional learning) to validate the out-
put of an LLM with evidence. Paraphrase learning
methods can be used to expand the LLM’s vocab-
ulary (intensional learning). We propose a simple
method to implement this in practice via rejection
sampling.

Any input-faithful LLM is limited in what it
can say by what it has evidence for. Generating
large-scale evidence bases is likely to be a much
bigger binding constraint that the parameter size of
the model, for instance, and may require a rethink
of how computational and financial resources are
allocated to the design of LLMs. This is a challenge
for the next generation of LLMs.

Algorithm 2 LBP: Multimodal-to-Text

1: Input: (Ωobs, L, L+, C, P )
2: Learn: f̂(x|C,P ) ▷ LLM
3: Learn: f̂(ωobs) ▷ Perceptual
4: Learn: ∀ℓ+ ∈ L+: f̂(ℓ+|ωobs) ▷ Extensional
5: Learn: ∀ℓ ∈ L: f̂(ℓ ∈ I(ℓ+)) ▷ Intensional
6: for ℓ+ ∈ L+ do
7: if f(ℓ+|ωobs)f(ωobs) = 1 then
8: Ê ← Ê ∪ ℓ+

9: end if
10: end for
11: for ℓ ∈ L do
12: if ℓ ∈ I(ℓ+) ∧ ℓ+ ∈ Ê then
13: Ê ← Ê ∪ ℓ
14: end if
15: end for
16: Generate: ŷ ∼ f̂(x|C,P ) ▷ Babble
17: if ŷ ∈ Ê then ▷ Prune
18: Print: ŷ
19: else
20: Print: “I don’t know.”
21: end if



Limitations

Empirical performance and truthfulness

Enforcing consistency with evidence via rejection
sampling is a relatively inefficient way to constrain
output to be factual or faithful. We expect that
RL approaches could implement a procedure analo-
gous to Learn-Babble-Prune more efficiently, with
tolerable loss of accuracy. The purpose of this
framework is to highlight, at a high-level, the kind
of tasks that any such RL approach would have to
do. As such, it is primarily intended as a conceptual
contribution. Further, strict factuality may be an
undesirably high bar in some applications: clearly
it depends on the use case.

Safety and ground truth

A factual LLM constructed as above would require
either a gold-standard data set of labelled data.
However, there are clear safety concerns raised
by treating some data sets as ground truth com-
pared to others. Further, what counts as evidence
in some domains is contestable: reasonable people
disagree. Widely available benchmark data sets
have well-studied biases (Paullada et al., 2021).

Compositionality

Our framework does not consider the semantic con-
tent of constituents of sentences, instead consid-
ering strings as primitive, and assuming that they
each refer to one fact. It is straightforward to extend
our account to sentences that refer to the compo-
sition of multiple states of the world and logical
operators, which we leave to future work.

Language and Vagueness

We assume that a stock of strings is interpretable
and unambiguous. Many sentences in natural lan-
guage cannot be considered to have a truth-value,
or may be ambiguous.

Philosophy of language

The relevant philosophy of language literature is
vast and we cannot hope to do it justice in this pa-
per. Further, some conceptual distinctions that are
important to understanding the papers cited are not
made in this paper. The hope is that the setting
provides offers a statistically tractable implemen-
tation of conceptual material that is covered in the
papers cited. Subtleties, and perhaps even major
distinctions, are likely to be lost in translation.

Acknowledgements

This paper is dedicated to Stephen Williams. The
author would like to thank Micah Carroll, Kirk
Bansak, Orr Paradise, and three anonymous refer-
ees for helpful comments.

References
Rishabh Agarwal, Marlos C. Machado, Pablo Samuel

Castro, and Marc G. Bellemare. 2021. Contrastive
behavioral similarity embeddings for generalization
in reinforcement learning. International Conference
on Learning Representations.

Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin
Xiong, Ian Tenney, Jacob Andreas, and Kelvin Guu.
2022. Towards tracing factual knowledge in language
models back to the training data.

Aristotle. 350 BC. Metaphysics.

Akari Asai, Matt Gardner, and Hannaneh Ha-
jishirzi. 2022. Evidentiality-guided generation for
knowledge-intensive NLP tasks.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A multitask, multilingual,
multimodal evaluation of ChatGPT on reasoning, hal-
lucination, and interactivity.

Elias Bareinboim and Judea Pearl. 2012. Causal infer-
ence by surrogate experiments: z-identifiability.

Debabrata Basu. 1977. On the elimination of nuisance
parameters. Journal of the American Statistical As-
sociation, 72(358):355–366.

Anastasiya Belyaeva, Justin Cosentino, Farhad Hor-
mozdiari, Krish Eswaran, Shravya Shetty, Greg
Corrado, Andrew Carroll, Cory Y. McLean, and
Nicholas A. Furlotte. 2023. Multimodal LLMs for
health grounded in individual-specific data.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3(Feb):1137–1155.

http://arxiv.org/abs/2101.05265
http://arxiv.org/abs/2101.05265
http://arxiv.org/abs/2101.05265
http://arxiv.org/abs/2205.11482
http://arxiv.org/abs/2205.11482
http://classics.mit.edu/Aristotle/metaphysics.4.iv.html
http://arxiv.org/abs/2112.08688
http://arxiv.org/abs/2112.08688
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/1210.4842
http://arxiv.org/abs/1210.4842
https://doi.org/10.1080/01621459.1977.10481002
https://doi.org/10.1080/01621459.1977.10481002
http://arxiv.org/abs/2307.09018
http://arxiv.org/abs/2307.09018
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Evert Willem Beth. 1955. Semantic Entailment and
Formal Derivability. Noord-Hollandsche.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1870–1879,
Vancouver, Canada. Association for Computational
Linguistics.

David Dale, Elena Voita, Janice Lam, Prangthip
Hansanti, Christophe Ropers, Elahe Kalbassi, Cyn-
thia Gao, Loïc Barrault, and Marta Ruiz Costa-jussà.
2023. HalOmi: A manually annotated benchmark
for multilingual hallucination and omission detection
in machine translation. ArXiv, abs/2305.11746.

Marian David. 2022. The Correspondence Theory of
Truth. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy, Summer 2022 edition. Meta-
physics Research Lab, Stanford University.

Donald Davidson. 1967. Truth and meaning. Synthese,
17(1):304–323.

Donald Davidson and Gilbert Harman, editors. 1972.
Semantics of Natural Language. Springer Nether-
lands.

Gareth Evans. 1982. The Varieties of Reference. Ox-
ford: Oxford University Press.

Melvin Fitting. 2022. Intensional Logic. In Edward N.
Zalta and Uri Nodelman, editors, The Stanford Ency-
clopedia of Philosophy, Winter 2022 edition. Meta-
physics Research Lab, Stanford University.

Gottlob Frege. 1892. On Sinn and Bedeutung. In
Michael Beaney, editor, The Frege Reader, pages
151–172. Blackwell.

H. P. Grice and Alan R. White. 1961. Symposium:
The causal theory of perception. Proceedings of the
Aristotelian Society, Supplementary Volumes, 35:121–
168.

Nuno M. Guerreiro, Elena Voita, and André Martins.
2023. Looking for a needle in a haystack: A com-
prehensive study of hallucinations in neural machine
translation. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1059–1075, Dubrovnik,
Croatia. Association for Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Xiaoyu He. 2018. Babble.

Felix Hill, Olivier Tieleman, Tamara von Glehn,
Nathaniel Wong, Hamza Merzic, and Stephen Clark.
2020. Grounded language learning fast and slow.

Paul W. Holland. 1986. Statistics and causal infer-
ence. Journal of the American Statistical Association,
81(396):945–960.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, Owais Khan Mohammed, Barun Patra, Qiang
Liu, Kriti Aggarwal, Zewen Chi, Johan Bjorck,
Vishrav Chaudhary, Subhojit Som, Xia Song, and
Furu Wei. 2023. Language is not all you need: Align-
ing perception with language models.

John Hyman. 1992. The causal theory of perception.
The Philosophical Quarterly (1950-), 42(168):277–
296.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Chloe Kiddon and Pedro Domingos. 2005. Symmetry-
based semantic parsing.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering.

Kyungjae Lee, Seung-won Hwang, Sang-eun Han, and
Dohyeon Lee. 2021. Robustifying multi-hop QA
through pseudo-evidentiality training. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6110–6119, Online.
Association for Computational Linguistics.

Sanghack Lee and Elias Bareinboim. 2020. Causal
effect identifiability under partial-observability. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 5692–5701.
PMLR.

Arthur Lewbel. 2019. The identification zoo: Mean-
ings of identification in econometrics. Journal of
Economic Literature, 57(4):835–903.

Ang Li, Scott Mueller, and Judea Pearl. 2023. Epsilon-
identifiability of causal quantities.

Long Lian, Baifeng Shi, Adam Yala, Trevor Darrell,
and Boyi Li. 2023. LLM-grounded video diffusion
models.

Marianna Martindale and Marine Carpuat. 2018. Flu-
ency over adequacy: A pilot study in measuring user
trust in imperfect MT. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 1: Research Track),
pages 13–25, Boston, MA. Association for Machine
Translation in the Americas.

https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://arxiv.org/abs/2305.11746
https://arxiv.org/abs/2305.11746
https://arxiv.org/abs/2305.11746
https://doi.org/10.1007/bf00485035
https://doi.org/10.1007/978-94-010-2557-7
http://www.jstor.org/stable/4106682
http://www.jstor.org/stable/4106682
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://radimentary.wordpress.com/2018/01/10/babble/
http://arxiv.org/abs/2009.01719
http://www.jstor.org/stable/2289064
http://www.jstor.org/stable/2289064
http://arxiv.org/abs/2302.14045
http://arxiv.org/abs/2302.14045
http://www.jstor.org/stable/2219681
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://homes.cs.washington.edu/~pedrod/papers/sp14.pdf
https://homes.cs.washington.edu/~pedrod/papers/sp14.pdf
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1906.00300
https://doi.org/10.18653/v1/2021.acl-long.476
https://doi.org/10.18653/v1/2021.acl-long.476
https://proceedings.mlr.press/v119/lee20a.html
https://proceedings.mlr.press/v119/lee20a.html
https://doi.org/10.1257/jel.20181361
https://doi.org/10.1257/jel.20181361
http://arxiv.org/abs/2301.12022
http://arxiv.org/abs/2301.12022
http://arxiv.org/abs/2309.17444
http://arxiv.org/abs/2309.17444
https://aclanthology.org/W18-1803
https://aclanthology.org/W18-1803
https://aclanthology.org/W18-1803


Marianna Martindale, Marine Carpuat, Kevin Duh, and
Paul McNamee. 2019. Identifying Fluently inade-
quate output in neural and statistical machine transla-
tion. In Proceedings of Machine Translation Summit
XVII: Research Track, pages 233–243, Dublin, Ire-
land. European Association for Machine Translation.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

John McDowell. 1998. Meaning, Knowledge, and Real-
ity. Harvard University Press.

I. G. McFetridge, John Haldane, and Roger Scruton.
1992. Logical necessity and other essays. Philoso-
phy, 67(260):264–266.

Nick McKenna, Tianyi Li, Liang Cheng, Moham-
mad Javad Hosseini, Mark Johnson, and Mark Steed-
man. 2023. Sources of hallucination by large lan-
guage models on inference tasks.

Eliot Michaelson and Marga Reimer. 2022. Reference.
In Edward N. Zalta, editor, The Stanford Encyclo-
pedia of Philosophy, Summer 2022 edition. Meta-
physics Research Lab, Stanford University.

Mathias Müller, Annette Rios, and Rico Sennrich. 2020.
Domain robustness in neural machine translation.

Aitor Ormazabal, Mikel Artetxe, Aitor Soroa, Gorka
Labaka, and Eneko Agirre. 2022. Principled para-
phrase generation with parallel corpora. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1621–1638, Dublin, Ireland. Association
for Computational Linguistics.

Amandalynne Paullada, Inioluwa Deborah Raji,
Emily M. Bender, Emily Denton, and Alex Hanna.
2021. Data and its (dis)contents: A survey of dataset
development and use in machine learning research.
Patterns, 2(11):100336.

Judea Pearl. 1995. Causal diagrams for empirical re-
search. Biometrika, 82(4):669–688.

Maya L. Petersen and Mark J. van der Laan. 2014.
Causal models and learning from data. Epidemi-
ology, 25(3):418–426.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

W. V. Quine. 2008. Animadversions on the Notion
of Meaning: Philosophy Colloquium, University of
Pennsylvania, December 6, 1949, pages 152–156.
Harvard University Press.

W. V. O. Quine. 1960. Word & Object. MIT Press.

Frederick F Schmitt, editor. 2003. Theories of truth.
Wiley Blackwell Readings in Philosophy. Blackwell
Publishing, London, England.

Ilya Shpitser and Judea Pearl. 2012. Effects of treatment
on the treated: Identification and generalization.

Alfred Tarski. 1936. The concept of truth in formalized
languages. In A. Tarski, editor, Logic, Semantics,
Metamathematics, pages 152–278. Oxford University
Press.

A. W. van der Vaart. 1998. M–and Z-Estimators, Cam-
bridge Series in Statistical and Probabilistic Mathe-
matics, page 41–84. Cambridge University Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Timothy Williamson. 2000. Knowledge and its Limits.
Oxford University Press.

L. Wittgenstein. 1922. Tractatus Logico-Philosophicus.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation.

Yijun Xiao and William Yang Wang. 2021. On hal-
lucination and predictive uncertainty in conditional
language generation. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
2734–2744, Online. Association for Computational
Linguistics.

Haoran Yang, Wai Lam, and Piji Li. 2021. Contrastive
representation learning for exemplar-guided para-
phrase generation.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian
Wang, Yi Wu, Yang Gao, and Huazhe Xu. 2022. Pre-
trained image encoder for generalizable visual rein-
forcement learning.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei

https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/2305.14552
http://arxiv.org/abs/2305.14552
https://plato.stanford.edu/archives/sum2022/entries/reference/
http://arxiv.org/abs/1911.03109
https://doi.org/10.18653/v1/2022.acl-long.114
https://doi.org/10.18653/v1/2022.acl-long.114
https://doi.org/https://doi.org/10.1016/j.patter.2021.100336
https://doi.org/https://doi.org/10.1016/j.patter.2021.100336
http://www.jstor.org/stable/2337329
http://www.jstor.org/stable/2337329
https://doi.org/10.1097/ede.0000000000000078
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://www.jstor.org/stable/j.ctv1n1bsg1.10
http://www.jstor.org/stable/j.ctv1n1bsg1.10
http://www.jstor.org/stable/j.ctv1n1bsg1.10
http://arxiv.org/abs/1205.2615
http://arxiv.org/abs/1205.2615
https://doi.org/10.1017/CBO9780511802256.006
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://scholar.google.de/scholar.bib?q=info:1G2GoIkyCZIJ:scholar.google.com/&output=citation&hl=de&ct=citation&cd=0
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/2021.eacl-main.236
https://doi.org/10.18653/v1/2021.eacl-main.236
https://doi.org/10.18653/v1/2021.eacl-main.236
http://arxiv.org/abs/2109.01484
http://arxiv.org/abs/2109.01484
http://arxiv.org/abs/2109.01484
http://arxiv.org/abs/2212.08860
http://arxiv.org/abs/2212.08860
http://arxiv.org/abs/2212.08860


Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the AI ocean: A survey on hallucination in large
language models.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023a. A
survey of large language models.

Yang Zhao, Zhijie Lin, Daquan Zhou, Zilong Huang,
Jiashi Feng, and Bingyi Kang. 2023b. BuboGPT:
Enabling visual grounding in multi-modal LLMs.

http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2303.18223
http://arxiv.org/abs/2307.08581
http://arxiv.org/abs/2307.08581

