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Abstract

This paper presents a state representation framework for Markov decision processes
(MDPs) that can be learned solely from state trajectories, requiring neither reward
signals nor the actions executed by the agent. We propose learning the minimum
action distance (MAD), defined as the minimum number of actions required to
transition between states, as a fundamental metric that captures the underlying
structure of an environment. MAD naturally enables critical downstream tasks
such as goal-conditioned reinforcement learning and reward shaping by providing
a dense, geometrically meaningful measure of progress. Our self-supervised
learning approach constructs an embedding space where the distances between
embedded state pairs correspond to their MAD, accommodating both symmetric
and asymmetric approximations. We evaluate the framework on a comprehensive
suite of environments with known MAD values, encompassing both deterministic
and stochastic dynamics, as well as discrete and continuous state spaces, and
environments with noisy observations. Empirical results demonstrate that the
proposed approach not only efficiently learns accurate MAD representations across
these diverse settings but also significantly outperforms existing state representation
methods in terms of representation quality.

1 Introduction

In reinforcement learning (Sutton and Barto, |1998), an agent aims to learn useful behaviors through
continuing interaction with its environment. Specifically, by observing the outcomes of its actions,
a reinforcement learning agent learns over time how to select actions in order to maximize the
expected cumulative reward it receives from its environment. An important need in applications of
reinforcement learning is the ability to generalize, not only to previously unseen states, but also to
variations of its environment that the agent has not previously interacted with.

In many applications of reinforcement learning, it is useful to define a metric that measures the
similarity of two states in the environment. Such a metric can be used, e.g., to define equivalence
classes of states in order to accelerate learning, to decompose the problem into a hierarchy of smaller
subproblems that are easier to solve, or to perform transfer learning in case the environment changes
according to some parameters but retains part of the structure of the original environment. Such a
metric can also be used as a heuristic in goal-conditioned reinforcement learning, in which the agent
has to achieve different goals in the same environment.

The Minimum Action Distance (MAD) has proved useful as a similarity metric, with impressive
applications in various areas of reinforcement learning, including policy learning (Wang et al., 2023
Park et al.|[2023)), reward shaping (Steccanella and Jonsson, [2022)), and option discovery (Park et al.,
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Figure 1: Schematic overview of MAD representation learning. From left to right: (1) the hidden
environment graph, (2) trajectories collected by an unknown policy, (3) the embedding function
¢ : S — R? and (4) the resulting MAD embedding space in R2.

2024alb). While prior work has demonstrated the advantages of using MAD, how best to approximate
it remains an open problem. Existing methods have not been systematically evaluated on their ability
to approximate the MAD function itself, and many rely on symmetric approximations, even though
the true MAD is inherently asymmetric.

We make three main contributions towards fast, accurate approximation of the MAD. First, we
propose two novel algorithms for learning MAD using only state trajectories collected by an agent
interacting with its environment. Unlike previous work, the proposed algorithms naturally support
both symmetric and asymmetric distances, and incorporate both short- and long-term information
about how distant two states are from one another. Secondly, we define a novel quasimetric distance
function that is computationally efficient and that, in spite of its simplicity, outperforms more
elaborate quasimetrics in the existing literature. Finally, we introduce a diverse suite of environments
— including those with discrete and continuous state spaces, stochastic and deterministic dynamics,
and directed and undirected transitions — in which the ground-truth MAD is known, enabling a
systematic and controlled evaluation of different MAD approximation methods.

Figure [T]illustrates the steps of MAD representation learning: an agent collects state trajectories from
an unknown environment, which are used to learn a state embedding that implicitly defines a distance
function between states.

2 Related Work

In applications such as goal-conditioned reinforcement learning (Ghosh et al.,|2020) and stochastic
shortest-path problems (Tarbouriech et al.| 2021)), the temporal distance is measured as the expected
number of steps required to reach one state from another state under some policy. In contrast, the MAD
is a lower bound on the number of steps based solely on the support of the transition function. This
distinction makes the MAD efficient to compute and robust to changes in the transition probabilities
as long as the support over next states remains the same, making it suitable for representation learning
and transfer learning.

Prior work has explored the connection between the MAD and optimal goal-conditioned value
functions (Kaelbling, [1993)). [Park et al.[|(2023) highlight this connection and propose a hierarchical
approach that improves distance estimates over long horizons, and |[Park et al.| (2024a) embed states
into a learned latent space where the distance between embedded states directly reflects an on-policy
measure of the temporal distance (Hartikainen et al.| [2020). [Park et al.| (2024b) and Ma et al.
(2022) extend this idea to the offline setting, learning embeddings from arbitrary experience such
that Euclidean distances between state embeddings approximate the MAD. As an alternative to
approximating the MAD using goal-conditioned value functions, |[Steccanella and Jonsson| (2022]))
formulate learning a state embedding in which distances approximate the MAD as a constrained
optimization problem, where bounds on the distance between embedded states are derived from state
trajectory data. Although their formulations differ, these approaches ultimately seek to learn the same
underlying quantity: the minimum number of actions required to move between two states.

These existing approaches share a common limitation: they rely on symmetric distance metrics such
as the Euclidean distance between state embeddings to approximate the MAD. As such, they cannot
capture the asymmetry of the true MAD in environments with irreversible dynamics. In contrast, the



approach we develop here supports the use of asymmetric distance metrics (or, quasimetrics), which
can better capture the directional structure in many environments.

Some prior work has already explored the use of quasimetrics in reinforcement learning. Wang
et al.|(2023) learn an asymmetric distance function that approximates the MAD by preserving local
structure while maintaining global distances. Their method differs from the one we propose in two
ways. First, their method does not leverage the existing distance along a trajectory as supervision
for the learning process. Secondly, they use the Interval Quasimetric Embedding (IQE) (Wang and
Isola) [2022) to learn the distance function. [Dadashi et al|(2021) learn embeddings and define a
pseudometric between states as the Euclidean distance between their embeddings. Unlike our work,
they use loss functions inspired by bisimulation to learn both state and state-action embeddings.

Successor features (Dayanl 1993} Barreto et al.,|2017) and time-contrastive representations (Eysen
bach et al.,|2022) have also been used to define notions of temporal distance. Myers et al.| (2024)
introduce time-contrastive successor features, defining a distance metric based on the difference
between discounted future occupancies of state features learned via time-contrastive learning. While
their metric satisfies the triangle inequality and naturally handles both stochasticity and asymmetry,
the resulting distances reflect expected discounted state visitations under a specific behavior policy
and lack an intuitive interpretation. In contrast, approaches that approximate the MAD are naturally
interpretable as a lower bound on the number of actions needed to transition between two states.

3 Background

In this section, we introduce the notation and concepts used throughout the paper. Given a finite set X,
weuse A(X) ={peRY | > p, =1,p, > 0(Vx)} to denote the probability simplex (i.e. the set
of all probability distributions over X). A rectified linear unit (ReLU) is a function relu : R — R¢
defined on any vector z € R? as relu(z) = [max(0, z;)]%_,.

Markov Decision Processes (MDPs). An MDP (Bellman, [1957) is a tuple M = (S, A, R, P, D, ~),
where S is the state space, A is the action space, R : S X A — R is the reward function, P :
S x A — A(S) is the transition kernel, D € A(S) is the initial state distribution, and v € [0, 1] is the
discount factor. At each time ¢, the learning agent observes a state s; € S, selects an action a; € A,
receives a reward r = R(s¢, a;) and transitions to a new state s;y1 ~ P(st, a;). The learning agent
selects actions using a policy 7 : S — A(A), a mapping from states to probability distributions over
actions. In our work, the state space S can be either discrete or continuous.

Reinforcement learning (RL). RL (Sutton and Bartol [2018)) is a family of algorithms whose purpose
is to learn a policy 7 that maximizes some measure of expected future reward. In this paper, however,
we consider the problem of representation learning, and hence we are not directly concerned with
the problem of learning a policy. Concretely, we wish to learn a distance function between pairs
of states that can later be used by an RL agent to learn more efficiently. In this setting, we assume
that the learning agent uses a behavior policy 7, to collect trajectories. Since we are interested
in learning a distance function over state pairs, actions are relevant only for determining possible
transitions between states, and rewards are not relevant at all. Hence for our purposes a trajectory
7= (80,81, - -, 8,) is simply a sequence of states.

4 The Minimum Action Distance

Given an MDP M = (S, A, R, P, D, ) and a state pair (s, s') € S?, the Minimum Action Distance,
dmap(s, '), is defined as the minimum number of decision steps needed to transition from s to s’. In
deterministic MDPs, the MAD is always realizable using an appropriate policy; in stochastic MDPs,
the MAD is a lower bound on the actual number of decision steps of any policy. Let R C S? be a
relation such that (s, s’) € R if and only if there exists an action a € A that satisfies P(s'|s,a) > 0.
That is, R contains all state pairs (s, s") such that s is reachable in one step from s. We can formulate



the problem of computing dyap as a constrained optimization problem:

— i
dmap = arg max Z d(s,s'), (D
(s,8")€S?

st. d(s,s) =0 VseS,
d(s,s') <1 V(s,s') €R,
d(s,s") < d(s,s")+d(s",s") V(s,§,s") €S>

It is straightforward to show that duap is the unique solution to equation [I] (see Appendix [A).
Concretely, dyap satisfies the second constraint with equality, i.e. d(s, s’) = 1 for all (s, s') € R. If
the state space S is finite, the constrained optimization problem is precisely the linear programming
formulation of the all-pairs shortest path problem for the graph (S, R) with edge costs 1. This graph
is itself a determinization of the MDP M (Yoon et al.,[2007). In this case we can compute dyap
exactly using the well-known Floyd-Warshall algorithm (Floyd, |1962; Warshall, |1962). If the state
space S is continuous, R is still well-defined, and hence there still exists a solution which satisfies
d(s,s") = 1forall (s,s") € R even though the states can no longer be enumerated.

An alternative to the MAD is computing the stochastic shortest path (SSP;[Tarbouriech et al.,|[2021))
between each pair of states. In deterministic MDPs, the MAD and SSP are equivalent. In stochastic
MDPs, the SSP can provide more realistic distance estimates than the MAD when some transitions
have very low probabilities. However, computing the all-pairs SSP requires solving a linear program
over transition probabilities, which is computationally demanding. In contrast, the MAD can be
computed efficiently and remains a useful approximation in many domains (e.g. in navigation
problems and when using sticky actions). Moreover, unlike the SSP, the MAD depends only on the
support of the transition kernel and is otherwise robust to changes in transition probabilities, which is
particularly useful for transfer learning.

Even when the state space S is finite, we may not have explicit knowledge of the relation R. In
addition, the time complexity of the Floyd-Warshall algorithm is O(|S|?), and the number of states
may be too large to run the algorithm in practice. If the state space S is continuous, then we cannot
even explicitly form a graph (S, R). Hence we are interested in estimating dyap in the setting for
which we can access trajectories only through sampling. For this purpose, let us assume that the
learning agent uses a behavior policy 7, to collect a dataset of trajectories D = {1, ..., 7 }. Define
Sp C S as the subset of states that appear on any trajectory in D. Given a trajectory 7 = {sq, ..., Sn }
and any two states s; and s; on the trajectory such that 0 < ¢ < j < n, itis easy to see that j — ¢
is an upper bound on dmap(si, sj), since s; is reachable in j — ¢ steps from s; on the trajectory 7.
By an abuse of notation, we often write (s;, s;) € 7 to refer to a state pair on the trajectory 7 with
indices ¢ and j such that ¢ < j, and we write (s;, sj) ~ T in order to sample two such states from 7.

Steccanella and Jonsson| (2022)) learn a parameterized state embedding ¢y : S — R¢ and define a
distance function dg(s,s’) = d(¢g(s), pe(s’)), where d is any distance metric in Cartesian space.
The parameter vector € of the state embedding is learned by minimizing the loss function

L= IETND;(Si7Sj)~T [(dé(sia Sj) - (.7 - Z))2 +we - relu(d9(5i7 Sj) - (] - Z>)2] ’ 2

where w. > 0 is a regularization factor that multiplies a penalty term which substitutes the upper
bound constraints dy(s;, s;) < j — . If the distance metric d satisfies the triangle inequality (e.g. any
norm d = || - ||,) then the constraints dg(s, s) = 0 and the triangle inequality automatically hold.
Enforcing the constraint dg(s;, s;) < j — i for each state pair (s;, s;) on trajectories, rather than only
consecutive pairs, helps learn better distance estimates, at the cost of a larger number of constraints.

5 Asymmetric Distance Metrics

A limitation of previous work is that the chosen distance metric d is symmetric, while the MAD dyap
may not be symmetric. In this section, we review several asymmetric distance metrics. Concretely, a
quasimetric is a function d : R? x RY — R, that satisfies the following three conditions:

* Q1 (Identity): dy(z,z) = 0.

* Q2 (Non-negativity): d,(x,y) > 0.

* Q3 (Triangle inequality): dy(x, z) < dy(x,y) + dg(y, 2).



A quasimetric does not require symmetry, i.e. d,(z,y) = d,(y, z) does not hold in general.

We define a simple quasimetric dgimpie Using rectified linear units:
d

1
dsimple (2, y) = amax(relu(z — y)) + (1 — a)g Z relu(z; — ;). (3)
This metric is a weighted average of the maximum and average positive difference between the
vectors  and y along any dimension, where « € [0, 1] is a weight. In Appendix [B} we show that
dsimple satisfies the triangle inequality and latent positive homogeneity (Wang and Isola, [2022).

The Wide Norm quasimetric (Pitis et al.l 2020), dwn, applies a learned transformation to an asym-
metric representation of the difference between two states. The Wide Norm is defined as

dwn(z,y) = ||W(relu(z — y) :: relu(y — z))|]2,

where “::” denotes concatenation and W € R¥*24 s a learned weight matrix. This ensures that
dwn(z,y) is non-negative and satisfies the triangle inequality, while concatenation is asymmetric.

The Interval Quasimetric Embedding (IQE) (Wang and Isolal 2022) leverages the Lebesgue measure
of interval unions to capture asymmetric distances. Rather than vectors, IQE is defined on matrices
X,Y € RF>™ Let x;; denote the element in row ¢ and column j of matrix X. For each row 4, we
construct an interval by taking the union over the intervals defined by matrices X and Y':
m
L(X,Y) = (U [, max{zi;, yij }] -
1

Jj=
The length of this interval, denoted by L;(X,Y"), is computed as its Lebesgue measure. The IQE
distance is obtained by aggregating these row-wise lengths. For example, one may define

k
dige(X,Y) = > Li(X,Y),
i=1

or, alternatively, using a maxmean reduction:
k
d (X,Y) =a max Lj(X Y)+(1—a)EZL4(X Y)
TIQE-mm ’ 1<i<k [ ) k at [ ) )
where o € [0, 1] balances the influence of the maximum and the average. This construction yields a

quasimetric that inherently respects the triangle inequality while accounting for directional differences
between the matrices X and Y.

Given any of the above quasimetrics dg (i.€. dsimple, dwn O dige), We can now define an asymmetric
distance function dy(s, s") = dg(¢a(s), pe(s")). In the case of digg, the state embedding ¢ : S —
REX™ has to produce a matrix rather than a vector. The choice of quasimetric directly shapes the
trade-offs in computational cost and optimization dynamics. In Appendix [E] we present an ablation
study examining how this choice affects our algorithms.

6 Learning Asymmetric MAD Estimates

Here, we propose two novel variants of the MAD learning approach. Each trains a state encoding ¢g
that maps states to an embedding space and uses a quasimetric d,, to compute distances dy(s, s’) =
dq(da(s), po(s")) between pairs of states (s, s”). Both variants support any quasimetric formulation
such as dgimpie, dwn and digg, and can incorporate additional features such as gradient clipping. A
full derivation of these learning objectives is provided in Appendix [C]

6.1 MadDist: Direct Distance Learning

The first algorithm, which we call MadDist, learns state distances using an approach similar to prior
work (Steccanella and Jonssonl 2022), but differs in the use of a quasimetric distance function and a
scale-invariant loss. Concretely, MadDist minimizes the following composite loss function:

L=L,+w.L,+ wL,. 4)



The main objective, L,, is a scaled version of the square difference in equation [}
d i 9F 2
Lo=TFrup (s;55)r l(e(ssa) - 1) 1 : 5)
j—i

Crucially, scaling makes the loss invariant to the magnitude of the estimation error, which typically
increases as a function of j — ¢. In other words, states that are further apart on a trajectory do not
necessarily dominate the loss simply because the magnitude of the estimation error is larger.

The second loss term, £,., which is weighted by a factor w,. > 0, is a contrastive loss that encourages
separation between state pairs randomly sampled from all trajectories:

/ 2
Ly =E(ss)~sp lrelu <1 - d(’és’s)> 1 ©
max

where dp,x is a hyperparameter. Finally, the loss term L., which is weighted by a factor w, > 0,
enforces the upper bound constraints. Specifically, let D< g, denote the set of state pairs sampled
from trajectories in D such that the index difference satisfies 1 < j —¢ < H,. (where H, is a
hyperparameter), i.e.

DSHC = {(Si,SjHT ED, $i, 85 €T, 1 S]*’L SHF}
Then, the constraint loss is defined as:

Le=E(s 5oy, |relu(do(si,s;) — (j —))?|. @)

6.2 TDMadDist: Temporal Difference Learning

The second algorithm, which we call TDMadDist, incorporates temporal difference learning principles
by maintaining a separate target embedding ¢y and learning via bootstrapped targets. Specifically,
TDMadDist learns by minimizing the loss function £’ = £/ + w, L], + w.L., where L. is the loss
term from equation[7] that enforces the upper bound constraints.

The main objective £/ of TDMadDist is modified to include bootstrapped distances:

L =E do (51, 5) ) 8)
o TPl T \min(j — i, 1+ dor (511, 55)) '

Hence if the current distance estimate dg(s;+1, s;) computed using the target embedding ¢g- is
smaller than j — (¢ + 1), the objective is to make dg(s;, s;) equal to 1 + dg/(si41, ;).

We also modify the second loss term L. to include bootstrapped distances:

d 1991 ?
(‘9(5‘9) _ 1> . )
1+ dg(siy1,5r)
Given a state s; sampled from a trajectory of D and a random state s, € Sp, the objective is to make
do(si, sr) equal to 1 + dg (Si41, Sr)-

/
ﬁr = ETNDa(sivsj)NTverSD

The target network parameters 6’ are updated in each time step via an exponential moving average
with hyperparameter 3 € (0, 1):
0« (1 - )0 + B6. (10)

7 Experiments

We evaluate our proposed MAD learning algorithms on a diverse set of environments with varying
characteristics, including deterministic and stochastic dynamics, discrete and continuous state spaces,
and environments with noisy observations. Our analysis is directed by the following questions:

* How accurately do our learned embeddings capture the true minimum action distances?

* How does the performance of our method compare to existing quasimetric learning approaches?
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Figure 2: A subset of the environments used in our analysis.
* How robust is our approach to environmental stochasticity and observation noise?

Evaluation Metrics. We evaluate the quality of our learned representations using three metrics:

* Spearman Correlation (p): Measures the preservation of ranking relationships between state
pairs. A high Spearman correlation indicates that if state s; is farther from state s; than from
state sy, in the true environment, our learned metric also predicts this same ordering. Perfect
preservation of distance rankings gives p = 1.

¢ Pearson Correlation (r): Measures the linear relationship between predicted and true distances.
A high Pearson correlation indicates that our learned distances scale proportionally with true
distances (i.e. when true distances increase, our predictions increase linearly as well). Perfect
linear correlation gives r = 1.

» Ratio Coefficient of Variation (CV): Measures the consistency of our distance scaling across
different state pairs. A low CV indicates that our predicted distances maintain a consistent ratio
to true distances throughout the state space. For example, if we consistently predict distances
that are approximately 1.5 times the true distance, CV will be low. High variation in this ratio
across different state pairs results in high CV. More formally, given a set of ground truth distances
di,da, ..., d,, and their corresponding predicted distances czl, cfg, e cfn where d; > 0, we compute
the ratios r; = d; /d;. The Ratio CV is given by

or \/% i (ri = pr)?
Hor - i T ’

Baselines. We compare our methods against QRL 2023), a recent quasimetric reinforce-
ment learning approach that learns state representations using the Interval Quasimetric Embedding
(IQE) formulation. QRL employs a Lagrangian optimization scheme where the objective maximizes
the distance between states while maintaining locality constraints.

We also compare against the approach by [Park et al| (2024b)), an offline reinforcement learning
method that embeds states into a learned Hilbert space. In this space, the distance between embedded
states approximates the MAD, leading to a symmetric distance metric that cannot capture the natural
asymmetry of the true MAD. We include this comparison to demonstrate the benefits of methods that
explicitly model the quasimetric nature of the MAD over those that do not.

oV = (11)

Environments. To evaluate the proposed methods, we designed a suite of environments where the
true MAD is known, enabling a precise quantitative assessment of our learned representations. This
perfect knowledge of the ground truth distances allows us to rigorously evaluate how well different
algorithms recover the underlying structure of the environment. A subset of the environments are
illustrated in Figure 2] with full details provided in Appendix [G}

Our test environments span a comprehensive range of MDP characteristics:

* NoisyGridWorld: A continuous grid world environment with stochastic transitions. The agent
can move in four cardinal directions, but the action may fail with a small probability, causing the
agent to remain in the same state. The initial state is random and the goal is to reach a target state.
The MAD is known and can be computed as the Manhattan distance between states. Moreover we
included random noise in the observations by extending the state (x, y) with a random vector of
size two resulting in a 4-dimensional state space, where the first two dimensions are the original
coordinates and the last two dimensions correspond to noise.



* KeyDoorGridWorld: A discrete grid world environment where the agent must find a key to
unlock a door. The agent can move in four cardinal directions and the state (x, y, k) is represented
by the agent’s position (z, y) and whether or not it has the key (k). The MAD is known and can
be computed as the Manhattan distance between states where the distance between a state without
the key and a state with the key is the sum of the distances to the key. The key can only be picked
up and never dropped creating a strong asymmetry in the distance function.

« CliffWalking: The original CliffWalking environment as described by |Sutton and Barto| (1998).
The agent starts at the leftmost state and must reach the rightmost state while avoiding falling off
the cliff. If the agent falls it returns to the starting state but the episode is not reset. This creates a
strong asymmetry in the distance function, as the agent can take the shortcut by falling off the
cliff to move between states.

* PointMaze: A continuous maze environment where the agent must navigate through a series
of walls to reach a goal (Fu et al.| 2020). The task in the environment is for a 2-DoF ball that
is force-actuated in the Cartesian directions x and y, to reach a target goal in a closed maze.
The underlying maze is a 2D grid with walls and obstacles, that we use in our experiments to
approximate the ground truth MAD, by computing the all pairs shortest path using the Floyd-
Warshall algorithm over the maze graph. We consider two variants of this environment: UMaze
and MediumMaze.

* OGBench PointMaze: A suite of physics-based maze environments that extend the standard
PointMaze to much larger and more challenging layouts (Park et al., 2024c). These environments
are designed to test long-horizon reasoning and provide two types of datasets: navigate, collected
by a noisy expert policy navigating to random goals, and stitch, consisting of short goal-reaching
trajectories that must be combined to solve tasks.

Empirical Setup. We compared our two algorithms MadDist and TDMadDist against the QRL and
Hilbert baselines. Each method was trained for 50,000 gradient steps on an offline dataset gathered
by a random policy. For the CliffWalking, NoisyGridWorld, and KeyDoorGridWorld environments,
we used 100 trajectories; for the PointMaze environments, we increased this to 1000 trajectories. All
reported results are means over five independent runs (random seeds) to ensure statistical robustness.
For full implementation details of our evaluation setup, see Appendix D}

Figure [3] shows the Pearson correlation and coefficient of variation (CV) ratio for KeyDoorGrid-
world, CliffWalking, and the OGBench Giant Maze environments. The full results produced in all
environments, including the Spearman correlations (which we found closely matched the Pearson
correlations) can be found in Appendix [F] Appendix [E] contains additional ablation studies, and
demonstrates that MadDist and TDMadDist are robust to the size of the latent dimension and the
choice of quasimetric, and that their performance degrades gracefully with dataset size.

Table[T]reports additional results on a downstream planning task, where the learned distance embed-
dings are used to guide the agent toward specific goals. A detailed description of the planning setup
is provided in Appendix [H|

Environments \ QRL TDMadDist Hilbert MadDist

PM Giant Navigate 087021 099+0.05 0.16£0.17 0.93+£0.17
PM Giant Stitch 095+0.12 0.744+0.26 0.05+0.14 0.99 +0.07
PM Large Navigate 0.97+£0.09 0.70+0.30 0.224+0.20 1.00 £ 0.00
PM Large Stitch 090+0.17 0.734+0.24 0.17+0.20 1.00 £ 0.00

PM Medium Navigate | 0.86 =0.21 092 +0.16 0.55+0.27 1.00 £ 0.00
PM Medium Stitch 0.81£0.20 0.74+£0.24 0.67£0.28 1.00 £ 0.00

Table 1: Success rates (& standard deviation) across different OGBench PointMaze environments.
Best results per environment are shown in bold.

Discussion. From the results in Figure[3] we can see that our proposed method MadDist outperforms
the QRL and Hilbert baselines in all environments, being able to learn a more accurate approximation
of the MAD. This is likely due to the fact that QRL only uses the locality constraints to learn the
embeddings, while our method leverages the path distances between arbitrary states in a trajectory
to form a more globally coherent representation. Both MadDist and TDMadDist significantly
outperform the Hilbert baseline, particularly in highly asymmetric environments like CliffWalking
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Figure 3: Pearson correlation coefficients and coefficient of variation (CV) ratios across a selection
of test environments. Shaded regions minimum and maximum values across three random seeds.

and KeyDoorGridWorld. While TDMadDist underperforms the MadDist and QRL algorithm, its
strong performance relative to Hilbert highlights the advantages of our quasimetric approach even
when paired with a TD-based objective. Crucially, the high accuracy of the learned distance metric
directly translates to superior performance in the downstream task of goal-oriented planning, as
detailed in Table [I] MadDist achieves near-perfect or perfect success rates across all PointMaze
environments, decisively outperforming all baselines. Its performance is particularly noteworthy
in the Stitch environments, which require the model to compose information from disconnected
trajectories, and the large-scale Giant environments, which test the ability to handle long-horizon
tasks. This demonstrates that MadDist not only produces a quantitatively accurate distance function
but also an effective and practical representation for planning.

8 Conclusion

In this paper, we present two novel algorithms for learning the Minimum Action Distance (MAD)
from state trajectories. We also propose a novel quasimetric for learning asymmetric distance
estimates, and introduce a set of benchmark domains that model several aspects that make distance
learning difficult. In a controlled set of experiments we illustrate that the novel algorithms and
proposed quasimetric outperform state-of-the-art algorithms for learning the MAD.

While this work has concentrated on accurately approximating the MAD as a fundamental stepping
stone, it opens several promising avenues for future research. One of them is the use of MAD estimates



in transfer learning and non-stationary environments, where transition dynamics evolve over time
yet maintain a consistent support. On the same line, MAD can be integrated as a heuristic in search
algorithms, particularly in stochastic domains, to identify the properties that make it a robust and
informative guidance signal under uncertainty. Having established reliable MAD approximation, it can
now be incorporated into downstream tasks, including goal-conditioned planning and reinforcement
learning, to quantify the empirical benefits it brings to complex decision-making problems.

Finally, while MAD can serve as a useful heuristic even in stochastic environments, future work
will explore whether it is possible to recover the Shortest Path Distance (SPD) or identify alternative
quasimetrics that more closely align with it.
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A Proof of Uniqueness for the MAD Optimization Problem

We begin by formally defining the Minimum Action Distance (MAD) in terms of policies and first
passage times within a Markov Decision Process (MDP).

Definition 1 (Minimum Action Distance). Let T'(s; | 7, s;) be the random variable for the first time
step at which state s; is reached when starting in state s; and following policy ©. The support of this
random variable, denoted supp(T'(s; | 7, s;)), is the set of all possible first passage times that occur
with non-zero probability. The Minimum Action Distance dyap : S X S — N U {00} is defined as:

dmap(si, 85) = mﬂinmin [supp(T'(s; | 7, 5i))] -

This definition finds the length of the shortest possible trajectory from s; to s;. The inner minimum,
min[supp(-)], identifies the shortest-in-time realization possible under a fixed policy 7. The outer
minimum, min,, then finds the policy that makes this shortest possible realization as short as
possible. Note that if the process starts in the target state sq = s, the first passage time is zero, i.e.,
0 € supp(T'(s; | m,s;)).

Equivalence to Graph Shortest Path Let G = (S, R) be the state-transition graph where an edge
(s,s") € Rexists if and only if there is an action a with P(s’|s,a) > 0. A path of length & from s; to
s; in G corresponds to a sequence of actions that can transition between these states with non-zero
probability. We can always construct a policy 7 that executes this specific sequence. Therefore,
minimizing over all policies is equivalent to finding the length of the shortest path between nodes s;
and s; in the graph G. This equivalence allows us to leverage the properties of shortest path distances
in the proof below.

Theorem 1. The Minimum Action Distance, dyap, as defined above, is the unique solution to the
constrained optimization problem:

maximize Z d(s,s")
d

(s,8")€S?

subjectto d(s,s) =0 VseS (C1)
d(s,s') <1 V(s,s')€R (C2)
d(s,s') <d(s,s")+d(s",s") V(s,s,5")€S? (C3)

Proof. The proof is structured in two parts. First, we show that dyap is a feasible solution. Second,
we show that for any other feasible solution d, we must have d(s, s') < duap(s, s’), establishing
both optimality and uniqueness.

Part 1: Feasibility of dyiap

Using the shortest path interpretation of dyap, we verify that it satisfies each constraint.

* Constraint (C1) - Identity: The shortest path from any state s to itself is the empty path of
length 0. Thus, dyap(s, s) = 0.

* Constraint (C2) - One-Step Reachability: If (s, s’) € R, there exists a direct edge from s
to s’ in G. This corresponds to a path of length 1. The shortest path, dyap(s, s’), cannot be
longer than this path, so dyap(s, s’) < 1.

* Constraint (C3) - Triangle Inequality: This is a fundamental property of shortest paths.
The shortest path from s to s’ is, by definition, no longer than the path formed by concate-
nating the shortest path from s to an intermediate state s” and the shortest path from s” to
s'. This directly gives the inequality dyap(s, s') < dmap(s, s”) + duap(s”, s').
As dyap satisfies all constraints, it is a feasible solution.
Part 2: Optimality and Uniqueness of dyap

Let d be an arbitrary feasible solution satisfying (C1), (C2), and (C3). We show by induction on the
shortest path length k& = dyvap(s, s’) that d(s, s’) < dmap(s, s’).
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* Base Case (k = 0): If dyap(s,s’) = 0, then s = s’. By constraint (C1), any feasible
solution d must satisfy d(s, s) = 0. Thus, d(s,s’) = 0 = dmap(s, s').

* Inductive Hypothesis: Assume for some integer k& > 0 that for all pairs (s, s’) with
dmap (s, 8) < k, the inequality d(s, s") < dyap(s, s’) holds.

* Inductive Step: Consider a pair (s, s’) with dyap(s,s’) = k + 1. By the shortest path
definition, there must exist a predecessor state s’ on a shortest path from s to s’ such that
(s",s') € Rand dyap(s,s”) = k.

Applying the constraints on d:

d(s,s") < d(s,s")+d(s",s") by (C3), the triangle inequality
< dmap(s,s”) +d(s"”,s’) by Inductive Hypothesis, since dvap(s, s”) = k
<k+1 by (C2), since (s”,s') € R

Since dmap(s, s’) = k + 1, we have shown that d(s, s') < dmap(s, ).

By induction, we have established that for any feasible solution d, the inequality d(s,s’) <
dmap (s, s") holds for all pairs (s, s') € S2.

* Optimality: The objective is to maximize the sum ) g2 d(s,s’). Since we have

shown that every term d(s, s’) is less then or equal to the corresponding term dyap (s, '),
the total sum for any feasible solution d cannot exceed the sum for dyap:

Z d(s,s) Z dmap (s, s
(s,8")€S? ( Nes?

Since dyap is itself a feasible solution, it achieves the maximum possible value, proving it
is an optimal solution.

* Uniqueness: Let’s assume d* is another solution that is also optimal.

— For d* to be optimal, its total sum must equal the maximum possible sum:

Zd*ss ZdMADSS

(s,8")€S? (s,8")€S?

— From the induction proof we know that d*(s, s") < dwap(s, s’) for every single pair

(s,8").
Therefore d* (s, s') = dvap(s, s’) V(s,s') € S%

B Quasimetric Constructions via ReLLU Reduction

Let z,;y € R% We begin by defining a ReLU-based coordinate reduction, then derive scalar
quasimetrics through several aggregation operators, and finally state general results for convex
combinations.

B.1 Coordinatewise ReL.U Reduction
Definition 2 (ReLU Reduction). Define the map r : R* x R? — R? by

r(z,y) = relu(z — y), ri(x,y) = max{zi - Yi, 0}, i=1,...,d.
Proposition 1. For all z,y,z € R? and X\ > 0, each coordinate r; satisfies:

(a) Nonnegativity and identity: r;(z,y) > 0 and r;(z,z) = 0.
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(b) Asymmetry: r;(z,y) # ri(y, x) unless x; = y;.

(c) Triangle inequality: r;(x, y) < ri(x, 2) + ri(z,y).

(d) Positive homogeneity: r;(A\x, A\y) = Ar;(z,y).
Proof. (a) and (b) follow directly from the definition of the max operation.
(c) Observe that

ri(w,y) = max(w; — y;,0) = max((z; — z) + (2 — 4:),0)
< max(z; — 2;,0) + max(z; — y;,0) = r(x, 2) + ri(2, y).

(d) Linearity of scalar multiplication inside the max gives

ri(Az, Ay) = max(A\x; — Ay;, 0) = Amax(z; — y;,0) = Ari(z, y).
This concludes the proof. O
B.2 Scalar Quasimetrics via Aggregation

We now obtain real-valued quasimetrics by aggregating the vector r(z, y).

Definition 3 (Max Reduction).
dmax (2, ) = llgggdm(x,y)-

Definition 4 (Sum and Mean Reductions).

d
E 1 §
sum 37 y medn 37 y =4 rz

=1 =1

Proposition 2. Each of diax, dsam, and diean satisfies for all x,y, z € R% and X > 0:
(a) Triangle inequality: d(z,y) < d(z, z) + d(z, y).
(b) Positive homogeneity: d(Az, Ay) = Ad(z,y).

Proof. (a) follows by combining coordinate-wise triangle bounds with either:

* dmax : max;[a; + b;] < max; a; + max; by,

* dgum and dpean: term-wise summation.
(b) is immediate from the linearity of scalar multiplication and properties of max/sum. O

B.3 Convex Combinations of Quasimetrics

More generally, let di, . . ., d, be any quasimetrics on R? each obeying the triangle inequality and
positive homogeneity. For weights a1, ..., a, > 0 with ), a; = 1, define

convxy Zakdkxy

Proposition 3. d ... is a quasimetric satisfying:
(a) Triangle inequality: deony (2, y) < deony (2, 2) + deonv (2, Y)-
(b) Positive homogeneity: deony (A, \y) = A dcony (T, ).

Proof. Linearity of the weighted sum together with the corresponding property for each dj, yields
(a)—(b).
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C Derivation of Learning Objectives for Minimum Action Distance

This appendix details the derivation of the MadDist and TDMadDist loss functions. The derivation
begins with the foundational, but computationally intractable, constrained optimization problem for
the Minimum Action Distance (MAD) and systematically transforms it into a pair of scalable learning
objectives.

C.1 Constrained Optimization Problem for MAD

The Minimum Action Distance, dyap, is the solution to the following constrained optimization
problem. This formulation seeks a distance function that maximizes the sum of all pairwise distances
while remaining consistent with the environment’s one-step transition dynamics.

o« . / . .
maximize Z d(s,s") (Objective 1)
(s,8")€S?
subjectto d(s,s)=0 VseS (Constraint 1: Identity)
d(s,s') <1 V(s,s)eR (Constraint 2: One-Step)

<1
d(s,s') < d(s,s")+d(s",s') V(s,s',s") € S® (Constraint 3: Triangle Inequality)

This formulation is computationally intractable for large or continuous state spaces, primarily due to
the triangle inequality (Constraint 3), which must hold for all triplets of states.

C.2 Simplification via Quasimetric Embeddings

To make this problem tractable, we enforce the triangle inequality by construction rather than as an
explicit constraint. We achieve this by learning a state embedding function ¢ : S — R* and defining
the distance between any two states s, s’ using a quasimetric function d, on their embeddings:

d(s, ") 1= dg(d(s), ¢(s'))

A quasimetric function d4(x, y) satisfies the following properties by definition:

1. Identity: d,(z,z) =0

2. Non-negativity: d,(z,y) >0

3. Triangle Inequality: d,(z, z) < d,(z,y) + dy(y, 2)
By defining dg as a quasimetric over the embedding space, the identity (Constraint 1) and triangle
inequality (Constraint 3) properties are satisfied for any choice of embedding function ¢. This

simplification is crucial, as it removes the most computationally expensive constraint and leaves us
with a more manageable learning problem:

maxiﬁmize Z dg(o(s),d(s"))

(s,8")€S?
subjectto  dy(¢(s),p(s')) <1 V(s,s') € R (Constraint 2: One-Step)

C.3 The MadDist Loss Function

We now translate this simplified problem into a loss function suitable for minimization via gradient
descent. Given a dataset of state trajectories D = {(sg, $1,...,5n),. .. }, the path length j — i for
any pair of states (s;, s;) on a trajectory with ¢ < j provides a valid upper bound on the true MAD,
i.e., dMAD(5i7 Sj) S j — 1.

The MadDist loss, L = L, + w,. L, + w.L., is composed of three terms, each corresponding to a
component of the optimization problem.
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Term 1: The Objective Loss (£,). The original goal is to maximize all pairwise distances. As
a practical proxy, we formulate a loss term that is minimized when the learned distance dy(s;, s;)
matches its trajectory-based upper bound, j — ¢. This encourages the learned distances to increase,
directly addressing the maximization objective by using information from the dataset. We use a
scale-invariant squared error to prevent long-horizon pairs from dominating the loss.

2
Lo =Epoyop KM . 1) 1
J—1

Minimizing £, encourages dy(s;, s;) — j — i, serving as a proxy for the maximize objective.

Term 2: The Contrastive Loss (£,). To further support the global maximization objective, we
introduce a contrastive term. We sample random pairs of states (s, s’) from the dataset and penalize
them for having a small distance. This encourages all states to be far apart, which aligns with the
goal of maximizing the sum of all distances, especially for pairs not on the same trajectory.

/ 2
L, = E(s,s)~8p lrelu <1 — d¢(s,s)> ]

dmax

where Sp is the set of all states appearing in the dataset D. Minimizing £, incentivizes dy (s, s’) for
random pairs to approach a large value dy,,x, again serving the maximize objective.

Term 3: The Constraint Loss (£.). While £, encourages matching the upper bound, it does
not strictly enforce the inequality. We add an explicit penalty term that penalizes violations of the
trajectory upper bound.

Le= E(Si73j)ND<HC [relu(d¢(5i7 Sj) - (.] - Z))Q]

This term enforces the constraint d¢(si7 sj) < j — 1, which is a generalization of the one-step
constraint (dy(s,s’) < 1). The learning process finds an equilibrium where the objective terms
(Lo, L) encourage larger distances, while this constraint term (L) and the implicit triangle inequality
provide regularization.

C.4 Temporal Difference Bootstrapping (TDMadDist)

TDMadDist integrates principles from Temporal Difference (TD) learning. Instead of relying solely
on the data-driven target j — 7, it uses the model’s own predictions to form a potentially tighter,
more informed target. From the Bellman equation for shortest paths, we have dmap(s;, s;) =
1 + dmap(Sit+1,5;). We can therefore use the bootstrapped value 1 + dg(s;41, ;) using a stable
target network ¢’ as the new target for our objective.

The objective terms are modified as follows:

The TD Main Objective (£]). The target for d(s;, s;) becomes the minimum of the trajectory
upper bound and the bootstrapped target.

L =E D ( do(s1,55) —1)2
o7 Teos ) P\ min(j — 4,1+ dg (si11, 57)

Minimizing this loss still serves the maximize objective, but now encourages distances toward a
dynamically updated target.

The TD Contrastive Objective (£/). The contrastive term is modified to be consistent with the
one-step Bellman logic, using a bootstrapped target.

dy(si,5r) i
o _ A¢(SirSr)
- (si,57)~D (1+d¢/(81‘+1;5r) )

The constraint loss £, remains unchanged.
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D Implementation Details
In this section, we describe the implementation details of each algorithm included in our evaluation.

D.1 Computer Resources

We run all experiments on a single NVIDIA RTX 4070 GPU with 8GB of VRAM and an Intel
i7-4700-HX with 32GB of RAM.

D.2 MadDist

To train the MadDist distance models, we used the Adam optimizer with a learning rate of 1 x 1074,
a batch size of 256 for the objective (L,, L), and a separate batch of size 1024 for the constraint loss
(L.). For our main experiment, we used the novel simple quasimetric function and a latent dimension
size of 512. We include an ablation over different quasimetric functions and latent dimension sizes in

Appendix [E]
The full set of hyperparameter values used to train the MadDist models can be found in Table[2]

Table 2: Hyperparameters used to train the MadDist algorithm.

Hyperparameter Value

Quasimetric Function dsimple

Optimizer Adam [Kingma and Baf(2015)
Learning Rate 1 x107%

Batch Size (L,, L) 256

Batch Size (L.) 1024

Activation Function (Hidden Layers) SELU Klambauer et al.[(2017)
Neural Network (512, 512, 256, 128)

Wy 1,10

We 0.1

dmaz 100, 500

H,. 6

D.3 TDMadDist

To train the TDMadDist distance models, we used the the Adam optimizer with a learning rate of
1 x 10~%, a batch size of 256 for the objective (L,, L,), and a separate batch of size 1024 for the
constraint loss (L.). For our main experiment, we used the novel simple quasimetric function and a
latent dimension size of 512. We include an ablation over different quasimetric functions and latent
dimension sizes in Appendix [E|

For TDMadDist, we remove the hyperparameter d,,x from the MadDist algorithm, because it is
not included in TDMadDist’s objective (L,.). The temporal-difference update used when training
the TDMadDist distance models involves the use of a target network, dy/, which is updated using a
Polyak averaging factor 7 = 0.005.

The full set of hyperparameter values used to train the TDMadDist models can be found in Table [3]

D4 QRL

We trained QRL distance models following the approach of [Wang et al.| (2023). We used the
Lagrangian formulation

Hlein 1}\13(})( 7]ES7'5/NSD [¢(d19QE(S7 S/))] + A (E(svs/)Nplransilion [relu(dIGQE(S’ SI) + 1)2]) ’ (12)

where ¢(z) £ — softplus(a — =, 3) and dngE(s, s') is the IQE distance between states s and s’.
Following [Wang et al.|(2023), we set («, ) = (15, 0.1) for short-horizon environments and (¢, ) =

(500, 0.01) for long-horizon environments. The first term in the objective maximizes the expected
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Table 3: Hyperparameters used to train the TDMadDist algorithm.

Hyperparameter Value

Quasimetric Function dsimple

Optimizer Adam [Kingma and Baf(2015)
Learning Rate 1 x107%

Batch Size (L,, L) 256

Batch Size (L.) 1024

Activation Function (Hidden Layers)
Neural Network

SELU Klambauer et al.| (2017)
(512, 512, 256, 128)

Wy 1

We 0.1
H,. 6

T 0.005

distance between states sampled from the dataset, while the second term penalizes distances between
state—next-state pairs (s, s") observed in the data.

Through our experiments, we observed that setting the softplus offset to 15 and the steepness to 0.1,
as suggested for short-horizon environments by Wang et al.| (2023)), led to better performance overall.

For the neural network architecture, we used a multi-layer perceptron with an overall layer structure
of x - 512 - 512 - 128 (where x is the input observation dimension). Its two hidden layers (each of size
512) use ReLU activations, as described for state-based observations environments (i.e., environments
with real vector observations, as opposed to images or other high-dimensional inputs) in the original
paper. For the distance function, the resulting 128-dimensional MLP output is fed into a separate
128-512-2048 projector, followed by an IQE-maxmean head with 64 components each of size 32.

The full set of hyperparameter values used to train the QRL distance models can be found in Table

Table 4: Hyperparameters used to train the QRL model.
Hyperparameter Value
Neural Network State embedding z-512-512-128
Neural Network IQE Projector 128-512-2048
Activation Function (Hidden Layers) ReLU Glorot et al.|(2011)

Optimizer Adam Kingma and Ba|(2015)
A Learning Rate 0.01

Learning Rate Model 1 x1074

Batch Size 256

Quasimetric function IQE

IQE n components 64

IQE Reduction maxmean

D.5 Hilbert Representation

A Hilbert representation model is a function ¢ : S — R? that embeds a state s € S into a d-
dimensional space, such that the Euclidean distance between embedded states approximates the
number of actions required to transition between them under the optimal policy.

We trained Hilbert representation models following the approach of |[Park et al.| (2024b)), us-
ing action-free Implicit Q-Learning (IQL) (Park et al.| 2023) and Hindsight Experience Re-
play (HER) (Andrychowicz et al.,[2017).

We used a dataset of state—next-state pairs (s, s’), which we relabeled using HER to produce state—
next-state—goal tuples (s, s’, g). Goals were sampled from a geometric distribution Geom(y) over
future states in the same trajectory with probability 0.625, and uniformly from the entire dataset with
probability 0.375.

We trained the Hilbert representation model ¢ to minimize the temporal-difference loss

E[l(=1(s # g) = l|o(s") — o9l + lo(s) — &(9)ID], (13)
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where [ denotes the expectile loss (Newey and Powell, |1987), an asymmetric loss function that
approximates the max operator in the Bellman backup (Kostrikov et al., |2022). This objective
naturally supports the use of target networks (Mnih et al.,|2015) and double estimators (Van Hasselt
et al., [2016)) to improve learning stability. We included both in our implementation, following the
original setup used by [Park et al.| (2024b).

The full set of hyperparameter values used to train the Hilbert models can be found in Table [5]

Table 5: Hyperparameters used to train the Hilbert representation models.

Hyperparameter Value
Latent Dimension 32
Expectile 0.9
Discount Factor 0.99
Learning Rate 0.0003
Target Network Smoothing Factor 0.005

Multi-Layer Perceptron Dimensions (512, 512) Fully-Connected Layers
Activation Function (Hidden Layers) = GELU (Hendrycks and Gimpel, 2016)
Layer Normalization (Hidden Layers) True

Activation Function (Final Layer) Identity

Layer Normalization (Final Layer) False

Optimizer Adam (Kingma and Bal 2015)
Batch Size 1024

E Ablation Study

In this section, we present additional ablation studies to analyze the performance of our proposed
methods. We evaluate the impact of different hyperparameters and design choices on the performance
of the learned embeddings.

We conduct experiments in the CliffWalking environment, which is a highly asymmetric environment
with a known ground truth MAD. For each experiment we train the MadDist algorithm using the
same hyperparameters from the main experiments, varying only the hyperparameter of interest while
keeping all others fixed. We then evaluate the learned embeddings using Spearman correlation,
Pearson correlation, and Ratio CV metrics.

E.1 Effect of Latent Dimension on MAD Accuracy

CliffWalking Environment CliftWalking Environment CliffWalking Environment
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Figure 4: Impact of latent size on Spearman correlation, Pearson correlation and Ratio CV of the
MadDist and TDMadDist algorithms, evaluated in the CliffWalking environment. Shaded regions
show the range of values across five random seeds, with upper and lower boundaries representing
maximum and minimum values.

Figure ] shows the impact of the latent dimension size on the performance of our proposed methods.
We can see that increasing the latent dimension size improves the performance of our methods.
We note that the performance starts to saturate after a latent dimension size of 10, but larger latent
dimension sizes still slightly improve the performance and do not harm the performance. This is
likely due to the fact that larger latent dimension sizes allow for more expressive representations,
which can help to better capture the underlying structure of the environment.

20



CliffWalking Environment CliffWalking Environment CliffWalking Environment
— MadDist Simple = MadDIst-IQE MadDist WideNorm

—— MadDist-Simple = MadDist-IQ MadDist- WideNorm —— MadDist-Simple = MadDist-IQE MadDist-WideNorm

[ 10600 20000 30600 40000 50600 3 10600 20600 30600 40600 50600 [] 10600 20600 30600 40600 50600
Gradient Steps. Gradient Steps Gradient Steps.

Figure 5: Impact of different quasimetric functions on correlation and Ratio CV of the MadDist
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

CliffWalking Environment CliffWalking Environment CliffWalking Environment

[ 10000 20000 30600 40600 50000 3 10000 20600 30600 40600 50600 [] 10600 20500 30600 40600 50600
Gradient Steps. Gradient Steps Gradient Steps.

Figure 6: Impact of different quasimetric functions on correlation and Ratio CV of the TDMadDist
algorithm, evaluated in the CliffWalking environment. Shaded regions show the range of values
across five random seeds, with upper and lower boundaries representing maximum and minimum
values.

E.2 Effect of Quasimetric Choice on MAD Accuracy

Figure [5] shows the impact of different quasimetric functions on the performance of the learned
MadDist model. The novel simple quasimetric (MadDistance-Simple) achieves the best performance,
outperforming both the Wide Norm (MadDistance-WideNorm) and IQE (MadDistance-IQE) variants.
While Wide Norm and IQE perform similarly to each other, they consistently underperform the
simple quasimetric across all three evaluation metrics.

Figure[6] presents the same ablation over quasimetric functions, now applied to learning the TDMad-
Dist model. The results mirror the previous setting: the simple quasimetric (TDMadDist-Simple)
again achieves the strongest performance, while the Wide Norm (TDMadDist-WideNorm) and IQE
(TDMadDist-IQE) variants lag slightly behind and show comparable results to each other.

In this experiment, we used a latent dimension size of 256. For the Wide Norm quasimetric, we
configure the model with 32 components, each having an output component size of 32. For the IQE
quasimetric, we set each component to have a dimensionality of 16. For both quasimetric functions
we use maxmean reduction (Pitis et al., [2020).

E.3 Effect of Dataset Size on MAD Accuracy
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Figure 7: Impact of dataset size on Spearman correlation, Pearson correlation and Ratio CV of the
MadDist and TDMadDist algorithms, evaluated in the CliffWalking environment. Shaded regions
show the range of values across five random seeds, with upper and lower boundaries representing
maximum and minimum values.



Figure [7]illustrates how dataset size affects the performance of our proposed methods. As the number
of trajectories increases, the dataset provides broader coverage of all the possible transitions in the
environment, leading to a more accurate approximation of the MAD.

F Complete list of results

In this section, we report the complete list of results, including the Spearman and Pearson Correlation
metrics together with the Ratio Coefficient of Variation. The results appear in Figure[Q]and in Figure[9]
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Figure 8: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios
across test environments. Shaded regions minimum and maximum values across three random seeds.

G Environments

Our test environments were specifically chosen to span a comprehensive range of reward-free MDP
characteristics and challenges, ensuring a thorough evaluation. Key design considerations for this
suite include:

* Noisy Observations: To assess robustness to imperfect state information, which can challenge
algorithms relying on precise state identification.
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Figure 9: Pearson and Spearman correlation coefficients and coefficient of variation (CV) ratios
across OGBench test environments. Shaded regions minimum and maximum values values across
three random seeds.

e Stochastic Dynamics: To evaluate if our algorithm can retrieve the MAD even when transitions
are not deterministic. This reflects real-world scenarios where environments have inherent
randomness or agent actions have uncertain outcomes.

* Asymmetric: To test the capability of our algorithm to learn true quasimetric distances that capture
directional dependencies (e.g., one-way paths, key-door mechanisms).

* State Spaces:

— Continuous State Spaces: To demonstrate applicability to problems with real-valued state
representations where function approximation is essential.

— Discrete State Spaces: To provide foundational testbeds with clearly defined structures and
allow for exact MAD computation.
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L]

Action Spaces:

— Continuous Action Spaces: To evaluate performance in environments where actions are
defined by real-valued parameters, common in robotics and physical control tasks.

— Discrete Action Spaces: To ensure applicability to environments with a finite set of distinct
actions.

Complex Dynamics: Incorporating environments like PointMaze, which feature non-trivial physics
(velocity, acceleration).

Hard Exploration: Utilizing environments with complex structures (e.g., intricate mazes) that
pose significant exploration challenges for naive data collection policies (like the random policy
we used in our experiments).

NoisyGridWorld

Noisy Observations, Stochastic Dynamics, Continuous State Space, Discrete Action Space

L]

State space: The agent receives a 4-dimensional observation vector (x, y, n1, ng)at each step. In
this observation, (z,y) are discrete coordinates in a 13 x 13 grid, and (n1,n2) ~ N(0,0%I) are
i.i.d. Gaussian noise components. The true underlying latent state, which is not directly observed
by the agent in its entirety without noise, is the coordinate pair (z,y). The presence of the noise
components (n1,n2) in the observation makes the sequence of observations non-Markovian with
respect to this true latent state.

Action space: Four stochastic actions are available in all states: UP, DOWN, LEFT, and RIGHT.

Transition dynamics: With probability 0.5, the intended action is executed; with probability 0.5,
a random action is applied. Transitions are clipped at grid boundaries.

Initial state distribution (10): The agent’s initial true latent state (z(, yo) is a random real-valued
position sampled uniformly from the grid. The full initial observation is (o, Yo, 71,0, 2,0), Where
the initial noise components (n1 0, n2,0) are also sampled i.i.d. from N(0, o%I). The real-valued
nature of both the initial position and the noise components makes the observed state space
continuous.

Ground-truth MAD: Since the latent state is deterministic apart from noise, the MAD between
two states (21, y1) and (22, y2) is the Manhattan distance |21 — 22|+ |y1 — y2|. Noise components
are ignored.

KeyDoorGridWorld

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space

L]

State space: States are triples (x, y, k), where (z,y) is the agent’s position in a 13 x 13 grid, and
k € {0, 1} indicates whether the key has been collected.

Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, and RIGHT.

Transition dynamics: Transitions are deterministic. The agent picks up the key by visiting the
key’s cell; the key cannot be dropped once collected. The door can only be passed if the key has
been collected.

Initial state distribution (1(): The agent starts at position (1, 1).

Ground-truth MAD: Defined as the minimum number of steps to reach the target state, account-
ing for key dependencies. For example, if the agent lacks the key and the goal requires it, the path
must include visiting the key first.

CliffWalking

Asymmetric, Deterministic Dynamics, Discrete State Space, Discrete Action Space

* State space: The environment is a 4 x 12 grid. Each state corresponds to a discrete cell (z, y).

* Action space: Four deterministic actions are available in all states: UP, DOWN, LEFT, or RIGHT.

24



» Transition dynamics: Transitions are deterministic unless the agent steps into a cliff cell, in
which case it is returned to the start. The episode is not reset.

« Initial state distribution (1o): The agent starts at position (1, 1).

¢ Ground-truth MAD: The MAD is the minimal number of steps required to reach the target state,
allowing for cliff transitions. Since falling into the cliff resets the agent’s position, it can create
shortcuts and lead to strong asymmetries in the distance metric.

PointMaze

Continuous State Space, Complex Dynamics, Hard exploration, Continuous Action Space

* State space: The agent observes a 4-dimensional vector (z, y, &, ¥/), where (z, y) is the position of
a green ball in a 2D maze and (&, y) are its linear velocities in the = and y directions, respectively.

* Action space: Continuous control inputs (a,, a,) corresponding to applied forces in the  and y
directions. The applied force is limited to the range [—1, 1] N in each direction.

* Transition dynamics: The system follows simple force-based dynamics within the MuJoCo
physics engine. The applied forces affect the agent’s velocity, which in turn updates its position.
The ball’s velocity is limited to the range [—5, 5] m/s in each direction. Collisions with the maze’s
walls are inelastic: any attempted movement through a wall is blocked.

« Initial state distribution (1): The agent starts at a random real-valued position (z, y) sampled
uniformly from valid maze locations. The initial velocities (&g, yo) are set to (0, 0).

* Ground-truth MAD: The maze is discretized into a uniform grid. Using the Floyd-Warshall
algorithm on the resulting connectivity graph, we compute shortest path distances between all
reachable pairs of positions.

OGBench PointMaze

Continuous State Space, Complex Dynamics, Hard Exploration, Continuous Action Space

This benchmark extends the PointMaze environment to significantly larger and more challenging

mazes, designed to test long-horizon reasoning and exploration capabilities. The controlled agent is

the same 2D ball as in PointMaze, but the scale and complexity of the mazes increase substantially.
e Medium: Matches the original medium maze from D4RL.

» Large: Matches the original large maze from D4RL.

* Giant: Twice the size of Large, with a layout adapted from the antmaze-ultra maze of Jiang
et al.|(2022)). It contains longer paths, requiring up to 1000 environment steps, making it especially
demanding for long-horizon planning.

Two datasets are provided for each maze:

» Navigate: Collected using a noisy expert policy that repeatedly navigates to randomly sampled
goals throughout the maze.

* Stitch: Consists of short, goal-reaching trajectories of at most 4 cell units in length. Solving tasks
requires stitching together multiple short demonstrations (up to 8), testing the agent’s ability to
compose behaviors across long horizons.

H Planning Experiments

To assess the practical utility of the learned MAD embeddings, we evaluated the performance
of our algorithms and baselines on a downstream goal-reaching task in the OGBench PointMaze
environments.
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Planning algorithm

We employed a simple planning algorithm based on random shooting, a form of model-predictive
control (MPC), which allows for a direct evaluation of the distance metric as a planning heuristic.
This approach isolates the effectiveness of the learned metric from confounding factors that would be
introduced by more complex planners.

The planning process at each time step ¢, given a current state s; and a goal state g, is as follows:

1. Generate K = 100 candidate action sequences, each of length I, by sampling actions uniformly
at random at each step in the sequence.

2. For each of the K action sequences, use the true environment simulator to roll out the correspond-
ing state trajectory {St41,...,St+m}-

3. Score each trajectory by finding the state within it that minimizes the learned distance to the goal.
The score for a trajectory is given by ming<;< g do(st+4, g), where dp is the learned distance.

4. Identify the action sequence that achieved the minimum score (i.e., the one that brought the agent
closest to the goal).

5. Execute the first action from this best-scoring sequence to transition to the next state, ;1.

This entire process is repeated at each step in a receding-horizon fashion until the agent reaches the
goal or a maximum episode length is exceeded.

Our choice of this simple planning framework is deliberate. By relying on the true simulator and
random action sampling, the success of the planner depends directly on the metric’s ability to provide
a meaningful and accurate signal for progress toward the goal. This avoids confounding the evaluation
with inaccuracies that might arise from a learned dynamics model or the complexities of a separate
policy optimization algorithm.

It is important to note the limitations of this planner: since actions are sampled randomly, the resulting
trajectories are sub-optimal and tend to explore only a local region around the agent’s current state.
Therefore, success in these long-horizon tasks heavily relies on the learned metric providing a
consistent and reliable global signal toward the goal, guiding the planner effectively even with its
limited local search.

Evaluation Protocol

Each task in OGBench accompanies five pre-defined state-goal pairs for evaluation. To ensure
statistical robustness, we evaluate over 3 independent random seeds. For each seed and each of
the five state-goal pairs, we run 50 evaluation episodes, each with slightly randomized initial and
goal states. Performance, as reported in Table[T] is measured by the average success rate across all
episodes. An episode is considered successful if the agent reaches a state within a small Euclidean
distance of the goal coordinates.
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