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ABSTRACT

In this study, we explore multi-label learning, an important subfield of supervised
learning that aims to predict multiple labels from a single input data point. This
research investigates the training of deep neural networks for multi-label learning
through the lens of neural collapse, an intriguing phenomenon that occurs during the
terminal phase of training. Previously, neural collapse (NC) has been investigated
both theoretically and empirically in the context of multi-class classification. For
last-layer features, it has been demonstrated that (i) the variability of features
within classes collapses to zero, and (ii) the feature means between classes become
maximally and equally separated. In this work, we demonstrate that the NC
phenomenon can be extended to multi-label learning, revealing that the "pick-all-
label" training formulation for multi-label learning exhibits the NC phenomenon in
a more general context. Specifically, under the natural analog of the unconstrained
feature model, we establish that the only global minimizers of the pick-all-label loss
display the same equi-angular tight frame (ETF) geometry. Additionally, scaled
average of the ETF are used to represent the features of samples with multiple labels.
We also provide empirical evidence to support our investigation into training deep
neural networks on multi-label datasets, resulting in improved training efficiency.

1 INTRODUCTION

In recent years, we have witnessed tremendous success in using deep learning for classification
problems. This success can be attributed in part to the deep model’s ability to extract salient features
from data. While deep learning has also been fruitfully applied to M-lab, the structures of the
learned features in the M-lab regime is less well-understood. The motivation of this work is to fill
this gap in the literature by understanding the geometric structures of features from M-lab, with the
goal of improving the training and generalization in M-lab.

Recently, for M-clf using overparamterized deep networks, an intriguing phenomenon has been
observed in the terminal phase of training, in which the last-layer features and classifiers collapse to
simple but elegant mathematical structures: all training inputs are mapped to class-specific points in
feature space, and the last-layer classifier converges to the dual of the features’ class means while
attaining the maximum possible margin with a simplex equiangular tight frame (Simplex ETF)
structure (see the top line of Figure 1). This phenomenon, dubbed Neural Collapse (NC), persists
across a variety of different network architectures, datasets, and even problem formulations Papyan
et al. (2020); Han et al. (2022). The NC phenomenon has been widely observed and analyzed
theoretically in the context of M-clf learning problems from the perspectives of training and
optimization Papyan et al. (2020); Zhu et al. (2021), transfer learning Galanti et al. (2022b), and
robustness Papyan et al. (2020); Ji et al. (2022), where the line of study has significantly advanced
our understanding of representation structures for M-clf using deep networks. However, it remains
unclear if a generalized version of the NC phenomenon with new geometry emerges in training deep
neural networks for M-lab. Further study in this area would enhance our understanding of deep
learning for M-lab.

Our contributions. In this work, we demonstrate a general version of the NC phenomenon in
M-lab, and our study provides new insights into training stage of deep neural networks for the
M-lab problem. In particular, our contributions can be summarized as follows.
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Figure 1: An illustration of neural collapse for M-clf (top row) vs. M-lab (bottom row) learning under
the unconstrained feature model. We consider a simple setting with the number of classes K = 3. The individual
panels are scatterplots showing the top two singular vectors of the last-layer features H at the beginning (left)
and end (right) stages of training. The solid (resp. dashed) line segments represent the centroid of the multiplicity
= 1 (resp. = 2) features with the same labels. Panel i-iii. As the training progresses, the last-layer features of
samples corresponding a single label, e.g., bird, collapse tightly around its centroid. Panel iv-vi. The analogous
phenomenon holds in the multi-label setting. Panel iv. A training sample has multiplicity = 1 (resp. = 2) if it
is labeled only by a singleton (resp. doubleton) set. Panel vi. At the end stage of training, the Multiplicity-2
centroid for {bird, cat} is a scaled average of the centroids representing {bird} and {cat} and so on.
• Multi-label neural collapse phenomenon. We show that the last-layer features and classifier

learned via overparameterized deep networks exhibit a more general version of NC which we term it
as multi-label neural collapse (M-lab NC). In particular, while the features associated with labels
of Multiplicity-1 are still forming the Simplex ETF, the high-order Multiplicity features are scaled
average of their associated features in Multiplicity-1. We call the new structure multi-label ETF,
and we demonstrate its prevalence on training practical neural networks for M-lab. Moreover,
we show that the multi-label ETF only requires balanced training samples in each class within the
same multiplicity, and allows class imbalanced-ness across different multiplicities.

• Global optimality and benign landscapes. Theoretically, we show that the M-lab NC phe-
nomenon can be justified based on the unconstrained feature model, where the last-layer features
are treated asunconstrained optimization variables Zhu et al. (2021). Under such an assumption,
we study the global optimality of a commonly used pick-all-label loss for M-lab, showing that all
global solutions exhibit the properties of M-lab NC. We also prove that the optimization landscape
has benign strict saddle properties so that global solutions can be efficiently achieved.

Related work on multi-label learning. In contrast to M-clf, where each sample has a single
label, in M-lab the samples are tagged with multiple labels. This presents theoretical and practical
challenges unique to the multi-label regime. From the practical side, many modern deep neural
network architectures have been successfully adapted to the multi-label task Chang et al. (2020);
Lanchantin et al. (2021); Ridnik et al. (2023). However, the methods often suffer from the challenges
of imbalanced training data, given that high Multiplicity labels are scarce. On the theory side,
consistency of surrogate methods for M-lab has been initiated by Gao & Zhou (2011) and followed
up by several works in Menon et al. (2019); Dembczynski et al. (2012); Zhang et al. (2020a); Blondel
et al. (2020). Many other concepts from classical learning theory have also been extended successfully
to the M-lab regime, e.g., Vapnik-Chervonenkis theory and sample-compression schemes Samei
et al. (2014a;b), (local) Rademacher complexity Xu et al. (2016); Reeve & Kaban (2020), and
Bayes-optimal prediction Cheng et al. (2010). However, to the best of our knowledge, no work has
previously analyzed the geometric structure arisen in multi-label deep learning. Our work closes this
gap, providing a generalization of the neural collapse phenomenon to multi-label learning.

Related work on neural collapse. The phenomenon known as NC was initially identified in
recent groundbreaking research Papyan et al. (2020); Han et al. (2022) conducted on M-clf. These
studies provided empirical evidence demonstrating the prevalence of NC across various network
architectures and datasets. The significance of NC lies in its elegant mathematical characterization of
learned representations or features in deep learning models for M-clf. Notably, this characterization
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is independent of network architectures, dataset properties, and optimization algorithms, as also
highlighted in a recent review paper Kothapalli (2023). Subsequent investigations, building upon the
"unconstrained feature model" Mixon et al. (2022) or the "layer-peeled model" Fang et al. (2021),
have contributed theoretical evidence supporting the existence of NC. This evidence pertains to the
utilization of a range of loss functions, including cross-entropy (CE) loss Lu & Steinerberger (2022);
Zhu et al. (2021); Fang et al. (2021); Yaras et al. (2022), mean-square-error (MSE) loss Mixon et al.
(2022); Zhou et al. (2022a); Tirer & Bruna (2022); Rangamani & Banburski-Fahey (2022); Wang
et al. (2022); Dang et al. (2023), and CE variants Graf et al. (2021); Zhou et al. (2022b). More recent
studies have explored other theoretical aspects of NC, such as its relationship with generalization Hui
et al. (2022); ?); Galanti et al. (2022a); Galanti (2022); Chen et al. (2022), its applicability to large
classes Liu et al. (2023); Gao et al. (2023), and the progressive collapse of feature variability across
intermediate network layers Hui et al. (2022); Papyan (2020); He & Su (2023); Rangamani et al.
(2023). Theoretical findings related to NC have also inspired the development of new techniques
to improve practical performance in various scenarios, including the design of loss functions and
architectures Yu et al. (2020); Zhu et al. (2021); Chan et al. (2022), transfer learning Li et al. (2022);
Xie et al. (2022), imbalanced learning Fang et al. (2021); Xie et al. (2023); Yang et al. (2022);
Thrampoulidis et al. (2022); Behnia et al. (2023); Zhong et al. (2023); Sharma et al. (2023), and
continual learning Yu et al. (2023); Yang et al. (2023).
Basic notations. Throughout the paper, we use bold lowercase and upper letters, such as a and A,
to denote vectors and matrices, respectively. Non-bold letters are reserved for scalars. For any matrix
A ∈ Rn1×n2 , we write A = [a1 . . . an2 ], so that ai (i ∈ {1, . . . , n2}) denotes the i-th column
of A. Analogously, we use the superscript notation to denote rows, i.e., (aj)⊤ is the j-th row of A
for each j ∈ {1, . . . , n1} with A⊤ =

[
a1 . . . an1

]
. For an integer K > 0, we use IK to denote

a identity matrix of size K ×K, and we use 1K to denote an all-ones vector of length K.

2 PROBLEM FORMULATION

We start by reviewing the basic setup for training deep neural networks, and later specialize to the
problem of M-lab with K number of classes. Given a labelled training instance (x,y), the goal is
to learn the network parameter Θ to fit the input x to the corresponding training label y such that

y ≈ ψΘ(x) = WL
linear classifier W

· σ (WL−1 · · ·σ (W1 + b1) + bL−1)
feature h = ϕθ(x)

+ bL, (1)

where W = WL represents the last-layer linear classifier and h(x) = ϕθ(xk,i) is a deep hierarchical
representation (or feature) of the input x. Here, for a L-layer deep network ψΘ(x), each layer is
composed of an affine transformation, followed by a nonlinear activation σ(·) (e.g., ReLU) and
normalization functions (e.g., BatchNorm Ioffe & Szegedy (2015)).

Notations for multi-label dataset. Let [K] := {1, 2, . . . ,K} denote the set of labels. For each
m ∈ [K], let

(
[K]
m

)
:= {S ⊆ [K] : |S| = m} denote the set of all subsets of [K] with size m.

Throughout this work, we consider a fixed multi-label training dataset of the form {xi,ySi
}Ni=1,

where N is the size of the training set and Si is a nonempty proper subset of the labels. For instance,
Si = {cat} and Si′ = {dog, bird}. Each label ySi ∈ RK is a multi-hot-encoding vector:

j-th entry of ySi
=

{
1 : j ∈ Si

0 : otherwise.
(2)

The Multiplicity of a training sample (xi,ySi
) is defined as the cardinality of |Si| of Si, i.e., the

number of labels relevant to xi. Additionally, we refer to a feature learned for the sample (xi,ySi)
as the Multiplicity-m feature, if |Si| = m. The Multiplicity-m feature matrix Hm is column-wise
comprised of a collection of Multiplicity-m feature vectors. Moreover, we use M := maxi∈[N ] |Si|
to denote the largest multiplicity in the training set. Additionally, to distinguish imbalanced class
samples between Multiplicities, for each m ∈ [M ], we use nm := |{i ∈ [N ] : |Si| = m}| to
denote the number of samples in each class of a multiplicity order m (or Multiplicity m). Note that
M ∈ {1, . . . ,K − 1} in general, and a M-lab problem reduces to M-clf when M = 1.

The “pick-all-labels” loss. Since M-lab is a generalization of M-clf, recent work Menon
et al. (2019) studied various ways of converting a M-clf loss into a M-lab loss, a process
referred to as reduction.1 In this work, we analyze the pick-all-labels (PAL) method of reduc-
ing the cross-entropy (CE) loss to a M-lab loss, which is the default option implemented by

1“Reduction” refers to reformulating M-lab problems in the simpler framework of M-clf problems.
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torch.nn.CrossEntropyLoss from the deep learning library PyTorch Paszke et al. (2019).
The benefit of PAL approach is that the more difficult problem of multi-label can be approached using
insights from multi-class learning using well-understood losses such as the cross-entropy, one of the
most commonly used loss functions:

LCE(z,yk) := − log
(
exp(zk)/

∑K
ℓ=1 exp(zℓ)

)
.

where z = Wh is called the logits, and yk is the one-hot encoding for the k-th class. To convert
the CE loss into a M-clf loss via the PAL method, for any given label set S, consider decomposing
a multi-hot label yS as a summation of one-hot labels: yS =

∑
k∈S yk. Thus, we can define the

pick-all-labels cross-entropy loss as
LPAL−CE(z,yS) :=

∑
k∈S LCE(z,yk).

In this work, we focus exclusively on the CE loss under the PAL framework, below we simply write
LPAL to denote LPAL−CE. However, by drawing inspiration from recent research Zhou et al. (2022b),
it should be noted that under the PAL framework the phenomenon of M-lab NC can be generalized
beyond cross-entropy to encompass a variety of other loss functions, such as mean squared error
(MSE), label smoothing, focal loss, and potentially a class of Fenchel-Young Losses Blondel et al.
(2020). Putting it all together, training deep neural networks for M-lab can be stated as follows:

min
Θ

1
N

∑N
i=1 LPAL(Wϕθ(xi) + b,ySi

) + λ ∥Θ∥2F , (3)

where Θ = {W , b,θ} denote all parameters and λ > 0 controls the strength of weight decay. Here,
weight decay prevents the norm of linear classifier and feature matrix goes to infinity or 0.

Optimization under the unconstrained feature model (UFM). Analyzing the nonconvex loss in
3 can be notoriously difficult due to the highly non-linear characteristic of the deep network ϕθ(xi).
In this work, we simplify the study by treating the feature hi = ϕθ(xi) of each input xi as a free
optimization variable. More specifically, we study the following problem under UFM:
Definition 1 (Nonconvex Training Loss under UFM). Let Y = [yS1

· · ·ySN
] ∈ RK×N be the

multi-hot encoding matrix whose i-th column is given by the multi-hot vector ySi ∈ RK . We consider
the following optimization problem under UFM:

min
W ,H,b

f(W ,H, b) := g(WH + b,Y ) + λW ∥W ∥2F + λH ∥H∥2F + λb ∥b∥22 (4)

with the penalty λW , λH , λb > 0. Here, the linear classifier W ∈ RK×d, the features H =
[h1, · · · ,hN ] ∈ Rd×N , and the bias b ∈ RK are all unconstrained optimization variables, and we
refer to the columns of H , denoted hi, as the unconstrained last layer features of the input samples
xi. Additionally, g(·) is the PAL loss, denoted by

g(WH+ b,Y ) := 1
NLPAL(WH+ b,Y) := 1

N

∑N
i=1 LPAL(Whi + b,ySi).

Analysis of NC under UFM has been extensively studied in recent works Zhu et al. (2021); Fang et al.
(2021); Ji et al. (2022); Yaras et al. (2022); Mixon et al. (2022); Zhou et al. (2022a); Tirer & Bruna
(2022), the motivation behind the UFM is the fact that modern networks are highly overparameterized
and they are universal approximators Cybenko (1989); Zhang et al. (2021). Although the objective
function is seemingly a simple extension of M-clf case, our work shows that the global optimizers of
Problem 4 for M-lab substantially differs from that of the M-clf that we present in the following.

3 MAIN RESULTS

In this section, we rigorously analyze the global geometry of the optimizer of (4) and its nonconvex
optimization landscape, and present our main results in Theorem 1 and Theorem 2. For M-lab,
we show that the global minimizers of Problem 4 exhibit a more generic structure than the vanilla
NC in M-clf (see Figure 1), where higher multiplicity features are formed by a scaled average of
associated Multiplicity-1 features that we introduce in detail below.

3.1 MULTI-LABEL NEURAL COLLAPSE (M-LAB NC)

To motivate our theoretical results in the next section, we find experimentally (see Section 4 for
details) that an overparameterized neural network trained on a Multiplicity-1 balanced data2 using
the objective (3) to the terminal phase satisfies the properties below which we collectively refer to as
multi-label neural collapse (M-lab NC):

2Here, theoretically, we allow imbalancedness across different multiplicity. Moreover, empirically we find
that M-lab NC still holds if training data of high-order multiplicity is imbalanced or even has missing classes.
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1. Variability collapse: The within-class variability of last-layer features across different multiplicity
and different classes all collapses to zero. In other words, the individual features of each class of
each multiplicity concentrate to their respective class-means.

2. (∗) Convergence to Self-duality of Multiplicity-1 features H1 : The rows of the last-layer linear
classifier W and the class means of Multiplicity-1 feature H are collinear, i.e., h⋆

i ∝ w⋆k when
the label set Si = {k} is a singleton set.

3. (∗) Convergence to the M-lab ETF: Multiplicity-1 features H1 :=
{
h⋆
i |i : |Si| = 1

}
form a

Simplex Equiangular Tight Frame, similar to the M-clf setting Papyan et al. (2020); Fang et al.
(2021); Zhu et al. (2021). Moreover, for any higher multiplicity m > 1, the class means for
Multiplicity-m features are scaled averages of associated Multiplicity-1 features means over the
elements of the corresponding label set. In other words, h⋆

i ∝
∑

k∈Si
w⋆k (see the bottom line of

Figure 1). This is true regardless of class imbalanced-ness between multiplicities.
Remarks. The M-lab NC can be viewed as a more general version of the vanilla NC in M-clf Pa-
pyan et al. (2020), where we mark the difference above by a “(∗)”. The M-lab ETF implies that,
in the pick-all-labels approach to multi-label classification, deep networks learn discriminant and
informative features for Multiplicity-1 subset of the training data, and uses them to construct higher
multiplicity features as scaled average of associated Multiplicity-1 features. We propose a measure
NCm to quantify this phenomenon and verify them for practical neural networks in Section 4 below.

Such a result is quite intuitive. For example, consider a sample i ∈ [N ] whose training label
ySi

has Multiplicity-2, e.g., Si = {cat,dog}. The multi-hot vector label ySi
decomposes as a

scaled average of one-hot labels of Multiplicity-1, namely, ySi
=
∑

k∈Si
yk. Ideally, the learned

representation h⋆
i should satisfy such a property as well: that h⋆

i is a scaled average of several h⋆
i′ ’s

where each i′ ∈ [N ] corresponds to an training instance of Multiplicity-1. The learned representation
of an image containing both cat and dog should be a scaled average of the learned representation
of images containing only a cat or a dog. Moreover, between multiplicities, the number of samples
does not need to be balanced. For example, the M-lab NC still holds if there are more training
samples for the category (ant, bee)(Multiplicity-2) than that of (cat, dog, elk) (Multiplicity-3).

3.2 GLOBAL OPTIMALITY & BENIGN LANDSCAPE UNDER UFM

Global optimality for M-lab NC. For M-lab, in the following we show that the M-lab NC is
the only global solution to the nonconvex problem in Definition 1. We consider the setting that the
training data may exhibit imbalanced-ness between different multiplicities while maintaining class
balanced-ness within each multiplicity. For instance, there might be 1000 samples for each class in
Multiplicity-1 labels, but only 500 samples for each class within Multiplicity-2 labels, and so forth.
Theorem 1 (Global Optimality Conditions). In the setting of Definition 1, assume the feature
dimension is no smaller than number of classes, i.e., d ≥ K − 1, and assume the data balanced-ness
condition above. Then any global optimizer W ⋆,H⋆, b⋆ of the optimization problem (4) satisfies:

w⋆ := ∥w⋆1∥2 = ∥w⋆2∥2 = · · · = ∥w⋆K∥2, and b⋆ = b⋆1, (5)

where either b⋆ = 0 or λb = 0. Moreover, the global minimizer W ⋆,H⋆, b⋆ satisfies the M-lab NC
properties introduced in Section 3.1, in the sense that

• The linear classifier matrix W ⋆⊤ ∈ Rd×K forms a K-simplex ETF up to scaling and rotation, i.e.,
for any U ∈ Rd×d s.t. U⊤U = Id, the rotated and normalized matrix M := 1

w⋆UW ⋆⊤ satisfies

M⊤M = K
K−1

(
IK − 1

K1K1⊤
K

)
. (6)

• For each feature h⋆
i (i.e., the i-th column h⋆

i of H⋆) with i ∈ [N ], there exist unique positive real
numbers C1, C2, . . . , CM > 0 such that the following holds:

h⋆
i = C1w

⋆k when Si = {k}, k ∈ [K], (Multiplicity = 1 Case) (7)

h⋆
i = Cm

∑
k∈Si

w⋆k when |Si| = m, 1 < m ≤M. (Multiplicity > 1 Case) (8)

Remarks. While it may appear intuitive and straightforward to extend the analysis of vanilla NC in
M-clf to M-lab NC Zhu et al. (2021), the combinatorial nature of high multiplicity features and
the interplay between the linear classifier W and these class-imbalanced high multiplicity features
present significant challenges for analysis. For instance, previous attempts to prove M-clf NC
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utilized Jensen’s inequality and the concavity of the logarithmic function, but these methods are not
effective for M-lab NC. Instead, we analyze the gradient of the pick-all-labels cross-entropy and
leverage its strict convexity to directly construct the desired lower bound. In Appendix A, we offer a
more detailed outline of the proof, presenting a lemma-by-lemma comparison with Zhu et al. (2021).

We briefly outline our proofs as follows: essentially, our proof method first breaks down the g(WH+
b,Y ) component of the objective function in (Problem 4) into numerous subproblems gm(WHm +
b,Ym), categorized by multiplicity. We determine lower bounds for each gm and establish the
conditions for equality attainment for each multiplicity level. Subsequently, we confirm that these
sets of lower bounds for different m values can be attained simultaneously, thus constructing a global
optimizer where the overall global objective (4) is reached. We demonstrate that all optimizers can be
recovered using this approach. The detailed proof of our results is deferred to Appendix C.

Next, we delve into the interpretation and ramifications of our findings from various perspectives.
• The global solutions of Problem 4 satisfy M-lab NC. In the UFM context, our findings imply

that every global solution of the loss function (4) exhibits the M-lab NC that we presented in
Section 3.1. First, the reduction of feature variability within each class and multiplicity is inferred
from Equations 7 and 8. This occurs because all features of the designated class and multiplicity
align with the (scaled averages of) linear classifiers, meaning they are equal to their feature means
with no variability. Second, the convergence of feature means to the M-lab ETF can be observed
from Equation (6), (7), and (8). For Multiplicity-1 features H⋆

1 , Equation (7) implies that the
feature mean H

⋆

1 converges to W ; this, coupled with Equation (6), implies that the feature means
H

⋆

1 of Multiplicity-1 forms a simplex ETF. Moreover, the structure of scaled averages in Equation
(8) implies the M-lab ETF for feature means of high multiplicity. Finally, the convergence of
Multiplicity-1 features towards self-duality can be deduced from Equation (7).

• Data imbalanced-ness in M-lab. Due to the scarcity of higher multiplicity labels in the training
set, the imbalanced-ness of training data samples could be a more serious issue in M-lab than
M-clf in practice. Recall that there are two types of data imbalanced-ness: (i) the imbalanced-ness
between classes within each multiplicity and (ii) the imbalanced-ness of classes among different
multiplicities. Interestingly, as long as Multiplicity-1 training samples remain balanced between
classes, our experimental results in Figure 2 and Figure 4 imply that the M-lab NC still holds
regardless of both within and among multiplicity imbalanced-ness in higher multiplicity. This
demonstrate the practicality of our result, given that achieving balance in Multiplicity-1 sample data
is relatively easy. However, if classes of Multiplicity-1 are imbalanced, we suspect more general
minority collapse phenomenon would happen Fang et al. (2021); Thrampoulidis et al. (2022),
which is worth of further investigation.

• Scaled average coefficients for M-lab ETF with high multiplicity. The features of high
multiplicity are scaled average of Multiplicity-1 features, and these scaled average coefficients are
simple and structured as shown in Equation (8). As illustrated in Figure 1 (i.e., K = 3, M = 2),
the feature h⋆

i of Multiplicity-m associated with class-index Si can be viewed as a scaled average
of Multiplicity-1 features in the index set Si. Here, the coefficients {Cm}Mm=1, which are shared
across all features of the same multiplicity, could be expressed as

Cm =
K − 1

∥W ∥2F
log(

K −m

m
c1,m), ∀m

where {c1,m}Mm=1 exist and they satisfy a set of nonlinear equations.3

• Improving M-lab training via M-lab NC. As a direct result of our theory shown in Table 1, we
can achieve parameter efficient training for M-lab by fixing the last layer classifier as simplex ETF
and reducing the feature dimension d to K. Furthermore, since higher order multiplicity features
are essentially scaled averages of associated Multiplicity-1 features, there is a potential opportunity
to design a regularization that encourages features to exhibit the scaled averaging behavior. Such
regularization can help constrain the solution space, leading to improved performance or accelerated
training process Zhu et al. (2021).

Nonconvex landscape analysis. Due to the nonconvex nature of Problem (3), the characterization
of global optimality alone in Theorem 1 is not sufficient for guaranteeing efficient optimization

3please refer to the Appendix C for more details on the nonlinear equations.
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Figure 2: M-lab NC holds with imbalanced data. (a) and (b) plot metrics that measures M-lab NC on
M-lab Cifar10; (c) and (d) directly visualize learned features on M-lab MNIST, where one multiplicity-2
class is missing in the set up which results in the reduced M-lab NC geometry. More experimental details are
deferred to Section 4.

to those desired global solutions. Thus, we further study the global landscape of Problem (3) by
characterizing all of its critical points, we show the following result.

Theorem 2 (Benign Optimization Landscape). Suppose the same setting of Theorem 1, and assume
the feature dimension is larger than the number of classes, i.e., d > K, and the number of training
samples for each class are balanced within each multiplicity. Then the function f(W ,H, b) in
Problem (4) is a strict saddle function with no spurious local minimum in the sense that:
• Any local minimizer of f is a global solution of the form described in Theorem 1.
• Any critical point (W ,H, b) of f that is not a global minimizer is a strict saddle point with

negative curvatures, in the sense that there exists some direction (∆W ,∆H , δb) such that the
directional Hessian ∇2f(W ,H, b)[∆W ,∆H , δb] < 0.

Because the PAL loss for M-lab is reduced from the CE loss in M-clf, the above result can be
generalized from the result in Zhu et al. (2021). We defer detailed proofs to Appendix D.

4 EXPERIMENTS

In this section, we conduct a series of experiments to further demonstrate and analyze the M-lab NC
on different practical deep networks with various multi-label datasets. First, Figure 3 shows that
all practical deep networks exhibit M-lab NC during the terminal phase of training. Second, we
investigate M-lab NC under multiplicity imbalanced-ness on both synthetic (Figure 2) and real data
(Figure 4), demonstrating that M-lab NC holds irrespective of imbalanced-ness in higher multiplicity
data. Finally, we show that achieve significant parameter savings in training deep networks without
compromising performance by using M-lab NC. We begin this section by providing an overview of
the training datasets and experimental setups.

Training dataset & experimental setup. We created synthetic Multi-label MNIST LeCun et al.
(2010) and Cifar10 Krizhevsky et al. (2009) datasets by applying zero-padding to each image,
increasing its width and height to twice the original size, and then combining it with another padded
image from a different class. An illustration of generated multi-label samples can be found in Figure
5. To create the training dataset, for m = 1 scenario, we randomly pick 3100 images in each class,
and for m = 2, we generated 200 images for each combination of classes using the pad-stack method
described earlier. Therefore, the total number of images in the training dataset is calculated as
10 × 3100 +

(
10
2

)
× 200 = 40000. For the test dataset, we included 800 images for each class in

the m = 1 scenario and 50 images for each combination of classes in the m = 2 scenario, resulting
in a total of 10250 images. To further validate our findings, we conducted additional testing on the
practical SVHN dataset (Netzer et al., 2011) alongside the synthetic dataset. In order to preserve
the natural characteristics of the SVHN dataset, we applied minimal pre-processing only to ensure a
balanced scenario for multiplicity-1, while leaving other aspects of the dataset untouched.

In terms of training deep networks for M-lab, we use standard ResNet He et al. (2016) and VGG
Simonyan & Zisserman (2014) network architecture. Throughout all the experiments, we use an SGD
optimizer with fixed batch size 128, weight decay 5× 10−4 and momentum 0.9. The learning rate is
initially set to 1× 10−1 and dynamically decays to 1× 10−3 following a CosineAnnealing learning
rate scheduler as described in Loshchilov & Hutter (2017). The total number of epochs is set to 200
for all experiments.
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Figure 3: Prevalence of M-lab NC across different network architectures on MNIST (top) and
Cifar10 (bottom). From the left to the right, the plots show the four metrics, NC1,NC2,NC3, and
NCm, for measuring M-lab NC.

Experimental demonstration of M-lab NC on practical deep networks. Based upon the ex-
perimental setup, we first demonstrate that M-lab NC happens on practical networks trained with
M-lab datasets, as suggested by our theory. To show this, we need some metrics to measure
M-lab NC on the last-layer features and classifiers of deep networks.

As showed in Section 3.1, because the original NC in M-clf still holds for Multiplicity-1 samples,
we use the original metrics NC1 (measuring the within-class variability collapse), NC2 (measuring
convergence of learned classifier and feature class means to simplex ETF), and NC3 (measuring
the convergence to self-duality) introduced in Papyan et al. (2020) to measure M-lab NC on
Multiplicity-1 features H1 and classifier W . Additionally, we also use the NC1 metric to measure
variability collapse on high multiplicity features Hm (m > 1). Finally, to measure M-lab ETF on
Multiplicity-2 features,4 we propose a new angle metric NCm, which is defined as:

NCm =
Avg.({geo∠(hi, hj + hℓ) : |Si| = 2, |Sj | = |Sℓ| = 1, Si = Sj ∪ Sℓ})

Avg.({geo∠(hi′ , hj′ + hℓ′) : |Si′ | = 2, |Sj′ | = |Sℓ′ | = 1})
where geo∠ represents the geometric angle between two vectors and hi is the mean of all features
in the label set Si. Intuitively, our NCm measures the angle relationship between features means
of different label sets or classes. The numerator calculates the average angle difference between
multiplicity-2 features means and the sum of their multiplicity-1 component features means. while
the denominator serves as a normalization factor that is the average of all existing pairs regardless of
the relationship.5 As training progresses, the numerator will converge to 0, while the denominator
becomes larger demonstrating the angle collapsing. As shown in Figure 3 and Figure 4, practical
networks do exhibit M-lab NC, and such a phenomenon is prevalent across network architectures
and datasets. Specifically, the four metrics, evaluated on four different network architectures and two
different datasets, all converge to zero as the training progresses towards the terminal phase.
M-lab NC holds with training data imbalanced-ness in high order multiplicity. Supported
and inspired by Theorem 1, where W only collapse to H1, experimentally we found that as long as
the training samples of Multiplicity-1 remain balanced, we can still observe M-lab NC regardless
of the imbalanced-ness in high order multiplicity. To verify this, we create multi-label cifar10 and
MNIST datasets. The cifar10 dataset has balanced Multiplicity-1 samples (5000 for each class). For
the classes of Multiplicity-2, we divide them into 3 groups: the large group (500 samples), the middle
group (50 samples), and the small group (5 samples). We run a ResNet18 model with this dataset and

4This is because our dataset only contains labels up to Multiplicity-2. The NCm could be easily extended to
capture scaled average for other higher multiplities

5For example, if we have 4 total classes for multiplicity-1 samples, they corresponds to 4 features means
and hence 6 different sums if we randomly pick 2 features means to sum up. Multiplicity-2 then have

(
4
2

)
= 6

features means, there is in total 36 possible angles to calculate, we averaged these 36 angles and use that as the
denominator.
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(a) NC1 (b) NC2 (c) NC3 (d) NCm

Figure 4: Prevalence of M-lab NC on the SVHN dataset. We train ResNets models on the SVHN
dataset Netzer et al. (2011) for 400 epochs and report NC1,NC2,NC3, and NCm, for measuring
M-lab NC, respectively.

Dataset / Arch. ResNet18 ResNet50 VGG16 VGG19
Learned ETF Learned ETF Learned ETF Learned ETF

Test IoU
MLab-MNIST 99.47 99.37 99.43 99.42 99.47 99.50 99.45 99.49
MLab-Cifar10 87.73 87.66 88.91 88.56 86.85 87.38 86.77 86.93

Percentage of parameter saved
MLab-MNIST 0% 20.71% 0% 4.45% 0% 15.75% 0% 11.58%MLab-Cifar10

Table 1: Comparison of the performances and parameter efficiency between learned and
fixed ETF classifier. When counting parameters, we consider all parameters that require gradient
calculation during back-propagation.

report the metrics of measuring M-lab NC in Figure 2 (a) (b). We can observe that not only NC1

to NC3 collapse to zero, the NCm metric is also converging zero for all 3 groups of different size.
For Figure 2 (c) (d) on M-lab MNIST, we can see from the visualization of the features vectors
that the scaled average property still holds despite a missing class in higher multiplicity. Here, we
train a simple Convolution plus Multi-layer perceptron model with this dataset. This suggests that
M-lab NC even under data imbalanced-ness in high order multiplicity.

Besides the synthetic dataset, we also tested on the real dataset SVHN Netzer et al. (2011). We
conduct minimal preprocessing to ensure it has balanced Multiplicity-1 samples.6 Subsequently,
we assessed the trends of NC metrics on this dataset, as depicted in Figure 4. The plots affirm the
continued validity of our analysis within real-world settings.

M-lab NC guided parameter-efficient training. With the knowledge of M-lab NC in hand,
we can make direct modifications to the model architecture to achieve parameter savings without
compromising performance for M-labclassification. Specifically, parameter saving could come
from two folds: (i) given the existence of NC in the multi-label case with d ≥ K, we can reduce the
dimensionality of the penultimate features to match the number of labels (i.e., we set d = K); (ii)
recognizing that the final linear classifier will converge to a simplex ETF as the training converges,
we can initialize the weight matrix of the classifier as a simplex ETF from the start and refrain from
updating it during training. By doing so, our experimental results in Table 1 demonstrate that we can
achieve parameter reductions of up to 20% without sacrificing the performance of the model.7

5 CONCLUSION

In this study, we extensively analyzed the NC phenomenon in M-lab Zhu et al. (2021); Fang et al.
(2021); Ji et al. (2022). Based upon the UFM, our results establish that M-lab ETFs are the only
global minimizers of the PAL loss function, incorporating weight decay and bias. These findings
hold significant implications for improve the performance and training efficiency of M-lab tasks.
As a future direction, it would be interesting to investigate M-lab NC to improve test performance
through better designs of loss functions and regularization techniques Zhou et al. (2022b).

6For more detail, we refer readers to Figure 6 in the Appendix.
7We use intersection over union (IoU) to measure model performances, in M-lab, we define IoU(ŷ,y) =

||y||0 · (ŷTy) ∈ [0, 1]. Here, the ground truth y represents a probability vector that always sums to 1.
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REPRODUCTIVITY STATEMENT

The complete proof of Theorem 1 and Theorem 2 are shown in Appendix C and Appendix D
respectively. Our code is available in the supplementary materiel.
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Appendix

APPENDIX ORGANIZATION

In Appendix A, we compare and contrast in details of our work with Zhu et al. (2021). In Appendix B,
we illustrate synthetic multi-label MNIST and Cifar10 dataset and show the details of SVHN training
data. In Appendix C and Appendix D, we present the proofs for results from the main paper Theorem 1
and Theorem 2, respectively.

A DISCUSSION ON RELATIONSHIP TO ZHU ET AL. (2021)

Although our work is inspired by Zhu et al. (2021), our main results as well as the techniques used
to establish them significantly depart from that of Zhu et al. (2021). We elaborate on this in the
following.

Technical contribution: First of all, the proof of the global optimality in the multi-label (M-lab)
setting is highly nontrivial, and cannot be simply inferred from Theorem 3.1 in Zhu et al. (2021).
The proof of our main result requires a significant amount of new techniques and key Lemmas. The
unique challenges of M-lab learning include (1) the combinatorial nature of high multiplicity features,
and (2) the interplay between the linear classifier W and these class-imbalanced high multiplicity
features. Prior methods, such as those in Zhu et al. (2021) that relied on Jensen’s inequality and
the concavity of the log function to establish the M-clf NC, fall short in the M-lab scenario. For
example, our Lemma 8 leverages novel techniques to address the issue of high-multiplicity samples,
which are specific to multi-label problems. We perform a careful calculation of the gradient of the
pick-all-labels cross-entropy loss function to formulate a precise lower bound.

Broader contributions of our work: Moreover, we posit that our work’s contribution extends much
beyond the technical aspects, where this is the first work showing the prevalence of a generalized
NC phenomenon for multi-label learning both experimentally and theoretically. More surprisingly,
our research reveals that the ETF structure remains valid for multiplicity-1 features despite the data
imbalance across different multiplicities (as shown in fig. 2). This phenomenon is corroborated
by our experimental findings as well as by our theoretical analysis. This insight could lead to
potential new pathways for advancing multi-label learning, such as the development of more effective
decision-making rules and strategies to manage data imbalances.

In the following, we provide more details on the difference between our proof method for M-lab NC
differs and that for M-clf NC (as in Zhu et al. (2021)). The difference primarily due to technical
challenges stemming from combinatorial structure of the higher multiplicity data samples in multi-
label learning setting. To deal with these challenges, we developed new proving techniques for lower
bounds, equality conditions, which are detailed by new probabilistic and matrix theory (Lemma 4,
Lemma 5, Lemma 6, Lemma 7). These techniques generalize Zhu et al. (2021)’s proof and implies
M-clf NC with only single-multiplicity data.

• To deal with the combinatorial structures of high multiplicity features, our key Lemma 8
(compared with Lemma B.5 in Zhu et al. (2021)), proves a linear lower bound for Pick-
All-Label cross-entropy (PAL-CE) loss, which cannot be deduced from the Lemma B.5.
More specifically, we prove this linear lower bound for M-lab by a careful analysis of the
gradient of the loss directly. Moreover, our result in Lemma 8 is stronger and more general,
which implies Lemma B.5 in Zhu et al. (2021) when no high multiplicity samples present.
Furthermore, our tightness condition for the lower-bound uncovers an intriguing property
which we call the “in-group and out-group” property unique to the M-lab setting.

• To deal with the interplay between linear classifier W and the high multiplicity features, our
Lemma 2 (compared to Lemma B.3 in Zhu et al. (2021)) decomposes the loss into different
multiplicities, establishing lower bounds for each component and and equality conditions
for achieving those lower bounds. In particular, we also showed that these lower bounds can
be simultaneously achieved across distinct multiplicities, resulting in a tight global lower
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bound. This is highly nontrivial and unique to multi-label learning, which cannot be deduced
from Lemma B.3 in Zhu et al. (2021).

• In our Lemma 3 (compared to Lemma B.4 in Zhu et al. (2021)), we characterize the geometry
of the multi-label NC. The key departure from Lemma B.4 in Zhu et al. (2021) is that we
show that the higher multiplicity feature means converge towards the scaled average of their
associated tag feature means, which we call the “scaled-average property”. Furthermore,
we demonstrate that the associated scaled average coefficient can be determined by solving
a system of equations. To obtain theoretical analysis of such scaled average property, we
introduce additional Lemma 4, Lemma 5, Lemma 6, and Lemma 7, incorporating a novel
probabilistic and matrix analysis technique to comprehensively establish and complete the
proof. Due to the unique challenges in the multi-label learning, none of these can be directly
deduced from the results in Zhu et al. (2021).

B DATASET DETAILS

Class: 0 & 6 Class: 3 & 1

(a) MLab-MNIST

Class: Car & Airplane Class: Cat & Dog

(b) MLab-Cifar10

Figure 5: Illustration of synthetic multi-label MNIST (left) and Cifar10 (right) datasets.

The detailed information of SVHN dataset are included in Figure 6

(a) The SVHN Dataset (b) Class Distribution

Figure 6: Our usage of the SVHN dataset. As illustrated in (a), the Street View House Numbers
(SVHN) Dataset (Netzer et al., 2011) comprises labeled numerical characters and inherently serves
as a multi-label learning dataset. We applied minimal preprocessing to achieve balance specifically
within the Multiplicity-1 scenario, as evidenced by the diagonal entries in (b). Furthermore, we
omitted samples with Multiplicity-4 and above, as these images posed considerable recognition
challenges. Notably, the Multiplicity-2 case remained largely imbalanced, as observed in the off-
diagonal entries in (b). Nonetheless, our findings remained robust and consistent in this scenario, as
evidenced in Figure 4.
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C OPTIMALITY CONDITION

The purpose of this section is to prove Theorem 1. As such, throughout this section, we assume that
we are in the situation of the statement of said theorem. Due to the additional complexity of the
M-lab setting compared to the M-clf setting, analysis of the M-lab NC requires substantially
more notations. These notations, which are defined in appendix C.1, while not necessary for stating
Theorem 1, are crucial for the proofs in appendix C.2 .

C.1 ADDITIONAL NOTATIONS

For the reader’s convenience, we recall the following:
N := number of samples (9)
Nm := number of samples i ∈ [N ] such that |Si| = m (10)

nm := Nm/

(
K

m

)
(11)(

[K]

m

)
:= {S ⊆ [K] : |S| = m} (12)

M := largest m such that nm ̸= 0 (13)
d := dimension of the last layer features (14)

C.1.1 LEXICOGRAPHICAL ORDERING ON SUBSETS

For each m ≤ K, recall from the above that the set of subsets of [K] of size m is denoted by the
commonly used, suggestive notation

(
[K]
m

)
. Moreover, |

(
[K]
m

)
| =

(
K
m

)
.

▷ Notation convention. Assume the lexicographical ordering on
(
[K]
m

)
. Thus, for each k ∈

(
K
m

)
, the

k-th subset of
(
[K]
m

)
is well-defined.

For example, when K = 5 and m = 2, there are
(
5
2

)
= 10 elements in

(
[5]
2

)
which, when listed in the

lexicographic ordering, are
{1, 2}︸ ︷︷ ︸

1st

, {1, 3}︸ ︷︷ ︸
2nd

, {1, 4}︸ ︷︷ ︸
3rd

, {1, 5}︸ ︷︷ ︸
4th

, {2, 3}︸ ︷︷ ︸
···

, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}︸ ︷︷ ︸
10th

.

In general, we use the notation Sm,k to denote the k-th subset of
(
[K]
m

)
. In other words,(

[K]

m

)
= {Sm,1, Sm,2, . . . , Sm,(Km)

}.

C.1.2 BLOCK SUBMATRICES OF THE LAST LAYER FEATURE MATRIX

Without the loss of generality, we assume that the sample indices i ∈ [N ] are sorted such that |Si| is
non-decreasing, i.e., |S1| ≤ · · · ≤ |Si| ≤ · · · ≤ |SN |. Clearly, this does not affect the optimization
problem itself. Denote the set of indices of Multiplicity-m samples by Im := {i ∈ [N ] : |Si| = m}.
Thus, we have

I1 = {1, . . . , N1}, I2 = {1+N1, . . . , N2+N1}, · · · Im = {1+
m∑
ℓ=1

Nℓ, . . . , Nm+

m∑
ℓ=1

Nℓ}, · · ·

Below, it will be helpful to define the notation
Im,S := {i ∈ [N ] : Si = S}

for each m = 1, . . . ,M and S ∈
(
[K]
m

)
.

▷ Notation convention. Define the block-submatrices H1, . . . ,HM of H such that

1. Hm ∈ Rd×Nm

2. H = [H1 H2 · · · HM ]

Thus, as in the main paper, the columns of Hm correspond to the features of Im.
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C.1.3 DECOMPOSITION OF THE LOSS

Define
gm(WHm + b,Y ) :=

1

Nm

∑
i∈Im

LPAL(Whi + b,ySi
). (15)

Intuitively, gm is the contribution to g from the Multiplicity-m samples. More precisely, the function
g(WH + b,Y ) from Equation (4) can be decomposed as

g(WH + b,Y ) =

M∑
m=1

Nm

N
gm(WHm + b,Y ). (16)

C.1.4 TRIPLE INDICES NOTATION

Next, we state precisely the data balanced-ness condition from Theorem 1. In order to state the
condition, we need some additional notations. Fix some m ∈ {1, . . . ,M} and let S ∈

(
[K]
m

)
. Define

nm,S := {i ∈ [N ] : Si = S}. (17)

Theorem 1 made the following data balanced-ness condition:

nm,S = Nm/
(
K
m

)
=: nm for all S ∈

(
[K]
m

)
. (18)

In other words, for a fixed m ∈ [M ], the set Im,S has the same constant cardinality equal to nm
ranging across all S ∈

(
[K]
m

)
.

By the data balanced-ness condition, we have for a fixed m = 1, . . . ,M that Im,S have the same
number of elements across all S ∈

(
[K]
m

)
. Moreover, in our notation, we have |Im,S | = nm. Below,

for each m = 1, . . . ,M and for each S ∈
(
[K]
m

)
, choose an arbitrary ordering on Im,S once and for

all. Every sample is uniquely specified by the following three indices:

1. m ∈ [M ] the sample’s multiplicity, i.e., m = |S|
2. k ∈

(
K
m

)
the index such that Sm,k is the label set of the sample,

3. i ∈ [nm] such that the sample is the i-th element of Im,Sm,k
.

More concisely, we now introduce the

▷ Notation convention. Denote each sample by the triplet

(m, k, i) where m ∈ [M ], k ∈
(
K

m

)
, i ∈ [nm]. (19)

Below, (19) will be referred to as the triple indices notation and every sample will be referred to by
its triple indices (m, k, i) instead of the previous single index i ∈ [N ]. Accordingly, throughout the ap-
pendix, columns of H are expressed as hm,k,i instead of the previous hi, and thus the block submatrix
Hm of H can be, without the loss of generality, be written as Hm = [hm,k,i]m∈[M ], k∈(Km), i∈[nm]

.

Moreover, in the triple indices notation, Equation (15) can be rewritten as

gm(WHm + b) =
1

Nm

nm∑
i=1

(Km)∑
k=1

LPAL(Whm,k,i,ySm,k
) (20)

C.2 PROOFS

We will first state the proof of Theorem 1 which depends on several lemmas appearing later in the
section. Thus, the proof of Theorem 1 serves as a roadmap for the rest of this section.

Proof of Theorem 1. Recall the definition of a coercive function: a function φ : Rn → R is said to
be coercive if lim∥x∥→∞ φ(x) = +∞. It is well-known that a coercive function attains its infimum
which is a global minimum.

17



Under review as a conference paper at ICLR 2024

Now, note that the objective function f(W ,H, b) in Problem (4) is coercive due to the weight decay
regularizers (the terms ∥W ∥2F , ∥H∥2F and ∥b∥2F ) and that the pick-all-labels cross-entropy loss is
non-negative. Thus, a global minimizer, denoted below as (W ,H, b), of Problem (4) exists. By
Lemma B.2, we know that any critical point (W ,H, b) of Problem (4) satisfies

W⊤W =
λH
λW

HH⊤.

Let ρ := ∥W ∥2F . Thus, ∥H∥2F = λW

λH
ρ

We first provide a lower bound for the PAL cross-entropy term g(WH + b1⊤) and then show that
the lower bound is tight if and only if the parameters are in the form described in Theorem 1. For each
m = 1, . . . ,M , let c1,m > 0 be arbitrary, to be determined below. Now by Lemma 2 and Lemma 8,
we have

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ

where Γ2 :=
∑M

m=1 c2,m and c2,m is as in Lemma 8. Therefore, we have

f(W ,H, b) = g(WH + b⊤) + λW ∥W ∥2F + λH∥H∥2F + λb∥b∥22

≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ+ Γ2 + 2λW ρ+
λb
2
∥b∥22

≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ+ Γ2 + 2λW ρ (21)

where the last inequality becomes an equality whenever either λb = 0 or b = 0. Furthermore, by
Lemma 3, we know that the Inequality (21) becomes an equality if and only if (W ,H, b) satisfy the
following:

(I) ∥w1∥2 = ∥w2∥2 = · · · = ∥wK∥2, and b = b1,

(II)
1(
K
m

) (Km)∑
k=1

hm,k,i = 0, and

√(
K−2
m−1

)
nm

wk =
∑

ℓ:k∈Sm,ℓ

hm,ℓ,i,∀m ∈ [M ], k ∈ [K], i ∈ [nm],

(III) W⊤W =
ρ

K − 1

(
IK − 1

K
1K1⊤

K

)
(IV) There exist unique positive real numbers C1, C2, . . . , CM > 0 such that the following holds:

h1,k,i = C1w
ℓ when S1,k = {ℓ}, ℓ ∈ [K], (Multiplicity = 1 Case)

hm,k,i = Cm

∑
ℓ∈Sm,k

wℓ when m > 1. (Multiplicity > 1 Case)

Note that condition (IV) is a restatement of Equation (7) and Equation (8). The choice of the c1,m’s
is given by (V) from Lemma 3.

Lemma 1. we have:

W⊤W =
λH
λW

HH⊤ and ρ = ∥W ∥2F =
λH
λW

∥H∥2F

Proof. The proceeds identically as in given by Zhu et al. (2021) Lemma B.2 and is thus omitted
here.

The following lemma is the generalization of Zhu et al. (2021) Lemma B.3 to the multilabel case for
each multiplicity.
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Lemma 2. Let (W ,H, b) be a critical point for the objective f from Problem (4). Let c1,m > 0 be

arbitrary and let γ1,m := 1
1+c1,m

m
K−m . Define κm :=

(
K

m(Km)

)2 (
K−2
m−1

)
. Then

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ. (22)

where ρ := ∥W ∥2F , Γ2 :=
∑M

m=1 c2,m and c2,m is as in Lemma 8.

Note that Γ2 depends on c1,1, c1,2, . . . , c1,M because c2,m depends on c1,m for each m ∈ [M ].

Proof. Throughout this proof, let zm,k,i := Whm,k,i + b and choose the same γ1,m, c2,m for all i
and k. The first part of this proof aim to find the lower bound for each gm(W ,Hm, b) along with
conditions when the bound is tight. The rest of the proof focus on sum up gm to get Equation (22).
Thus, using Equation (20) with the zm,k,i’s, we have that gm can be written as

gm(WHm + b) =
1

Nm

nm∑
i=1

(Km)∑
k=1

LPAL(zm,k,i,ySm,k
) (23)

By directly applying Lemma 8, the following lower bound holds:

Nmgm(WHm + b) ≥ γ1,m

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i + b⟩+Nmc2,m

which implies that

γ−1
1,m(gm(WHm + b)− c2,m)

≥ 1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i + b⟩

=
1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i⟩︸ ︷︷ ︸

(⋆)

+
1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , b⟩︸ ︷︷ ︸

(⋆⋆)

(24)

To further simplify the inequality above, we break it down into two parts, namely, the feature part (⋆)
and the bias part (⋆⋆) and analyze each of them separately. We first show that the term (⋆⋆) is equal
to zero. To see this, note that

(⋆⋆) =

(Km)∑
k=1

 K∑
j=1

bj −
K

m

∑
j′∈Sm,k

bj′


=

(Km)∑
k=1

K∑
j=1

bj −
K

m

(Km)∑
k=1

∑
j′∈Sm,k

bj′

= K

(
K

m

)
b̄− K

m
m

(
K

m

)
b̄

= 0 (25)

where b̄ = 1
K

∑K
j=1 bj and

∑(Km)
k=1

∑K
j=1 bj = K

(
K
m

)
b̄. Thus

(Km)∑
k=1

∑
j′∈Sm,k

bj′
(♢)
=

K∑
j=1

∑
k:j∈Sm,k

bj=

K∑
j=1

bj#{k : j ∈ Sm,k} =

K∑
j=1

(
K

m

)
m

K
bj = m

(
K

m

)
b.
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Note that the equality at (♢) holds by switching the order of the summation. Now, substituting the
result of Equation (25) into the Inequality (24), we have the new lower bound of gm:

γ−1
1,m(gm(WHm + b)− c2,m) ≥ 1

Nm

nm∑
i=1

(Km)∑
k=1

⟨1− K
m IS , Whm,k,i⟩︸ ︷︷ ︸

(⋆)

(26)

and the bound is tight when conditions are met in Lemma 8. To simplify the expression (⋆) we first
distribute the outer layer summation and further simplify it as:

(⋆) =

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

(Km)∑
k=1

∑
j′∈Sm,k

h⊤
m,k,i ·wj′

=

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

∑
k′:j∈Sk′

h⊤
m,k′,iw

j (27)

=

(Km)∑
k=1

K∑
j=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

h⊤
m,{j},iw

j

=

K∑
j=1

(Km)∑
k=1

h⊤
m,k,i ·wj − K

m

K∑
j=1

h⊤
m,{j},iw

j (28)

=

K∑
j=1

(Km)∑
k=1

hm,k,i −
K

m
hm,{j},i


⊤

wj

=

K∑
j=1

((
K

m

)
hm,•,i −

K

m
hm,{j},i

)⊤

wj (29)

where we let hm,{j},i =
∑

k:j∈Sm,k
hm,k,i and hm,•,i be the “average” of hm,k,i over all k ∈

(
K
m

)
defined as:

hm,•,i :=
1(
K
m

) (Km)∑
k=1

hm,k,i. (30)

Similarly to (♢), the Equations (27) and (28) holds since we only switch the order of summation.
Continuing simplification, we substitute the result in Equations (29) and (25) into Inequality (24) we
have:

γ−1
1,m(gm(WHm + b)− c2,m) ≥ 1

Nm

nm∑
i=1

K∑
j=1

((
K

m

)
hm,•,i −

K

m
hm,{j},i

)⊤

wj

=
1

Nm

nm∑
i=1

K∑
k=1

((
K

m

)
hm,•,i −

K

m
hm,{k},i

)⊤

wk

=
1

nm

nm∑
i=1

K∑
k=1

(
hm,•,i −

K

m
(
K
m

)hm,{k},i

)⊤

wk

Further more, from the AM-GM inequality (e.g., see Lemma A.2 of Zhu et al. (2021)), we know that
for any u, v ∈ RK and any c3,m > 0,

u⊤v ≤ c3,m
2

∥u∥22 +
1

2c3,m
∥v∥22 (31)
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where the above AM-GM inequality becomes an equality when c3,mu = v. Thus letting u = wk

and v =

(
hm,•,i − K

m(Km)
hm,{k},i

)⊤

and applying the AM-GM inequality, we further have:

γ−1
1,m(gm(WHm + b)− c2,m)

≥ 1

nm

nm∑
i=1

K∑
k=1

(
hm,•,i −

K

m
(
K
m

)hm,{k},i

)⊤

wk (32)

≥ 1

nm

nm∑
i=1

K∑
k=1

(
−c3,m

2
∥wk∥22 −

1

2c3,m
∥hm,•,i −

K

m
(
K
m

)hm,{k},i∥22

)

=
1

nm

nm∑
i=1

K∑
k=1

−c3,m
2

∥wk∥22 −
1

nm

nm∑
i=1

K∑
k=1

1

2c3,m
∥hm,•,i −

K

m
(
K
m

)hm,{k},i∥22

= −c3,m
2

∥W ∥2F − 1

2c3,mnm

nm∑
i=1

K∑
k=1

∥hm,•,i −
K

m
(
K
m

)hm,{k},i∥22

= −c3,m
2

∥W ∥2F − 1

2c3,mnm

nm∑
i=1

(
K∥hm,•,i∥22 +

(
K

m
(
K
m

))2( K∑
k=1

∥hm,{k},i∥22

)
− 2K⟨hm,•,i, hm,•,i⟩

)
= −c3,m

2
∥W ∥2F − 1

2c3,mnm

nm∑
i=1

( K

m
(
K
m

))2( K∑
k=1

∥hm,{k},i∥22

)
−K∥hm,•,i∥22



= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

nm∑
i=1

(
K∑

k=1

∥hm,{k},i∥22 −K∥hm,•,i∥22

)

≥ −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

nm∑
i=1

K∑
k=1

∥hm,{k},i∥22 (33)

= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2

2c3,mnm

(
∥HmDm∥2F

)
(34)

= −c3,m
2

∥W ∥2F −

(
K

m(Km)

)2 (
K−2
m−1

)
2c3,mnm

(
∥Hm∥2F

)
(by Lemma 7)

= −c3,m
2

∥W ∥2F − κm
2c3,mnm

(
∥Hm∥2F

)
,

where we let Dm = diag(Y ⊤
m , · · · ,Y ⊤

m ) ∈ R(nm∗(Km))×(nm∗K) and Ym ∈ RK×(Km) is the many-hot
label matrix defined as follows8:

Ym =
[
ySm,k

]
k∈(Km)

.

The first Inequality (32) is tight whenever conditions mentioned in Lemma 8 are satisfied and the
second inequality is tight if and only if

c3,mwk =

(
K

m
(
K
m

)hm,{k},i − hm,•,i

)
∀k ∈ [K], i ∈ [nm]. (35)

8See Appendix C.1.1 for definition of the Sm,k notation
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Therefore, we have

gm(WHm + b)− c2,m ≥ −γ1,m
c3,m
2

∥W ∥2F − γ1,m
κm

2c3,mnm

(
∥Hm∥2F

)
. (36)

The last Inequality (33) achieves its equality if and only if

hm,•,i = 0, ∀i ∈ [nm]. (37)

Plugging this into (Equation (35)), we have

c3,mwk =
K

m
(
K
m

)hm,{k},i

=⇒ c23,m =

(
K

m(Km)

)2∑n
i=1

∑K
k=1 ∥hm,{k},i∥2F

nm
∑K

k=1 ∥wk∥22

=

(
K

m(Km)

)2 (
K−2
m−1

)
∥Hm∥2F

nm∥W ∥2F

=
κm
nm

∥Hm∥2F
∥W ∥2F

=⇒ c3,m =

√
κm
nm

∥Hm∥F
∥W ∥F

=⇒ c23,m =
κm
nm

∥Hm∥2F
∥W ∥2F

.

Now, note that by our definition of ρ and Lemma 1, we get

∥H∥2F =
λW
λH

ρ. (38)

Recall from the state of the lemma that we defined κm :=

(
K/m

(Km)

)2 (
K−2
m−1

)
and that γ1,m :=

1
1+c1,m

m
K−m . Thus, continuing from Inequality (36), we have

γ−1
1,m(gm(WHm + b)− c2,m) ≥ −c3,m

2
∥W ∥2F − κm

2c3,mnm
∥Hm∥2F .

Next, let Q > 0 be an arbitrary constant, to be determined later such that

γ1,m =
1

Nm
Qc−1

3,m

∥Hm∥2F
∥W ∥2F

, ∀m ∈ {1, . . . ,M}. (39)

A remark is in order: at this current point in the proof, it is unclear that such a Q exists. However,
in Equation (42), we derive an explicit formula for Q such that Equation (39) holds. Now, given
Equation (39), we have

gm(WHm + b)− c2,m ≥ 1

Nm
Q

(
−1

2
∥Hm∥2F − 1

2
∥Hm∥2F

)
= − 1

Nm
Q∥Hm∥2F .

Let Γ2 :=
∑M

m=1
Nm

N c2,m. Summing the above inequality on both side over m = 1, . . . ,M
according to Equation (16), we have

g(WH + b)− Γ2 ≥ − 1

N
Q

M∑
m=1

∥Hm∥2F = − 1

N
Q∥H∥2F = − 1

N
Q
λW
λH

ρ. (40)

where the last equality is due to Equation (38). Now, we derive the expression for Q, which earlier
we set to be arbitrary. From Equation (39), we have

1

1 + c1,m

m

K −m
= γ1,m =

1

Nm
Q

√
nm√
κm

∥Hm∥F
∥W ∥F

. (41)
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Rearranging and using the fact that Nm =
(
K
m

)
nm, we have(

K

m

)
1

1 + c1,m

m

K −m

√
κmnm = Q

∥Hm∥F
∥W ∥F

.

Squaring both side, we have(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

= Q2 ∥Hm∥2F
∥W ∥2F

.

Summing over m = 1, . . . ,M , we have

M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

= Q2
M∑

m=1

∥Hm∥2F
∥W ∥2F

= Q2 ∥H∥2F
∥W ∥2F

= Q2λW
λH

Thus, we conclude that

Q =

√
λH
λW

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2

. (42)

Substituting Q into Equation (41), we get

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

∥Hm∥F
∥W ∥F

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

.

(43)
Finally substituting Q into Equation (40),

g(WH + b)− Γ2 ≥ − 1

N

√√√√ M∑
m=1

(
1

1 + c1,m

m

K −m

)2

κmnm

(
K

m

)2√
λW
λH

ρ.

which concludes the proof.

As a sanity check of the validity of Lemma 2, we briefly revisit the M-clf case where M = 1. We
show that our Lemma 2 recovers Zhu et al. (2021) Lemma B.3 as a special case. Now, from the
definition of κm, we have that κ1 = 1. Thus, the above expression reduces to simply

Q =

√
λH
λWn1

1

1 + c1,1

1

K − 1
.

The lower bound from Lemma 2 reduces to simply

g1(WH1 + b)− γ2,1 ≥ −QρλW
λH

= − 1

1 + c1,1

1

K − 1
ρ

√
λW
λHn1

which exactly matches that of Zhu et al. (2021) Lemma B.3.

Next, we show that the lower bound in Inequality (22) is attained if and only if (W ,H, b) satisfies
the following conditions.

Lemma 3. Under the same assumptions of Lemma 2, the lower bound in Inequality (22) is attained
for a critical point (W ,H, b) of Problem (4) if and only if all of the following hold:

(I) ∥w1∥2 = ∥w2∥2 = · · · = ∥wK∥2, and b = b1,

(II)
1(
K
m

) (Km)∑
k=1

hm,k,i = 0, and

√(
K−2
m−1

)
nm

∥Hm∥F
∥W ∥F

wk =
∑

ℓ:k∈Sm,ℓ

hm,ℓ,i,∀m ∈ [M ], k ∈ [K], i ∈ [nm],

(III) W⊤W =
ρ

K − 1

(
IK − 1

K
1K1⊤

K

)
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(IV) There exist unique positive real numbers C1, C2, . . . , CM > 0 such that the following holds:

h1,k,i = C1w
ℓ when S1,k = {ℓ}, ℓ ∈ [K], (Multiplicity = 1 Case)

hm,k,i = Cm

∑
ℓ∈Sm,k

wℓ when m > 1. (Multiplicity > 1 Case)

(See Appendix C.1.1 for the notation Sm,k.)

(V) There exists c1,1, c1,2, . . . , c1,M > 0 such that

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

√
(Km)nmm(K−m)(K−1)

K ∗ log(K−m
m c1,m)

ρ
·

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

. (44)

The proof of Lemma 3 utilizes the conditions in Lemma 8, and the conditions in Equation (35) and
Equation (37) during the proof of Lemma 2.

Proof. Similar as in the proof of Lemma 2, define hm,{k},i :=
∑

ℓ:k∈Sm,ℓ
hm,ℓ,i

and hm,•,i :=
1

(Km)

∑(Km)
k=1 hm,k,i. From the proof of Lemma 2, the lower bound is attained whenever

the conditions in Equation (35) and Equation (37) hold, which respectively is equivalent to the
following:

hm,•,i = 0 and√(
K−2
m−1

)
nm

∥Hm∥F
∥W ∥F

wk = hm,{k},i,∀m ∈ [M k ∈ [K], i ∈ [nm], (45)

In particular, the m = 1 case further implies

K∑
k=1

wk = 0.

Next, under the condition described in Equation (45), when m = 1, if we want Inequality (22) to
become an equality, we only need Inequality (32) to become an equality when m = 1, which is true
if and only if conditions in Lemma 8 holds for z1,k,i = Wh1,k,i∀i ∈ [nm] and ∀k ∈ [K]. First let
[z1,k,i]j = h⊤

1,k,iw
j + bj , we would have:

K∑
j=1

[z1,k,i]j = Kb̄ and K[z1,k,i] = c3,1
(
K∥wk∥22

)
+Kbk. (46)

We pick γ1,1 = 1β, where β is defined in (60), to be the same for all k ∈ [K] in multiplicity one,
which also means to pick 1

β − (K − 1) to be the same for all k ∈ [K] within one multiplicity. Note
under the first (in-group equality) and second out-group equality condition in Lemma 8 and utilize
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the condition (46), we have

1

β
− (K − 1) =

(K − 1)exp(zout) + exp(zin)

exp(zout)
− (K − 1)

= (K − 1) + exp(zin − zout)− (K − 1)

= exp(zin − zout)

= exp

(
Kzin − zin − (K − 1)zout

K − 1

)
= exp

(
Kzin −

∑
j zj

K − 1

)
=

(
exp

(∑
j zj −Kzin

K − 1

))−1

=

(
exp

(∑
j zj −Kzk

K − 1

))−1

= exp

(
K

K − 1

(
b̄− c3,1∥wk∥22

)
− bk

)−1

Since the scalar γ1,1 is picked the same for one m, but the above equality we have

c3,1∥wk∥22 − bk = c3,1∥wℓ∥22 − bℓ ∀ℓ ̸= k. (47)

this directly follows after Equation (29) from the proof in Lemma B.4 of Zhu et al. (2021) to conclude
all the conditions except the scaled average condition, which we address next. To this end, we use the
second condition in (45) which asserts for m ≥ 2 that:√

nm(
K−2
m−1

) ∥W ∥F
∥Hm∥F

hm,{k},i = wk

=⇒
√

n1(
K−2
1−1

) ∥W ∥F
∥H1∥F

h1,{k},i =
√
n1

∥W ∥F
∥H1∥F

h1,k,i = wk =

√
nm(
K−2
m−1

) ∥W ∥F
∥Hm∥F

hm,{k},i

=⇒ hm,{k},i =

√
n1
(
K−2
m−1

)
nm

∥Hm∥F
∥H1∥F

h1,k,i = ch,mh1,k,i (48)

where ch,m =

√
n1(K−2

m−1)
nm

∥Hm∥F

∥H1∥F
. Let H̃1 (resp. H̃m) be the block-submatrix corresponding to

the first K columns of H1 (resp. first
(
K
m

)
columns of Hm). Define Ỹ1 and Ỹm similarly. Then,

Equation (48) can be equivalently stated in the following matrix form:

ch,mH̃1 = H̃mỸ ⊤
m

Let Pm = Ỹ ⊤
m (Ỹ ⊤

m )† be the projection matrix onto the subspace Ỹm, then we have

H̃mPm = H̃mỸ ⊤
m (Ỹ ⊤

m )† = ch,mH̃1(Ỹ
⊤
m )†,

which simplifies as
H̃mPm = ch,mH̃1(Ỹ

⊤
m )†.

Applying Lemma 4 to the LHS and Lemma 6 to the RHS we have

H̃m = ch,mH̃1(τmỸm + ηmΘ)

H̃m = ch,m · τmH̃1Ỹm

and substituting H̃1 using the relationship between H̃1 and W , namely, ch,1 · (W⊤) = H̃1, we
now have

H̃m = ch,m · τm · c1,m(W⊤Ỹm)

25



Under review as a conference paper at ICLR 2024

where
Cm = ch,m · ch,1 · τm

=

√
n1

nm
(
K−2
m−1

) ∥Hm∥F
∥H1∥F

·
√

1

n1

∥H1∥F
∥W ∥F

=

√
1

nm
(
K−2
m−1

) ∥Hm∥F
∥W ∥F

This proves (IV). Finally, to proof (V), following from Equation (43) in the proof of Lemma 2, we
only need to further simplify ∥Hm∥F .

We first establish a connection the between ∥WHm∥2F and ∥Hm∥2F . By definition of Frobenius
norm and the last layer classifier W is an ETF with expression W⊤W = ρ

K−1

(
IK − 1

K1K1⊤
K

)
,

we have
∥WHm∥2F = tr(WHmH⊤

mW⊤)

=
ρ

K − 1
tr(HmH⊤

m(IK − 1K1⊤
K))

=
ρ

K − 1
∥Hm∥2F

Since variability within feature already collapse at this point, we can express ∥WHm∥2F in terms of
zm,in and zm,out:

∥WHm∥2F =
ρ

K − 1
∥Hm∥2F =

(
K

m

)
nm(mz2m,in + (K −m)z2m,out).

From the second equality we could express ∥Hm∥ as:

∥Hm∥F =

√(
K
m

)
nm(K − 1)

ρ
(mz2m,in + (K −m)z2m,out) (49)

Recall from Lemma 8, we have the following equation to express zm,in and zm,out

zin − zm,out = log(
K −m

m
c1,m).

As column sum of Hm equals to 0, the column sum of WHm also equals to 0 as well. Given the
extra constrain of in-group equality and out-group equality from Lemma 8, it yields:

mzm,in + (K −m)zm,out = 0

Now we could solve for zm,in and zm,out in terms of c1,m

zm,in =
K −m

K
log

(
K −m

m
c1,m

)
zm,out = −m

K
log

(
K −m

m
c1,m

)
Substituting above expression for zm,in and zm,out into Equation (49), we have

∥Hm∥F =

√(
K
m

)
nmm(K −m)(K − 1)

ρK
log(

K −m

m
c1,m)

Finally, we substituting the above expression of ∥Hm∥F in to Equation (43) and conclude:

1

1 + c1,m

m

K −m
=

1(
K
m

)√
κmnm

√
(Km)nmm(K−m)(K−1)

K ∗ log(K−m
m c1,m)

ρ
·

√
λH
λW

√√√√ M∑
m′=1

(
1

1 + c1,m′

m′

K −m′

)2

κm′nm′

(
K

m′

)2

.
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Revisiting and combining results from (IV) and (V), we have the scaled-average constant Cm to be

Cm =

√
1

nm
(
K−2
m−1

)
√

(Km)nmm(K−m)(K−1)

ρK log(K−m
m c1,m)

∥W ∥F

=
K − 1

ρ
log(

K −m

m
c1,m)

where c1,m is a solution to the system of equation Equation (44). Note that Equation (44) hold
for all m. Thus, we could construct a system of equation whose variable are c1,1, · · · , c1,m. Even
when missing some multiplicity data, we sill have same number of variable c1,m as equations. We
numerically verifies that under various of UFM model setting (i.e. different number of class and
different number of multiplicities), c1,m does solves the above system of equation.

Lemma 4. Let let Pm = Ỹ ⊤
m (Ỹ ⊤

m )† be the projection matrix then we have, H̃mPm = H̃m

Proof. As Pm is a projection matrix, we have that ∥H̃m∥2F = ∥H̃mPm∥2F if and only if H̃m =

H̃mPm. So it is suffice to show that ∥H̃m∥2F = ∥H̃mPm∥2F . We denote WH̃mPm as the projection
solution and by lemma 5 we have that

WH̃mPm = WH̃m,

which further implies that the projection solution WH̃mPm also solves g

g(WH̃m, Ỹ ) = g(WH̃mPm, Ỹ ).

When it comes to the regularization term, by minimum norm projection property, we have
∥H̃m∥2F ≥ ∥H̃mPm∥2F . Note if the projection solution results in a strictly smaller frobenious
norm i.e. ∥H̃m∥2F > ∥H̃mPm∥2F , then f(W , H̃mPm, b) < f(W , H̃m, b), this contradict the
assumption that Zm = WH̃m is the global solutions of f . Thus, the only possible outcomes is that
∥H̃m∥2F = ∥H̃mPm∥2F , which complete the proof.

Lemma 5. We want to show that the optimal global solution of f , WH̃mPm, is the same after
projected on to the space of Ỹm, i.e., WH̃mPm = WH̃m

Proof. Let Zm = WH̃m denote the global minimizer of the loss function f for an arbitrary
multiplicity m. Since Zm has both the in-group and out-group equality property, we could express it
as

Zm = d1Ỹm + d2Θ,

for some constant d1, d2, and all-one matrix Θ of proper dimension. Note that it is suffice to show
that Zm lives in the subspace of which the projection matrix Pm projects onto. By lemma 6, as
(Ỹ ⊤

m )† is the Moore–Penrose pseudo-inverse of Ỹ ⊤
m by, we could rewrite Pm as

Pm = Ỹ ⊤
m (Ỹ ⊤

m )†

= Ỹ ⊤
m

(
ỸmỸ ⊤

m

)†
Ỹm

= Ỹ ⊤
m

(
ỸmỸ ⊤

m

)−1

Ỹm.

Hence we can see that the subspace which Pm projects onto is spanned by columns/rows of Ỹm. In
order to show that Zm = d1Ỹm + d2Θ is in the subspace spanned by columns of Ỹm, it is suffice to
see that the columns sum of Ỹm = m

K

(
K
m

)
1. Thus, we finished the proof.

Lemma 6. The Moore-Penrose pseudo-inverse of Ỹ ⊤
m has the form (Ỹ ⊤

m )† = τmỸm + ηmΘ, where
Θ is the all-one matrix with proper dimension and τm = a+c

bc , ηm = − a
bc , for a = m−1

k−1

(
K−1
m−1

)
,

b = m
k

(
K
m

)
, c = m

k−1

(
K−1
m

)
.

27



Under review as a conference paper at ICLR 2024

Proof. First, we have the column sum of Ỹm can be written as a constant times an all-one vector

(Km)∑
j

(Ỹm):,j =
m

K

(
K

m

)
1 (50)

This property could be seen from a probabilistic perspective. We let i ∈ [K] be fixed and deterministic,
and let S ⊆ [K] be a random subset of size m generating by sampling without replacement. Then

Pr{i /∈ S} =
K − 1

K
× K − 2

K − 1
× · · · × K −m

K −m+ 1
=
K −m

K
.

This implies that Pr{i ∈ S} = m
K and each entry of the column sum result is exactly m

K

(
K
m

)
as we

sum up all
(
K
m

)
columns of Ỹm.

Second, the label matrix Ỹm has the property that

ỸmỸ ⊤
m =

b a
. . .

a b

 , Ỹm(Θ− Ỹ ⊤
m ) =

0 c
. . .

c 0

 , (51)

where a = m−1
k−1

(
K−1
m−1

)
, b = m

k

(
K
m

)
, c = m

k−1

(
K−1
m

)
. Again, from a probabilistic perspective,

any off-diagonal entry of the product ỸmỸ ⊤
m is equal to (Ỹm)i,:(Ỹm)⊤i′,:, for i ̸= i′. Note that (Ỹm)i,:

is a row vector of length
(
K
m

)
, whose entry are either 0 or 1 and the results of (Ỹm)i,:(Ỹm)⊤i′,: would

only increase by one if both (Ỹm)i,j = 1 and (Ỹm)⊤i′,j = 1 for j ∈ [
(
K
m

)
]. From the previous property

we know that there is m
K probability that (Ỹm)i,j = 1. In addition, conditioned on (Ỹm)i,j = 1,

there are m−1
K−1 probability that (Ỹm)i′,j = 1. Thus, a = m

K
m−1
K−1

(
K
m

)
= m−1

K−1

(
K−1
m−1

)
. For similar

reasoning, we can see that conditioned on (Ỹm)i,j = 1, there are 1 − m−1
K−1 = K−m

K−1 probability
that (Θi′,j − (Ỹm)i′,j) = 1. Thus, c = m

K
K−m
K−1

(
K
m

)
= m

K−1

(
K−1
m

)
. For the similar probabilistic

argument, it is easy to see that diagonal of ỸmỸ ⊤
m are all b = m

K

(
K
m

)
and diagonal of Ỹm(Θ− Ỹ ⊤

m )

are all 0. Then by the second property (Equation (51)), we are about to cook up a left inverse of Ỹ ⊤:

1

b

(
Ỹ Ỹ ⊤ − a

c
(Ỹ (Θ− Ỹ ⊤))

)
= I

Ỹ

(
1

b
Ỹ ⊤ − a

bc
Θ+

a

bc
Ỹ ⊤

)
= I

Ỹ

(
a+ c

bc
Ỹ ⊤ − a

bc
Θ

)
= I(

a+ c

bc
Ỹ − a

bc
Θ

)
Ỹ ⊤ = I

Let, τm = a+c
bc , ηm = − a

bc , then the pseudo-inverse of Ỹ ⊤, namely (Ỹ ⊤)† could be written as

(Ỹ ⊤)† = τmỸ + ηmΘ

This inverse is also the Moore–Penrose inverse which is unique since it satisfies that:

Ỹ ⊤(Ỹ ⊤)†Ỹ ⊤ = Ỹ ⊤I = Ỹ ⊤ (52)

(Ỹ ⊤)†Ỹ ⊤(Ỹ ⊤)† = I(Ỹ ⊤)† = (Ỹ ⊤)† (53)

(Ỹ ⊤(Ỹ ⊤)†)⊤ = Ỹ ⊤(Ỹ ⊤)† (54)

((Ỹ ⊤)†Ỹ ⊤)⊤ = (Ỹ ⊤)†Ỹ ⊤ (55)
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Lemma 7. We would like to show the following equation holds:

∥HmDm∥2F =

(
K − 2

m− 1

)
∥Hm∥2F

Proof. Note due to how we construct Dm, it is suffice to show that ∥H̃mỸ ⊤
m ∥2F =

(
K−2
m−1

)
∥H̃m∥2F .

Recall the definition that a = m−1
k−1

(
K−1
m−1

)
and b = m

k

(
K
m

)
. By unwinding the definition of binomial

coefficient and simplifying factorial expressions, we can see that b − a =
(
K−2
m−1

)
. Along with the

assumption that columns sum of H̃m is 0 i.e. hm,•,i = 0, ∀i ∈ [nm] and the property described in
Equation (51), we have

∥H̃mỸ ⊤
m ∥2F =

(
K − 2

m− 1

)
∥H̃m∥2F

⇐⇒ ∥τmH̃1ỸmỸ ⊤
m ∥2F =

(
K − 2

m− 1

)
∥τmH̃1Ỹm∥2F

⇐⇒ τ2m(b− a)2∥H̃1∥2F = τ2m(b− a)∥H̃1Ỹm∥2F
⇐⇒ (b− a)∥H̃1∥2F = ∥H̃1Ỹm∥2F
⇐⇒ (b− a)∥H̃1∥2F = Tr(H̃1ỸmỸmH̃⊤

1 )

⇐⇒ (b− a)∥H̃1∥2F = Tr((b− a)H̃1H̃
⊤
1 )

⇐⇒ (b− a)∥H̃1∥2F = (b− a)∥H̃1∥2F
Thus, we complete the proof.

The following result is a M-lab generalization of Lemma B.5 from Zhu et al. (2021):

Lemma 8. Let S ⊆ {1, . . . ,K} be a subset of size m where 1 ≤ m < K. Then for all z =
(z1, . . . , zK)⊤ ∈ RK and all c1,m > 0, there exists a constant c2,m such that

LPAL(z,yS) ≥
1

1 + c1,m

m

K −m
· ⟨1− K

m IS , z⟩+ c2,m. (56)

In fact, we have

c2,m :=
c1,mm

c1,m + 1
log(m) +

mc1,m
1 + c1,m

log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)(c1,m + 1)) .

The Inequality (56) is tight, i.e., achieves equality, if and only if z satisfies all of the following:

1. For all i, j ∈ S, we have zi = zj (in-group equality). Let zin ∈ R denote this constant.

2. For all for all i, j ∈ Sc, we have zi = zj (out-group equality). Let zout ∈ R denote this
constant.

3. zin − zout = log
(

(K−m)
m c1,m

)
= log

(
γ−1
1,m − (K−m)

m

)
.

Proof. Let z and c1,m be fixed. For convenience, let γ1,m := 1
1+c1,m

m
K−m . Below, let zin, zout ∈ R

be arbitrary to be chosen later. Define z∗ = (z∗1 , . . . , z
∗
K) ∈ RK such that

z∗k =

{
zin : k ∈ S

zout : k ∈ Sc.
(57)

For any z ∈ RK , recall from the definition of pick-all-labels cross-entropy loss that

LPAL(z,yS) =
∑
k∈S

LCE(z,yk)
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In particular, the function z 7→ LPAL(z,yS) is a sum of strictly convex functions and is itself also
strictly convex. Thus, the first order Taylor approximation of LPAL(z,yS) around z∗ yields the
following lower bound:

LPAL(z,yS) ≥ LPAL(z
∗,yS) + ⟨∇LPAL(z

∗,yS), z − z∗⟩
= ⟨∇LPAL(z

∗,yS), z⟩+ LPAL(z
∗,yS)− ⟨∇LPAL(z

∗,yS), z
∗⟩ (58)

Next, we calculate ∇LPAL(z
∗,yS). First, we observe that

∇LPAL(z
∗,yS) =

∑
k∈S

∇LCE(z
∗,yk).

Recall the well-known fact that the gradient of the cross-entropy is given by

∇LCE(z
∗,yk) = softmax(z∗)− yk. (59)

Below, it is useful to define

α :=
exp(z∗in)∑
j exp(z

∗
j )

and β :=
exp(z∗out)∑
j exp(z

∗
j )

(60)

where
∑

j exp(z
∗
j ) = mexp(z∗in) + (K −m)exp(z∗out). In view of this notation and the definition

of z∗ in Equation (57), we have

softmax(z∗) = αIS + βISc (61)

where we recall that IS and ISc ∈ RK are the indicator vectors for the set S and Sc, respectively.
Thus, combining Equation (59) and Equation (61), we get

∇LPAL(z
∗,yS) =

∑
k∈S

∇LCE(z
∗,yk) =

∑
k∈S

(αIS + βISc − yk) = m(αIS + βISc)− IS .

The above right-hand-side can be rewritten as

m(αIS + βISc)− IS = (mα− 1) · IS +mβ · ISc

= (mα− 1 +mβ −mβ) · IS +mβ · ISc

= mβ · 1− (mβ + 1−mα) · IS

= mβ ·
(
1− mβ + 1−mα

mβ
· IS
)
.

Note that from Equation (61) we have mα + (K − m)β = 1. Manipulating this expression
algebraically, we have

mα+ (K −m)β = 1

⇐⇒ k −m =
1−mα

β

⇐⇒ 1

β

(
1

m
− α

)
=
K

m
− 1

⇐⇒ 1 +
1

mβ
− α

β
=
K

m

⇐⇒ mβ + 1−mα

mβ
=
K

m
.

Putting it all together, we have

∇LPAL(z
∗,yS) = mβ · (1− K

m · IS).

Thus, combining Equation (58) with the above identity, we have

LPAL(z,yS) ≥ mβ · ⟨1− K
m · IS , z⟩+ LPAL(z

∗,yS)−mβ · ⟨1− K
m · IS , z∗⟩. (62)

Let
c2,m := LPAL(z

∗,yS)−mβ · ⟨1− K
m · IS , z∗⟩ (63)
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Note that this definition depends on β, which in terms depends in z∗in and z∗out which we have not yet
defined. To define these quantities, note that in order to derive Equation (56) from Equation (62), a
sufficient condition is to ensure that

1

1 + c1,m

m

K −m
= mβ =

m exp(z∗out)∑
j exp(z

∗
j )

=
1

exp(z∗in − z∗out) +
(K−m)

m

(64)

Rearranging, the above can be rewritten as

(1 + c1,m)K−m
m = exp(z∗in − z∗out) +

(K−m)
m ⇐⇒ c1,m = m

K−m exp(z∗in − z∗out)

or, equivalently, as
z∗in − z∗out = log

(
(K−m)

m c1,m

)
. (65)

Thus, if we choose z∗in, z
∗
out such that the above holds, then Equation (56) holds.

Finally, we compute the closed-form expression for c2,m defined in Equation (63), which we restate
below for convenience:

c2,m := LPAL(z
∗,yS)−mβ · ⟨1− K

m · IS , z∗⟩

The expression for mβ is given at Equation (64). Moreover, we have

⟨1− K
m · IS , z∗⟩ = mzin + (K −m)zout − K

mmzin = −(K −m)(zin − zout).

Thus, we have

−mβ · ⟨1− K
m · IS , z∗⟩ = (K −m)(zin − zout)

exp(z∗in − z∗out) +
(K−m)

m

=
(K −m) log

(
(K−m)

m c1,m

)
(K−m)

m c1,m + (K−m)
m

=
m

c1,m + 1
log
(

(K−m)
m c1,m

)
.

On the other hand,
LPAL(z

∗,yS) =
∑
k∈S

LCE(z
∗,yk)

Now,

LCE(z
∗,yk) = − log([softmax(z∗)]k)

= − log(exp(z∗in)/(m exp(z∗in) + (K −m) exp(z∗out)))

= log(m+ (K −m) exp(z∗out − z∗in))

= log (m+ (K −m)(1/ exp(z∗in − z∗out)))

= log

(
m+ (K −m)

1
(K−m)

m c1,m

)
by Equation (65)

= log

(
m+m

1

c1,m

)
= log

(
m

(
c1,m + 1

c1,m

))
Thus

LPAL(z
∗,yS) = m log

(
m

(
c1,m + 1

c1,m

))
.

Putting it all together, we have

c2,m = m log

(
m

(
c1,m + 1

c1,m

))
+

m

c1,m + 1
log
(

(K−m)
m c1,m

)
.
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m log

(
m

(
c1,m + 1

c1,m

))
= m log(m) +m log

(
c1,m + 1

c1,m

)
m

c1,m + 1
log
(

(K−m)
m c1,m

)
=

m

c1,m + 1
log ((K −m)c1,m)− m

c1,m + 1
log(m)

Putting it all together, we have

c2,m = m log

(
m

(
c1,m + 1

c1,m

))
+

m

c1,m + 1
log
(

(K−m)
m c1,m

)
(66)

= m log(m) +m log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)c1,m)− m

c1,m + 1
log(m)

(67)

=
c1,mm

c1,m + 1
log(m) +m log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)c1,m) (68)

Next, for simplicity, let us drop the subscript and simply write c := c1,m. Then

m log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c)

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c) ∵ 1

1+c +
c

1+c = 1

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)c)

+
m

c+ 1
log ((K −m)(c+ 1))− m

c+ 1
log ((K −m)(c+ 1)) ∵ add a “zero”

=
m

1 + c
log

(
c+ 1

c

)
+

mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log

(
c

c+ 1

)
∵ property of log

+
m

c+ 1
log ((K −m)(c+ 1))

=
mc

1 + c
log

(
c+ 1

c

)
+

m

c+ 1
log ((K −m)(c+ 1)) ∵ log( c+1

c ) = − log( c
c+1 )

To conclude, we have

c2,m =
c1,mm

c1,m + 1
log(m) +

mc1,m
1 + c1,m

log

(
c1,m + 1

c1,m

)
+

m

c1,m + 1
log ((K −m)(c1,m + 1))

as desired.

D GLOBAL LANDSCAPE

Theorem 3 (No Spurious Local Minima and Strict Saddle Property (Generalization of Zhu et al.
(2021) Theorem 3.2). Assume the feature dimension d > K, the following function

min
W ,H,b

f(W ,H, b) =
1

N

m∑
m=1

nm∑
i=1

(Km)∑
k=1

LPAL(Whm,k,i + b,ySm,k
)

+ λW ||W ||2F + λH ||H||2F + λb||b||22 (69)

with respect to W ∈ RK×d, H = [H1, ...,Hm] ∈ Rd×Nm and b ∈ RK is a strict saddle function
Ge et al. (2015); Sun et al. (2015); Zhang et al. (2020b) with the following properties:

• Any local minimizer of eq. (69) is a global minimizer of the form as shown in Theorem 1

• Any critical point of eq. (69) is either a local minimum or has at least one negative curvature
direction, i.e., the Hessian ∇2f(W ,H, b) at this point has at least one negative eigenvalue

λi(∇2f(W ,H, b)) < 0.
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Proof of Theorem 3. We note that the proof for Theorem 3.2 in Zhu et al. (2021) could be directly
extended in our analysis. More specifically, the proof in Zhu et al. (2021) relies on a connection for
the original loss function to its convex counterpart, in particular, letting Z = WH ∈ RK×N with
N =

∑
m nm and α = λH

λW
, the original proof first shows the following fact:

min
HW=Z

λW ||W ||2F + λH ||H||2F =
√
λWλH min

HW=Z

1√
α
(||W ||2F + α||H||2F )

=
√
λWλH ||Z||∗.

With the above result, the original proof relates the original loss function

min
W ,H,b

f(W ,H, b) := g(WH + b1⊤) + λW ||W ||2F + λH ||H||2F + λb||b||22

with

g(WH + b1⊤) :=
1

N

K∑
k=1

n∑
i=1

LCE(Whk,i + b,yk),

to a convex problem:

min
Z∈RK×N , b∈RK

f̃(Z, b) := g(Z + b1⊤) +
√
λWλH ||Z||∗ + λb||b||22.

In our analysis, by letting g̃(WH + b1⊤) := 1
Nm

∑m
m=1

∑nm

i=1

∑(Km)
k=1 LPAL(Whm,k,i + b,ySm,k

),
we can directly apply the original proof for our problem. For more details, we refer readers to the
proof of Theorem 3.2 in Zhu et al. (2021).
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