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Abstract

This paper presents a state representation framework for Markov decision processes1

(MDPs) that can be learned solely from state trajectories, requiring neither reward2

signals nor the actions executed by the agent. We propose learning the minimum3

action distance (MAD), defined as the minimum number of actions required to4

transition between states, as a fundamental metric that captures the underlying5

structure of an environment. MAD naturally enables critical downstream tasks6

such as goal-conditioned reinforcement learning and reward shaping by providing7

a dense, geometrically meaningful measure of progress. Our self-supervised8

learning approach constructs an embedding space where the distances between9

embedded state pairs correspond to their MAD, accommodating both symmetric10

and asymmetric approximations. We evaluate the framework on a comprehensive11

suite of environments with known MAD values, encompassing both deterministic12

and stochastic dynamics, as well as discrete and continuous state spaces, and13

environments with noisy observations. Empirical results demonstrate that the14

proposed approach not only efficiently learns accurate MAD representations across15

these diverse settings but also significantly outperforms existing state representation16

methods in terms of representation quality.17

1 Introduction18

In reinforcement learning (Sutton and Barto, 1998), an agent aims to learn useful behaviors through19

continuing interaction with its environment. Specifically, by observing the outcomes of its actions,20

a reinforcement learning agent learns over time how to select actions in order to maximize the21

expected cumulative reward it receives from its environment. An important need in applications of22

reinforcement learning is the ability to generalize, not only to previously unseen states, but also to23

variations of its environment that the agent has not previously interacted with.24

In many applications of reinforcement learning, it is useful to define a metric that measures the25

similarity of two states in the environment. Such a metric can be used, e.g., to define equivalence26

classes of states in order to accelerate learning, to decompose the problem into a hierarchy of smaller27

subproblems that are easier to solve, or to perform transfer learning in case the environment changes28

according to some parameters but retains part of the structure of the original environment. Such a29

metric can also be used as a heuristic in goal-conditioned reinforcement learning, in which the agent30

has to achieve different goals in the same environment.31

The Minimum Action Distance (MAD) has proved useful as a similarity metric, with applications32

in various areas of reinforcement learning, including policy learning (Wang et al., 2023; Park et al.,33

2023), reward shaping (Steccanella and Jonsson, 2022), and option discovery (Park et al., 2024a,b).34

While prior work has demonstrated the advantages of using MAD, how best to approximate it35

remains an open problem. Existing methods have not been systematically evaluated on their ability to36

approximate the MAD function itself, and many rely on symmetric approximations, even though the37

true MAD is inherently asymmetric.38
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We make three main contributions towards fast, accurate approximation of the MAD. First, we39

propose two novel algorithms for learning MAD using only state trajectories collected by an agent40

interacting with its environment. Unlike previous work, the proposed algorithms naturally support41

both symmetric and asymmetric distances, and incorporate both short- and long-term information42

about how distant two states are from one another. Secondly, we define a novel quasimetric distance43

function that is computationally efficient and that, in spite of its simplicity, outperforms more44

elaborate quasimetrics in the existing literature. Finally, we introduce a diverse suite of environments45

— including those with discrete and continuous state spaces, stochastic and deterministic dynamics,46

and directed and undirected transitions — in which the ground-truth MAD is known, enabling a47

systematic and controlled evaluation of different MAD approximation methods.48

Figure 1 illustrates the steps of MAD representation learning: an agent collects state trajectories from49

an unknown environment, which are used to learn a state embedding that implicitly defines a distance50

function between states.51

2 Related Work52

In applications such as goal-conditioned reinforcement learning (Ghosh et al., 2020) and stochastic53

shortest-path problems (Tarbouriech et al., 2021), the temporal distance is measured as the expected54

number of steps required to reach one state from another state under some policy. In contrast, the55

MAD is a lower bound on the number of steps, rather than an expectation. The main benefits are that56

the MAD is efficient to compute and invariant to changes in the transition probabilities as long as the57

support over next states remains the same, making it suitable for representation learning and transfer58

learning.59

Prior work has explored the connection between the MAD and optimal goal-conditioned value60

functions (Kaelbling, 1993). Park et al. (2023) highlight this connection and propose a hierarchical61

approach that improves distance estimates over long horizons. Park et al. (2024a) embed states into62

a learned latent space where the distance between embedded states directly reflects an on-policy63

measure of the temporal distance (Hartikainen et al., 2020). Park et al. (2024b) extend this to the64

offline setting, learning a Hilbert space embedding from arbitrary experience data such that Euclidean65

distances between state embeddings approximate the MAD. Steccanella and Jonsson (2022) Propose66

a method for learning a distance function that approximates the MAD, but relies on a symmetric67

distance metric, which limits its ability to capture directional structure in the environment.68

A common limitation of these existing approaches is that they lead to symmetric distance metrics,69

which cannot capture the asymmetry of the true MAD in environments with irreversible dynamics. In70

contrast, our proposed approach supports the use of asymmetric distance metrics (or, quasimetrics),71

which can better capture the directional structure in many environments.72

Prior work has also explored the use of quasimetrics in reinforcement learning. Wang et al. (2023)73

proposes a method for learning a distance function that approximates the MAD. Their formulation,74

similarly to our work, is based on the idea of preserving local structure while learning a global75

distance function. Unlike our proposed approach, however, their method does not leverage the76

existing distance along a trajectory as supervision for the learning process, and they rely on the use of77

Interval Quasimetric Embedding (IQE) (Wang and Isola, 2022) to learn the distance function.78

Similar to our work, Dadashi et al. (2021) learn embeddings and define a pseudometric between79

two states as the Euclidean distance between their embeddings. Unlike our work, an embedding is80

computed both for the state-action space and the state space, and the embeddings are trained using81

loss functions inspired by bisimulation.82

Prior work has also proposed the use of successor features (Dayan, 1993; Barreto et al., 2017) and83

time-contrastive representations (Eysenbach et al., 2022) as the basis for learning distance metrics.84

Myers et al. (2024) introduce time-contrastive successor features, defining a distance metric based on85

the difference between discounted future occupancies of state features learned via time-contrastive86

learning. While their metric satisfies the triangle inequality and naturally handles both stochasticity87

and asymmetry, the resulting distances reflect expected discounted state visitations under a specific88

behavior policy and lack an intuitive interpretation. In contrast, approaches that approximate the89

MAD are naturally interpretable as a lower bound on the number of actions needed to transition90

between two states.91
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Figure 1: Schematic overview of MAD representation learning. From left to right: (1) the hidden
environment graph, (2) trajectories collected by an unknown policy, (3) the embedding function
ϕ : S → R2 and (4) the resulting MAD embedding space in R2.

3 Background92

In this section, we introduce notation and concepts that are used throughout the paper. Given a93

finite set X , we use ∆(X ) = {p ∈ RX |
∑

x px = 1, px ≥ 0 (∀x)} to denote the probability94

simplex, i.e. the set of all probability distributions over X . A rectified linear unit (ReLU) is a function95

relu : Rd → Rd defined on any vector x ∈ Rd as relu(x) = max(0, x).96

Markov Decision Processes (MDPs). An MDP is a tupleM = ⟨S,A,R,P⟩, where S is the state97

space, A is the action space,R : S ×A → R is the reward function, and P : S ×A → ∆(S) is the98

transition kernel. At each time t, the learning agent observes a state st ∈ S , selects an action at ∈ A,99

receives a reward rt = R(st, at) and transitions to a new state st+1 ∼ P(st, at). The learning agent100

selects actions using a policy π : S → ∆(A), i.e. a mapping from states to probability distributions101

over actions. In our work, the state space S can be either discrete or continuous.102

Reinforcement learning (RL). RL is a family of algorithms whose purpose is to learn a policy π103

that maximizes some measure of expected future reward. In the present paper, however, we consider104

the problem of representation learning, and hence we are not directly concerned with the problem of105

learning a policy. Concretely, we wish to learn a distance function between pairs of states that can106

later be used by an RL agent to learn more efficiently. In this setting, we assume that the learning107

agent uses a behavior policy πb to collect trajectories. Since we are interested in learning a distance108

function over state pairs, actions are relevant only for determining possible transitions between states,109

and rewards are not relevant at all. Hence for our purposes a trajectory τ = (s0, s1, . . . , sn) is simply110

a sequence of states.111

4 The Minimum Action Distance.112

Given an MDP M = ⟨S,A,R,P⟩ and a state pair (s, s′) ∈ S2, the Minimum Action Distance113

dMAD(s, s
′), is defined as the minimum number of decision steps needed to transition from s to s′. In114

deterministic MDPs, the MAD is always realizable using an appropriate policy; in stochastic MDPs,115

the MAD is a lower bound on the actual number of decision steps of any policy. Let R ⊆ S2 be a116

relation such that (s, s′) ∈ R if and only if there exists an action a ∈ A that satisfies P(s′|s, a) > 0.117

Hence R contains all state pairs (s, s′) such that s′ is reachable in one step from s. We can formulate118

the problem of computing dMAD as a constrained optimization problem:119

dMAD = argmax
d

∑
(s,s′)∈S2

d(s, s′), (1)

s.t. d(s, s) = 0 ∀s ∈ S,
d(s, s′) ≤ 1 ∀(s, s′) ∈ R,

d(s, s′) ≤ d(s, s′′) + d(s′′, s′) ∀(s, s′, s′′) ∈ S3.

It is straightforward to show that dMAD is the unique solution to equation 1. Concretely, dMAD satisfies120

the second constraint with equality, i.e. d(s, s′) = 1 for all (s, s′) ∈ R. If the state space S is finite,121

the constrained optimization problem is precisely the linear programming formulation of the all-pairs122

shortest path problem for the graph (S, R) with edge costs 1. This graph is itself a determinization of123

the MDPM (Yoon et al., 2007). In this case we can compute dMAD exactly using the well-known124

Floyd-Warshall algorithm (Floyd, 1962; Warshall, 1962). If the state space S is continuous, R is still125
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well-defined, and hence there still exists a solution which satisfies d(s, s′) = 1 for all (s, s′) ∈ R126

even though the states can no longer be enumerated.127

An alternative to the MAD is to compute the stochastic shortest path (SSP) (Tarbouriech et al.,128

2021) between each pair of states. However, the linear programming formulation of the all-pairs129

SSP problem involves transition probabilities, which makes the constrained optimization problem130

significantly harder to solve. In deterministic MDPs, MAD and SSP are equivalent. In stochastic131

MDPs, SSP provides a better distance estimate than MAD when some transitions have very small132

probabilities; however, in many domains, MAD is still a good approximation, e.g. in navigation133

problems and when using sticky actions. Moreover, the MAD is invariant to changes in the transition134

probabilities as long as the support of the transition probabilities remain the same, making it especially135

useful for transfer learning. As already mentioned, the MAD has proven useful in various applications136

in previous work (Wang et al., 2023; Park et al., 2023; Steccanella and Jonsson, 2022; Park et al.,137

2024a,b).138

Even when the state space S is finite, we may not have explicit knowledge of the relation R. In139

addition, the time complexity of the Floyd-Warshall algorithm is O(|S|3), and the number of states140

may be too large to run the algorithm in practice. If the state space S is continuous, then we cannot141

even explicitly form a graph (S, R). Hence we are interested in estimating dMAD in the setting for142

which we can access trajectories only through sampling. For this purpose, let us assume that the143

learning agent uses a behavior policy πb to collect a dataset of trajectories D = {τ1, . . . , τk}. Define144

SD ⊆ S as the subset of states that appear on any trajectory in D. Given a trajectory τ = {s0, ..., sn}145

and any two states si and sj on the trajectory such that 0 ≤ i < j ≤ n, it is easy to see that j − i146

is an upper bound on dMAD(si, sj), since sj is reachable in j − i steps from si on the trajectory τ .147

By an abuse of notation, we often write (si, sj) ∈ τ to refer to a state pair on the trajectory τ with148

indices i and j such that i < j, and we write (si, sj) ∼ τ in order to sample two such states from τ .149

Steccanella and Jonsson (2022) learn a parameterized state embedding ϕθ : S → Rd and define a150

distance function dθ(s, s
′) = d(ϕθ(s), ϕθ(s

′)), where d is any distance metric in Cartesian space.151

The parameter vector θ of the state embedding is learned by minimizing the loss function152

L = Eτ∼D,(si,sj)∼τ

[
(dθ(si, sj)− (j − i))2 + wc · relu(dθ(si, sj)− (j − i))2

]
, (2)

where wc > 0 is a regularization factor that multiplies a penalty term which substitutes the upper153

bound constraints dθ(si, sj) ≤ j − i. If the distance metric d satisfies the triangle inequality (e.g. any154

norm d = || · ||p) then the constraints dθ(s, s) = 0 and the triangle inequality automatically hold.155

Enforcing the constraint dθ(si, sj) ≤ j − i for each state pair (si, sj) on trajectories, rather than only156

consecutive pairs, helps learn better distance estimates, at the cost of a larger number of constraints.157

5 Asymmetric Distance Metrics.158

A limitation of previous work is that the chosen distance metric d is symmetric, while the MAD dMAD159

may not be symmetric. In this section, we review several asymmetric distance metrics. Concretely, a160

quasimetric is a function dq : Rd × Rd → R+ that satisfies the following three conditions:161

• Q1 (Identity): dq(x, x) = 0.162

• Q2 (Non-negativity): dq(x, y) ≥ 0.163

• Q3 (Triangle inequality): dq(x, z) ≤ dq(x, y) + dq(y, z).164

A quasimetric does not require symmetry, i.e. dq(x, y) = dq(y, x) does not hold in general.165

We define a simple quasimetric dsimple using rectified linear units:166

dsimple(x, y) = αmax(relu(x− y)) + (1− α)
1

d

d∑
i

relu(xi − yi). (3)

This metric is a weighted average of the maximum and average positive difference between the167

vectors x and y along any dimension, where α ∈ [0, 1] is a weight. In Appendix A, we show that168

dsimple satisfies the triangle inequality and latent positive homogeneity (Wang and Isola, 2022).169

The Wide Norm quasimetric (Pitis et al., 2020), dWN, applies a learned transformation to an asym-170

metric representation of the difference between two states. The Wide Norm is defined as171

dWN(x, y) = ||W (relu(x− y) :: relu(y − x))||2,
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where “::” denotes concatenation and W ∈ Rk×2d is a learned weight matrix. This ensures that172

dWN(x, y) is non-negative and satisfies the triangle inequality, while concatenation is asymmetric.173

The Interval Quasimetric Embedding (IQE) (Wang and Isola, 2022) leverages the Lebesgue measure174

of interval unions to capture asymmetric distances. Rather than vectors, IQE is defined on matrices175

X,Y ∈ Rk×m. Let xij denote the element in row i and column j of matrix X . For each row i, we176

construct an interval by taking the union over the intervals defined by matrices X and Y :177

Ii(X,Y ) =

m⋃
j=1

[xij , max{xij , yij}] .

The length of this interval, denoted by Li(X,Y ), is computed as its Lebesgue measure. The IQE178

distance is obtained by aggregating these row-wise lengths. For example, one may define179

dIQE(X,Y ) =

k∑
i=1

Li(X,Y ),

or, alternatively, using a maxmean reduction:180

dIQE-mm(X,Y ) = α max
1≤i≤k

Li(X,Y ) + (1− α)
1

k

k∑
i=1

Li(X,Y ),

where α ∈ [0, 1] balances the influence of the maximum and the average. This construction yields a181

quasimetric that inherently respects the triangle inequality while accounting for directional differences182

between the matrices X and Y .183

Given any of the above quasimetrics dq (i.e. dsimple, dWN or dIQE), we can now define an asymmetric184

distance function dθ(s, s
′) = dq(ϕθ(s), ϕθ(s

′)). In the case of dIQE, the state embedding ϕ : S →185

Rk×m has to produce a matrix rather than a vector. The choice of quasimetric directly shapes the186

trade-offs in computational cost and optimization dynamics. In Appendix C, we present an ablation187

study examining how this choice affects our algorithms.188

6 Learning Asymmetric MAD Estimates189

In this section we propose two novel variants of the MAD learning approach, each training an state190

encoding ϕθ that maps states to an embedding space, and using a quasimetric dq to compute distances191

dθ(s, s
′) = dq(ϕθ(s), ϕθ(s

′)) between state pairs (s, s′). Both variants support any quasimetric192

formulation such as dsimple, dWN and dIQE, and can incorporate additional features such as gradient193

clipping.194

6.1 MadDist: Direct Distance Learning195

The first algorithm, which we call MadDist, learns state distances using an approach similar to prior196

work Steccanella and Jonsson (2022), but differs in the use of a quasimetric distance function and a197

scale-invariant loss. Concretely, MadDist minimizes the following composite loss function:198

L = Lo + wrLr + wcLc. (4)

The main objective, Lo, is a scaled version of the square difference in equation 2:199

Lo = Eτ∼D,(si,sj)∼τ

[(
dθ(si, sj)

j − i
− 1

)2
]
. (5)

Crucially, scaling makes the loss invariant to the magnitude of the estimation error, which typically200

increases as a function of j − i. In other words, states that are further apart on a trajectory do not201

necessarily dominate the loss simply because the magnitude of the estimation error is larger.202

The second loss term, Lr, which is weighted by a factor wr > 0, is a contrastive loss that encourages203

separation between state pairs randomly sampled from all trajectories:204

Lr = E(s,s′)∼SD

[
relu

(
1− dθ(s, s

′)

dmax

)2
]

(6)
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where dmax is a hyperparameter. Finally, the loss term Lc, which is weighted by a factor wc > 0,205

enforces the upper bound constraints. Specifically, let D≤Hc denote the set of state pairs sampled206

from trajectories in D such that the index difference satisfies 1 ≤ j − i ≤ Hc, i.e.207

D≤Hc
= {(si, sj) | τ ∈ D, si, sj ∈ τ, 1 ≤ j − i ≤ Hc} .

Then, the constraint loss is defined as:208

Lc = E(si,sj)∼D≤Hc

[
relu (dθ(si, sj)− (j − i))

2
]
. (7)

where Hc is a hyperparameter.209

6.2 TDMadDist: Temporal Difference Learning210

The second algorithm, which we call TDMadDist, incorporates temporal difference learning principles211

by maintaining a separate target embedding ϕθ′ and learning via bootstrapped targets. Specifically,212

TDMadDist learns by minimizing the loss function L′ = L′
o + wrL′

r + wcLc, where Lc is the loss213

term from equation 7 that enforces the upper bound constraints.214

The main objective L′
o of TDMadDist is modified to include bootstrapped distances:215

L′
o = Eτ∼D,(si,sj)∼τ

[(
dθ(si, sj)

min(j − i, 1 + dθ′(si+1, sj))
− 1

)2
]
. (8)

Hence if the current distance estimate dθ′(si+1, sj) computed using the target embedding ϕθ′ is216

smaller than j − (i+ 1), the objective is to make dθ(si, sj) equal to 1 + dθ′(si+1, sj).217

We also modify the second loss term L′
r to include bootstrapped distances:218

L′
r = Eτ∼D,(si,sj)∼τ,sr∼SD

[(
dθ(si, sr)

1 + dθ′(si+1, sr)
− 1

)2
]
. (9)

Given a state si sampled from a trajectory of D and a random state sr ∈ SD, the objective is to make219

dθ(si, sr) equal to 1 + dθ′(si+1, sr).220

The target network parameters θ′ are updated in each time step via an exponential moving average:221

θ′ ← (1− β)θ′ + βθ, (10)

where β ∈ (0, 1) is a hyperparameter.222

7 Experiments223

We evaluate our proposed MAD learning algorithms on a diverse set of environments with varying224

characteristics, including deterministic and stochastic dynamics, discrete and continuous state spaces,225

and environments with noisy observations. Our experiments are designed to address the following226

questions:227

• How accurately do our learned embeddings capture the true minimum action distances?228

• How does the performance of our method compare to existing quasimetric learning approaches?229

• How robust is our approach to environmental stochasticity and observation noise?230

Evaluation Metrics. We evaluate the quality of our learned representations using three metrics:231

• Spearman Correlation (ρ): Measures the preservation of ranking relationships between state232

pairs. A high Spearman correlation indicates that if state si is farther from state sj than from233

state sk in the true environment, our learned metric also predicts this same ordering. Perfect234

preservation of distance rankings gives ρ = 1.235

• Pearson Correlation (r): Measures the linear relationship between predicted and true distances.236

A high Pearson correlation indicates that our learned distances scale proportionally with true237

distances - when true distances increase, our predictions increase linearly as well. Perfect linear238

correlation gives r = 1.239
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Figure 2: The environments used in our analysis.

• Ratio Coefficient of Variation (CV): Measures the consistency of our distance scaling across240

different state pairs. A low CV indicates that our predicted distances maintain a consistent ratio241

to true distances throughout the state space. For example, if we consistently predict distances242

that are approximately 1.5 times the true distance, CV will be low. High variation in this ratio243

across different state pairs results in high CV. More formally, given a set of ground truth distances244

d1, d2, ..., dn and their corresponding predicted distances d̂1, d̂2, ..., d̂n where di > 0, we compute245

the ratios ri = d̂i/di. The Ratio CV is given by246

CV =
σr

µr
=

√
1
n

∑n
i=1(ri − µr)2

1
n

∑n
i=1 ri

, (11)

Baselines. We compare our methods against QRL (Wang et al., 2023), a recent quasimetric reinforce-247

ment learning approach that learns state representations using the Interval Quasimetric Embedding248

(IQE) formulation. QRL employs a Lagrangian optimization scheme where the objective maximizes249

the distance between states while maintaining locality constraints.250

We also compare against the approach by Park et al. (2024b), an offline reinforcement learning251

method that embeds states into a learned Hilbert space. In this space, the distance between embedded252

states approximates the MAD, leading to a symmetric distance metric that cannot capture the natural253

asymmetry of the true MAD. We include this comparison to demonstrate the benefits of methods that254

explicitly model the quasimetric nature of the MAD over those that do not.255

Environments. To evaluate the proposed methods, we designed a suite of environments where the256

true MAD is known, enabling a precise quantitative assessment of our learned representations. This257

perfect knowledge of the ground truth distances allows us to rigorously evaluate how well different258

algorithms recover the underlying structure of the environment. The environments are illustrated in259

Figure 2, with full details provided in Appendix D.260

Our test environments span a comprehensive range of MDP characteristics:261

• NoisyGridWorld: A continuous grid world environment with stochastic transitions. The agent262

can move in four cardinal directions, but the action may fail with a small probability, causing the263

agent to remain in the same state. The initial state is random and the goal is to reach a target state.264

The MAD is known and can be computed as the Manhattan distance between states. Moreover we265

included random noise in the observations by extending the state (x, y) with a random vector of266

size two resulting in a 4-dimensional state space, where the first two dimensions are the original267

coordinates and the last two dimensions correspond to noise.268

• KeyDoorGridWorld: A discrete grid world environment where the agent must find a key to269

unlock a door. The agent can move in four cardinal directions and the state (x, y, k) is represented270

by the agent’s position (x, y) and whether or not it has the key (k). The MAD is known and can271

be computed as the Manhattan distance between states where the distance between a state without272
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the key and a state with the key is the sum of the distances to the key. The key can only be picked273

up and never dropped creating a strong asymmetry in the distance function.274

• CliffWalking: The original CliffWalking environment as described by Sutton and Barto (1998).275

The agent starts at the leftmost state and must reach the rightmost state while avoiding falling off276

the cliff. If the agent falls it returns to the starting state but the episode is not reset. This creates a277

strong asymmetry in the distance function, as the agent can take the shortcut by falling off the278

cliff to move between states.279

• PointMaze: A continuous maze environment where the agent must navigate through a series280

of walls to reach a goal (Fu et al., 2020). The task in the environment is for a 2-DoF ball that281

is force-actuated in the Cartesian directions x and y, to reach a target goal in a closed maze.282

The underlying maze is a 2D grid with walls and obstacles, that we use in our experiments to283

approximate the ground truth MAD, by computing the all pairs shortest path using the Floyd-284

Warshall algorithm over the maze graph. We consider two variants of this environment: UMaze285

and MediumMaze.286

Empirical Setup. We compared our two algorithms MADDist (MAD) and TDMADDist (TDMAD)287

against the QRL and Hilbert baselines. Each method was trained for 50,000 gradient steps on an288

offline dataset gathered by a random policy. For the CliffWalking, NoisyGridWorld, and KeyDoor289

environments, we used 100 trajectories; for the PointMaze environments, we increased this to 1000290

trajectories. All reported results are averages over five independent runs (random seeds) to ensure291

statistical robustness. For full implementation details of our evaluation setup, see Appendix B.292

Figure 3 reports, for each algorithm and environment, the Pearson correlation and coefficient of293

variation (CV) ratio. We found that Spearman correlations closely match the Pearson results; these294

are included for completeness in Appendix C, alongside additional ablation studies. The complete295

codebase for reproducing our experiments will be made public upon acceptance of this paper.296

Discussion. From the results in Figure 3, we can see that our proposed methods outperform the QRL297

and Hilbert baselines in all environments, being able to learn a more accurate approximation of the298

MAD. This is especially evident in the PointMaze and MediumMaze environments, characterized by a299

large number of states and a complex structure that makes it hard for a simple random policy to explore300

the environment accurately. In these environments, QRL fails to learn a good approximation of the301

MAD, producing smaller values for the Spearman and Pearson correlation metrics and higher values302

for the Ratio CV metric. This is likely due to the fact that QRL only uses the locality constraints to303

learn the embeddings, while our methods take advantage of the information contained in the trajectory304

distances to learn a more accurate approximation of the MAD. The Hilbert baseline performs poorly305

in highly asymmetric environments like CliffWalking and KeyDoorGridWorld because its symmetric306

distance formulation cannot capture the directional properties of the MAD.307

8 Conclusion308

In this paper, we present two novel algorithms for learning the Minimum Action Distance (MAD)309

from state trajectories. We also propose a novel quasimetric for learning asymmetric distance310

estimates, and introduce a set of benchmark domains that model several aspects that make distance311

learning difficult. In a controlled set of experiments we illustrate that the novel algorithms and312

proposed quasimetric outperform state-of-the-art algorithms for learning the MAD.313

While this work has concentrated on accurately approximating the MAD as a fundamental stepping314

stone, it opens several promising avenues for future research. First, we will investigate the use of315

MAD estimates in transfer learning and non-stationary environments, where transition dynamics316

evolve over time yet maintain a consistent support. On the same line, we are interested in exploring317

integrating the MAD as a heuristic in search algorithms, particularly in stochastic domains, to identify318

the properties that make it a robust and informative guidance signal under uncertainty. Having319

established reliable MAD approximation, we will assess its incorporation into downstream tasks,320

including goal-conditioned planning and reinforcement learning, to quantify the empirical benefits it321

brings to complex decision-making problems.322

Finally, while MAD can serve as a useful heuristic even in stochastic environments, future work323

will explore whether it is possible to recover the Shortest Path Distance (SPD) or identify alternative324

quasimetrics that more closely align with it.325
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Figure 3: Pearson correlation coefficients and coefficient of variation (CV) ratios across test envi-
ronments. Shaded regions show the range of values across five random seeds, with upper and lower
boundaries representing maximum and minimum values.
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A Quasimetric Constructions via ReLU Reduction406

Let x, y ∈ Rd. We begin by defining a ReLU-based coordinate reduction, then derive scalar407

quasimetrics through several aggregation operators, and finally state general results for convex408

combinations.409

A.1 Coordinatewise ReLU Reduction410

Definition 1 (ReLU Reduction). Define the map r : Rd × Rd → Rd by411

r(x, y) = relu(x− y), ri(x, y) = max
{
xi − yi, 0

}
, i = 1, . . . , d.

Proposition 1. For all x, y, z ∈ Rd and λ > 0, each coordinate ri satisfies:412

(a) Nonnegativity and identity: ri(x, y) ≥ 0 and ri(x, x) = 0.413

(b) Asymmetry: ri(x, y) ̸= ri(y, x) unless xi = yi.414

(c) Triangle inequality: ri(x, y) ≤ ri(x, z) + ri(z, y).415

(d) Positive homogeneity: ri(λx, λy) = λ ri(x, y).416

Proof. (a) and (b) follow directly from the definition of the max operation.417

(c) Observe that418

ri(x, y) = max(xi − yi, 0) = max
(
(xi − zi) + (zi − yi), 0

)
≤ max(xi − zi, 0) + max(zi − yi, 0) = ri(x, z) + ri(z, y).

(d) Linearity of scalar multiplication inside the max gives419

ri(λx, λy) = max(λxi − λyi, 0) = λmax(xi − yi, 0) = λri(x, y).

This concludes the proof.420

A.2 Scalar Quasimetrics via Aggregation421

We now obtain real-valued quasimetrics by aggregating the vector r(x, y).422

Definition 2 (Max Reduction).

dmax(x, y) = max
1≤i≤d

ri(x, y).

Definition 3 (Sum and Mean Reductions).

dsum(x, y) =

d∑
i=1

ri(x, y), dmean(x, y) =
1
d

d∑
i=1

ri(x, y).

Proposition 2. Each of dmax, dsum, and dmean satisfies for all x, y, z ∈ Rd and λ > 0:423

(a) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).424

(b) Positive homogeneity: d(λx, λy) = λ d(x, y).425

Proof. (a) follows by combining coordinate-wise triangle bounds with either:426

• dmax : maxi[ai + bi] ≤ maxi ai +maxi bi,427

• dsum and dmean: term-wise summation.428

(b) is immediate from the linearity of scalar multiplication and properties of max/sum.429
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A.3 Convex Combinations of Quasimetrics430

More generally, let d1, . . . , dn be any quasimetrics on Rd each obeying the triangle inequality and431

positive homogeneity. For weights α1, . . . , αn ≥ 0 with
∑

k αk = 1, define432

dconv(x, y) =

n∑
k=1

αk dk(x, y).

Proposition 3. dconv is a quasimetric satisfying:433

(a) Triangle inequality: dconv(x, y) ≤ dconv(x, z) + dconv(z, y).434

(b) Positive homogeneity: dconv(λx, λy) = λ dconv(x, y).435

Proof. Linearity of the weighted sum together with the corresponding property for each dk yields436

(a)–(b) immediately.437

B Implementation Details438

In this section, we describe the implementation details of each algorithm included in our evaluation.439

B.1 Computer Resources440

We run all experiments on a single NVIDIA RTX 4070 GPU with 8GB of VRAM and an Intel441

i7-4700-HX with 32GB of RAM. We will provide the code for all experiments upon acceptance of442

the paper.443

B.2 MAD444

To train the MAD distance models, we used the Adam optimizer with a learning rate of 1× 10−4, a445

batch size of 256 for the objective (Lo, Lr), and a separate batch of size 1024 for the constraint loss446

(Lc). For our main experiment, we used the novel simple quasimetric function and a latent dimension447

size of 128. We include an ablation over different quasimetric functions and latent dimension sizes in448

Appendix C.449

The full set of hyperparameter values used to train the MAD models can be found in Table 1.450

Table 1: Hyperparameters used to train the MAD algorithm.
Hyperparameter Value
Quasimetric Function dsimple

Optimizer Adam Kingma and Ba (2015)
Learning Rate 1 ×10−4

Batch Size (Lo, Lr) 128
Batch Size (Lc) 1024
Activation Function (Hidden Layers) LeakyReLU Maas et al. (2013)
Neural Network (512, 256, 128) + residual blocks He et al. (2016)
wr 0.5
wc 0.1
dmax 100
Hc 6

B.3 TDMAD451

To train the TDMAD distance models, we used the the Adam optimizer with a learning rate of452

1 × 10−4, a batch size of 256 for the objective (Lo, Lr), and a separate batch of size 1024 for the453

constraint loss (Lc). For our main experiment, we used the novel simple quasimetric function and a454

latent dimension size of 128. We include an ablation over different quasimetric functions and latent455

dimension sizes in Appendix C.456
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For TDMAD, we remove the hyperparameter dmax from the MAD algorithm, because it is not457

included in TDMAD’s objective (Lr). The temporal-difference update used when training the458

TDMAD distance models involves the use of a target network, dθ′ , which is updated using a Polyak459

averaging factor τ = 0.005.460

The full set of hyperparameter values used to train the TDMAD models can be found in Table 2.461

Table 2: Hyperparameters used to train the TDMAD algorithm.
Hyperparameter Value
Quasimetric Function dsimple

Optimizer Adam Kingma and Ba (2015)
Learning Rate 1 ×10−4

Batch Size (Lo, Lr) 128
Batch Size (Lc) 1024
Activation Function (Hidden Layers) LeakyReLU Maas et al. (2013)
Neural Network (512, 256, 128) + residual blocks He et al. (2016)
wr 1
wc 0.1
Hc 6
τ 0.005

B.4 QRL462

We trained QRL distance models following the approach of Wang et al. (2023). We used the463

Lagrangian formulation464

min
θ

max
λ≥0
−Es,s′∼SD

[ϕ(dIQE
θ (s, s′))] + λ

(
E(s,s′)∼ptransition [relu(dIQE

θ (s, s′) + 1)2]
)
, (12)

where ϕ(x) ≜ − softplus(15 − x, β = 0.1) is the softplus function with a steepness of 0.1, and465

dIQE
θ (s, s′) is the IQE distance between states s and s′. The first term in the objective maximizes the466

expected distance between states sampled from the dataset, while the second term penalizes distances467

between state–next-state pairs (s, s′) observed in the data.468

Through our experiments, we observed that setting the softplus offset to 15 and the steepness to 0.1,469

as suggested for short-horizon environments by Wang et al. (2023), led to better performance overall.470

For the neural network architecture, we used a multi-layer perceptron with an overall layer structure471

of x - 512 - 512 - 128 (where x is the input observation dimension). Its two hidden layers (each of size472

512) use ReLU activations, as described for state-based observations environments (i.e., environments473

with real vector observations, as opposed to images or other high-dimensional inputs) in the original474

paper. For the distance function, the resulting 128-dimensional MLP output is fed into a separate475

128-512-2048 projector, followed by an IQE-maxmean head with 64 components each of size 32.476

The full set of hyperparameter values used to train the QRL distance models can be found in Table 3.477

Table 3: Hyperparameters used to train the QRL model.
Hyperparameter Value
Neural Network State embedding x - 512 - 512 - 128
Neural Network IQE Projector 128-512-2048
Activation Function (Hidden Layers) ReLU Glorot et al. (2011)
Optimizer Adam Kingma and Ba (2015)
λ Learning Rate 0.01
Learning Rate Model 1 ×10−4

Batch Size 256
Quasimetric function IQE
IQE n components 64
IQE Reduction maxmean
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B.5 Hilbert Representation478

A Hilbert representation model is a function ϕ : S → Rd that embeds a state s ∈ S into a d-479

dimensional space, such that the Euclidean distance between embedded states approximates the480

number of actions required to transition between them under the optimal policy.481

We trained Hilbert representation models following the approach of Park et al. (2024b), us-482

ing action-free Implicit Q-Learning (IQL) (Park et al., 2023) and Hindsight Experience Re-483

play (HER) (Andrychowicz et al., 2017).484

We used a dataset of state–next-state pairs (s, s′), which we relabeled using HER to produce state–485

next-state–goal tuples (s, s′, g). Goals were sampled from a geometric distribution Geom(γ) over486

future states in the same trajectory with probability 0.625, and uniformly from the entire dataset with487

probability 0.375.488

We trained the Hilbert representation model ϕ to minimize the temporal-difference loss489

E[lτ (−1(s ̸= g)− γ||ϕ(s′)− ϕ(g)||+ ||ϕ(s)− ϕ(g)||)] , (13)

where lτ denotes the expectile loss (Newey and Powell, 1987), an asymmetric loss function that490

approximates the max operator in the Bellman backup (Kostrikov et al., 2022). This objective491

naturally supports the use of target networks (Mnih et al., 2015) and double estimators (Van Hasselt492

et al., 2016) to improve learning stability. We included both in our implementation, following the493

original setup used by Park et al. (2024b).494

The full set of hyperparameter values used to train the Hilbert models can be found in Table 4.495

Table 4: Hyperparameters used to train the Hilbert representation models.
Hyperparameter Value
Latent Dimension 32
Expectile 0.9
Discount Factor 0.99
Learning Rate 0.0003
Target Network Smoothing Factor 0.005
Multi-Layer Perceptron Dimensions (512, 512) Fully-Connected Layers
Activation Function (Hidden Layers) GELU (Hendrycks and Gimpel, 2016)
Layer Normalization (Hidden Layers) True
Activation Function (Final Layer) Identity
Layer Normalization (Final Layer) False
Optimizer Adam (Kingma and Ba, 2015)
Batch Size 1024
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C Ablation Study496

In this section, we present additional ablation studies to analyze the performance of our proposed497

methods. We evaluate the impact of different hyperparameters and design choices on the performance498

of the learned embeddings.499

We conduct experiments in the CliffWalking environment, which is a highly asymmetric environment500

with a known ground truth MAD. For each experiment we train the MAD algorithm using the501

same hyperparameters from the main experiments, varying only the hyperparameter of interest whil502

ekeeping all others fixed. We then evaluate the learned embeddings using Spearman correlation,503

Pearson correlation, and Ratio CV metrics.504

C.1 Effect of Latent Dimension on MAD Accuracy505

Figure 4: Impact of latent size on Spearman correlation, Pearson correlation and Ratio CV of the
MAD and TDMAD algorithms, evaluated in the CliffWalking environment. Shaded regions show the
range of values across five random seeds, with upper and lower boundaries representing maximum
and minimum values.

Figure 4 shows the impact of the latent dimension size on the performance of our proposed methods.506

We can see that increasing the latent dimension size improves the performance of our methods.507

We note that the performance starts to saturate after a latent dimension size of 10, but larger latent508

dimension sizes still slightly improve the performance and do not harm the performance. This is509

likely due to the fact that larger latent dimension sizes allow for more expressive representations,510

which can help to better capture the underlying structure of the environment.511

C.2 Effect of Quasimetric Choice on MAD Accuracy512

Figure 5: Impact of different quasimetric functions on correlation and Ratio CV of the MAD
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

Figure 5 shows the impact of different quasimetric functions on the performance of the learned MAD513

model. The novel simple quasimetric (MAD-Simple) achieves the best performance, outperforming514

both the Wide Norm (MAD-WideNorm) and IQE (MAD-IQE) variants. While Wide Norm and IQE515

perform similarly to each other, they consistently underperform the simple quasimetric across all516

three evaluation metrics.517

Figure 6 presents the same ablation over quasimetric functions, now applied to learning the TDMAD518

model. The results mirror the previous setting: the simple quasimetric (TD-MAD-Simple) again519

achieves the strongest performance, while the Wide Norm (TD-MAD-WideNorm) and IQE (TD-520

MAD-IQE) variants lag slightly behind and show comparable results to each other.521
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Figure 6: Impact of different quasimetric functions on correlation and Ratio CV of the TDMAD
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

In this experiment, we used a latent dimension size of 256. For the Wide Norm quasimetric, we522

configure the model with 32 components, each having an output component size of 32. For the IQE523

quasimetric, we set each component to have a dimensionality of 16. For both quasimetric functions524

we use maxmean reduction (Pitis et al., 2020).525

C.3 Effect of Dataset Size on MAD Accuracy526

Figure 7: Impact of dataset size on Spearman correlation, Pearson correlation and Ratio CV of the
MAD and TDMAD algorithms, evaluated in the CliffWalking environment. Shaded regions show the
range of values across five random seeds, with upper and lower boundaries representing maximum
and minimum values.

Figure 7 illustrates how dataset size affects the performance of our proposed methods. As the number527

of trajectories increases, the dataset provides broader coverage of all the possible transitions in the528

environment, leading to a more accurate approximation of the MAD.529

C.4 Complete list of results530

In this section we report the complete list of results including the Spearman Correlation metric, and531

contrast them with the Pearson Correlation for reference. The results appear in Figure 8.532
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Figure 8: Spearman correlation and Pearson correlation coefficients across test environments. Shaded
regions show the range of values across five random seeds, with upper and lower boundaries repre-
senting maximum and minimum values.
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D Environments533

Our test environments were specifically chosen to span a comprehensive range of reward-free MDP534

characteristics and challenges, ensuring a thorough evaluation. Key design considerations for this535

suite include:536

• Noisy Observations: To assess robustness to imperfect state information, which can challenge537

algorithms relying on precise state identification.538

• Stochastic Dynamics: To evaluate if our algorithm can retrieve the MAD even when transitions539

are not deterministic. This reflects real-world scenarios where environments have inherent540

randomness or agent actions have uncertain outcomes.541

• Asymmetric: To test the capability of our algorithm to learn true quasimetric distances that capture542

directional dependencies (e.g., one-way paths, key-door mechanisms).543

• State Spaces:544

– Continuous State Spaces: To demonstrate applicability to problems with real-valued state545

representations where function approximation is essential.546

– Discrete State Spaces: To provide foundational testbeds with clearly defined structures and547

allow for exact MAD computation.548

• Action Spaces:549

– Continuous Action Spaces: To evaluate performance in environments where actions are550

defined by real-valued parameters, common in robotics and physical control tasks.551

– Discrete Action Spaces: To ensure applicability to environments with a finite set of distinct552

actions.553

• Complex Dynamics: Incorporating environments like PointMaze, which feature non-trivial physics554

(velocity, acceleration).555

• Hard Exploration: Utilizing environments with complex structures (e.g., intricate mazes) that556

pose significant exploration challenges for naive data collection policies (like the random policy557

we used in our experiments).558

NoisyGridWorld559

Noisy Observations, Stochastic Dynamics, Continuous State Space, Discrete Action Space560

• State space: The agent receives a 4-dimensional observation vector (x, y, n1, n2)at each step. In561

this observation, (x, y) are discrete coordinates in a 13× 13 grid, and (n1, n2) ∼ N (0, σ2I) are562

i.i.d. Gaussian noise components. The true underlying latent state, which is not directly observed563

by the agent in its entirety without noise, is the coordinate pair (x, y). The presence of the noise564

components (n1, n2) in the observation makes the sequence of observations non-Markovian with565

respect to this true latent state.566

• Action space: Four stochastic actions are available in all states: UP, DOWN, LEFT, and RIGHT.567

• Transition dynamics: With probability 0.5, the intended action is executed; with probability 0.5,568

a random action is applied. Transitions are clipped at grid boundaries.569

• Initial state distribution (µ0): The agent’s initial true latent state (x0, y0) is a random real-valued570

position sampled uniformly from the grid. The full initial observation is (x0, y0, n1,0, n2,0), where571

the initial noise components (n1,0, n2,0) are also sampled i.i.d. from N (0, σ2I). The real-valued572

nature of both the initial position and the noise components makes the observed state space573

continuous.574

• Ground-truth MAD: Since the latent state is deterministic apart from noise, the MAD between575

two states (x1, y1) and (x2, y2) is the Manhattan distance |x1−x2|+ |y1−y2|. Noise components576

are ignored.577
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KeyDoorGridWorld578

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space579

• State space: States are triples (x, y, k), where (x, y) is the agent’s position in a 13× 13 grid, and580

k ∈ {0, 1} indicates whether the key has been collected.581

• Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, and RIGHT.582

• Transition dynamics: Transitions are deterministic. The agent picks up the key by visiting the583

key’s cell; the key cannot be dropped once collected. The door can only be passed if the key has584

been collected.585

• Initial state distribution (µ0): The agent starts at position (1, 1).586

• Ground-truth MAD: Defined as the minimum number of steps to reach the target state, account-587

ing for key dependencies. For example, if the agent lacks the key and the goal requires it, the path588

must include visiting the key first.589

CliffWalking590

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space591

• State space: The environment is a 4× 12 grid. Each state corresponds to a discrete cell (x, y).592

• Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, or RIGHT.593

• Transition dynamics: Transitions are deterministic unless the agent steps into a cliff cell, in594

which case it is returned to the start. The episode is not reset.595

• Initial state distribution (µ0): The agent starts at position (1, 1).596

• Ground-truth MAD: The MAD is the minimal number of steps required to reach the target state,597

allowing for cliff transitions. Since falling into the cliff resets the agent’s position, it can create598

shortcuts and lead to strong asymmetries in the distance metric.599

PointMaze600

Continuous State Space, Complex Dynamics, Hard exploration, Continuous Action Space601

• State space: The agent observes a 4-dimensional vector (x, y, ẋ, ẏ), where (x, y) is the position of602

a green ball in a 2D maze and (ẋ, ẏ) are its linear velocities in the x and y directions, respectively.603

• Action space: Continuous control inputs (ax, ay) corresponding to applied forces in the x and y604

directions. The applied force is limited to the range [−1, 1] N in each direction.605

• Transition dynamics: The system follows simple force-based dynamics within the MuJoCo606

physics engine. The applied forces affect the agent’s velocity, which in turn updates its position.607

The ball’s velocity is limited to the range [−5, 5] m/s in each direction. Collisions with the maze’s608

walls are inelastic: any attempted movement through a wall is blocked.609

• Initial state distribution (µ0): The agent starts at a random real-valued position (x, y) sampled610

uniformly from valid maze locations. The initial velocities (ẋ0, ẏ0) are set to (0, 0).611

• Ground-truth MAD: The maze is discretized into a uniform grid. Using the Floyd-Warshall612

algorithm on the resulting connectivity graph, we compute shortest path distances between all613

reachable pairs of positions.614
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