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Abstract
The performance of Large Vision-Language001
Models (LVLMs) in In-Context Learning (ICL)002
is heavily influenced by the quality of ICL se-003
quences, particularly in tasks requiring cross-004
modal reasoning and open-ended generation.005
To address this challenge, we innovatively in-006
terpret multimodal ICL from the perspective007
of task mapping. We systematically model lo-008
cal and global relationships within in-context009
demonstrations (ICDs) and demonstrate their010
core role and cohesion in enhancing LVLM per-011
formance. Inspired by these findings, we pro-012
pose Ta-ICL, a lightweight transformer-based013
model equipped with task-aware attention to014
dynamically configure ICL sequences. By in-015
tegrating task mapping into the autoregressive016
process, Ta-ICL achieves bidirectional enhance-017
ment between sequence configuration and task018
reasoning. Through extensive experiments, we019
demonstrate that Ta-ICL effectively improves020
multimodal ICL across various LVLMs and021
tasks. Our results highlight the potential of task022
mapping to be widely applied in enhancing mul-023
timodal reasoning, paving the way for robust024
and generalizable multimodal ICL frameworks.025

1 Introduction026

As Large Language Models (LLMs) scale up,027

they have demonstrated remarkable adaptability028

to novel tasks through In-Context Learning (ICL),029

a paradigm that leverages a few-shot forward-pass030

with input examples, requiring no parameter up-031

dates (Brown et al., 2020; Lester et al., 2021; Liu032

et al., 2021b). This efficient and cost-effective033

approach has achieved notable success in LLMs034

(Olsson et al., 2022; Garg et al., 2023) and has035

since been extended to the multimodal domain.036

Correspondingly, Large Vision-Language Models037

(LVLMs) have evolved to support multi-image in-038

puts and reasoning, establishing multimodal ICL039

as a crucial capability for modern LVLMs (Alayrac040

et al., 2022; Chen et al., 2024b).041

Despite significant progress in multimodal ICL, 042

existing studies consistently reveal that ICL perfor- 043

mance is highly sensitive to the content and struc- 044

ture of the input sequence (Schwettmann et al., 045

2023; Zhou et al., 2024). Such sequences typically 046

comprise an instruction, a few in-context demon- 047

strations (ICDs), and a query sample (see Figure 1). 048

This sensitivity highlights the critical importance 049

of designing effective ICL sequence configuration 050

methods. However, current approaches in vision- 051

language (VL) tasks often struggle with complex 052

scenarios, as they prioritize preserving data dis- 053

tribution rather than understanding how LVLMs 054

internally process these sequences (Iter et al., 2023; 055

Fan et al., 2024). This gap underscores the ne- 056

cessity of methods that align with the underlying 057

mechanisms LVLMs use to synthesize information 058

from ICDs, allowing for more effective reasoning. 059

Furthermore, the diverse cross-modal interactions 060

inherent in VL tasks add an additional layer of 061

complexity, complicating efforts to develop robust 062

sequence configuration strategies. 063

Towards more effective multimodal ICL, this 064

work focuses on addressing two key questions: 065

How do multimodal sequences affect LVLMs’ 066

ICL performance? (§2) We introduce a novel 067

paradigm for studying multimodal ICL: Task Map- 068

ping. Task mapping refers to the implicit process 069

by which relationships between inputs and outputs 070

in individual ICDs (local mappings) are constructed 071

and synthesized into a cohesive framework (global 072

mapping) to support LVLM reasoning. It captures 073

both the latent structure within ICDs and their ag- 074

gregation into a unified representation, enabling 075

the model to navigate cross-modal interplay and 076

deep reasoning processes. We propose a system- 077

atic framework to investigate how LVLMs utilize 078

task mapping in ICL sequences, revealing two key 079

findings: (1) task mapping enhances LVLM per- 080

formance and plays a central role in multimodal 081

ICL by structuring both local and global task align- 082
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Inst

Specific-mapping task (Hatefulmemes)

Generalized-mapping task (Open-ended VQA)

Query: What is 
the bottom part?
Result: A hill.

Query: What is 
the material of 
the tray?
Result: Wood.

Query: 
A meme about
chickens. 
Result: foo

Query: 
A meme with a 
puppy. 
Result: bar

Inst

HM

Query: 
A meme about
chickens. 
Result: Yes

Query: 
A meme with a 
puppy. 
Result: No

Inst

Standard

Inst
Query: What is 
the color of the 
sky?
Result: Blue.

Query: What is 
the color of the 
boat?
Result: Yellow.

Hateful Detection

What is this? Let me guess

LVLM

Yes

foo

Query: 
A meme about 
a chimpanzee. 
Result: 

Query: 
A meme about
chickens. 
Is it hateful?
Result: Yes

Query: 
A meme with a 
puppy. 
Is it hateful?
Result: No

Inst

EM
Query: 
A meme about 
a chimpanzee.
Is it hateful?
Result: 

Query: 
A meme about 
a chimpanzee. 
Result: 

Query: What is 
the material of 
the bottom part?
Result:

Query: What is the 
material of the boat?
Result:

Detection  Hateful 

Yellow

Inst: Analyze the following image-text pairs, understand the 
task, and use this to generate the result with a new image.

(a) ICL sequences examples of specific-mapping task and 
generalized-mapping task.

(b) Task mappings in multimodal 
in-context learning.
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(c) Logit lens of different settings of task mapping.
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Figure 1: Examples of ICL sequences showcasing the multimodal ICL process of LVLMs based on task mapping.

ments; (2) LVLMs leverage task mapping cohesion083

as a critical mechanism to effectively synthesize084

diverse local mappings, particularly in scenarios085

requiring robust cross-modal reasoning. These find-086

ings highlight the importance of task mapping as a087

foundation for improving multimodal ICL perfor-088

mance and sequence configuration strategies.089

How can we enhance the ICL sequence config-090

uration for more effective task mapping? (§3) To091

address this, we propose Task-aware model for ICL092

(Ta-ICL), a lightweight model comprising a small093

number of Transformer decoder layers, designed to094

optimize ICL sequence configuration. At the core095

of Ta-ICL is its key innovation: a task-aware atten-096

tion mechanism that dynamically incorporates task097

mapping into the sequence configuration process.098

This mechanism introduces a task guider, which099

encodes the latent task intent from the query and100

instruction, and actively steers attention computa-101

tions to prioritize task-relevant features and rela-102

tionships. By iteratively refining task alignment103

across layers, the task guider ensures a continu-104

ous flow of task information, enabling the model105

to effectively synthesize cohesive global mappings106

from diverse local mappings. This dynamic integra-107

tion enhances reasoning efficiency and cohesion,108

allowing Ta-ICL to generate high-quality ICL se-109

quences with strong generalization across LVLMs110

and VL tasks.111

2 Task Mapping in Multimodal ICL112

In this section, we focus on introducing task map-113

ping. We first define task mapping (§2.1) and,114

through step-by-step experiments, examine its sig-115

nificant impact on multimodal ICL (§2.2) as well as116

its underlying mechanisms within LVLMs (§2.3).117

All experiments in this section are conducted us- 118

ing two LVLMs: OpenFlamingov2 (9B) (Awadalla 119

et al., 2023) and IDEFICS2 (8B) (Laurençon et al., 120

2023), with the results reported as the average. 121

2.1 VL ICL Creates Task Mapping 122

In this work, we focus mainly on ICL for image-to- 123

text tasks, where ICL sequences are organized in 124

an interleaved image-text format. Toward a unified 125

template for various tasks, we reformat ICDs as 126

triplets (I,Q,R), where I is an image, Q is a task- 127

specific text query and R is the ground-truth result. 128

The query sample is denoted as (Î , Q̂). Formally, 129

ICL can be represented as: 130

R̂←M(Sn) =M(Inst; (I1, Q1, R1), ..., (In, Qn, Rn)︸ ︷︷ ︸
n×ICDs

; (Î , Q̂)),

(1) 131

whereM is a pretrained LVLM, Sn is an ICL se- 132

quence consists of an instruction Inst, n-shot ICDs 133

and a query sample, as illustrated in Figure 1. 134

To better understand the role of ICL sequences 135

in multimodal reasoning, we propose task mapping 136

as a systematic framework for capturing both lo- 137

cal and global relationships in ICL. Task mapping 138

represents how individual input-output pairs con- 139

tribute to broader reasoning and decision-making, 140

revealing the mechanisms that LVLMs use to syn- 141

thesize and align multimodal information. 142

We formalize task mapping as follows: each ICD 143

(Ii, Qi, Ri) defines a local task mapping: 144

fi : (Ii, Qi)→ Ri, i = 1, 2, ..., n, (2) 145

and the model’s generation process can be viewed 146

as establishing a global task mapping for the query 147

sample: 148

f̂ : (Î , Q̂)→ R̂. (3) 149
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However, the exact role and influence of local150

mappings fi in constructing the global mapping f̂151

remain unclear. To enable a systematic analysis,152

we first consider a uniform scenario, where all lo-153

cal mappings fi converge to a focused mapping f154

aligned with f̂ . This commonly applies to tasks155

novel to the LVLM or requiring specialized reason-156

ing. Here, I , Q, and R exhibit strong structural con-157

sistency, allowing efficient component-level anal-158

ysis. We term these as specific-mapping tasks.159

Here, we demonstrate with meme review task us-160

ing modified HatefulMemes (Kiela et al., 2020) (as161

shown in Figure 1(a)). This task requires LVLM to162

learn such f : detecting whether a meme image I163

with a short description as Q is hateful, outputting164

"yes" if it is; otherwise "no". We use its valida-165

tion set as the query set and obtain n ICDs from166

its training set using Random Sampling (RS) with167

a normal distribution to construct sequences. We168

create two setups to manipulate and highlight fi:169

• Easier Mapping (EM): Augment Qi with an ex-170

plicit task hint “Is it hateful?”.171

• Harder Mapping (HM): Replace Ri (yes/no) with172

non-semantic words foo/bar.173

We use logit lens (nostalgebraist, 2020) to vi-174

sualize the output evolution of LVLM under three175

settings. We define four categories using anchor176

words (Appendix B.2): "Shallow" represents su-177

perficial task recognition, "Deep" indicates deeper178

comprehension, "Correct" corresponds to the query179

sample’s correct answer, and "Wrong" represents180

the opposite. Figure 2(c) shows the probability of181

each layer’s last token decoding to these types. The182

curves clearly show that EM greatly enhances the183

model’s ability for deeper task recognition, while184

HM leads to a persistent lack of task awareness,185

causing the model to rely on guessing.186

2.2 Task Mapping is Dominant187

Next, we use LVLM performance to intuitively188

demonstrate the role of task mapping in multimodal189

ICL. We introduce targeted ablation settings that190

selectively impair label reliability and visual clarity,191

enabling an evaluation of whether LVLMs primar-192

ily rely on task mapping over these isolated factors.193

Specifically, we define:194

1. Wrong Labels (WL): Invert 75% Ri labels195

(yes↔no).196

2. Blurred Images (BI): Applying Gaussian blur197

to all Ii.198

We also apply EM solely to Q̂, denoted as EM(Q̂).199

BI(Î) refers to applying BI solely to Î . Details are200
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Figure 2: Results on Hatefulmemes under various set-
tings. "+" indicates the simultaneous application of two
settings.

provided in Appendix B.4. ICL sequences undergo 201

these settings and we present their performance in 202

Figure 2. The findings are as follows. 203

Better capturing task mapping consistently 204

improves performance. As shown in Figure 2(a), 205

across all shot counts, EM > Standard > HM in a 206

clear descending order. This aligns with our obser- 207

vations from logit lens. In Figure 2(b), removing 208

instructions, which serve as higher-level guidance 209

enabling LVLMs to more deeply capture and uti- 210

lize fi, generally lowers performance. Yet “EM 211

w/o Inst” still surpasses Standard. 212

Query sample is pivotal. Surprisingly, Figures 213

2(a) and (d) show that modifying Î or Q̂ causes 214

greater performance variations than altering all 215

ICDs. We hypothesize that LVLMs prioritize ana- 216

lyzing the query sample and use pretrained knowl- 217

edge to constrain global task mapping accordingly. 218

Labels and visual modality matter, while task 219

mapping takes precedence over them. While in- 220

verted labels degrade performance (Figure 2 (c)), 221

clearer mappings compensate for these losses. Sim- 222

ilarly, the performance decline caused by the lack 223

of visual details can fully recover when task map- 224

pings are improved (Figure 2(d)). This suggests 225

that both labels and visual modality affect multi- 226

modal ICL, but better utilization of task mapping 227

can yield significant performance gains to address 228

deficiencies in unimodal information. 229

2.3 ICL Needs Cohesive Task Mapping 230

Building on the central role of task mapping in 231

multimodal ICL, we extend it to a more diversi- 232

fied scenario, termed generalized-mapping tasks. 233

They reflect real-world ICL challenges where fi 234

exhibits nuanced or broad variability and specific- 235
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Figure 3: (a-b) Results of different ICL sequence con-
figuration methods on VQAv2 and Hatefulmemes. (c-d)
Task mapping cohesion analysis of different ICL se-
quence configuration methods on VQAv2.

mapping tasks can be viewed as a special case.236

They involve greater variability in Qi and Ri, mak-237

ing component-level manipulations difficult. Thus,238

we turn to sequence-level configuration and demon-239

strate with an open-ended VQA dataset VQAv2240

(Goyal et al., 2017).241

Three configuration methods are evaluated: Ran-242

dom Sampling (RS), similarity-based retrieval, and243

Oracle. Similarity-based retrieval selects top-n244

ICDs using CLIP-based cosine similarity, either via245

I2I (image-only alignment) or IQ2IQ (joint image-246

query alignment). The idealized Oracle method247

iteratively selects the next ICD by maximizing the248

log-likelihood of generating the ground-truth R̂249

while accounting for the cohesive influence of pre-250

ceding ICDs (computational details in Appendix251

B.3). This greedy method goes beyond feature252

matching, though its reliance on R̂ makes it im-253

practical for real-world use.254

Figure 3(a-b) shows that multimodal alignment255

(IQ2IQ) consistently outperforms unimodal (I2I)256

and random (RS) methods across tasks, with Or-257

acle achieving peak performance. A key anomaly258

is that I2I underperforms RS in VQAv2 but not in259

HatefulMemes. We attribute this divergence to task260

mapping cohesion—generalized-mapping tasks261

(e.g., VQAv2) demand ICL sequences that col-262

lectively resolve interdependent multimodal logic.263

Static methods like I2I, focused on isolated fea-264

ture matching, disrupt cohesion and result in frag-265

mented reasoning bias.266

To validate this hypothesis, we evaluate task267

mapping cohesion using two metrics: Disruption268

Gap (∆) and Order Sensitivity (σ) (details in Ap-269

pendix B.5). These metrics reflect the impact of270

cohesive task mapping on multimodal ICL, with 271

higher ∆ and lower σ indicating stronger reliance 272

on cohesive task mapping. Figure 3(c-d) shows that 273

Oracle achieves the highest ∆ and lowest σ across 274

all shots, proving its ability to construct cohesive 275

sequences through holistic consideration of preced- 276

ing ICDs. However, as shots increase to 8 and 10, 277

Oracle’s ∆ surges while σ plunges, revealing po- 278

tential local optimization issues and accumulated 279

bias in longer sequences. Meanwhile, I2I consis- 280

tently underperforms RS on both metrics, while 281

IQ2IQ surpasses RS but remains unstable, aligning 282

with accuracy trends in generalized-mapping tasks 283

and supporting our hypothesis. 284

Finally, based on performance, ∆ and σ, we 285

identify four types of sequence, cases provided in 286

Appendix B.6: (1)-(2) sequences impaired by iso- 287

lated dependencies (e.g., similar image features and 288

local task mapping bias), (3) sequences resembling 289

specific-mapping tasks, and (4) the most common 290

type, featuring diverse local mappings that collec- 291

tively enhance cohesive task mapping. Such diver- 292

sity enables LVLMs to overcome shallow reasoning 293

and achieve superior multimodal ICL performance. 294

3 The Proposed Method 295

Section 2 highlights the critical role of task map- 296

ping. By modeling both local and global relation- 297

ships within ICL sequences, task mapping ensures 298

cohesive reasoning and task alignment. Motivated 299

by these findings, we propose Task-aware model 300

for ICL (Ta-ICL), a lightweight and end-to-end 301

model designed to incorporate task mapping into 302

sequence configuration and refinement. 303

Figure 4 illustrates the pipeline of Ta-ICL. The 304

backbone of Ta-ICL consists of four transformer de- 305

coder blocks. It features a unique token vocabulary: 306

instead of characters, each example (Ii, Qi, Ri) 307

from the given demonstration library DL is treated 308

as an individual token. The training set DS for 309

Ta-ICL consists of N -shot ICL sequences. During 310

training, Ta-ICL takes the entire N -shot ICL se- 311

quence as input. During inference, given a query 312

sample and Inst, Ta-ICL can autoregressively re- 313

trieve n samples from DL to configure the optimal 314

n-shot ICL sequence. 315

Input Embedding. Let xi denote i-th ICD to- 316

ken (Ii, Qi, Ri) and x̂ denote the query sample 317

(Î , Q̂). In each input sequence, x̂ is placed ahead 318

of all xi. To align with the autoregressive gener- 319

ation process, we use two special tokens, [BOS] 320
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Figure 4: Overview pipeline of Ta-ICL.

and [EOS], to mark the beginning and end of the321

input sequence during training. These tokens are322

added to Ta-ICL’s vocabulary. We also introduce323

a [TASK] token into the vocabulary and concate-324

nate it with x̂ in the input sequence. It acts as a325

semantic anchor for task mapping. Therefore, for326

a given SN , we reconstruct it as a token sequence327

([BOS], [TASK]+x̂, x1, ..., xN , [EOS]}). To fil-328

ter and balance multimodal features for deeper map-329

pings, we employ a binary gating module to gener-330

ate the embedding ei for xi:331

gi = σ(Wg · [EI(Ii)⊕ET (Qi ⊕Ri)] + bg), (4)332

333
ei = gi · EI(Ii) + (1− gi) · ET (Qi ⊕Ri), (5)334

where EI(·) and ET (·) denote image encoder335

and text encoder of CLIP. Finally, the input embed-336

ding sequence of Ta-ICL is presented as follows:337

eSN = [eBOS, ê, e1, . . . , eN , eEOS], (6)338

where eBOS and eEOS are learnable embeddings339

of [BOS] and [EOS]. ê is a joint representation340

formed by concatenating the learnable embedding341

of [TASK] with the embedding of x̂ generated342

using the same gating module. The index of ê is343

always 1 and Iidx denotes the index set of ei.344

M
(l)
ij =


sim(ei, ej)√

d
· log

(
t
(l)
i

)
, j ≤ i and i, j ∈ Iidx,

αsim(ê, ej)√
d

· log
(
t
(l)
1

)
, i = 1 and j ∈ Iidx,

−∞, otherwise.
(7)345

Task-aware Attention. The task-aware attention346

in Ta-ICL enables dynamic ICL sequence configu-347

ration by integrating task mappings into attention348

computation. Its core is the task guider (TG), an 349

embedding independent of the input sequence, de- 350

signed to capture fine-grained global task mapping 351

within ICL sequences. TG encodes task intent 352

through initialization by the multimodal fusion of 353

the query sample and instruction: 354

e
(0)
TG = WTG·(EI(Î)⊕ET (Q̂)⊕ET (Inst

′)), (8) 355

where WTG ∈ Rd×3d is a learnable weight matrix 356

used to regulate the entire task guider. Inst′ is a 357

simplified instruction generated by GPT-4o (Ap- 358

pendix C.2). 359

Task-aware attention is applied selectively to cer- 360

tain layers, denoted as LT . At each of these layers, 361

TG steers the attention mechanism by weighting 362

relevance scores, which are derived from the inter- 363

action between TG and token embeddings. This 364

interaction captures the hierarchical relationships 365

between task mappings within the ICL sequence: 366

t
(l)
i = σ

(
MLP(l)

(
e
(l)
TG ⊕ ei

))
, (9) 367

where MLP(l): R2d → Rd is a layer-specific net- 368

work producing a scalar weight tli ∈ [0, 1] and σ 369

is the sigmoid function. This weight reflects the 370

degree to which each token contributes to the cohe- 371

sive task mapping, dynamically adapting Ta-ICL’s 372

attention to emphasize semantically salient features. 373

It modulates attention logits through a task-aware 374

mask M (l). For intra-ICD tokens, the mask scales 375

pairwise cosine similarities by log(g
(l)
i ). For query- 376

ICD tokens, a learnable coefficient α allows ê to 377

guide attention throughout the sequence. The mask 378

is computed as follows for position (i, j): Here, 379

the first case emphasizes interactions between local 380
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Methods
VQA Captioning Classification Hybrid Fast CLEVR

VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes
ACC.↑ ACC.↑ ACC.↑

ACC.↑ ACC.↑ ACC.↑ CIDEr↑ CIDEr↑ ROC-AUC↑

RS 58.79 41.94 49.89 92.02 109.26 73.00 16.85 62.66 41.51
I2I 57.21 40.58 48.57 92.94 109.65 74.02 13.00 64.49 38.63

IQ2IQ 59.88 43.81 52.13 93.00 109.75 74.37 32.40 64.47 37.37
IQPR 59.89 42.56 51.12 94.52 112.32 71.33 28.67 63.99 41.00

Lever-LM 62.31 46.83 55.10 97.48 116.90 77.94 39.29 65.02 43.66
Ours 65.60 50.77 58.55 99.42 119.27 79.78 42.93 67.10 45.57

Table 1: Results of different ICL sequence configuration methods across 9 datasets, with both training and generated
sequences being 4-shot. Each result is the average performance across five LVLMs with the same prompt format.
The highest scores are highlighted in bold. Underlined values indicate the results of the best baselines. Detailed
results for each LVLM can be found in Figure 9.

task mappings and the second case enable deep381

task mapping cohesion. The last case preserves the382

autoregressive nature. The mask M (l) is integrated383

into conventional attention, forming task-aware at-384

tention (TaAttn), as follows:385

TaAttn(Q,K, V ) = softmax
(
QKT

√
d

+M (l)

)
V.

(10)386

In particular, TG is updated between task-aware387

layers to preserve task mapping, enabling hierar-388

chical refinement from coarse task intent to fine-389

grained mapping. After processing layer l ∈ LT390

through residual connections, TG is updated via:391

e
(l′)
TG = LN

(
e
(l)
TG +Attention(e

(l)
TG, H

(l))
)
,

(11)392

where l′ denotes the next task-aware layer in LT ,393

H(l) denotes the hidden states of layer l and LN394

denotes layer normalization. To ensure focused395

attention patterns, we introduce a sparsity loss that396

penalizes diffuse distributions:397

Lsparse =
∑
l∈LT

1

N

N∑
i=1

KL
(

softmax(M (l)
i: ) ∥ U

)
,

(12)398

where U is a uniform distribution. Minimizing this399

KL divergence prompt a sharper representation of400

task-mapping. The total training objective com-401

bines the standard cross-entropy loss for sequence402

generation, sparsity regularization, and L2-norm403

constraint on TG to prevent overfitting:404

Inference and Prompt Construction. Af-405

ter training, Ta-ICL can autoregressively select406

demonstrations from a library and configure ICL407

sequences. Given a new query sample x̂, the408

input sequence to Ta-ICL during inference is409

{[BOS], [TASK] + x̂}, where x̂ is embedded410

using the trained gating module. The shot of 411

the generated sequence, denoted as n, is a user- 412

defined value. It may differ from the shot count 413

N in DS , as discussed in Section 5. Ta-ICL 414

then selects n ICDs using a beam search strat- 415

egy with a beam size of 3, producing the optimal 416

n-shot ICL sequence Sn. This sequence is used 417

to construct a prompt for LVLMs, formatted as: 418

{Inst; ICD1, ..., ICDn;Query Sample}, which 419

is then used to perform multimodal ICL. Example 420

prompts are provided in Appendix C.3. 421

4 Experiment 422

4.1 Training Data Construction and Models 423

We select six high-quality datasets across three 424

key VL tasks to benchmark ICL sequences: 425

VQAv2, VizWiz (Gurari et al., 2018), and OK- 426

VQA (Marino et al., 2019) for open-ended VQA; 427

Flickr30K (Young et al., 2014) and MSCOCO (Lin 428

et al., 2014) for captioning; and HatefulMemes for 429

classification. To further assess Ta-ICL’s abilities 430

in generalized-mapping tasks, we create a mixed- 431

task dataset Hybrid, by sampling 5,000 instances 432

from each above dataset’s training set, with val- 433

idation samples drawn proportionally from their 434

validation sets. We also adopt two challenging 435

image-to-text tasks from the latest multimodal ICL 436

benchmark, VL-ICL (Zong et al., 2024): Fast Open- 437

Ended MiniImageNet (Fast) and CLEVR. These 438

tasks test whether LVLMs can capture deep task 439

mappings from specific-mapping ICL sequences, 440

serving as strong indicators of sequence quality. 441

To construct the high-quality sequence dataset 442

DS for Ta-ICL training from the above datasets, 443

we first reformulate them into (I,Q,R) triplets. 444

Using clustering, we select K samples from their 445

training sets as query samples, forming the query 446
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Configuration VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

Full Ta-ICL 64.74 50.77 57.77 99.42 119.27 79.78 42.93 69.50 46.37

(a) w/o [TASK] token 62.67 48.35 55.83 97.84 117.13 77.47 39.26 67.41 44.29
(b) w/o TG updates 60.18 47.54 54.47 97.51 116.92 75.63 36.80 65.38 42.81
(c) w/o Lsparse 61.58 48.71 55.64 98.12 117.05 76.39 38.97 66.29 43.83
(d) w/o ∥WTG∥22 58.14 46.15 53.95 97.73 118.28 73.34 34.95 66.31 42.96

(e) Random initialization 55.73 37.82 47.32 93.41 105.35 71.86 29.46 59.31 40.78
(f) w/o Î 61.39 47.21 54.68 96.52 114.73 76.26 37.62 66.38 43.51
(g) w/o Q̂ 59.46 46.07 54.05 95.78 112.61 74.32 35.87 65.49 42.35
(h) w/o Inst′ 59.33 45.73 54.12 97.04 114.89 75.28 36.14 66.27 42.61

Table 2: Results of the ablation study on task mapping augmentation. Specifically, (a)-(d) correspond to diverse
task-aware attention construction, (e)-(h) to diverse TG initialization.

set D̂. For each query sample in D̂, N ICDs are447

retrieved from the remaining data using the Oracle448

method described in Section 2.3, creating SN . This449

retrieval process is further refined through beam450

search to improve the quality and diversity of DS .451

The implementation details are provided in Ap-452

pendix D.2. All SN begin with a CoT-style Inst,453

as detailed in Beginning1 of Table 3.454

Our experiments include four SOTA open-source455

LVLMs and a representative closed-source model,456

GPT-4V (OpenAI et al., 2024), ensuring robust457

evaluation. Detailed descriptions of the datasets458

and LVLMs are provided in Appendix D.1.459

4.2 Baselines and Implementation Details460

We adopt RS and two similarity-based retrieval461

methods introduced in Section 2.3 as baselines, as462

well as two additional SOTA methods.:463

1. IQPR (Li et al., 2024): It uses RS to generate464

pseudo results R̂P , selects top-4n demonstrations465

based on joint similarity of I , Q, and R, and re-466

ranks them using Q-R similarity to obtain top-n467

ICDs.468

2. Lever-LM (Yang et al., 2024): A tiny lan-469

guage model with four vanilla decoder layers,470

trained for automatic Sn configuration, serving as471

a key baseline.472

We evaluate ICL sequences on LVLMs using473

validation sets of the datasets, with the training se-474

quence shot N and the generated sequence shot n475

set to 4. Query set D̂ sizes vary by dataset (Table476

5). We utilize the image and text encoders from477

CLIP-ViT-L/14 to generate image and text embed-478

dings. For all tasks, we employ a unified encoder479

training strategy: updating only the last three layers480

while keeping all preceding layers frozen. Ta-ICL481

training employs a cosine annealed warm restart482

learning scheduler, AdamW optimizer, 1e-4 learn-483

ing rate, batch size 128, and runs for 20 epochs. 484

485

4.3 Main Results 486

Table 1 summarizes the average ICL performance 487

across five LVLMs under different ICL sequence 488

configuration methods. Ta-ICL consistently outper- 489

forms all baselines across all nine datasets, high- 490

lighting its robustness and effectiveness in fully 491

leveraging the potential of LVLMs for diverse mul- 492

timodal ICL scenarios. Notably, Ta-ICL delivers 493

particularly strong results in generalized-mapping 494

tasks, achieving an average improvement of 6.65% 495

in VQA tasks, with the highest gain of 9.26% ob- 496

served on Hybrid. These results demonstrate that 497

strengthening task mapping enhances the autore- 498

gressive generation process of language models, 499

equipping them with a broader understanding and 500

enabling the construction of more precise cohesive 501

task mappings. In Appendix D.4, we further inves- 502

tigate the impact of ICL sequence configuration on 503

the LVLMs’ multimodal ICL using per-model data. 504

5 Ablation Study 505

In this section, we focus on the impact of task- 506

aware attention and the task mapping mechanism 507

embedded within it. 508

Table 2 shows that each ablated component in- 509

duces a complete performance degradation. TG, 510

initialized by fusing the query’s bimodal context 511

with instruction semantics, establishes a task in- 512

tent that aligns with the observation of Section 2: 513

global mapping synthesis relies on query-driven 514

grounding. Jointly anchored by the [TASK] to- 515

ken, this intent prevents local mapping drift during 516

autoregressive generation but also enables dynamic 517

refinement through layered attention updates. By it- 518

eratively resolving coarse task boundaries into fine- 519
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Figure 5: Results of Ta-ICL with and without task-aware attention under different N -n settings across three datasets,
where N is the training sequence shot and n is the generation sequence shot.

grained patterns, TG harmonizes intra-sequence de-520

pendencies and query-context interactions, forming521

a feedback loop where each retrieved ICD sharpens522

global mapping cohesion. To conclude, task-aware523

attention effectively encodes task mapping as a dy-524

namic attention-driven process, transcending static525

ICD aggregation to achieve consistent performance526

improvements in multimodal ICL.527

To gain a deeper understanding of the role of task528

mapping throughout the entire process, we explore529

different combinations of training and generation530

shots. Our findings are as follows:531

Task mapping consistently enhances multi-532

modal ICL. Figure 5 shows that across all N -533

n combinations, task-aware attention always im-534

proves performance, highlighting the value of fo-535

cusing ICL sequences on task mapping.536

Cohesion remains robust as shots increase.537

For specific-mapping tasks (e.g., CLEVR), when538

N is fixed, performance gains diminish as n in-539

creases, while generalized-mapping tasks generally540

maintain steady improvements. This arises from541

each new ICD’s unique contribution to the global542

task mapping, potentially deepening it rather than543

yielding diminishing returns on a specific mapping.544

Task mapping enables flexibility in N and n.545

Although task-aware attention works best when546

N equals n, the cohesive design of task mapping547

allows Ta-ICL to effectively interpolate and extrap-548

olate sequence shots across a flexible range of val-549

ues. This adaptability ensures performance across550

diverse training data and enhances the model’s po-551

tential for practical multimodal ICL applications,552

where flexibility and scalability are critical. We pro-553

vide additional ablation studies in Appendix E.1,554

covering the construction of input embeddings, the555

role of instructions, the model’s generalization to556

NLP and text-to-image tasks, and the cohesive task557

mappings in ICL sequences generated by Ta-ICL558

using the metrics in Section 2.3. The results show559

that training the encoder’s last three layers and us-560

ing binary gating enhance performance, while CoT- 561

style instructions improve task alignment. These 562

findings further validate the robustness and effec- 563

tiveness of our task mapping framework. 564

6 Related Works 565

Interpreting In-Context Learning. The mecha- 566

nisms of In-Context Learning (ICL) are crucial to 567

better employing it (Gao et al., 2021; Dong et al., 568

2024). Min et al. (2022) attribute ICL’s success to 569

explicit information in ICDs like label space and 570

input distribution, while Zhou et al. (2023) empha- 571

size the importance of input-output mappings. To 572

find a unified solution, Wei et al. (2023) and Pan 573

et al. (2023) disentangle ICL into Task Recogni- 574

tion and Task Learning. Zhao et al. (2024) further 575

propose a two-dimensional coordinate system to 576

explain ICL behavior via two orthogonal variables: 577

similarity in ICDs and LLMs’ ability to recognize 578

tasks. However, these studies are often confined 579

to tasks with small label spaces and struggle to 580

address complex multimodal scenarios. 581

7 Conclusion 582

This work introduces a novel perspective on multi- 583

modal ICL by focusing on task mapping. We sys- 584

tematically demonstrate the principles and critical 585

importance of task mapping within ICL sequences 586

for enabling efficient ICL in LVLMs. These in- 587

sights further inspire leveraging task mapping to 588

enhance ICL sequence configuration. To this end, 589

we propose Ta-ICL, which employs task-aware at- 590

tention to deeply integrate task mapping into the au- 591

toregressive process, thereby optimizing sequence 592

configuration. Experiments show consistent out- 593

performance over SOTA baselines, particularly in 594

generalized-mapping tasks. This study not only 595

presents a practical model but also provides the 596

multimodal ICL community with a new and reli- 597

able research direction. 598
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Limitations599

Despite its contributions, this work has certain lim-600

itations. First, while we emphasize the importance601

of task mapping in ICL, we do not establish a for-602

mal mathematical framework to define or model603

task mapping. Such a framework could provide604

more rigorous insights into the construction and605

evaluation of task mapping and will be a valuable606

direction for future research.607

Second, this study does not delve into the role608

of LVLMs’ internal attention mechanisms and hid-609

den state in capturing and utilizing task mapping.610

Investigating how task mapping manifests within611

attention layers could uncover deeper connections612

between sequence configuration and model rea-613

soning, offering another promising avenue for out614

future work.615
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A Related Works918

Configuring ICD sequences. Similarity-based re-919

trieval fails to provide LLMs with the deep task920

mappings (Liu et al., 2021a; Li et al., 2024). The921

ICD bias introduced by coarse-grained retrieval922

also amplifies the short-cut effect (Lyu et al., 2023;923

Yuan et al., 2024). Model-dependent methods have924

also emerged later, employing multiple models for925

more demanding selection (Wu et al., 2023b; Wang926

et al., 2024; S. et al., 2024). These methods are not927

end-to-end and increasing overly focus on ICD se-928

lection over ordering. One work closely connected929

to ours is Yang et al. (2024), which introduces a tiny930

language model composed of two encoder blocks931

to automatically select and order ICDs. However,932

it is limited in complex tasks without a deep insight933

of task mapping.934

B Viison-lanuage In-context Learning935

B.1 Demonstration Configuring Details936

(a) Open-ended VQA: The query Qi is the single937

question associated with the image Ii, while the re-938

sult Ri is the answer to the question, provided as a939

short response. For the query sample, Q̂ represents940

the question related to the image Î , and R̂ is the941

expected output of the model.942

(b) Image Captioning: Both Qi and Q̂ are set943

as short prompts instructing the LVLM to generate944

a caption for the given image, such as "Describe945

the whole image in a short sentence. " The result946

Ri corresponds to the actual caption of the image.947

(c) Image Classification: Both Qi and Q̂ pro-948

vide the textual information paired with the image,949

followed by a directive requiring the model to clas-950

sify based on the provided image-text pairs. The951

result Ri is the predefined class label.952

(d) Fast Open-ended MiniImageNet: Both Qi953

and Q̂ are set as short prompts instructing the954

LVLM to recognize the object in image, such as955

"This is an image of:" The result Ri is the self-956

defined label.957

(e) CLEVR Counting Induction: Both Qi and958

Q̂ are implicit texts in the form of "attribute: value"959

pairs. The result Ri is the number of objects match-960

ing the pairs.961

For all the tasks mentioned above, since the962

ground-truth answers are not visible to the LVLM963

during reasoning, all R̂ are set to blank. The visu-964

alization of (I, Q, R) triplets for the four tasks is965

shown in Figure 6.966

B.2 Logit Lens 967

"Shallow" represents superficial task understand- 968

ing, focusing on general or surface-level concepts. 969

Anchor words include "category," "judge," "la- 970

bel," "identify," and "predict." "Deep" indicates 971

a more profound comprehension of the task, cap- 972

turing nuanced or context-sensitive meanings. An- 973

chor words include "hateful," "offensive," "biased," 974

"harmful," and "inappropriate." "Correct" corre- 975

sponds to the correct answer for the query sample. 976

"Wrong" represents the incorrect answer, opposite 977

to "Correct." 978

B.3 Oracle 979

Oracle uses the same LVLM M for both con- 980

figuring the ICL sequences and performing ICL. 981

This method aims to construct high-quality ICL 982

sequences by iteratively evaluating and selecting 983

demonstrations based on their contribution to the 984

model’s predictive performance. Given the ground- 985

truth result R̂ = (R̂(1), ..., R̂(t)) of the query 986

sample, Oracle computes the log-likelihood score 987

CM(Sn) for a sequence Sn with n ICDs, defined 988

as: 989

CM(Sn) =
∑
t

logPM(R̂(t) | Sn, R̂(1:t−1)),

(13) 990

whereM denotes the LVLM. This score measures 991

how effectively the model predicts the ground-truth 992

result R̂ given the current ICL sequence Sn. 993

The configuration process begins with an empty 994

sequence S0 and iteratively selects demonstrations. 995

At each step n, a demonstration xn is chosen from 996

the library D to maximize the incremental gain in 997

the log-likelihood score: 998

xn = argmax
x∈D

[CM(Sn−1 + x)− CM(Sn−1)].

(14) 999

This greedy optimization process ensures that each 1000

selected demonstration contributes optimally to the 1001

sequence. Unlike simple similarity-based meth- 1002

ods, Oracle evaluates the overall impact of each 1003

candidate demonstration on the sequence’s quality. 1004

B.4 Ablation Settings 1005

To systematically evaluate the impact of task map- 1006

ping in multimodal in-context learning (ICL), we 1007

design controlled ablation settings that selectively 1008

perturb key factors such as label reliability and 1009

visual modality. Below, we provide detailed de- 1010

scriptions of each setting’s implementation. 1011
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Figure 6: The visualization of (I, Q, R) triplets for Open-ended VQA, image captioning, image classification and
Fast Open-ended MiniImageNet.

1. Label Reliability1012

• Wrong Labels (WL): To evaluate the reliance1013

on explicit label correctness, we invert 75% Ri1014

labels (yes↔no) in the ICL sequence. This set-1015

ting disrupts direct label-based learning while1016

maintaining the overall task structure, allow-1017

ing us to examine whether LVLMs primarily1018

depend on task mapping rather than correct la-1019

bels.1020

2. Visual modality1021

• Blur Images (BI): To investigate the role of1022

visual information clarity, we apply Gaussian1023

blur to the images Ii in the ICL sequence. This1024

degrades fine-grained details while preserving1025

overall structure, allowing us to examine the1026

impact of visual degradation on task mapping.1027

• BI on Query Image (BI(Î)): Instead of apply-1028

ing blur to the entire ICL sequence, (BI)Î ap-1029

plies Gaussian blur only to the query image1030

Î . This setting helps isolate the effect of de-1031

graded query information on task mapping per-1032

formance.1033

3. Query Enhancement1034

• Easier Mapping on Query (EM(Q̂)): This set-1035

ting enhances the query text Q̂ by incorporating1036

explicit task guidance to facilitate task mapping.1037

Instead of modifying the ICL sequence, EM(Q̂)1038

provides additional textual hints that reinforce1039

task semantics, allowing us to measure whether1040

improved query understanding compensates for1041

suboptimal ICD configurations.1042

B.5 Task Mapping Cohesion Metrics 1043

∆ measures performance degradation when replac- 1044

ing individual ICDs with another from the same 1045

sequence. σ captures performance variance under 1046

random shuffling of ICD order. 1047

B.5.1 Disruption Gap (∆ 1048

To measure the impact of individual ICDs on 1049

sequence-level performance and assess task map- 1050

ping cohesion, we define the Disruption Gap (∆) 1051

as the magnitude of performance change caused by 1052

replacing a single ICD in the sequence. 1053

For each ICD xi = (Ii, Qi, Ri) in the sequence 1054

Sn, a replacement ICD xj = (Ij , Qj , Rj) is se- 1055

lected from the same dataset based on the highest 1056

joint similarity of their image and query embed- 1057

dings (IQ2IQ). The modified sequence Sreplaced,i is 1058

then constructed by replacing xi with xj . 1059

The Disruption Gap for the i-th ICD is defined 1060

as the absolute difference in performance before 1061

and after the replacement: 1062

∆i =
∣∣L(S)− L(Sreplaced,i)

∣∣, (15) 1063

where L(·) represents the performance metric of 1064

the sequence (e.g., accuracy). 1065

For a sequence S with N ICDs, the overall Dis- 1066

ruption Gap is computed as the average ∆i across 1067

all N ICDs: 1068

∆ =
1

N

N∑
i=1

∆i. (16) 1069
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To ensure the robustness of ∆ and to account for1070

potential variability in replacement effects, we con-1071

duct repeated experiments. This metric quantifies1072

the sequence’s cohesion by assessing the sensitivity1073

of the overall performance to individual replace-1074

ments. A higher ∆ indicates that the sequence has1075

stronger cohesion, as replacing an ICD results in1076

larger performance changes.1077

B.5.2 Order Sensitivity (σ)1078

For an ICL sequence Sn, we generate K indepen-1079

dent random permutation of it:1080

Sn
permute,1, S

n
permute,2, . . . , S

n
permute,K , K = 10.

(17)1081

Then we compute the accuracy for each permuted1082

sequence:1083

Acc(Sn
permute,k) =

Correct Predictions
Total Predictions

, k = 1, 2, . . . ,K.

(18)1084

Then calculate the mean accuracy across all permu-1085

tations:1086

µ =
1

K

K∑
k=1

Acc(Sn
permute,k). (19)1087

Finaly, compute the standard deviation of accura-1088

cies as σ:1089

σ =

√√√√ 1

K

K∑
k=1

(
Acc(Sn

permute,k) − µ
)2

. (20)1090

B.6 Case Study1091

In Figure 7, we present four examples represent-1092

ing the four typical types of ICL sequences in1093

generalized-mapping tasks.1094

C Method1095

C.1 CLIP Encoders1096

CLIP employs two distinct encoders: one for im-1097

ages and another for text. The image encoder trans-1098

forms high-dimensional visual data into a compact,1099

low-dimensional embedding space, using architec-1100

tures such as a ViT. Meanwhile, the text encoder,1101

built upon a Transformer architecture, generates1102

rich textual representations from natural language1103

inputs.1104

CLIP is trained to align the embedding spaces1105

of images and text through a contrastive learning1106

objective. Specifically, the model optimizes a con-1107

trastive loss that increases the cosine similarity for1108

matched image-text pairs, while reducing it for un- 1109

matched pairs within each training batch. To ensure 1110

the learning of diverse and transferable visual con- 1111

cepts, the CLIP team curated an extensive dataset 1112

comprising 400 million image-text pairs, allowing 1113

the model to generalize effectively across various 1114

downstream tasks. 1115

In our experiments, we employ the same model, 1116

CLIP-ViT-L/14, using its image and text encoders 1117

to generate the image and text embeddings for 1118

each demonstration, ensuring consistency in cross- 1119

modal representations. The model employs a ViT- 1120

L/14 Transformer architecture as the image encoder 1121

and a masked self-attention Transformer as the text 1122

encoder. We experimented with several strategies 1123

for training the CLIP encoder and found that train- 1124

ing only the last three layers of the encoder offers 1125

the best cost-effectiveness. 1126

C.2 Instruction 1127

The Inst generated by GPT-4o in the main exper- 1128

iment is "You will be provided with a series of 1129

image-text pairs as examples and a question. Your 1130

task involves two phases: first, analyze the pro- 1131

vided image-text pairs to grasp their context and 1132

try to deeply think about what the target task is; sec- 1133

ond, use this understanding, along with a new im- 1134

age and your knowledge, to accurately answer the 1135

given question." This content demonstrates great 1136

orderliness and can act as a good general semantic 1137

guide for ICDs and query sample. This style is 1138

named chain-of-thought (CoT). 1139

To incorporate the semantic information of Inst 1140

and strengthen task representation during the ICL 1141

sequence configuration process, we use GPT-01 to 1142

generate simplified versions of these Inst and inte- 1143

grate their embeddings into the task guider, which 1144

are indicated by Inst′. The prompt we use is as 1145

follows: "This is an instruction to enable LVLMs 1146

to understand and perform a multimodal in-context 1147

learning task. Please simplify it by shortening the 1148

sentence while preserving its function, core mean- 1149

ing, and structure. The final version should be in 1150

its simplest form, where removing any word would 1151

change its core meaning". This simplification pro- 1152

cess allows us to investigate how the semantic infor- 1153

mation density in the instruction impacts Ta-ICL’s 1154

sequence configuration ability and the performance 1155

of LVLMs in ICL. The results show that simplify- 1156

ing the instruction in a prompt before embedding it 1157

in the task guider significantly improves the qual- 1158

ity of sequence generation. It also helps to avoid 1159
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Q: Is this a sunny day?
R: Yes.

Q: How many people 
are there?
R: Four.

Q: What is the woman 
doing?
R: Running.

Q: What’s the color of 
the bike? 
R: Yes.❌

(1) Failure case due to reliance on distinct image features (e.g., a person riding a bicycle).

Q: What’s the color of 
the sairs?
R: Brown.

Q: What’s the color of 
the bus?
R: Yellow.

Q: What is in the image?
R: A cat.

Q: What is in the image? 
R: White.❌

Q: How many bananas 
are there？
R: Two.

Q: How many people in 
the image?
R: Four.

Q: How many apples 
are there?
R: One.

Q: How many cars on 
the grass? 
R: Two.✅

Q: What is in the center 
of the image?
R: A zebra.

Q: What’s the woman 
doing?
R: Reading 

Q: What is on the water?
R: A boat.

Q: What color floor are 
they dancing on?
R: Brown.✅

(2) Failure case due to reliance on certain local mappings (e.g., identifying the color of a bus).

(3) Success case resembling specific-mapping tasks (e.g., each local mapping involves 
counting objects in an image).

(4) Success case demonstrating diverse local mappings that achieve cohesion.

Figure 7: Four types of ICL sequences in generalized-mapping task.

issues caused by too long instructions.1160

As shown in Table 3, we use GPT-4o to rewrite1161

Inst, placing it at the middle and the end of1162

a prompt, altering its semantic structure accord-1163

ingly while keeping its CoT nature. The table1164

also presents two other tested styles of instructions1165

placed at the beginning of the prompt: Parallel Pat-1166

tern Integration (PPI) and System-Directive (SD).1167

PPI emphasizes simultaneous processing of pattern1168

recognition and knowledge integration, focusing on1169

dynamic pattern repository construction rather than1170

sequential reasoning. SD structures input as a for-1171

mal system protocol with defined parameters and1172

execution flows, prioritizing systematic processing1173

over step-by-step analysis. These two forms have1174

also been proven to be effective in previous ICL1175

work. We use them to study the robustness of Ta-1176

ICL and various LVLMs to different instruction1177

formats.1178

C.3 Prompt Details1179

The prompts constructed based on Sn all follow
the format:

(Inst; ICD1, ..., ICDn;QuerySample).

Each ICD’s query begins with "Query:" and its1180

result starts with "Result:". The query sample con-1181

cludes with "Result:", prompting the LVLM to gen-1182

erate a response. Depending on the input format1183

required by different LVLMs, we may also include1184

special tags at the beginning and end of the prompt.1185

Table 4 provides an overview of the prompt de-1186

tails used for the different models in our experi-1187

ments. Each model, including OpenFlamingoV2,1188

ICDEFICSv1, InternVL2, and Qwen2VL, employs1189

a structured approach to engage with image-text1190

pairs. The two-phase task requires LVLMs to first1191

absorb information from a series of prompts before 1192

utilizing that context to answer subsequent ques- 1193

tions related to new images. This method allows 1194

for enhanced understanding and reasoning based 1195

on prior knowledge and context, which is essential 1196

for accurate predictions in VL tasks. 1197

D Experiment 1198

D.1 Datasets and Models 1199

D.1.1 Dataset 1200

In our study, we explore various VL tasks that use 1201

diverse datasets to evaluate model performance. 1202

As illustrated in Figure 8, we use VQA datasets 1203

such as VQAv2, VizWiz, and OK-VQA, which 1204

test the models’ abilities in question-answer scenar- 1205

ios. Additionally, we incorporate image caption- 1206

ing datasets such as Flickr30k and MSCOCO to 1207

assess descriptive accuracy, along with the Hate- 1208

fulMemes dataset for classification tasks focused 1209

on hate speech detection. This comprehensive ap- 1210

proach allows us to thoroughly evaluate the mod- 1211

els across different tasks. The size distribution of 1212

the training, validation and test sets in these VL 1213

datasets is shown in Table 5. 1214

For the Open-ended VQA task, we utilize the 1215

following datasets: VQAv2, which contains images 1216

from the MSCOCO dataset and focuses on tradi- 1217

tional question-answering pairs, testing the model’s 1218

ability to understand both the image and the ques- 1219

tion. VizWiz presents a more challenging setting 1220

with lower-quality images and questions along with 1221

a lot of unanswerable questions, pushing models 1222

to handle uncertainty and ambiguity. OK-VQA is 1223

distinct in that it requires the model to leverage ex- 1224

ternal knowledge beyond the image content itself 1225

to generate correct answers, making it a benchmark 1226
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Inst Details

Beginning1 (CoT)

You will be provided with a series of image-text pairs as examples and
a question. Your task involves two phases: first, analyze the provided
image-text pairs to grasp their context and try to deeply think about what
the target task is; second, use this understanding, along with a new image
and your knowledge, to accurately generate the result of the given query.

Beginning2 (PPT)

Construct a dynamic pattern repository from image-text samples, then
leverage this framework alongside your knowledge base for concurrent
visual analysis and query resolution. The key is parallel processing -
your pattern matching and knowledge integration should happen simulta-
neously rather than sequentially.

Beginning3 (SD)

SYSTEM DIRECTIVE Input Stream: Example Pairs → New Image +
Query Process: Pattern Extract → Knowledge Merge → Visual Analysis
→ Response Critical: All exemplar patterns must inform final analysis
Priority: Context preservation essential

Middle (CoT)

Now you have seen several examples of image-text pairs. Next, you
will be given a question. Your task involves two phases: first, revisit
the above image-text pairs and try to deeply think about what the target
task is; second, use this understanding, along with a new image and your
knowledge, to accurately generate the result of the given question.

End (CoT)

Now you have seen several examples of image-text pairs and a question
accompanied by a new image. Your task involves two phases: first, revisit
the provided examples and try to deeply think about what the target task
is; second, use this understanding, the new image and your knowledge to
accurately generate the result of the given question.

Beginning1 (Abbreviated)
Analyze the following image-text pairs, understand the task, and use this
to generate the result with a new image.

Middle (Abbreviated)
After reviewing the above image-text pairs, analyze the task and use this
understanding to generate the result with a new image.

End (Abbreviated)
After reviewing the above image-text pairs and a query with a new image,
analyze the task and use this understanding to generate the result.

Table 3: Formats of different instruction types and their corresponding details used in the prompt structure for all
VL tasks. (Abbreviated) means that the instruction is a simplified version produced by GPT-o1.
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Models Prompt details

OpenFlamingo-v2

You will be provided with a series of image-text pairs as examples and a question.
Your task involves two phases: first, analyze the provided image-text pairs to grasp
their context and try to deeply think about what the target task is; second, use this
understanding, along with a new image and your knowledge, to accurately generate
the result of the given query.
<img><IMG_CONTEXT><|endofchunk|> Query: In what country can you see this?
Result: vietnam
<img><IMG_CONTEXT><|endofchunk|> Query: Is this a buggy or car? Result:
buggy
<img><IMG_CONTEXT><|endofchunk|> Query: What is this? Result:

IDEFICS2

"User: You will be provided with a series of image-text pairs as examples and a
question. Your task involves two phases: first, analyze the provided image-text pairs
to grasp their context and try to deeply think about what the target task is; second,
use this understanding, along with a new image and your knowledge, to accurately
generate the result of the given query."
"\nUser:<|image_pad|> Query: In what country can you see this?
<end_of_utterance>",
"\nAssistant: Result: vietnam. <end_of_utterance>",
"\nUser: <|image_pad|> Query: Is this a buggy or car? <end_of_utterance>",
"\nAssistant: Result: buggy. <end_of_utterance>",
<|image_pad|> Query: What is this? <end_of_utterance>",
"\nAssistant: Result:"

InternVL2

You will be provided with a series of image-text pairs as examples and a question.
Your task involves two phases: first, analyze the provided image-text pairs to grasp
their context and try to deeply think about what the target task is; second, use this
understanding, along with a new image and your knowledge, to accurately generate
the result of the given query.
<img><IMG_CONTEXT></img> Query: In what country can you see this? Result:
vietnam
<img><IMG_CONTEXT></img> Query: Is this a buggy or car? Result: buggy
<img><IMG_CONTEXT></img> Query: What is this? Result:

Qwen2VL

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
You will be provided with a series of image-text pairs as examples and a question.
Your task involves two phases: first, analyze the provided image-text pairs to grasp
their context and try to deeply think about what the target task is; second, use this
understanding, along with a new image and your knowledge, to accurately generate
the result of the given query.
<|vision_start|><|image_pad|><|vision_end|>Query:In what country can you see this?
Result: vietnam
<|vision_start|><|image_pad|><|vision_end|>Query: Is this a buggy or car? Result:
buggy
<|vision_start|><|image_pad|><|vision_end|>Query: What is this? Result: <|im_end|>
<|im_start|>assistant

Table 4: Prompt details for different models used in the experiments. The table outlines how OpenFlamingo-v2,
IDEFICSv1, InternVL2, and Qwen2-VL format their image-text interactions, including examples of image-based
questions and short answers. Each model follows a multi-phase task structure, where context is absorbed from
previous image-text pairs to answer subsequent questions.
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VizWiz OK-VQA

Question:
What is this vehicle?
Short answer:
train

VQAv2

Question:
What is this?
Short answer:
laptop

Question:
What is this?
Short answer:
bus

Caption:
Many people 
cross a very tall 
footbridge with a 
tree-covered hill 
in the background

Flickr30k MSCOCO

Caption:
A giraffe mother 
with its baby in 
the forest.

HatefulMemes Question:
Given a meme 
with obama 
voters written on 
it. Is it hateful? 
Answer:
Yes

Fast Open-Ended MiniImageNet CLEVR

Dax

Perpo

？

Color: Green Size: Large

？3

Figure 8: Illustrative examples from various vision-and-language datasets categorized by task type. Visual Question
Answering (VQA) tasks are shown in red (VQAv2: train, VizWiz: laptop, OK-VQA: bus). Captioning tasks are
represented in blue (Flickr30k: footbridge, MSCOCO: giraffes), while classification tasks are highlighted in green
(HatefulMemes: meme identified as hateful). The bottom section demonstrates reasoning tasks with synthetic
datasets: Fast Open-Ended MiniImageNet and CLEVR, focusing on conceptual understanding (e.g., assigning
labels like "Dax" or identifying object properties like color and size).

Datasets Training Validation Test D̂ Size

VQAv2 443,757 214,354 447,793 8000
VizWiz 20,523 4,319 8,000 2000

OK-VQA 9,055 5,000 / 800
Flickr30k 29,783 1,000 1,000 2500
MSCOCO 82,783 40,504 40,775 3000

HatefulMemes 8,500 500 2,000 800
Hybrid 30000 9000 / 3000

Fast 5,000 / 200 500
CLEVR 800 / 200 80

Table 5: Overview of the size distribution across the
datasets used.

for evaluating models’ capacity to integrate outside1227

information.1228

For the Image Captioning task, we use the1229

Flickr30k and MSCOCO datasets. The Flickr30k1230

dataset consists of images depicting everyday activ-1231

ities, with accompanying captions that provide con-1232

cise descriptions of these scenes. The MSCOCO1233

dataset is a widely-used benchmark featuring a1234

diverse range of images with detailed and richly1235

descriptive captions, ideal for evaluating image cap-1236

tioning models.1237

For the Image Classification task, we use the1238

HatefulMemes dataset, which is an innovative1239

dataset designed to reflect real-world challenges 1240

found in internet memes. It combines both visual 1241

and textual elements, requiring the model to jointly 1242

interpret the image and the overlaid text to detect 1243

instances of hate speech. 1244

VL-ICL Bench covers a number of tasks, which 1245

includes diverse multimodal ICL capabilities span- 1246

ning concept binding, reasoning or fine-grained 1247

perception. Few-shot ICL is performed by sam- 1248

pling the ICDs from the training split and the query 1249

examples from the test split. We choose two image- 1250

to-text generation tasks from it, which reflects dif- 1251

ferent key points of ICL. Fast Open MiniImageNet 1252

task assigns novel synthetic names (e.g., dax or 1253

perpo) to object categories, and LVLMs must learn 1254

these associations to name test images based on 1255

a few examples instead of their parametric knowl- 1256

edge, emphasizing the importance of rapid learning 1257

from ICDs. CLEVR Count Induction asks LVLMs 1258

to solve tasks like "How many red objects are there 1259

in the scene?" from examples rather than explicit 1260

prompts. The ICDs’ images are accompanied by 1261

obscure queries formed as attribute-value pairs that 1262

identify a specific object type based on four at- 1263

tributes: size, shape, color, or material. Models 1264

must perform challenging reasoning to discern the 1265
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task pattern and generate the correct count of ob-1266

jects that match the query attribute.1267

The datasets in our experiments are evaluated1268

using task-specific metrics, as summarized in Table1269

6. For the VQA tasks, Hybrid dataset and VL-ICL1270

bench’s tasks, we use accuracy as the metric to as-1271

sess the models’ ability to provide correct answers:1272

Accai = max(1,
3×

∑
k∈[0,9]match(ai, gk)

10
),

(21)1273

where ai denotes the model’s generated answer, gk1274

denotes the k-th ground true answer. match(·, ·)1275

decides whether two answers match, if they match,1276

the result is 1, otherwise it is 0.1277

For the image captioning tasks, we use the1278

CIDEr score, which measures the similarity be-1279

tween generated captions and human annotations.1280

Finally, for the HatefulMemes classification task,1281

we evaluate performance using the ROC-AUC met-1282

ric, which reflects the model’s ability to distinguish1283

between hateful and non-hateful content.1284

D.1.2 LVLMs1285

In recent advances of large vision language mod-1286

els (LVLMs), efficient processing of multimodal1287

inputs, especially images, has become a critical1288

focus. Models like OpenFlamingoV2, IDEFICSv2,1289

InternVL2, Qwen2-VL and GPT-4V implement1290

unique strategies to manage and process visual data1291

alongside textual input.1292

OpenFlamingoV2 handles visual input by divid-1293

ing images into patches and encoding them with a1294

Vision Transformer. Each image patch generates a1295

number of visual tokens, which are then processed1296

alongside text inputs for multimodal tasks. To man-1297

age multi-image inputs, the model inserts special1298

tokens <image> and <|endofchunk|> at the begin-1299

ning and end of the visual token sequences. For1300

example, an image divided into 4 patches produces1301

4 x 256 visual tokens, with the additional special1302

tokens marking the boundaries before the tokens1303

are processed by the large language model.1304

IDEFICS2 processes visual input by applying1305

an adaptive patch division strategy adapted to im-1306

age resolution and content complexity. Depending1307

on these factors, each image is segmented into 11308

to 6 patches, striking a balance between preserv-1309

ing spatial information and maintaining efficiency.1310

These patches are encoded through a Vision Trans-1311

former, followed by a spatial attention mechanism1312

and a compact MLP, resulting in 128 visual tokens1313

per patch. The positions of images in the input1314

sequence are marked with <|image_pad|> for align- 1315

ment, while <end_of_utterance> tokens separate 1316

query and answer components in in-context demon- 1317

strations. An image split into five patches yields 5 1318

x 128 + 2 tokens before being integrated with the 1319

LLM. 1320

InternVL2 also dynamically divides images into 1321

1 to 4 patches based on their aspect ratio. A Vision 1322

Transformer then extracts visual features from each 1323

patch, followed by a pixel shuffle operation and a 1324

mlp, producing 256 visual tokens for each patch. 1325

Additionally, special tokens <img> and </img> are 1326

inserted at the beginning and end of the sequence. 1327

So, an image divided into 3 patches will produce 3 1328

x 256 + 2 tokens before entering LLM. 1329

Qwen2-VL reduces the number of visual tokens 1330

per image through a compression mechanism that 1331

condenses adjacent tokens. A ViT first encodes an 1332

image (e.g., with a resolution of 224 x 224 and a 1333

patch size of 14), producing a grid of tokens, which 1334

is then reduced by employing a simple MLP to 1335

compress 2 x 2 tokens into a single token. Special 1336

<lvision_start|> and <lvision_end|> tokens are in- 1337

serted at the start and end of the compressed visual 1338

token sequence. For example, an image that ini- 1339

tially generates 256 visual tokens is compressed to 1340

just 66 tokens before entering the LLM. 1341

GPT-4V (Vision) extends GPT-4’s capabilities to 1342

handle VL tasks by enabling the model to process 1343

and reason about visual input alongside text. The 1344

model can perform various tasks including image 1345

understanding, object recognition, text extraction, 1346

and visual question-answering through natural lan- 1347

guage interaction. In terms of its few-shot learn- 1348

ing ability, GPT-4V demonstrates the capacity to 1349

adapt to new visual tasks given a small number 1350

of examples through natural language instructions, 1351

showing potential in areas such as image classifica- 1352

tion and visual reasoning, though performance may 1353

vary across different task domains and complexity 1354

levels. 1355

D.2 Training Data Construction Details 1356

We construct sequence data for model training us- 1357

ing existing high-quality datasets, each correspond- 1358

ing to a VL task. The samples are uniformly format- 1359

ted as (I,Q,R) triplets based on their respective 1360

task types. Each dataset generates a sequence set 1361

DS for training, where each sequence consists of a 1362

query sample and N ICDs. The value of N is con- 1363

figurable, determining the number of shots during 1364

training. To ensure optimal training performance, 1365
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Datasets VQAv2 VizWiz OK-VQA Flickr30k MSCOCO HatefulMemes Hybrid Fast CLEVR

metrics Accuracy Accuracy Accuracy CIDEr CIDEr ROC-AUC Accuracy Accuracy Accuracy

Table 6: Evaluation metrics used for each dataset. Accuracy is used for VQA datasets (VQAv2, VizWiz, OK-VQA),
self-bulit Hybrid dataset and two VL-ICL Bench’s tasks. CIDEr (Vedantam et al., 2015) is used for image captioning
datasets (Flickr30k, MSCOCO). ROC-AUC is used for the HatefulMemes classification task.

we employ the same LVLM used in inference as a1366

scorer to supervise the construction of DS , making1367

the method inherently model-specific. For each1368

dataset, we construct DS exclusively from its train-1369

ing set through the following three-step process:1370

(1). We apply k-means clustering based on im-1371

age features to partition the dataset into k clusters.1372

From each cluster, we select the m samples closest1373

to the centroid, yielding a total of K = m× k sam-1374

ples. These form the query sample set D̂ after re-1375

moving their ground-truth results, which are stored1376

separately in DR̂. The remaining dataset serves as1377

the demonstration library DL. (2). For each query1378

sample x̂i ∈ D̂, we randomly sample a candidate1379

set Di of 64n demonstrations from DL. The objec-1380

tive is to retrieve N demonstrations from Di that1381

optimally configure the sequence for x̂i = (Îi, Q̂i)1382

with its ground-truth result R̂i = (R̂
(1)
i , ..., R̂i(t)).1383

We use the log-likelihood score computed by the1384

LVLMM as the selection criterion CM, evaluat-1385

ing the model’s predictive ability given a sequence1386

with n ICDs:1387

CM(Sn
i ) =

∑
t

logPM(R̂
(t)
i | S

n
i , R̂

(1:t−1)
i ),

(22)1388

To determine the optimal n-th demonstration xn1389

for a sequence Sn−1
i with n − 1 ICDs, we select1390

the candidate that maximizes the incremental gain1391

in CM:1392

xn = argmax
x∈Di

[S⌋M(Sn−1
i + x)− S⌋M(Sn−1

i )].

(23)1393

(3). We employ beam search with a beam size of1394

2N , ensuring that for each x̂, the top 2N optimal1395

sequences are included in DS . As a result, the1396

final sequence set DS consists of 2N × k N -shot1397

sequences, providing refined training data for the1398

model.1399

D.3 Baselines1400

Various baseline methods are used to evaluate the1401

model’s performance, ranging from random sample1402

to different SOTA retrieval strategies. The follow- 1403

ing is a description of the baselines used in our 1404

experiments. 1405

1. Random Sampling (RS): In this approach, 1406

a uniform distribution is followed to randomly 1407

sample n demonstrations from the library. These 1408

demonstrations are then directly inserted into the 1409

prompt to guide the model in answering the query. 1410

2. Image2Image (I2I): During the retrieval pro- 1411

cess, only the image embeddings Ii from each 1412

demonstration (Ii, Qi, Ri are used. These embed- 1413

dings are compared to the query image embedding 1414

Î and the retrieval is based on the similarity be- 1415

tween the images. 1416

3. ImageQuery2ImageQuery (IQ2IQ): During 1417

the retrieval process, both the image embeddings Ii 1418

and the query embeddings Qi of each demonstra- 1419

tion (Ii, Qi, Ri are used. These embeddings are 1420

compared to the embedding of the concatenated 1421

query sample (Î , Q̂) and the retrieval is based on 1422

the joint similarity between the images and the 1423

queries. 1424

4. ImageQuery&Pseudo Result (IQPR): This 1425

baseline starts by using RS to generate a pseudo 1426

result R̂P of the query sample. The pseudo re- 1427

sult is then concatenated with Î and Q̂ to form the 1428

query sample’s embedding. This retrieval method 1429

is based on the similarity of the whole triplet, using 1430

image, query and result embeddings. 1431

5. Lever-LM: Lever-LM is designed to capture 1432

statistical patterns between ICDs for an effective 1433

ICL sequence configuration. Observing that con- 1434

figuring an ICL sequence resembles composing 1435

a sentence, Lever-LM leverages a temporal learn- 1436

ing approach to identify these patterns. A special 1437

dataset of effective ICL sequences is constructed 1438

to train Lever-LM. Once trained, its performance 1439

is validated by comparing it with similarity-based 1440

retrieval methods, demonstrating its ability to cap- 1441

ture inter-ICD patterns and enhance ICL sequence 1442

configuration for LVLMs. 1443
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Datasets Training Validation Test D̂ Size metrics

Rule Learning 1600 - 150 exact match scores
Fast Counting 800 - 40 Accuracy

Table 7: Overview of Rule Learning and Fast Counting
tasks.

Inst′ Inst VQAv2 Vi2Wi2 OKVQA Hybrid

Beginning1
Beginning2 59.48 47.28 54.63 34.92
Beginning3 57.40 45.26 52.10 30.21

End 63.24 50.69 55.19 30.37
Beginning2

Beginning1
64.17 49.27 56.12 37.60

Beginning3 63.78 49.36 55.43 35.98
End 63.62 49.08 55.68 36.43

Table 8: Results of Ta-ICL under various Inst′-Inst
combinations. Inst′ represents the style used for ini-
tializing TG, while Inst refers to the style actually
incorporated into the prompt.

D.4 Results and Analysis1444

We can go deep into the per-model results in Tabel1445

9. The findings are as follows: (1) Ta-ICL exhibits1446

the best performance in all but three tasks across1447

nine datasets and five LVLMs, demonstrating its1448

great efficiency and generalization. Upon exam-1449

ining the outputs, we observe that GPT-4V tends1450

to deviate from the ICD format and produce re-1451

dundant information more easily than open-source1452

LVLMs, aligning with (Wu et al., 2023a). This1453

results in the quality improvement of the ICL se-1454

quence not always translating into stable ICL per-1455

formance gains for GPT-4V, which may explain1456

why Ta-ICL did not achieve the best performance1457

in two of its tasks. (2) For tasks like VizWiz and1458

Hybrid, Ta-ICL consistently improves the quality1459

of sequence generation in all LVLMs compared to1460

similarity-based models, demonstrating the impor-1461

tance of increasing task semantics for complex task1462

mappings. We find that the performance gains from1463

Ta-ICL are not directly related to the model’s intrin-1464

sic ability on these tasks. Unlike simpler tasks like1465

captioning, for tasks with complex mappings, task1466

semantics still has a significant impact, even when1467

LVLMs exhibit strong few-shot learning abilities.1468

This shows that models with strong ICL capabil-1469

ities on certain tasks retain, and even strengthen,1470

their ability to leverage task semantics, underscor-1471

ing the value of improving ICL sequence quality.1472

E Ablation Study1473

E.1 Input Embeddings1474

Input Embedding. To investigate the impact of1475

input embedding construction on ICL sequence1476

configuration, we vary both the training method of 1477

the CLIP encoders and the adoption of the gating 1478

module to evaluate Ta-ICL’s performance under dif- 1479

ferent settings. For the CLIP encoders, we explore 1480

three alternative methods: one involves freezing 1481

its parameters and adding an MLP adapter to its 1482

output, which is then trained; another involves fully 1483

training the entire encoder; and the third involves 1484

training only the last two layers. For constructing 1485

the embeddings multimodal ICD tokens, we first 1486

experimented with direct concatenation without 1487

gating modules: 1488

ei = EI(Ii) + ET (Q)i + ET (Ri) + ri, (24) 1489

where ri is a randomly initialized learnable compo- 1490

nent introduced into the embedding. Besides binary 1491

gating, we examine a finer-grained ternary gating 1492

module that assigns separate weights to control the 1493

contributions of all three components I , Q and R: 1494

ei = gI ·EI(Ii)+gQ ·ET (Qi)+gR ·ET (Ri), (25) 1495

where gI , gQ and gR denote the weights computed 1496

using a softmax function applied the linear trans- 1497

formations, ensuring their sum equals 1. Addi- 1498

tionally, we apply regularization to the weights: 1499

g2I + g2Q + g2R ≤ θ to prevent excessive reliance on 1500

specific components. 1501

The training approach for CLIP affects the fea- 1502

ture representation of embeddings, which in turn in- 1503

fluences Ta-ICL’s ability to capture cross-modal de- 1504

tails during sequence configuration. From Table 10 1505

we observe that for tasks with intrinsic features like 1506

VQA and Hybrid, leaving the CLIP unchanged or 1507

only adding an adapter leads to significant degrada- 1508

tion in the quality of the ICL sequence generation. 1509

In fact, even methods that only train the last two lay- 1510

ers show a more noticeable performance gap com- 1511

pared to the current approach. This highlights that 1512

the output pattern of the third-to-last layer of the 1513

encoder is crucial for capturing core task features 1514

in multimodal ICD. When we replaced our current 1515

training method with one that fully trains CLIP, 1516

we did not observe a significant performance drop. 1517

This suggests that Ta-ICL’s treatment of ICDs as 1518

tokens does not cause feature loss. In contrast, 1519

through task-aware attention, it enhances feature 1520

representation, helping mitigate the limitations of 1521

the embedding itself. Considering the high cost 1522

of training the entire encoders, current method is 1523

optimal. 1524

As we point out in Section 2, it is important for 1525

the model to focus on fine-grained features within 1526
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VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

OpenFlamingov2

RS 50.84 27.71 37.90 76.74 92.98 64.75 13.48 57.69 21.60
I2I 49.52 26.82 37.79 79.84 94.31 69.53 12.79 59.07 19.39

IQ2IQ 52.29 31.78 42.93 79.91 94.40 68.72 24.93 58.96 20.03
SQPR 53.38 30.12 41.70 80.02 96.37 69.16 28.71 57.32 21.84

Lever-LM 55.89 33.34 43.65 83.17 98.74 72.70 32.04 59.41 22.67
Ours 61.12 39.76 47.28 84.23 99.10 75.09 35.17 60.25 24.80

IDEFICS2

RS 54.97 32.92 40.01 82.43 99.61 69.31 15.65 54.72 35.14
I2I 53.77 31.67 41.37 85.76 101.34 69.64 10.49 55.20 32.37

IQ2IQ 55.41 34.31 43.13 85.63 101.45 70.78 30.36 55.14 32.75
SQPR 55.32 33.74 42.76 87.65 103.57 62.18 24.03 55.18 36.29

Lever-LM 56.78 34.10 43.27 88.01 105.62 71.33 30.14 55.83 38.97
Ours 59.41 38.32 48.35 90.41 107.04 73.68 33.25 57.21 40.21

InternVL2

RS 63.35 54.70 57.13 99.05 116.37 70.72 17.74 75.87 57.03
I2I 61.83 55.07 58.73 103.29 118.46 76.27 14.82 75.89 54.79

IQ2IQ 64.57 56.94 63.91 103.41 118.53 78.20 36.46 76.03 50.07
SQPR 63.67 56.83 60.14 105.28 121.94 77.31 34.05 76.34 56.32

Lever-LM 65.36 57.27 61.11 104.65 126.12 79.58 43.16 78.84 57.45
Ours 69.42 61.69 63.27 108.26 128.34 82.97 45.79 80.76 58.27

Qwen2VL

RS 64.28 48.97 55.30 100.32 121.47 77.85 20.42 66.29 48.70
I2I 63.71 48.75 56.39 102.87 124.50 80.62 13.89 67.81 47.97

IQ2IQ 67.26 52.20 58.49 103.04 124.63 79.78 37.83 67.76 46.63
SQPR 67.49 49.54 59.86 105.13 127.38 76.67 27.96 67.12 49.56

Lever-LM 68.23 54.81 61.75 105.24 127.03 81.29 45.47 70.73 50.85
Ours 72.87 57.93 64.97 106.91 132.14 83.19 48.95 73.09 53.98

GPT-4V

RS 60.49 45.38 59.13 101.56 115.87 82.40 16.98 58.72 45.08
I2I - - - - - - - - -

IQ2IQ - - - - - - - - -
SQPR - - - - - - - - -

Lever-LM 65.31 54.62 65.73 106.34 126.98 84.81 45.62 60.31 48.34
Ours 65.16 56.17 68.89 107.29 129.71 83.96 51.48 64.17 50.59

Table 9: Detailed results of different methods across all tasks for the five LVLMs used in the evaluation, with
all generated sequences being 4-shot. The highest scores are highlighted in bold. Our model achieves the best
performance in all but three tasks, demonstrating its generalization and effectiveness.
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Ta VQAv2 MSCOCO Hatefulmemes Hybrid Fast CLEVR
(CLIP Encoder)
N/A 20.41 98.26 47.82 14.80 48.67 20.52
Adapter only 25.37 108.54 67.85 18.93 54.29 25.71
Fully training 47.57 114.46 76.29 37.43 63.49 43.22
Last two 42.63 114.25 73.18 28.91 62.13 39.27
Last three 46.81 114.79 75.60 35.91 63.72 42.18
(Gating Module)
+ Ternary gating 47.21 113.92 80.02 37.64 65.48 44.89
+ Binary gating 50.77 119.27 79.78 42.93 69.50 46.57

Table 10: Results of Ta-ICL with different input em-
bedding configurations. (CLIP Encoder) section shows
the results without adding gating modules under vari-
ous training methods for CLIP encoders. N/A indicates
no training or modification. (Gating Module) section
presents the results with two gating modules added on
top of the encoders trained with the method of training
the last three layers.

the two modalities for multimodal ICL. However,1527

Table 10 shows that the use of a ternary gating1528

mechanism to obtain more refined embeddings ac-1529

tually results in worse performance compared to1530

binary gating, likely due to insufficient parameter1531

capacity in Ta-ICL.1532

E.2 Instruction1533

Sections 2.2 and 5 highlight the importance of Inst1534

in improving multimodal ICL performance. How-1535

ever, as shown in Table 12, using the original em-1536

bedding of Inst to initialize TG degrades Ta-ICL1537

performance due to semantic redundancy from long1538

text embeddings, which can cause TG deviation1539

and hinder convergence.1540

We further investigated the effects of Inst’s1541

style and position. Two new styles were devel-1542

oped and placed at the beginning of the prompt,1543

while the CoT-style was also tested between the1544

ICDs and query sample, as well as at the end. De-1545

tails are provided in Appendix C.2. Table 12 shows1546

that Inst’s position has minimal impact, but its1547

style significantly affects performance, with the1548

CoT-style being the most effective. Moreover, as1549

discussed in Appendix E.2, Ta-ICL demonstrates1550

limited sensitivity to style changes, with the style’s1551

influence primarily arising from LVLMs. Thus,1552

Inst can be viewed as a special ICD, contributing1553

high-level local task mapping that integrates into1554

the LVLM’s global task mapping. Table 8 shows1555

that when the instruction used for TG initialization1556

and the one included in the prompt have differ-1557

ent styles, Ta-ICL demonstrates greater robustness.1558

Changes in the style of Inst′ not only result in1559

minimal performance degradation but also lead to1560

significantly smaller performance variations. In1561

contrast, for LVLMs, changes in Inst style cause1562

noticeable performance gaps and a clear preference 1563

for specific styles. This indicates that the perfor- 1564

mance fluctuations caused by Inst are primarily 1565

attributable to LVLMs rather than Ta-ICL itself. 1566

E.3 Generalization Test 1567

To demonstrate the generalization of Ta-ICL be- 1568

yond image-to-text tasks, we evaluate its perfor- 1569

mance on NLP and text-to-image tasks. We first use 1570

the latest LLM ICL benchmark, ICLEval’s (Chen 1571

et al., 2024a) Rule Learning part to construct a 1572

mixed-task NLP dataset and test it on Qwen-7B 1573

and LLaMA3-8B. For text-to-image tasks, we use 1574

the Fast Counting dataset from the VL-ICL Bench 1575

and test it on Emu2-Gen (Sun et al., 2024). The 1576

ICDs in both tasks can be represented as (Q,R). 1577

Results in Table 13 show that Ta-ICL consistently 1578

outperforms baselines across all tasks, highlight- 1579

ing its strong generalizability and wide application 1580

potential. 1581

For NLP evaluation, we utilize the Rule Learning 1582

part of the latest benchmark, ICLEval. ICLEval 1583

is designed to assess the ICL abilities of LLMs, 1584

focusing on two main sub-abilities: exact copying 1585

and rule learning. The Rule Learning part evaluates 1586

how well LLMs can derive and apply rules from 1587

examples in the context. This includes tasks such 1588

as format learning, where models must replicate 1589

and adapt formats from given examples, and order 1590

and statistics-based rule learning, where the model 1591

must discern and implement patterns such as item 1592

sequencing or handling duplications. These tasks 1593

challenge LLMs to go beyond language fluency, 1594

testing their ability to generalize from context in 1595

diverse scenarios. Examples of (Q,R) pairs can 1596

be found in Table 14. For all tasks, we use exact 1597

match scores to evaluate the predictions with the 1598

labels. 1599

For text-to-image evaluation, we utilize the Fast 1600

Counting task in the VL-ICL bench. In this task, 1601

artificial names are associated with the counts of 1602

objects in the image. The task is to generate an im- 1603

age that shows a given object in quantity associated 1604

with the keyword (e.g. perpo dogs where perpo 1605

means two). Thus, each Q is a two-word phrase 1606

such as ’perpo dogs’, and its corresponding R is an 1607

image of two dogs. 1608

The ICDs in both tasks can be represented as 1609

(Q,R). In NLP, both Q and R are text; in text-to- 1610

image, Q is text while R is an image. We simply 1611

need to adjust the embedding encoder and gating 1612

module accordingly. The baselines are RS, Q2Q 1613
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Experiment Type Position VizWiz MSCOCO Hatefulmemes Hybrid Fast CLEVR
None N/A

Table 11: Results for different instruction types and positions across various datasets.

Instruction VizWiz MSCOCO Hatefulmemes Hybrid Fast CLEVR
Beginning1 50.77 119.27 79.78 42.93 67.10 45.57
Inst′ → Inst 42.89 113.81 75.62 24.97 63.78 37.69
Beginning2 48.98 118.65 78.13 41.07 66.40 44.86
Beginning3 47.30 117.26 77.88 40.01 65.67 43.51
Middle 50.13 119.83 79.53 42.64 66.85 43.91
End 50.24 118.69 79.60 43.18 66.71 45.08

Table 12: Results of Ta-ICL with diverse instruc-
tion types. The highest scores are highlighted in bold.
Inst′ → Inst means using Inst during the initializa-
tion of TG.

Methods NLP text-to-image

Qwen-7B LLaMA3-8B Emu2-Gen
RS 0.26 0.30 43.67
Q2Q 0.46 0.54 47.83
QPR 0.45 0.56 49.06
Lever-LM 0.47 0.60 -
Ours 0.50 0.61 51.18

Table 13: Results of different ICL sequence configu-
ration methods in NLP and text-to-image tasks. Both
training and generated shots are set to 4. The highest
scores are highlighted in bold.

(Query-to-query), QPR (Query&pseudo-result),1614

and Lever-LM (not applicable to text-to-image).1615

E.4 Task Mapping Cohesion1616
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IQ2IQ Oracle Lever-LM Ta-ICL

Figure 9: Analysis of task mapping cohesion in n-shot
ICL sequences generated by different methods.

We again utilize the two metrics introduced in1617

Section 2.3, Disruption Gap (∆) and Order Sensi-1618

tivity (σ), to evaluate task mapping cohesion in ICL1619

sequences generated by Ta-ICL. Figure 9 shows1620

that Ta-ICL achieves the highest ∆ and lowest σ1621

across all shots. This not only indicates that Ta-1622

ICL-generated ICL sequences construct robust task1623

mappings effectively utilized by LVLMs but also1624

provides further evidence supporting the validity1625

of our task mapping framework. Notably, from the1626

results at shots 8 and 10, we observe that although1627

Ta-ICL’s training data is constructed by Oracle, it1628

overcomes the cohesion weakening caused by bias 1629

accumulation through task mapping augmentation. 1630
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Task Q R

Format rules
|Index|name|age|city|
|—|—|—|—|
|1|Elijah Morgan|36|Pittsburgh|

<person>
<name>Elijah Morgan</name>
<age>36</age>
<city>Pittsburgh</city>
</person>

Statistics rules

588 and 823 are friends.
885 and 823 are friends.
795 and 588 are friends.
890 and 823 are friends.
885 and 588 are friends.
890 and 588 are friends.
795 and 823 are friends.
Query: Who are the friends of 885?

823, 588

Order rules

Input: activity, brief, wonder, anger
Output: anger, wonder, activity, brief
Input: market, forever, will, curve
Output: curve, will, market, forever
Input: pain, leading, drag, shoot
Output: shoot, drag, pain, leading
Input: shopping, drama, care, start
Output:

start, care, shopping, drama

List Mapping

Input: [1, 3, 6, 1, 83]
Output: [3]
Input: [5, 6, 35, 3, 67, 41, 27, 82]
Output: [6, 35, 3, 67, 41]
Input: [8, 45, 6, 18, 94, 0, 1, 2, 7, 34]
Output: [45, 6, 18, 94, 0, 1, 2, 7]
Input: [2, 7, 66, 6, 93, 4, 47]
Output:

[7, 66]

Table 14: The examples of four Rule Learning tasks in ICLEval.
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