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ABSTRACT

Generalisation to unseen contexts remains a challenge for embodied navigation
agents. In the context of semantic audio-visual navigation (SAVi) tasks, the no-
tion of generalisation should include both generalising to unseen indoor visual
scenes as well as generalising to unheard sounding objects. However, previous
SAVi task definitions do not include evaluation conditions on truly novel sounding
objects, resorting instead to evaluating agents on unheard sound clips of known
objects; meanwhile, previous SAVi methods do not include explicit mechanisms
for incorporating domain knowledge about object and region semantics. These
weaknesses limit the development and assessment of models’ abilities to generalise
their learned experience. In this work, we introduce the use of knowledge-driven
scene priors in the semantic audio-visual embodied navigation task: we combine
semantic information from our novel knowledge graph that encodes object-region
relations, spatial knowledge from dual Graph Encoder Networks, and background
knowledge from a series of pre-training tasks—all within a reinforcement learn-
ing framework for audio-visual navigation. We also define a new audio-visual
navigation sub-task, where agents are evaluated on novel sounding objects, as
opposed to unheard clips of known objects. We show improvements over strong
baselines in generalisation to unseen regions and novel sounding objects, within the
Habitat-Matterport3D simulation environment, under the SoundSpaces task. We
will release all code, knowledge graphs, and pre-training datasets upon acceptance.

1 INTRODUCTION

Humans are able to use background experience, when navigating unseen or partially-observable
environments. Prior experience informs their world model of the semantic relationships between
objects commonly found in an indoor scene, the likely object placements, and the properties of the
sounds those objects emit throughout their object-object and object-scene interactions. Artificial
embodied agents, constructed to perform goal-directed behaviour in indoor scenes, should be endowed
with similar capabilities; indeed, as autonomous agents enter our homes, they will need intuitive
understanding about how objects are placed in different regions of houses, for better interaction
with the environment. Whereas external (domain) knowledge can yield improvements in agent
sample-efficiency while learning, generalisability to unseen environments during inference, and
overall interpretability in its decision-making, the goal of finding generalisable solutions by injecting
knowledge in embodied agents remains elusive (Oltramari et al., 2020; Francis et al., 2022).

The task of semantic audio-visual navigation (shown in Fig. 1) lends itself especially well to the
use of domain knowledge, e.g., in the form of human-inspired background experience (encapsulated
as a prior over regions and semantically-related objects contained therein). Certain sounds can be
associated with particular places, e.g., a smoke alarm is more likely to originate in the kitchen. To
infer such semantic information from sounds in an environment, we propose the idea of a knowledge-
enhanced prior.

By using a prior enriched with general experiences, we hypothesise that the learned model would
generalise to novel sound sources. We adopt a modular training paradigm, which has been shown to
lead to improvements in cross-domain generalisability and more tractable optimisation (Chen et al.,
2021b; Chaplot et al., 2020b; Francis et al., 2022). To verify our hypotheses, we evaluate the agent’s
performance on a set of novel sounding objects that were not introduced during training.
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Figure 1: Illustration of the proposed semantic audio-
visual navigation task. The agent is initialised at a
random location in a 3D environment and tasked to
navigate to the sounding object based on audio and
visual signals. The sound signal may stop while the
agent is navigating (e.g., sound produced by wash-
ing machine stops). Thus, the agent is encouraged to
understand the sound and visual semantics to reason
about where to search for the sounding object. For
example, in the image above, the agent hears the wash-
ing machine sound and decides to navigate near the
bathroom to search for the washing machine.

Contributions. First, we introduce the use of
knowledge-driven scene priors in the semantic
audio-visual embodied navigation task: we com-
bine semantic information from our novel knowl-
edge graph that encodes object-region relations,
spatial knowledge from dual Graph Encoder Net-
works, and background knowledge from a series of
pre-training tasks|all within a reinforcement learn-
ing (RL) framework. Second, we define a knowl-
edge graph that encodes object-object, object-
region, and region-region relations in house en-
vironments. Next, we curate a multimodal dataset
for pre-training a visual encoder, in order to en-
courage object-awareness in visual scene under-
standing. Finally, we define a new task of semantic
audio-visual navigation, wherein we assess agent
performance on the basis of their generalisation
to truly novel sounding objects. We offer experi-
mental results against strong baselines, and show
improvements over these models on various perfor-
mance metrics in unseen contexts. We will provide
all code, dataset-generation utilities, and knowl-
edge graphs upon acceptance of the manuscript.

2 RELATED WORK

Modularity in goal-driven robot navigation. Goal-oriented navigation tasks have long been a
topic of research in robotics (Kavraki et al., 1996; Lavalle et al., 2000; Canny, 1988; Koenig &
Likhachev, 2006). Classical approaches generally tackle such tasks through non-learning techniques
for searching and planning, e.g., heuristic-based search (Koenig & Likhachev, 2006) and probabilistic
planning (Kavraki et al., 1996). Although classical approaches might offer better generalisation
and optimality guarantees in low-dimensional settings, they often assume accurate state estimation
and cannot operate on high dimensional raw sensor inputs (Gordon et al., 2019). More recently,
researchers have pursued data-driven techniques, e.g., deep reinforcement learning (Wijmans et al.,
2020; Batra et al., 2020; Chaplot et al., 2020a; Yang et al., 2019; Chen et al., 2021b;a; Gan et al.,
2020) and imitation learning (Irshad et al., 2021; Krantz et al., 2020), to design goal-driven navigation
policies. End-to-end mechanisms have proven to be powerful tools for extracting meaningful features
from raw sensor data, and thus, are often favoured for the setting where agents are tasked with learning
to navigate toward goals in unknown environments using mainly raw sensory inputs. However, as
task complexity increases, these types of systems generally exhibit significant performance drops,
especially in unseen scenarios and in long-horizon tasks (Gordon et al., 2019; Saha et al., 2021).
To address the aforementioned limitations, modular decomposition has been explored in recent
embodied tasks. Chaplot et al. (2020c) design a modular approach for visual navigation, consisting of
a mapping module, a global policy, and a local policy, which, respectively, builds and updates a map
of the environment, predict the next sub-goal using the map, and predicts low-level actions to reach
the sub-goal. Irshad et al. (2021) also define a hierarchical setup for Vision-Language Navigation
(VLN) (Anderson et al., 2018), where a global policy performs waypoint-prediction, given the
observations, and a local policy performs low-level motion control. Gordon et al. (2019) design a
hierarchical controller that invokes different low-level controllers in charge of different tasks such as
planning, exploration, and perception. Similarly, Saha et al. (2021) design a modular mechanism
for mobile manipulation that decomposes the task into: mapping, language-understanding, modality
grounding, and planning. Aforementioned modular designs have shown to increase task performance
and generalisability, especially in unexplored scenarios, compared to their end-to-end counterparts.
Motivated by these, we develop a modular framework for semantic audio-visual navigation, which
includes pre-trained and knowledge-enhanced scene priors, enabling improved unseen generalisation.

Knowledge graphs in visual navigation. Combining prior knowledge with machine learning
systems remains a widely-investigated topic in various research fields, such as natural language
processing (Ma et al., 2021; 2019; Francis et al., 2022), due to the improvements in generalis-
ability and sample-efficiency that symbolic representation promises for learning-based approaches.
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Historically, integrating symbolic knowledge with, e.g., navigation agents has proven non-trivial,
yielding a collection of research areas focusing on smaller components of the problem—such as
finding the appropriate representation of the knowledge (e.g., logical formalism, knowledge graphs,
probabilistic graphical models), the appropriate type of knowledge that should be encoded (e.g.,
spatial commonsense, declarative facts, etc.), and the best knowledge-injection mechanism (e.g.,
graph convolutional networks, grounded natural language, etc.) (Ma et al., 2019). Knowledge graphs
have gained popularity due to their interpretability and general availability as existing large-scale
resources, such as ConceptNet (Speer et al., 2017) and VisualGenome (Krishna et al., 2016). Fortu-
itously, graph processing of structured data has experienced a surge of popularity in deep learning
in recent years, leading to renewed interest in this neuro-symbolism (Oltramari et al., 2020; Wu
et al., 2021). Some visual navigation works exploit knowledge graphs in the pursuit of generalisation
(Moghaddam et al., 2020; Yang et al., 2019; Lv et al., 2020; Du et al., 2020; Vijay et al., 2019).
Yang et al. (2019) create knowledge graphs based on VisualGenome (Krishna et al., 2016) and inject
features extracted from the graph as prior knowledge in visual navigation. In similar fashion, Qiu et al.
(2020) provide agents with knowledge of object relational semantics. However, the priors provided
by these works only leverage object-object connections. Lv et al. (2020) show improvements in
goal-directed visual navigation by injecting 3D spatial knowledge into learning-based agents. Inspired
by these works, we construct a knowledge graph that includes all object-object, object-region, and
region-region declarative semantics, which enables the more complex reasoning path, sound → object
→ region, in audio-visual navigation. Therefore, to our best knowledge, we become the first to study
knowledge-driven scene priors for the audio-visual navigation task family.

Generalization to unseen contexts. Chen et al. (2020; 2021b;a) leverage the SoundSpaces (Chen
et al., 2020) simulation environment and dataset to design and assess Audio-Visual Navigation policies.
The dataset is based on photorealistic indoor environments from the Matterport3D (Chang et al., 2017)
and Replica (Straub et al., 2019) datasets, to which 102 sound sources commonly found in indoor
environments (e.g., household appliances, musical instruments, telephones, etc.) were incorporated.
The SoundSpaces dataset is split, such that indoor scenes encountered during testing are not found in
the episodes used during the training stage. However, sounds of objects encountered during training
may also appear during testing. Gan et al. (2020) also explore Audio-Visual Navigation, but using the
simulation platform AI2-THOR (Kolve et al., 2017), which contains computer-generated graphical
imagery. The authors introduce the Visual-Audio Room (VAR) benchmark consisting of seven
different indoor environments—two of which were used for training and five for testing. The VAR
benchmark incorporates three different audio categories: ring tone, alert alarm, and clocks. Similar to
the AVN task introduced before, the same sound sources are found both in the training scenes, as
well as and the testing scenes. In this paper, we argue that in the context of Audio-Visual Navigation
tasks, generalisation to unseen environments pertains to both generalising to unseen visual scenes, as
well as to unheard sounds. Current Audio-Visual benchmarks do not take into consideration the latter.
Thus, there is no direct assessment of generalisation performance to unheard sounds. To tackle this
limitation, we propose a curated version of the SoundSpaces dataset where we evaluate our agent in
four conditions: (1) seen houses and heard sounds, (2) seen houses and unheard sounds, (3) unseen
houses and heard sounds, and (4) unseen houses and unheard sounds.

3 PROBLEM DEFINITION

We first consider the semantic audio-visual navigation (SAVi) task (Chen et al., 2021a): an agent is
initialised at a random location of an unmapped 3D house environment, which contains a sounding
object (e.g., piano). The agent must reach the sounding object, using its sensory inputs, consisting of
vision and audio. Two assumptions are made in this task: firstly, the target sound has variable length
in an episode and may not be available at every time step; the sound (e.g., a telephone ringing) may
stop during navigation; secondly, the sounding object has a physical and semantically-meaningful
embodiment in the scene (e.g., the sound of a telephone ring is associated with a physical manifestation
of a telephone, as opposed to the sound of an airplane passing overhead being associated with the
center of the living room). These assumptions are realistic because sound events have variable length
in the real world and are based on the semantics of the corresponding sounding objects. Due to the
variable-length nature of the sound, the agent cannot rely exclusively on the audio signal to reach the
sounding object: instead, the agent must use the audio signal to both predict the sounding object’s
location as well as understand the object’s semantics. Moreover, the agent needs to associate its visual
cues with the sound and reason about object and region relationships, in order to navigate effectively.
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To study these phenomena, we extend the SAVi task by evaluating agents on completely unheard
sounding objects. In the original task (Chen et al., 2021a), agents were evaluated on unheard clips of
known sounding objects, whereas in our task, agents are evaluated on completely unknown sounding
objects. More formally, we consider a set of sounding objects O (e.g., shower, TV monitor, etc.),
a set of indoor regions R (e.g., bathroom, living room), and a set of houses H. A particular house
hi ∈ H has a set of regions {ri1, ri2, . . . , rij} and a set of objects {oi1, oi2, . . . , oik}, where there are
k objects placed in j regions of the house hi. Note that there are multiple instances of each sounding
object o ∈ O and region r ∈ R across all houses H. We divide the total set of possible houses H
into two mutually exclusive subsets: Hseen and Hunseen. Similarly, we divide sounding objects
O into Oheard and Ounheard. The houses in Hseen and the sounding objects in Oheard are only
experienced by agents during training; agents are evaluated on unheard sounding objects Ounheard.
To solve this task, agents must learn to reason about the novel sounds based on prior knowledge; our
work aims to enable agents to reach sounding objects they have never experienced before.

4 KNOWLEDGE-DRIVEN SCENE PRIORS FOR AUDIO-VISUAL NAVIGATION

We introduce a knowledge-driven approach for semantic audio-visual embodied navigation
(K-SAVEN), which incorporates scene priors in knowledge graph form and extracts relational features
using Graph Encoder Networks (GEN) (Kipf & Welling, 2017) for audio and visual modalities. GENs
provide agents with reasoning capability, using prior knowledge, and dynamically update their beliefs
according to new observations. Our model also incorporates Scene Memory Transformer (SMT)
(Fang et al., 2019) that captures long-term dependencies by recording visual features in memory
and locating the goal by attending to acoustic features. We compute visual features by combining
a vision-based semantic knowledge vector with visual encoder representations. Similarly, we use
audio observations to compute acoustic features, combining audio-based semantic knowledge vector,
features encoded from the audio encoder, and location prediction. Thus, the prior knowledge-driven
reasoning capability using GENs with the memory-based attention mechanism using SMT allows
the agent to generalise to novel houses and sounding objects, exploit spatio-temporal dependencies,
and efficiently navigate to goal. The 6 modules of K-SAVEN are summarised in Fig. 2: 1) Pre-
trained models that, given the audio and visual observations from the environment, predict objects
and regions; 2) Graph Encoder Networks that compute audio-semantic and visual-semantic feature
embeddings; 3) Vision Encoder that projects the visual observations at each step to an embedding
space; 4) Audio Encoder that projects the audio observations at each step to an embedding space;
5) Location Predictor that, given the acoustic signal from the sounding object, predicts its relative
distance and direction from the agent; 6) Scene Memory Transformer that uses an attention-based
policy network, which computes a distribution over actions, given the encoded observations in scene
memory and the acoustic observation that captures goal information. We detail each module below.

Modular Pre-training. In our task, the agent relies on audio observations to set its goal and
uses visual observations to navigate to that goal; the agent must detect objects and regions in a
given observation. To this end, we trained audio classification model f b

c to predict a score for each
object o ∈ O, as likelihood that o produced the acoustic observation, and a vision classification
model fv

c to predict a score for each object o ∈ O and region r ∈ R as likelihood that the
observation corresponds to region r. The acoustic event has variable length and may not be present
at each time step, so the agent cannot rely on the current audio observation alone as a persistent
signal. Thus, our model aggregates the current prediction ĉbt with the previous prediction cbt−1,
cbt = fδ(ĉ

b
t , c

b
t−1) = (1− δ)ĉbt + δcbt−1, where δ is the weighting factor set to 0.5. When the acoustic

event stops (i.e., zero sound intensity), the agent uses its latest estimate cbt .

Knowledge graph construction. Our knowledge graph captures spatial relationships between
object-to-object, object-to-region, and region-to-region. This prior knowledge about how objects are
placed in regions of houses enables the agent to reason about where to find novel-sounding objects
for efficient navigation; more precisely, this prior knowledge enables the reasoning path, Sound →
Object → Region, which is crucial to the task of audio-conditioned visual navigation. For example,
suppose the squeaky sound produced by a chair is novel to the agent, and it knows that chairs are
usually kept close to tables or cushions and found in living rooms, or offices. In that case, it may
decide to navigate to regions that usually have chairs and objects usually placed close to chairs,
which would lead to finding the chair faster than not knowing such spatial and semantic relationships
between objects and regions. Our knowledge graph is denoted by an undirected graph G = (V,E),
where V and E denote vertices and edges, respectively. Each vertex denotes an object or region, and
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Figure 2: (a) K-SAVEN’s system overview. Visual observation vt is fed to two modules: vision encoder fv
e ,

which encodes the visual observation, and pre-trained vision model fv
c , which, given the visual observation,

predicts classification scores cvt for objects and regions. These scores are used by the vision-based graph
encoder network GENv to compute visual-semantic feature embeddings. Binaural audio observation bt is fed
to three models: audio encoder fb

e (encodes the audio observation), location predictor fb
loc (predicts distance

and direction lt of the sounding object from the agent, and direct-to-reverberant-ratio δt), and pre-trained audio
model fb

c (given the audio observation, predicts classification scores cbt for objects). These scores are used by
the audio-based graph encoder network GENb to compute audio-semantic feature embeddings. The outputs
of fv

e , GENv and fb
e are stored in memory M , along with the agent’s pose pt and previous action at−1. The

attention-based policy network conditions the encoded visual information Me on the acoustic information,
enabling the agent to associate visual cues with acoustic events and predict the state representation st, which
contains spatial and semantic cues helpful to reach the goal faster. The actor-critic network, given the state st,
predicts the next action at. (b) Graph Encoder Networks. Each vertex denotes an object or region category.
The initial vertex features fed into the GENv are initialised with the joint embedding obtained by concatenating
word embeddings of object or region names and classification scores of objects and regions based on the current
observation. GENv performs information propagation through the three layers, and the output of the GENv is
spatial and semantic aware embeddings. The audio-based GEN uses fb

c and GENb instead of fv
c and GENv .

each edge denotes the relationship between a pair of vertices. To compute these relationships, we use
Matterport3D dataset (MP3D; Chang et al. (2017)) as it contains semantic labels of 42 objects and
30 regions for 90 houses. We only use 21 objects and 24 regions (|V | = 45), which were used in
the original SAVi task (Chen et al., 2021a) to build the knowledge graph (more details in Section 5).
More specifically, two objects are connected with an edge if they are found in the same region, and
their frequency of occurrence is above a threshold. We compute this frequency with respect to the
most frequent object of that region and set the threshold to the maximum value that connects each
object with at least one other object. An object and region are connected if the region contains other
objects, which are connected with the object based on object-to-object relations. Finally, two regions
are connected if their frequency of containing connected objects, based on object-to-object relations,
is above a threshold. We set the threshold to the maximum value connecting each region with at least
one other region. Further knowledge graph construction and representation details are in Appendix B.

Location Prediction and Direct-to-Reverberant Ratio Estimation. The audio observation contains
information about the relative distance and direction from the agent to the sounding object. Thus, we
jointly trained a location predictor f b

loc to predict a location l̂t = (∆x,∆y), relative to the current
pose pt of the agent, and the direct-to-reverberant ratio (DRR) ∈ [0, 1] of the impulse response
between the sounding source and the agent. Similar to the pre-trained audio model, our location
prediction also aggregates the current estimate l̂t with the previous lt−1, lt = fδ(l̂t, lt−1,∆pt, δt) =

δt l̂t + (1− δt)fp(lt−1,∆pt), where fp(·) transforms the previous location prediction lt−1 based on
the last pose change ∆pt. Here, δt is either fixed to 0.5 ∀t (exponential average) or assigned the value
of the estimated DRR (dynamic average). The agent uses its latest estimate lt = fp(lt−1,∆pt) when
the acoustic event stops. Note that DRR prediction also serves as an auxiliary task, as it will help
the agent better estimate the directness and location of the sounding object. In fact, DRR provides
an indirect measure of the acoustic distance between the source and the agent, independent of the
sound level of the source. At training time, we build the ground truth for δt from the room impulse
response (RIR) between the source and the agent as the ratio between the energy of the RIR in the
first 10ms after the peak and the overall energy of the RIR. Thus, δt measures how direct the acoustic
propagation between the sounding object and the agent is: when the agent is far from the source, δt
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tends towards 0; as the agent gets closer to the source, δt increases. When the source is silent, δt
equals 0; thus, δt predicts trustworthiness of location prediction, based on the binaural sound itself.

Encoder Networks. The goal of GENv and GEN b are to extract a semantic knowledge vector
using the graph G = (V,E). As shown in Fig. 2, the input to each vertex v is feature vector xv,
which is a concatenated representation of both semantic cues (i.e., language embeddings) and the
visual or acoustic cues (i.e., the classification score for objects and regions based on the current
visual image or sound signal). The language embeddings are generated by GloVe (Pennington
et al., 2014) (f l

enc) and the classification score is generated by pre-trained vision (fv
c ) or audio (f b

c )
models (see Section 4). The knowledge graph is represented as a binary adjacency matrix A. Similar
to Yang et al. (2019); Kipf & Welling (2017), we perform normalisation on A to obtain Ã. Let
X = [x1, . . . , x|V |] ∈ R|V |×D be the inputs of all vertices and Z = [z1, . . . , z|V |] ∈ R|V |×F be the
output of the GENs, where D and F denote the dimension of the input and output feature. Our GENs
perform the following layer-wise information propagation rule: H(l+1) = σ(ÃH(l)W (l)). Here,
H(0) = X,H(L) = Z,W (l) is the parameter for the l-th layer, L is the number of GEN layers, and σ
denotes an activation function. We initialise each vertex based on current observation then perform
information-propagation to compute audio-based and vision-based semantic knowledge vectors. The
vision-based knowledge vector is stored in memory M , and the audio-based knowledge vector is
used to attend to the encoded memory Me. The output is a graph embedding which serves as a
spatial- and semantic-aware representation for policy optimisation. Our vision encoder fv

e encodes
the visual observations, consisting RGB and depth images from the agent’s perspective. Our audio
encoder f b

e encodes the binaural audio observations heard by the agent into a two-channel log-mel
spectrogram, with a third channel encoding the generalised cross-correlation with phase transform
(Knapp & Carter, 1976) between the two channels.

Policy Network. We use a transformer-based architecture for our RL policy network, which stores
observations in memory M . At each time step, our model encodes each visual observation, evt =

fv
e (vt) and ev−gen

t = GENv(fv
c (vt)) to save in the memory. Our model also stores in memory the

agent’s pose p, defined by its location and orientation (x, y, θ) with respect to its starting pose p0
in the current episode, and at−1, the previously executed action. Thus, the encoded observation
stored in memory is eOt = [evt , e

v−gen
t , pt, at−1]. The model stores these observation encodings up to

time t in memory: M = {eOt : i = max{0, t − SM}, . . . , t}, where SM is the memory size. The
transformer uses the memory M stored so far in the episode and encodes these visual observation
embeddings with a self-attention mechanism to compute the encoded memory Me = Encoder(M).
Then, using the audio observation embeddings, a decoder network attends to all cells in Me to
calculate the state representation st = Decoder(Me, e

b−gen
t , lbt ), where eb−gen

t = GEN b(f b
c (bt)).

Using this attention mechanism, the agent captures long-term spatio-temporal associations between
the acoustic-driven goal prediction and the visual observations. Moreover, our model preserves the
most relevant information to reach the goal by conditioning visual-semantic embeddings stored in Me

on audio-semantic embeddings computed using current audio observation. The actor-critic network
uses st to predict the value of the state and action distribution. Finally, the action sampler takes
next-action at from this action distribution.

Learning and Optimisation. To train the vision classification model fv
c , we collect a dataset

using 85 MP3D houses, consisting of 82,828 images, each corresponding to a location and rotation
angle in the SoundSpaces simulator (see Section 5). Each image has 128 x 128 resolution and 4
modalities: RGB image, depth image, object semantic image, and region semantic image. We use
the binary cross-entropy loss for optimising the vision classification model and train it as a standard
multi-label classifier. To train the audio classification model f b

c , we use the SoundSpaces simulator to
generate 1.5M spectrograms using different source and receiver positions, each corresponding to a
sounding object in one of the 85 MP3D houses. We treat detecting sounding objects as a multi-class
classification problem and optimise the audio classification model using cross-entropy loss. Our
vision classification model takes an RGB image as input, and the audio classification model takes
1 second sound clip represented as two 65 × 26 binaural spectrograms as input. We trained both
vision and audio classification models using a ResNet-18 (He et al., 2015) architecture, pre-trained
on ImageNet. The vision classification model predicts a score for 21 objects and 24 regions, and
the audio classification model predicts a score for 21 objects (see Section 5). These models are
pre-trained before and are frozen during policy optimisation. While we use MP3D, in this paper, for
training these classification models, we assert that our modules may also be trained on other house
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Table 1: Results of baseline models and our proposed approach.
SEEN HOUSES, HEARD SOUNDS SEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

Random 4.7 1.0 0.4 18.3 4.7 6.8 1.9 0.9 16.3 6.7

AudioGoal Chen et al. (2020) 31.2 29.5 21.3 7.9 9.6 17.4 16.6 11.9 10.7 5.8
AudioObjectGoal 40.8 39.2 29.5 5.7 13.6 17.7 16.4 11.7 9.7 6.6

SAVi Chen et al. (2021a) 67.2 53.6 52.8 1.6 37.8 21.7 15.7 13.6 6.5 12.1

K-SAVEN (ours) 70.2 52.8 53.9 1.78 31.0 37.8 27.1 25.5 5.3 17.8

UNSEEN HOUSES, HEARD SOUNDS UNSEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

Random 6.2 1.5 0.7 17.7 6.1 5.6 1.7 0.7 14.8 5.8

AudioGoal Chen et al. (2020) 15.7 14.9 10.7 14.6 4.2 16.5 15.5 10.4 12.8 5.6
AudioObjectGoal 14.9 13.9 10.2 14.2 4.6 14.3 12.9 8.7 12.2 5.5

SAVi Chen et al. (2021a) 32.0 21.2 18.5 10.1 17.9 15.3 10.8 8.8 10.0 8.3

K-SAVEN (ours) 35.3 24.4 22.2 8.4 18.6 34.4 23.4 21.7 6.6 14.3

Table 2: Results of various ablative model configurations, across all dataset splits.
SEEN HOUSES, HEARD SOUNDS SEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

SAVi Chen et al. (2021a) 67.2 53.6 52.8 1.6 37.8 21.7 15.7 13.6 6.5 12.2
K-SAVEN –only GENb 64.4 52.5 50.1 2.1 38.0 31.7 23.2 22.2 5.7 15.6
K-SAVEN –only GENv 73.2 58.7 61.1 1.6 39.4 29.7 21.8 20.7 6.2 14.9
K-SAVEN –both GENs 73.0 58.6 58.8 1.3 39.4 30.5 22.6 21.8 6.0 16.0
K-SAVEN –both GENs + δt 66.6 49.5 48.2 1.8 36.2 34.7 24.8 24.8 5.8 14.0
K-SAVEN –full model 70.2 52.8 53.9 1.78 31.0 37.8 27.1 25.5 5.3 17.8

UNSEEN HOUSES, HEARD SOUNDS UNSEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

SAVi Chen et al. (2021a) 32.0 21.2 18.5 10.1 18.0 15.3 10.8 8.8 10.0 8.3
K-SAVEN –only GENb 31.1 21.3 19.6 9.8 15.1 23.3 16.1 14.8 9.5 10.0
K-SAVEN –only GENv 32.8 23.2 21.1 9.4 16.0 21.2 14.2 12.4 9.3 10.0
K-SAVEN –both GENs 31.9 21.7 20.1 10.0 16.0 22.9 15.3 13.7 9.2 10.1
K-SAVEN –both GENs + δt 29.8 19.9 17.9 9.5 13.9 27.2 17.2 16.5 8.5 10.2
K-SAVEN –full model 35.3 24.4 22.2 8.4 18.6 34.4 23.4 21.7 6.6 14.3

environments that provide semantic labels of objects and regions in houses. For location predictor
f b
loc, we use a simplified ResNet-18 architecture and train it jointly with the policy, using the same

experience. We optimise the location predictor using the mean-squared error loss and update it
with the same frequency as the policy network. We train the policy network using the decentralised
distributed proximal policy optimisation (DD-PPO) (Wijmans et al., 2020), which consists of a value
network loss, policy network loss, and an entropy loss to encourage exploration (Schulman et al.,
2017). We adapt the two-stage training procedure proposed by Fang et al. (2019) for effectively
training the vision networks (fv

e , GENv). In the first stage, the SMT policy is trained without
attention by setting the memory size sM = 1 and storing the latest observation embeddings. In the
second stage, the memory size is set to sM = 150, and the parameters of the vision networks are
frozen. The input to the vision encoder fv

e is 64 × 64 RGB, and depth images cropped from the
center. We optimise our model using Adam (Kingma & Ba, 2015) with a learning rate of 2.5× 10−4

for the policy network and 1× 10−3 for the pre-trained audio and vision networks using PyTorch
(Paszke et al., 2019). We train our method and the baselines for 300M steps and roll out policies for
150 steps. See Appendix C for more details.

5 EXPERIMENTS
Simulator and semantic sounds. We use SoundSpaces (Chen et al., 2020) to simulate an agent
navigating in visually- and acoustically-realistic 3D house environments. While, SoundSpaces
supports two real-world environment scans (Replica (Straub et al., 2019) and Matterport3D (MP3D)
(Chang et al., 2017)), we used MP3D as it provides a larger number of houses and object-region
semantics therein. We use the same 21 object categories as Chen et al. (2021a) for MP3D; these
object categories are visually present in the 24 regions of the 85 MP3D houses. We use the publicly-
available sound clips from the experiment performed by Chen et al. (2021a), in which audio clips
from freesound.org database were used. We generate sound by rendering the specific sound that
semantically matches the object at the locations in MP3D houses. For example, the water-dropping
sound will be associated with the sink in the kitchen. See Appendix A and F for more information
about object/region categories and episode specification.

Rewards. The agent receives a sparse reward of +10 when it reaches the goal, a dense reward of +1
for reducing the geodesic distance to goal, and an equivalent negative reward for increasing it. To
encourage trajectory efficiency, we also assign a reward of −0.01 per time step. To avoid simpler
episodes, wherein is easy to reach goal (e.g., straight paths or short distance), we used 2 conditions
while sampling episodes: 1) the ratio of geodesic distance to euclidean distance must be greater than
1.1; 2) the geodesic distance from the start location to the goal location must be greater than 4 meters.
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Baseline models. We compare our model against several baselines: Random walk is a baseline
which uniformly samples one of the three navigation actions with probability of 0.33, or Stop with
probability 0.01. Stop is also executed automatically by the simulator when the agent’s location is
within 1m radius of the target sounding object, or if more than 500 steps are taken by the agent.
AudioGoal (Chen et al., 2020) is an end-to-end RL policy based on the PointGoal task (Wijmans
et al., 2020) based on a Seq2Seq mechanism which uses a GRU state encoder that leverages colour
and depth images to navigate the unknown environments. In contrast to PointGoal, which uses GPS
sensing to guide the agent toward its goal, this baseline uses audio spectrograms. AudioObjectGoal
is a Seq2Seq mechanism similar to AudioGoal, but the agent is also provided with the semantic
label of the target object. SAVi (Chen et al., 2021a) is a transformer-based model that uses a goal
descriptor network to predict both spatial and semantic properties of the target sounding object. It is
the state-of-the-art deep RL model for the semantic audio-visual navigation task; like K-SAVEN, it
uses SMT and a pre-trained audio classification model.

Evaluation metrics. We follow Chen et al. (2021b;a) in reporting agent performance against
the following metrics: 1) success rate (SR); 2) success rate weighted by path length (SPL); 3)
success rate weighted by number of actions (SNA); 4) average distance to goal (DTG) on episode
success/termination; and 5) success when silent (SWS). We assess model generalisation by evaluating
our method on unheard sounding objects, across the following settings: 1) seen houses and heard
sounds; 2) seen houses and unheard sounds; 3) unseen houses and heard sounds; and 4) unseen houses
and unheard sounds. We randomly split the houses and sounding objects for training and testing. We
use 68 seen houses, 17 unseen houses, 16 heard sounding objects, and 5 unheard sounding objects;
we average the results over 1,000 episodes for each setting.

6 RESULTS
Quantitative results discussion. The performance comparison between the aforementioned baseline
agents—across Seen-House/Heard-Sounds (SH/HS), Seen-House/Unheard-Sounds (SH/US), Unseen-
House/Heard-Sounds (UH/HS), and Unseen-House/Unheard-Sounds (UH/US) conditions—is sum-
marised in Table 1. Overall, in all cases except Seen-Houses/Heard-Sounds, our approach outperforms
all baseline methods across all metrics. More specifically, in the Seen-Houses/Unheard-Sounds case,
there is an improvement of 20.4%, 20.1%, and 16.1% in SR, in the Unseen-Houses/Heard-Sounds,
there is an improvement of 19.6%, 20.4%, and 3.3% in SR, and in the Unseen-Houses/Unheard-
Sounds case, there is an improvement of 17.9%, 20.1%, and 19.1% in SR as compared to AudioGoal,
AudioObjectGoal, and SAVi, respectively. These results indicate that our agent could leverage
the reasoning capability using GENs with the memory-based attention mechanism using SMT and
generalise to the novel sounding objects. In the Seen-Houses/Heard-Sounds case, where the agent
has experienced the sounding objects during training, and it is more critical to reason about the visual
cues than the sound semantics to succeed, our approach performs comparable to SAVi. We emphasize
that SAVi also has a vision encoder and a scene memory to store encoded vision observations like
our approach resulting in comparable performance in the Seen-Houses/Heard-Sounds case with our
approach and making it challenging to improve on SAVi with significant margins. Additionally, due
to fair comparison, we strictly trained ours and SAVi’s models for 300M steps, for both stages.

Ablations. We provide ablation results in Table 2, to evaluate our system’s key components. Overall,
all ablative configurations of our approach perform better than SAVi in all metrics. We note that SAVi
also leverages the audio classification model and SMT policy with scene memory, similar to our
approach, and as shown in Table 2, adding GEN and direct-to-reverberant (DRR) modules helps to
improve the agent’s performance further. Our full model performs best in all metrics, except for the
Seen-Houses/Heard-Sounds (SH/HS) case. These results indicate that our agent can indeed associate
visual cues with sound semantics and use the prior knowledge-driven reasoning capability from both
GENs to generalise to novel sounds and novel environments to navigate efficiently. Moreover, in the
Seen-Houses/Heard-Sounds case, only-GENv outperforms other models in most metrics indicating
that GENv has a comparatively more significant impact on our model’s performance. However,
relying exclusively on only-GENv would not enable the agent to navigate to the novel sounds
effectively. We evaluate the impact of using the estimated DRR as a weight for location belief update,
by comparing K-SAVEN –full model to K-SAVEN –both GENs + δt, the former using δt = 0.5, ∀t
(exponential average) and the latter using the estimated DRR as δt (dynamic average). The full model
achieves better performance by a margin compared to the use of a dynamically-estimated weighting
factor δt. Our intuition is that DRR-estimation as an auxiliary task for the location-predictor induces
better l̂t estimation, as DRR acts as a proxy to the estimation of the distance to the source. However,
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Figure 3: Visualisation of navigation trajectories. Row-wise, we show trajectories and egocentric views for
K-SAVEN and SAVi on two episodes from the UH/US set. (a), (d): beginning of the episode, with the starting
pose and view of the agent and the target sounding object. (b), (e): K-SAVEN’s visual results along with SPL/SR
metrics. (c), (f): SAVi’s visual results along with SPL/SR.

the estimated δt is not reliable enough to provide a consistent weighting scheme across the episode,
thus an exponential average with δt = 0.5 provides better overall performance.

In heard sounds cases, the agent is familiar with sounds, so vision reasoning is more important. Both
only-GENv and both-GENs have GENv; thus, they both perform better than only-GEN b, with
only-GENv performing slightly better than both-GENs, as only-GENv forces the agent to reason
only based on vision. For example, in the SH/HS case, the success rate (SR) of only-GEN b is 64.4,
and the SR of only-GENv and both-GENs is 73.2 and 73.0, respectively. In the UH/HS case, the
SR of only-GEN b is 31.1, and the SR of only-GENv and both-GENs is 32.8 and 31.9, respectively.
Similarly, in unheard sounds cases, the agent is unfamiliar with sounds, so audio reasoning is more
important. Both only-GEN b and both-GENs have only-GEN b; thus they both perform better than
only-GENv, with only-GEN b performing slightly better than both-GENs as only-GEN b forces
the agent to reason only based on audio. For example, in the SH/US case, the SR of only-GENv

is 29.7, and the SR of only-GEN b and both-GENs is 31.7 and 30.5, respectively. In the UH/US
case, the SR of only-GENv is 21.2, and the SR of only-GEN b and both-GENs is 23.3 and 22.9,
respectively. Furthermore, it is crucial to effectively combine the reasoning capabilities introduced
by GENs, location prediction, and classification models. Our full model performs better in most
ablative cases, indicating that our agent could leverage the reasoning capability using GENs with the
memory-based attention mechanism from SMT and generalise to heard and unheard sounds.

Qualitative results discussion. We illustrate how our approach qualitatively improves navigation
performance, in Fig. 3: we compare K-SAVEN and SAVi trajectories on the same episodes, each
episode shown row-wise, alongside the episode’s corresponding expert trajectory, shown in green. The
episodes were obtained from the UH/US set. From these examples, we observe that K-SAVEN reaches
the goal location in fewer steps, whereas SAVi tends to take more steps and roam throughout the
episodes. The latter is supported by the SNA and SPL metrics in Table 1, where K-SAVEN achieves
higher success in terms of path length (SPL) and number of actions (SNA).

7 DISCUSSION AND CONCLUSION

We introduce a framework for leveraging knowledge-enhanced scene priors, in the form of object
and region semantics, for the semantic audio-visual navigation task. Notably, we show performance
improvements over strong baselines in multiple unseen contexts, particularly in conditions where the
agent needed to find novel sounding objects. We also provide a knowledge graph for training models,
a curated visual dataset, and a new task definition–all guided towards developing and assessing model
generalisation performance in unseen environments. We recognise future improvements of our work,
e.g., in the selection of the knowledge resource used for encouraging scene priors in the semantic
audio-visual navigation task. We would consider constructing a knowledge resource that characterises
sound-object relations (i.e., with descriptions of the sound that is generated by various objects), more
befitting of pre-training the acoustic GEN stream. Furthermore, we can consider using scene priors as
additive modules on frameworks in other tasks, particularly within the family of embodied multimodal
planning. Finally, sounds are not merely a product of individual objects, but of different types of
actions and interactions (e.g., sitting, dropping, playing music) that often involve multiple agents
and/or objects. Therefore, in future work, we plan to incorporate such semantic knowledge about
sounds, objects, actions, and interactions in our knowledge graphs to further improve performance.
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8 ETHICS STATEMENT

Enabling agents to leverage previous experience and background knowledge, through scene priors,
and to better identify goal locations through Direct-to-Reverberant Ratio estimation are of paramount
importance in human-machine interaction and robot task-following scenarios. Indeed, systems that
are endowed with these capabilities are better-suited for such applications as environmental health
monitoring, acoustic anomaly detection, navigation with resource constraints, and others. However,
training the scene priors using data that is not general enough for the deployment scenarios could
bring bias to the agent’s predictions.

9 REPRODUCIBILITY STATEMENT

We encourage reproducibility and are committed to enabling broad scientific use of our work, upon
acceptance. We will provide code, demonstration videos, our novel knowledge graphs, and our dataset
generation scripts—at an anonymised hyperlink, directed to the Reviewers and Areas Chairs, once the
submission forums are opened for all submitted papers (as suggested in the ICLR 2023 Author Guide).
We provide model implementation details in Section 4, particularly in the paragraph on Learning and
Optimisation. In Appendix C and Table 5, we further detail the important hyperparameters used in
our approach and outline the computing hardware that we used for training and evaluation.
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A ADDITIONAL DETAILS: SIMULATOR, OBJECTS, AND REGIONS

We use SoundSpaces (Chen et al., 2020) to simulate an agent navigating in visually- and acoustically-realistic
3D house environments. The simulator renders sounds at any pair of source (sounding object) and receiver
(agent) locations on a uniform grid of nodes spaced by 1 meter. While, SoundSpaces supports two real-world
environment scans (Replica (Straub et al., 2019) and Matterport3D (Chang et al., 2017)), we used Matterport3D
as it provides a larger number of houses and object-region semantics therein. We use the same 21 object
categories as Chen et al. (2021a) for Matterport3D: chair, table, picture, cabinet, cushion, sofa, bed, chest-of-
drawers, plant, sink, toilet, stool, towel, tv monitor, shower, bathtub, counter, fireplace, gym equipment, seating,
and clothes. These object categories are visually present in the 24 regions (balcony, bathroom, bedroom, closet,
dining room, entryway/foyer/lobby, familyroom/lounge, hallway, junk, kitchen, laundryroom/mudroom, living
room, lounge, meetingroom/conferenceroom, office, other room, porch/terrace/deck, rec/game, spa/sauna, toilet,
utilityroom/toolroom, and workout/gym/exercise) of the 85 Matterport3D houses. We use the publicly available
sound clips from the experiment performed by Chen et al. (2021a), in which audio clips from freesound.org
database were used. We generate sound by rendering the specific sound that semantically matches the object at
the locations in Matterport3D houses. For example, the water-dropping sound will be associated with the sink in
the kitchen.

B ADDITIONAL DETAILS: KNOWLEDGE GRAPH

Knowledge graph construction. Our knowledge graph captures object-to-object, object-to-region, and region-
to-region relations. To compute these relations, we use the semantic labels of objects and regions in Matterport3D.
The heuristic we use to find these relations is frequency-based: the main idea is to connect an object with another
object if they frequently exist across various regions. Similarly, we connect a region with another region if
they both have similar objects placed in them. The resultant knowledge graphs are provided in Tables 3 and
4, which can be represented as adjacency matrices, with an indicator of 1 to characterise a co-occurrence edge
between objects, other objects, regions, and other regions. For example, 2 objects (chair and chest-of-drawers)
are connected because they are frequently found in the bedroom region. These 2 objects are also frequently found
in other regions such as living room and office. Thus, we can make region-to-region connections by connecting
the bedroom to the living room and the office because these regions also frequently contain the same connected
objects (chair and chest-of-drawers) as the bedroom region.

Knowledge graph representation. Figure 4a illustrates the GloVe embedding space and figure 4b represents the
object-region adjacency matrix, both as two-dimensional projections. We reduced the dimension of the GloVe
embeddings, for each object and region, into 2 by using ISOMAP Tenenbaum et al. (2000) (shown in Figure 4a).
We also reduced the dimension of the vector in the adjacency matrix that encodes the relationship of each object
and region with other objects and regions (shown in Figure 4b). As shown in Figure 4, regions and objects are
clustered together, and objects found together in houses, such as tables and chairs, are close together.

Alternatively, these graphs can be represented in the same format as existing large-scale commonsense knowledge
resources, such as ConceptNet Speer et al. (2017): i.e., as a collection of head h / relation r / tail t triples of the
form (h, r, t), with the ConceptNet LocatedNear relation for each (h, t)=(object, object) instance pair, the
AtLocation relation for each (h, t)=(object, region) instance pair, and with the LocatedNear relation for
each (h, t)=(region, region) instance pair—with saliency weights, based on frequency. Some instances can be
further expanded with additional relations, such as UsedFor, derived from activity annotations in the region
labels. The following examples are taken from the first and tenth rows of Table 3:

(bathtub, LocatedNear, towel)
(bathtub, LocatedNear, sink)
(bathtub, AtLocation, bathroom)
...
(gym_equipment, UsedFor, workout)
(gym_equipment, AtLocation, gym)
(gym_equipment, UsedFor, exercise)

C ADDITIONAL DETAILS: MODEL IMPLEMENTATION

Hyperparameters. For all experiments, we implemented models using the PyTorch deep learning library, version
1.11.0. Table 5 shows the output size of different modules in SAVi Chen et al. (2021a) and different configurations
used in the ablation studies of K-SAVEN. In Table 5 “M Size” refers to the size of the vision-based knowledge
vector stored in memory M , and “Belief Size” refers to the size of the audio-based knowledge vector used to
attend to the encoded memory Me. We use ReLU as the activation function σ in both GENs. In our experiments,
we used D = 300 and F = 64, respectively, as the input and output feature dimensions in the encoder networks.
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Figure 4: Lower-dimensional projections, illustrating object-region similarity. (a) GloVe embeddings
for each object and region into 2D space. (b) Adjacency matrix that encodes the relationship between
objects and regions in 2D space. Best viewed in magnification.

Action encoder takes action represented in one-hot vector as input and projects into embedding of size 16. Note
that Action encoder is omitted from Fig. 2 (a) for simplicity. The K-SAVEN –only GENb, K-SAVEN –only
GENv and K-SAVEN –both GENs configurations are same as the K-SAVEN –full model except the location
predictor is not trained to predict direct-to-reverberant ratio (DRR) δt. The K-SAVEN –both GENs + δ is also
same as the K-SAVEN –full model except the δt is not fixed to 0.5 and used to estimate the sounding object’s
location. More specifically, the location is estimate by lt = fδ(l̂t, lt−1,∆pt, δt) = δt l̂t+(1−δt)fp(lt−1,∆pt),
where δt is dynamically updated by the location predictor.

Computing hardware. For rendering the simulator and performing local agent verification and analysis, we
used a single GPU machine, with the following CPU specifications: Intel(R) Core(TM) i5-4690K CPU @
3.50GHz; 1 CPU, 4 physical cores per CPU, total of 4 logical CPU units. The machine includes a single GeForce
GTX TITAN X GPU, with 12.2GB GPU memory. For generating multi-instance experimental results, we used a
dual-GPU machine, with the following CPU specifications: Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz; 1
CPU, 12 physical cores per CPU, total 24 logical CPU units. The machine includes two NVIDIA Titan RTX
GPUs, each with 24GB GPU memory.

D ADDITIONAL DETAILS: VISION DATASET

To train the vision classification model fv
c , which given an RGB image predicts a score for objects and regions,

we collect a vision dataset using the SoundSpaces simulator as described in Section 4. Initially, we collected
82,828 images across 85 Matterport3D houses, which is the maximum number of images possible as there are a
total of 20,707 nodes and 4 rotation angles in SoundSpaces. However, we faced the following challenges with
the scans and semantic labelling in the Matterport3D: 1) objects are not clearly visible because of glitches in
scans (see RGB image in Figure 5a); 2) object and region semantic labels are improper (see object and region
semantic images in Figure 5b and 5c); 3) the way some objects are placed is not common due to the luxurious
nature of some houses in Matterport3D (e.g., in scene ID aayBHfsNo7d, there is a big garage, which has a car, a
fridge, a table, and chairs; moreover, there is a big pool table in the game room, which is not commonly found in
houses), and some objects are not semantically placed (see Figure 6).

To address these challenges, we filtered some images and only used 45,233 images to train our vision classification
model fv

c . We use the following filtration criteria: 1) Filter out an image in which 75% of the pixels or more
are black (zero value); 2) There are 42 objects in Matterport3D, and we are interested in only 21 objects in our
experiments, so we filter out an image if it does not contain any of those 21 objects; 3) Filter out an image if the
most frequent object is taking less than 3% of the total pixels in the image; 4) Filter some of the semantic labels
of an image based on a threshold (0.18 for object and 0.2 for region). First, for each semantic label in the image,
we compute the ratio of its proportion of the pixels to the proportion of the most frequent semantic label in that
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Table 3: Relational knowledge graph for spatial object-object interactions
Sounding objects (21) Objects (21) Regions (22)

bathtub towel, sink, shower, picture, cabinet, toilet, counter, table, plant bathroom

bed chair, picture, table, sink, seating, cushion, cabinet, chest_of_drawers,
shower, plant, counter, tv_monitor, towel

spa/sauna, junk, bedroom

cabinet clothes, chair, towel, seating, shower, toilet, picture, table, sink, cushion,
plant, sofa, counter, bed, chest_of_drawers, bathtub, tv_monitor, stool,
fireplace

spa/sauna, bathroom, familyroom/lounge, living room, entry-
way/foyer/lobby, kitchen, office, utilityroom/toolroom, other room, hall-
way, laundryroom/mudroom, closet

chair gym_equipment, picture, seating, cushion, table, plant, cabinet, sink,
shower, chest_of_drawers, bed, counter, sofa, towel, tv_monitor, stool,
fireplace

spa/sauna, familyroom/lounge, living room, junk, entryway/foyer/lobby,
kitchen, office, utilityroom/toolroom, bedroom, other room, rec/game,
balcony, lounge, porch/terrace/deck, hallway, dining room, meet-
ingroom/conferenceroom, workout/gym/exercise

chest_of_drawers chair, picture, cushion, table, bed, tv_monitor, cabinet office, bedroom

clothes cabinet, picture closet

counter towel, cabinet, shower, chair, toilet, picture, sink, cushion, bed,
tv_monitor, table, bathtub, plant, stool

bathroom, junk, kitchen, utilityroom/toolroom, laundryroom/mudroom

cushion chair, picture, seating, table, sink, plant, cabinet, shower,
chest_of_drawers, bed, sofa, counter, towel, tv_monitor, stool, fireplace

spa/sauna, familyroom/lounge, living room, junk, entryway/foyer/lobby,
office, utilityroom/toolroom, bedroom, other room, rec/game, balcony,
lounge, porch/terrace/deck

fireplace cushion, table, chair, picture, sofa, plant, stool, cabinet living room

gym_equipment picture, chair workout/gym/exercise

picture clothes, gym_equipment, toilet, chair, seating, shower, cushion, towel,
cabinet, table, sink, chest_of_drawers, bed, counter, plant, sofa, bathtub,
tv_monitor, stool, fireplace

spa/sauna, bathroom, familyroom/lounge, living room, junk, entry-
way/foyer/lobby, kitchen, office, utilityroom/toolroom, bedroom, other
room, rec/game, lounge, hallway, laundryroom/mudroom, closet, dining
room, meetingroom/conferenceroom, toilet, workout/gym/exercise

plant chair, picture, sink, towel, table, cushion, shower, toilet, seating, cabinet,
sofa, counter, bed, bathtub, tv_monitor, stool, fireplace

spa/sauna, bathroom, familyroom/lounge, living room, junk, entry-
way/foyer/lobby, rec/game, balcony, porch/terrace/deck

seating chair, table, sink, picture, plant, cabinet, shower, bed, cushion, towel spa/sauna, entryway/foyer/lobby, other room

shower chair, sink, towel, table, toilet, seating, cabinet, picture, counter, bed,
plant, bathtub, cushion

spa/sauna, bathroom

sink cabinet, chair, towel, shower, toilet, seating, picture, table, counter,
cushion, bed, tv_monitor, plant, bathtub, stool

spa/sauna, bathroom, junk, kitchen, utilityroom/toolroom, laundry-
room/mudroom

sofa chair, picture, cushion, table, plant, cabinet, stool, tv_monitor, fireplace familyroom/lounge, living room, rec/game, balcony, lounge,
porch/terrace/deck

stool cushion, chair, picture, table, cabinet, counter, sofa, plant, sink,
tv_monitor, fireplace

familyroom/lounge, living room, kitchen

table chair, towel, picture, seating, shower, toilet, cushion, sink, cabinet, plant,
bed, chest_of_drawers, counter, sofa, bathtub, tv_monitor, stool, fire-
place

spa/sauna, bathroom, familyroom/lounge, living room, entry-
way/foyer/lobby, kitchen, office, utilityroom/toolroom, bedroom, other
room, rec/game, balcony, lounge, porch/terrace/deck, hallway, dining
room, meetingroom/conferenceroom

toilet sink, shower, towel, cabinet, picture, counter, bathtub, table, plant bathroom, toilet

towel toilet, chair, sink, table, shower, seating, cabinet, picture, counter, bed,
plant, bathtub, cushion

spa/sauna, bathroom, toilet

tv_monitor chair, picture, table, cushion, sink, plant, sofa, cabinet, counter, bed,
chest_of_drawers, stool

familyroom/lounge, junk, office

image. Then, semantic labels with ratios less than the threshold are filtered out. 5) For pre-training the vision
module, we selected a class cutoff threshold of 0.5, based on a grid search for this hyperparameter, shown in
Table 6.

E PRE-TRAINED MODELS’ PERFORMANCE

Audio classification model fb
c : Given an audio signal, our audio classification model, fb

c , predicts the sounding
object. We generated 1.5M spectrograms using different source and receiver positions, each corresponding to
a sounding object in one of the 85 Matterport3D houses. We used 1,201,147 spectrograms for training and
300,317 spectrograms for testing the audio classification model. We use accuracy A = correct predictions

total predictions % as the
metric to evaluate the audio classification performance. We receive 97.3% accuracy when we evaluate the audio
classification model on the test set.

Vision classification model fv
c : Given an image, our vision classification model fv

c , predicts objects and
regions in that image. Out of 45,233 images collected across 85 Matterport3D houses (see Appendix D), we
used 36,153 images for training and 9,080 images for testing the vision classification model. We used two
metrics to evaluate the performance of the vision classification model. First, we consider exact match ratio,
EMR = 1

n

∑n
i=1[I(y

(i) == ŷ(i))], where n is number of examples, y(i) and ŷ(i) are the true and predicted
labels of the ith example, respectively. The EMR calculates the ratio of examples for which the prediction
is identical to its ground truth class labels, over all examples. The EMR is always in the range of 0.0-1.0.
A high value of the EMR indicates high classification performance. The second metric is the hamming loss
HL = 1

nL

∑n
i=1

∑L
j=1[I(y

(i)
j ̸= ŷ

(i)
j )], where n is number of examples, L is number of classes, and y

(i)
j
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Table 4: Relational knowledge graph for spatial region-region interactions
Regions (22) Objects (21) Other regions (22)

balcony chair, plant, cushion, table, sofa living room, familyroom/lounge, rec/game, porch/terrace/deck

bathroom towel, sink, shower, picture, cabinet, toilet, counter, bathtub, table, plant spa/sauna

bedroom cushion, picture, chest_of_drawers, bed, chair, table spa/sauna, office

closet clothes, cabinet, picture bathroom, hallway, entryway/foyer/lobby, living room, family-
room/lounge, office, kitchen, laundryroom/mudroom, spa/sauna, other
room, utilityroom/toolroom

dining room chair, picture, table bedroom, hallway, entryway/foyer/lobby, living room, family-
room/lounge, office, kitchen, lounge, rec/game, spa/sauna, other room,
utilityroom/toolroom, meetingroom/conferenceroom

entryway/foyer/lobby picture, chair, table, plant, cabinet, cushion, seating spa/sauna

familyroom/lounge cushion, chair, picture, table, plant, sofa, cabinet, tv_monitor, stool living room

hallway picture, cabinet, chair, table entryway/foyer/lobby, living room, familyroom/lounge, office, kitchen,
spa/sauna, other room, utilityroom/toolroom

junk picture, chair, sink, cushion, counter, plant, bed, tv_monitor spa/sauna

kitchen cabinet, chair, counter, sink, stool, picture, table utilityroom/toolroom

laundryroom/mudroom cabinet, counter, picture, sink bathroom, kitchen, utilityroom/toolroom

living room cushion, table, chair, picture, sofa, plant, stool, fireplace, cabinet familyroom/lounge

lounge chair, picture, table, cushion, sofa living room, familyroom/lounge, rec/game

meetingroom/conferenceroomchair, picture, table bedroom, hallway, dining room, entryway/foyer/lobby, living room,
familyroom/lounge, office, kitchen, lounge, rec/game, spa/sauna, other
room, utilityroom/toolroom

office chair, table, picture, tv_monitor, chest_of_drawers, cabinet, cushion familyroom/lounge

other room seating, chair, table, picture, cushion, cabinet entryway/foyer/lobby, spa/sauna

porch/terrace/deck chair, plant, table, cushion, sofa balcony, living room, familyroom/lounge, rec/game

rec/game chair, table, cushion, picture, sofa, plant living room, familyroom/lounge

spa/sauna table, chair, sink, seating, cabinet, shower, picture, bed, plant, towel,
cushion

bathroom, entryway/foyer/lobby

toilet toilet, picture, towel bathroom

utilityroom/toolroom cabinet, chair, picture, table, counter, cushion, sink kitchen, spa/sauna

workout/gym/exercise gym_equipment, picture, chair bedroom, hallway, dining room, entryway/foyer/lobby, living room,
familyroom/lounge, office, kitchen, lounge, rec/game, spa/sauna, other
room, utilityroom/toolroom, junk, meetingroom/conferenceroom

Table 5: The output size of different modules in SAVi Chen et al. (2021a) and different configurations
used in the ablation studies of K-SAVEN.

Method Vision Encoder (fv
e ) GENv Audio Encoder (f b

e ) Pose pt Action Encoder M Size GEN b cbt Location lbt Belief Size
SAVi Chen et al. (2021a) 128 - 64 2 16 210 - 21 2 23
K-SAVEN –only GEN b 128 - 64 2 16 210 64 21 2 87
K-SAVEN –only GENv 128 64 64 2 16 274 - 21 2 23
K-SAVEN –both GENs 128 64 64 2 16 274 64 21 2 87

K-SAVEN –both GENs + δt 128 64 64 2 16 274 64 21 2 87
K-SAVEN –full model 128 64 64 2 16 274 64 21 2 87

and ŷ
(i)
j are the true and predicted labels of the ith example and jth class, respectively. The HL measures

the average number of false positives and false negatives. For a given class, a low value of the hamming loss
indicates that the class is easy to recognize, while a high value shows the opposite. We receive EMR of 0.48 for
objects and 0.68 for regions when we evaluate the vision classification model on the test set. It is challenging to
get a high score on EMR because it does not account for partially correct labels. Comparatively, classifying
regions is easier than classifying objects, as indicated by higher EMR. Table 7 shows the hamming loss results.
The average HL for all objects is 0.041089785 and for all regions is 0.017621146. Lower average HL value
for regions compared to that of objects indicate classifying regions is easier than objects, as indicated by EMR
results.

F ADDITIONAL DETAILS: EXPERIMENTS

Episode specification and success criteria. An episode of semantic audio-visual embodied navigation task
is defined by a house, a start location, and rotation angle of the agent, a goal location, a sounding object, and
duration of the audio event. In each episode, the start location and rotation of the agent is randomly selected. For
selecting the sounding object, an instance of an object category in the house is also chosen randomly. We define
a set of viewpoints within 1 meter of the object’s boundary from where the object is visible to the agent. When
the agent executes the Stop action at any of these viewpoints, the episode will be successfully completed. We
sample 367,155 episodes for training and 1000 episodes for each of the testing settings. To select the duration of
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Figure 5: Examples of issues with the scans and semantic labeling in the Matterport3D. The images in the
first row correspond to the scene ID aayBHfsNo7d and node: (93, 270), images in the second row correspond
to the scene ID 2n8kARJN3HM and node: (8, 180), and images in the third row correspond to the scene ID
1pXnuDYAj8r and node: (12, 90). (a) shows RGB image examples in which the objects are not clearly visible
due to glitches in the scan. (b) shows the semantic labels, and (c) shows the semantic labels; however, these
objects and regions are not clearly visible in the corresponding RGB image.

Figure 6: Examples of unusual semantically-placed objects in scene ID 2n8kARJN3HM of Matterport3D. In
the image show, a bathtub is placed in the living room, and chairs are kept on the top of a table, which is unusual
placement of these objects.

the audio event, first, we sample a value from a normal distribution with a mean of 15 and a standard deviation
of 9, and then we clip this value to limit the duration between 5 and 500 seconds.

Action space and sensors. There are 4 actions in the agent’s action space: MoveForward, TurnLeft, TurnRight,
and Stop. MoveForward changes the agent’s current location to the node in front of it only if that node is
reachable without collision. Stop can be used by the agent to report sounding objects and terminal the episode.
The TurnLeft, TurnRight, and Stop actions can always be executed successfully. There are 4 sensory inputs:
egocentric binaural sound (two-channel audio waveforms), RGB image, depth image, and the agent’s current
pose relative to the starting pose of the episode. The resolutions of the RGB and depth images are 128× 128.
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Table 6: Class threshold hyperparameter search, for visual module pre-training. “Shuffle" refers to shuffling
the observations, during training time; “EMR" refers to exact match ratio. For “Frozen Pre-trained Params",
asterisks (*) refer to the practice of freezing all but the final layer.

Threshold Normalised Image Dimension Frozen Pre-trained Params Single / Multiple GPUs Shuffle Train Time EMR: Val EMR: Test
0.5 Yes 128x128 No Single No – 0.713216 1.595627
0.5 Yes 128x128 No Multiple No 722m 60s 0.539758 1.375566
0.5 Yes 128x128 No Single Yes 549m 24s 1.163436 1.832025
0.6 No 128x128 No Single No 951m 60s 0.663987 1.559282
0.6 Yes 128x128 No Single No 957m 16s 0.686674 1.561979
0.6 Yes 128x128 Yes* Single No 1257m 6s 0.154515 0.162603
0.8 Yes 128x128 No Single No 1249m 58s 0.649119 1.548759

Table 7: Hamming loss for each object class computed by vision classification model fv
c .

Sounding objects Hamming loss Sounding objects Hamming loss

bathtub 0.012775331 plant 0.041079298

bed 0.032709252 seating 0.019162996

cabinet 0.099008814 shower 0.010462555

chair 0.121365644 sink 0.010462555

chest_of_drawers 0.033149779 sofa 0.061233483

clothes 0.003414097 stool 0.024339208

counter 0.035132159 table 0.141519830

cushion 0.048237886 toilet 0.003964758

fireplace 0.034691632 towel 0.006497798

gym_equipment 0.003193833 tv_monitor 0.022356829

picture 0.098127753

Figure 7: Visualisation of failure case where the agent encounters multiple objects with the same class as the
target object. (a): beginning of the episode, with the starting pose and view of the agent and the target sounding
object. (b): K-SAVEN agent encounters the target object, but continues navigating. (c): K-SAVEN agent finds a
different object with the same class as the target object.

At timestep t, the agent must select and execute an action at ∈ A. The goal is to learn a parameterised mapping
(e.g., a policy), such that given a sequence of observations {O0, O1, ..., Ot, ..., OT }, an agent that begins at an
initial location in house hi ∈ H can navigate to sounding object o.

Evaluating the memory in SMT. To evaluate the effectiveness of the memory used in Scene Memory Trans-
former (SMT), we evaluate our model’s performance after the first training stage, in which the memory size
(sM ) is one, and the agent uses only the current observations. Table 9 shows the results of K-SAVEN after stage
1 (sM = 1) and stage 2 (sM = 150) training. As shown in Table 9, the agent performs consistently better across
all metrics in all test cases after stage 2 training, indicating that adding memory helps to navigate efficiently.
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Table 8: Hamming loss for each region class computed by vision classification model fv
c .

Regions Hamming loss Regions Hamming loss

balcony 0.004955947 lounge 0.022026433

bathroom 0.034471367 meetingroom/conferenceroom0.004074890

bedroom 0.055506609 office 0.017621147

closet 0.007819383 other room 0.008590309

dining room 0.031497799 outdoor 0.002973568

entryway/foyer/lobby 0.013325991 porch/terrace/deck 0.016189428

familyroom/lounge 0.035022028 rec/game 0.011123348

hallway 0.047136564 spa/sauna 0.004405287

junk 0 stairs 0.006277533

kitchen 0.046035245 toilet 0.000440529

laundryroom/mudroom 0.003634361 utilityroom/toolroom 0.002533040

living room 0.043171808 workout/gym/exercise 0.004074890

Table 9: Results of SAVi Chen et al. (2021a) and K-SAVEN after stage 1 and stage 2 training of SMT, across
all dataset splits.

SEEN HOUSES, HEARD SOUNDS SEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

SAVi Chen et al. (2021a) (stage 1) 55.4 41.8 44.0 3.8 24.6 15.0 9.6 9.5 10.0 7.7
SAVi Chen et al. (2021a) (stage 2) 67.2 53.6 52.8 1.6 37.8 21.7 15.7 13.6 6.5 12.2
K-SAVEN (stage 1) 38.0 27.4 22.2 4.7 23.4 14.0 9.2 8.6 11.9 5.7
K-SAVEN (stage 2) 70.2 52.8 53.9 1.78 31.0 37.8 27.1 25.5 5.3 17.8

UNSEEN HOUSES, HEARD SOUNDS UNSEEN HOUSES, UNHEARD SOUNDS

Method SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑) SR (↑) SPL (↑) SNA (↑) DTG (↓) SWS (↑)

SAVi Chen et al. (2021a) (stage 1) 20.1 14.3 13.9 13.3 7.2 11.9 7.7 6.6 11.9 5.1
SAVi Chen et al. (2021a) (stage 2) 32.0 21.2 18.5 10.1 18.0 15.3 10.8 8.8 10.0 8.3
K-SAVEN (stage 1) 16.0 11.1 10.0 12.3 7.0 12.5 8.6 7.7 11.7 4.3
K-SAVEN (stage 2) 35.3 24.4 22.2 8.4 18.6 34.4 23.4 21.7 6.6 14.3

G ADDITIONAL DETAILS: VISUALISATION OF NAVIGATION RESULTS

K-SAVEN’s Failure Cases. In Figure 7, we depict one of the common failure scenarios observed within
K-SAVEN’s navigation results. This is related to cases where multiple objects with the same class as the target
robot are in the vicinity of the target sounding object. In many of these episodes, the agent wanders around these
objects for an extended period, often encountering the target object, although stopping at the wrong location.
Figure 8 shows another failure scenario where the agent gets stuck with surrounding objects in the environment.
Typical instances of this failure mode include; the agent getting stuck in narrow halls or colliding with objects
within or outside its field-of-view. In these situations, the agent frequently keeps predicting the Forward action
for a long time before predicting Stop. Conversely, it spins around the region where it gets stuck.
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Figure 8: Visualisation of failure case where the agent gets stuck due to collisions with its surroundings. (a):
collision with a narrow path. (b): collision with an object in the field-of-view of the agent. (c): collision with an
object outside the field-of-view of the agent.
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