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Abstract

Graph neural networks are powerful architectures for structured datasets. How-
ever, current methods struggle to represent long-range dependencies. Scaling
the depth or width of GNNs is insufficient to broaden receptive fields as larger
GNNs encounter optimization instabilities such as vanishing gradients and rep-
resentation oversmoothing, while pooling-based approaches have yet to become
as universally useful as in computer vision. In this work, we propose the use of
Transformer-based self-attention to learn long-range pairwise relationships, with
a novel “readout” mechanism to obtain a global graph embedding. Inspired by
recent computer vision results that find position-invariant attention performant in
learning long-range relationships, our method, which we call GraphTrans, applies
a permutation-invariant Transformer module after a standard GNN module. This
simple architecture leads to state-of-the-art results on several graph classification
tasks, outperforming methods that explicitly encode graph structure. Our results
suggest that purely-learning-based approaches without graph structure may be
suitable for learning high-level, long-range relationships on graphs. Code for
GraphTrans is available at https://github.com/ucbrise/graphtrans.

1 Introduction

Graph neural networks (GNNs) enable deep networks to process structured inputs such as molecules or
social networks. GNNs learn mappings that compute representations at graph nodes and/or edges from
the structure of and features in their neighborhoods. This neighborhood-local aggregation leverages
the relational inductive bias encoded by the graph’s connectivity [3]. Similar to convolutional neural
networks (CNNs), GNNs can aggregate information from beyond local neighborhoods by stacking
layers, effectively broadening the GNN receptive field.

However, GNN performance drops dramatically when its depth increases [21]. This limitation has
hurt the performance of GNNs on whole-graph classification and regression tasks, where we want to
predict a target value describing the whole graph that may rely on long-range dependencies that may
not be captured by a GNN with a limited receptive field [35]. Consider for example a large graph
where node A must attend to a distant node B which is K-hops away. If our GNN layer aggregates
only over a node’s one-hop neighborhood, then a K-layer GNN is required. However, the width of
the receptive field of this GNN will grow exponentially, diluting the signal from node B. That is,
simply expanding the receptive field to a K-hop neighborhood may not capture these long-range
dependencies either [40]. Often, “too deep” GNNs lead to node representations that collapse to be
equivalent over the entire graph, a phenomenon sometimes called oversmoothing or oversquashing
[21, 5, 2]. Therefore, the maximum context size for common GNN architectures is effectively limited.
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Figure 1: Architecture of GraphTrans. A standard GNN submodule learns local, short-range
structure, then a global Transformer submodule learns global, long-range relationships.

Several proposed methods combat the oversmoothing problem via intermediate pooling operations
similar to those found in today’s CNNs. Graph pooling operations gradually coarsen the graph in
progressive GNN layers, usually by collapsing neighborhoods into single nodes [9, 37, 20, etc.].
In theory, hierarchical coarsening should allow better long-range learning, both by reducing the
distance information has to travel and by filtering out unimportant nodes. However, no graph pooling
operation has been found that is as universally applicable as CNN pooling. State-of-the-art results are
often obtained with models using no intermediate graph coarsening [27], and some results suggest
neighborhood-local coarsening may be unnecessary or counterproductive [23].

In this work, we take a different approach at graph pooling and learning long-range dependencies in
GNNs. Like hierarchical pooling, our method is also inspired by methods for computer vision: we
replace some of the atomic operations that explicitly encode relevant relational inductive biases (i.e.,
convolutions or spatial pooling in CNNs, neighborhood coarsening in GNNs) with purely learned
operations like attention [11, 4, 7].

Our method, which we call Graph Transformer (GraphTrans, see Fig. 1), adds a Transformer
subnetwork on top of a standard GNN layer stack. This Transformer subnetwork explicitly computes
all pairwise node interactions in a position-agnostic fashion. This approach is intuitive as it retains the
GNN as a specialized architecture to learn local representations of the structure of a node’s immediate
neighborhood while leveraging the Transformer as a powerful global reasoning module. This parallels
recent computer vision architectures, where authors have found hard relational inductive biases
important for learning short-range patterns but less useful or even counterproductive in modeling
long-range dependencies [25]. As the Transformer without a positional encoding is permutation-
invariant, we find it is a natural fit for graphs. Moreover, GraphTrans does not require any specialized
modules or architectures and can be implemented in any framework atop any existing GNN backbone.

We evaluate GraphTrans on a variety of popular graph classification datasets. We find significant
improvements in accuracy on OpenGraphBenchmark [15] where we achieve state-of-the-art results
on two graph classification tasks. Moreover, we find substantial improvements on the molecular
dataset NCI1. Surprisingly, we find our simple model outperforms complex baselines for long-range
modeling in graphs via hierarchical clustering such as self-attention pooling [20].

Our contributions are as follows:

• We show that long-range reasoning via Transformers improve graph neural network (GNN) ac-
curacy. Our results suggest that modelling all pairwise node-node interactions in the graph is
particularly important for large graph classification tasks.

• We introduce a novel GNN “readout module.” Inspired by text-classification applications of
Transformers, we use a special “<CLS>” token whose output embedding aggregates all pairwise
interactions into a single classification vector. We find that this approach outperforms both
non-learned readout methods like global pooling as well as learned aggregation methods like
graph-specific pooling methods [37, 20] and “virtual node” approaches.

• Using our novel architecture GraphTrans, we obtain state-of-the-art results on several OpenGraph-
Benchmark [15] datasets and the NCI biomolecular datasets [30].

2



2 Related Work

Graph Classification. Graph classification is an important task in real-world applications. Though
GNNs encode the structured data into the node representations, aggregation of the representations
to a single graph embedding for graph classification is still a problem. Similar to CNNs, pooling in
GNNs can be either global, reducing a set of node and/or edge encodings to a single graph encoding,
or local, collapsing subsets of nodes and/or edges to create a coarser graph. Paralleling the use of
intermediate pooling within CNNs, several authors have proposed local pooling operations meant to
be used within the GNN layer stack, progressively coarsening the graph. Methods proposed include
both learned pooling schemes [37, 20, 14, 16, 1, etc.] and non-learned pooling methods based on
classic graph coarsening schemes [10, 9, etc.]. However, the effectiveness or necessity of hierarchical,
coarsening-based pooling in GNNs is unclear [23]. On the other hand, the most common global,
whole-graph pooling methods, are i) non-learned mean or max-pooling over nodes and ii) the “virtual
node” approach, where a final GNN layer outputs an embedding for a single virtual node that is
connected to every “real” node in the graph.

A notable work related to graph pooling is the DAGNN (Directed Acyclic Graph Neural Network) of
Thost and Chen [27], which had obtained the previous state-of-the-art accuracy on OGBG-Code2.
The DAGNN layer aggregates over the entire graph within each layer via an RNN that traverses the
DAG, unlike most GNN layers that only aggregate over a node’s neighborhood. While they did not
characterize this method as a pooling operation, it is similar to GraphTrans in that it acts as a learned
global pooling (in that it aggregates the embeddings of every node in a DAG into the sink nodes)
that can model long-range dependencies. Note that GraphTrans is also complementary to DAGNN
because their final graph-level pooling operation is a global max-pooling over the sink nodes rather
than a learned operation.

Transformers on Graphs. Several authors have investigated applications of Transformer architec-
tures to graphs. Recent works such as Zhang et al. [38], Rong et al. [24], and Dwivedi and Bresson
[12] propose GNN layers that let nodes attend to other nodes in some surrounding neighborhood via
Transformer-style attention, whereas we use self attention for a permutation-invariant, graph-level
pooling or “readout” operation that collapses node encodings to a single graph encoding. Of these,
Zhang et al. [38] and Rong et al. [24] tackle the problem of learning long-range dependencies without
over smoothing by allowing nodes to attend to more than just the one-hop neighborhood: Zhang
et al. [38] take the attended neighborhood radius as a tuning parameter and Rong et al. [24] attend
to neighborhoods of random size during training and inference. In contrast, we use whole-graph
self-attention to allow for learning of long-range dependencies.

While Zhang et al. [38] do not consider whole-graph prediction problems, in the case of Dwivedi
and Bresson [12], when a graph-wide embedding was needed for graph classification or regression,
they used global average pooling over the nodes, while Rong et al. [24] take a weighted sum over
nodes with the weights computed bypassing the hL

v ’s to a two-layer MLP. Note also that prior works
consider graph-specific versions of a Transformer’s positional encoding, while we omit positional
encodings to ensure permutation invariance.

Efficient Transformers. Transformer [28] has been widely used in sequence modeling. Recently,
modifications of the transformer architecture emerge to further improve the efficiency [34, 19, 6].
The LiteTransformer [34] with less FLOPs, Reformer [19] with complexity, and Performer [6] with
both less computation and memory complexity. Neural architecture search (NAS) was also applied
to Transformer to fulfill the resource constraints for the edge devices [32]. These off-the-shelf
architectures are orthogonal to our GraphTrans and can be adopted to improve the scalability.

3 Motivation: Modeling Long-Range Pairwise Interactions

To summarize, attempting long-range learning on graphs via stacking GNN layers or hierarchical
pooling have not yet led to performance increases, and while some works have shown some success
in expanding the receptive field of a single GNN layer beyond a one-hop neighborhood [38, 24, 40],
it remains to be seen how this approach will scale to very large graphs with thousands of nodes.

An inspiration for an alternative approach can be found in the recent computer vision literature. In
the last few years, researchers have found that attention mechanisms can act as drop-in replacements
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(a) Example graph from Code2.
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(b) Corresponding attention map from GraphTrans.

Figure 2: Example graph and attention map in our GraphTrans. The graph is randomly sampled
from the Code2 validation set. The attention map is retrieved from the first layer of the transformer
module in our GraphTrans. The horizontal axis corresponds to targets and the horizontal axis
corresponds to sources (so, attention weights will sum to one over the horizontal axis). Note that in
(b), index 18 corresponds to the special <CLS> token described in section 4.

for traditional CNN convolutions [4, 7]: attention layers can learn to reproduce the strong relational
inductive biases induced by local convolutions. More recently, state-of-the-art approaches to several
computer vision tasks use an attention-style submodule on top of a traditional CNN backbone [2, 33,
etc.]. These results suggest that while strong relational inductive biases are helpful for learning local,
short-range correlations, for long-range correlations less structured modules may be preferred [2].

We leverage this insight to the graph learning domain with our GraphTrans model, which uses
a traditional GNN subnetwork as a backbone, but leaves learning long-range dependencies to a
Transformer subnetwork with no graph spatial priors. As mentioned, our Transformer application lets
every node attend to every other node (unlike other approaches of applying Transformers to graphs
that only allow attention to neighborhoods), which incentivizes the Transformer to learn the most
important node-node relationships, instead of favoring nearby nodes (the latter task having been
offloaded to the preceding GNN module).

Qualitatively, this scheme provides evidence that long-range relationships are indeed important. An
example application of GraphTrans on the OGB Code2 dataset is depicted in Figure 2. In this task,
we take in the Abstract Sentence Tree obtained by parsing a Python method and need to predict the
tokens that form the method name. The attention map exhibits similar patterns to those found in
NLP applications of Transformers: some nodes receive significant weighting from many other nodes,
regardless of the distance between them. Note that node 17 assigns significant importance to node 8,
despite these two nodes being five hops away. Also, in Figure 2’s attention map, index 18 refers to
the embedding corresponding to the special <CLS> token we use as a readout mechanism, described
in more detail below. We allow this embedding to be learnable, so the many nodes attending to it
(represented by the many dark cells in column 18) may suggest these nodes are obtaining some graph-
general memory from the learned embedding. This qualitative visualization, along with our new
state-of-the-art results, suggest that removing spatial priors when learning long-range dependencies
may be necessary for effective graph summarization.

4 Learning Global Information with GraphTrans

Referring back to Figure 1, GraphTrans consists of two primary modules: a GNN subnetwork
followed by a Transformer subnetwork. We discuss these in detail next.

GNN module. We consider graph property prediction, i.e., for each graph G = (V, E) we have a
graph-specific prediction target yG . We suppose that each node v ∈ V has an initial feature vector
h0
v ∈ Rd0 . As GraphTrans is a generally-applicable framework that can be used in concert with a

4



variety of GNNs, we make very few assumptions on the GNN layers that feed into the Transformer
subnetwork. A generic GNN layer stack can be expressed as

h`
v = f`

(
h`−1
v , {h`−1

u |u ∈ N (v)}
)
, ` = 1, . . . , LGNN (1)

where LGNN is the total number of GNN layers, N (v) ⊆ V is some neighborhood of v, and f`(·) is
some function parameterized by a neural network. Note that many GNN layers admit edge features,
but to avoid notational clutter we omit discussion of them here.

Transformer module. Once we have the final per-node GNN encodings hLGNN
v , we pass these to

GraphTrans’s Transformer subnetwork. The Transformer subnetwork operates as follows. We first
perform a linear projection of the hLGNN

v ’s to the Transformer dimension and a Layer Normalization
to normalize the embedding:

h0
v = LayerNorm(W ProjhLGNN

v ) (2)

where W Proj ∈ RdTF×dLGNN is a learnable weight matrix, and dTF and dLGNN are the Transformer
dimension and the dimension of the final GNN embedding, respectively. The projected node
embeddings h0

v are then fed into a standard Transformer layer stack, with no additive positional
embeddings, as we expect the GNN to have already encoded the structural information into the node
embeddings:

a`v,u = (WQ
` h`−1

v )>(WK
` h`−1

u )/
√
dTF α`

v,u = softmax
w∈V

(a`v,w)

h′`v =
∑
w∈V

α`
v,wW

V
` h`−1

w

(3)

where WQ
` ,W

K
` ,W V

` ∈ RdTF/nhead×dTF/nhead are the learned query, key, and value matrices, respec-
tively, for a single attention head in layer `. As is standard, we run nhead parallel attention heads
and concatenate the resulting per-head encodings h′`v . Concatenated encodings are then passed to a
Transformer fully-connected subnetwork, consisting of the standard Dropout→ Layer Norm→ FC
→ nonlinearity→ Dropout→ FC→ Dropout→ Layer Norm sequence, with residual connections
from h`−1

v to after the first dropout, and from before the first fully-connected sublayer to after the
dropout immediately following the second fully-connected sublayer.

<CLS> embedding as a GNN “readout” method. As mentioned, for whole-graph classification
we require a single embedding vector that describes the whole graph. In the GNN literature, this
module that collapses embeddings for every node and/or edge to a single embedding is called the
“readout” module, and the most common readout modules are simple mean or max pooling, or a
single “virtual node” that is connected to every other node in the network.

In this work, we propose a special-token readout module similar to those used in other applications
of Transformers. In text classification tasks with Transformers, a common practice is to append a
special <CLS> token to the input sequence before passing it into the network, then to take the output
embedding corresponding to this token’s position as the representation of the whole sentence. In
that way, the Transformer will be trained to aggregate information of the sentence to that embedding,
by calculating the one-to-one relationships between the <CLS> token and each other tokens in the
sentence with the attention module.

Our application of special-token readout is similar to this. Concretely, when feeding the transformed
per-node embeddings h̄0v , we append an additional learnable embedding h<CLS> to the sequence, and
take the first embedding h̄<CLS> ∈ RdTF from the transformer output as the representation of the
whole graph (note that since we do not include positional encodings, placing the special token at
the “beginning” of the sentence has no special computational meaning; the location is chosen by
convention). Finally, we apply a linear projection followed by a softmax to generate the prediction:

y = softmax(W outhLTF
<CLS>). (4)

where LTF is the number of Transformer layers.

This special-token readout mechanism may be viewed as a generalization or a “deep” version of
a virtual node readout. While a virtual node method requires every node in the graph to send its
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information to the virtual node and does not allow for learning pairwise relationships between graph
nodes except within the virtual node’s embedding (possibly creating an information bottleneck),
a Transformer-style special-token readout method lets the network learn long-range node-to-node
relationships in earlier layers before needing to distill them in the later layers.

5 Experiments

We evaluate GraphTrans on graph classification tasks from three modalities: biology, computer
programming, and chemistry. Our GraphTrans achieves consistent improvement over all of these
benchmarks, indicating the generality and effectiveness of the framework. All of our models are
trained with the Adam optimizer [17] with a learning rate of 0.0001, a weight decay of 0.0001,
and the default Adam β parameters. All Transformer modules used in our experiments have an
embedding dimension dTF of 128 and a hidden dimension of 512 in the feedforward subnetwork.
The Transformer baselines described below are trained with only the sequence of node embeddings,
discarding the graph structure.

5.1 Biological benchmarks

Datasets. We choose two commonly used graph classification benchmarks, NCI1 and NCI109 [31].
Each of them contains about 4000 graphs with around 30 nodes on average, representing biochemical
compounds. The task is to predict whether a compound contains anti-lung-cancer activity. We
follow the settings in [20, 2] for the NCI1 and NCI109, randomly splitting the dataset into training,
validation, and test set by a ratio of 8:1:1.

Training Setup. We trained GraphTrans on both the NCI1 and NCI109 datasets for 100 epochs
with a batch size of 256. We run each experiment 20 times with different random seeds and calculate
the average and standard deviation of the test accuracies. All the model follows the architecture
in Figure 1, with 4 transformer layers and a dropout ratio of 0.1 for both the GNN and Transformer
modules. We use two different settings adopted from prior literature for the width and depth of the
GNN submodule in GraphTrans. The GNN module width and depth in the small GraphTrans
model are copied from the simple baseline, i.e. the settings in [20], which has a hidden dimension of
128 and 3 GNN layers. The settings of the GNN module in the large GraphTrans model are adopted
from the default GCN/GIN model provided by OGB, which has a hidden dimension of 300 and 4
GNN layers. We also adopt a cosine annealing schedule [22] for learning rate decay.

Results. We report the results on both NCI1 and NCI109 in Table 1. The simple baselines, including
GCN Set2Set, SortPool, and SAGPool, are taken from [20], while the strong baselines [13], as well
as the FA layer [2]. In Table 1, Our Graph Transformer (small) has the same architecture as the
simple baseline but improves the average accuracy by 7.1% for NCI1 and 5.1% for NCI109. We also
tested the framework with GIN as the encoder (GraphTrans (large)) to align with the settings in the
strong baseline, which also significantly improves the accuracy of the strong baseline by 1.1% for
NCI1 and the 8.2% for NCI109, even without the deep GNN, using 4 layers instead of 8.

5.2 Chemical benchmarks

Datasets. For chemical benchmarks, we evaluate our GraphTrans on a dataset larger than NCI
dataset, molpcba from the Open Graph Benchmark (OGB) [15]. It contains 437929 graphs with 28
nodes on average. Each graph in the dataset represents a molecule, where nodes and edges are atoms
and chemical bonds, respectively. The task is to predict the multiple properties of a molecule. We use
the standard splitting from the benchmark. The performance on the GIN and GIN-Virtual baselines
are as reported on the OGB leaderboard [15].

Training Setups. All the GNN modules in the experiments follow the settings of the default GIN
model provided in OGB, with 4 layers and 300 hidden dimension. We train all the models for 100
epochs with a batch size of 256 and report the test result with the best validation ROC-AUC. For both
GNN and Transformer modules, we apply a dropout of 0.3. We use GIN as the baseline and the GNN
module, since it performs better than GCN models on the Molpcba dataset.
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Table 1: NCI biological datasets GraphTrans outperforms past baselines on both NCI1 and
NCI109 test accuracy while using fewer GNN layers than prior SOTA baselines.

Model GNN Type GNN layer count NCI1 (%) NCI109 (%)
Set2Set [29, 20] GCN 3 68.6± 1.9 69.8±1.2
SortPool [39, 20] GCN 3 73.8±1.0 74.0±1.2
SAGPoolh [20] GCN 3 67.5±1.1 67.9±1.4
SAGPoolg [20] GCN 3 74.2±1.2 74.1±0.8

Errica et al. [13] GIN 8 80.0±1.4 –
Alon and Yahav [2] GIN 8 81.5±1.2 –

Transformer [28] – – 68.5±2.6 70.1± 2.3

GraphTrans (small) GCN 3 81.3±1.9 79.2±2.2
GraphTrans (large) GIN 4 82.6±1.2 82.3±2.6

Table 2: OpenGraphBenchmark Molpcba dataset Overall, GraphTrans outperforms competitive
baselines with two backbone GNN architectures.

Model Valid ROC-AUC Test ROC-AUC
GCN [18] 0.2059±0.0033 0.2020±0.0024
GIN [36] 0.2305±0.0027 0.2266±0.0028
GCN-Virtual [18] 0.2495±0.0042 0.2424±0.0034
GIN-Virtual [36] 0.2798±0.0025 0.2703±0.0023

Transformer [28] 0.1316±0.0012 0.1281±0.0039

GraphTrans (GIN) 0.2893±0.0050 0.2756±0.0039
GraphTrans (GIN-Virtual) 0.2867±0.0022 0.2761±0.0029

Results. In Table 2, we report the ROC-AUC on validation and test set of Molpcba. Though
Transformer alone works very badly on this dataset, our GraphTrans still improves the ROC-AUC
of the GIN and GIN-Virtual baseline. It indicates that our design could take benefit from both the
local graph structure learned by the GNN and the long-range concept retrieved by the Transformer
module based on the GNN embeddings.

5.3 Computer programming benchmark

Datasets. For the computer programming benchmark, we also adopt a large dataset, code2 from
OGB, which has 45741 graphs each with 125 nodes on average. The dataset is a collection of
Abstract Syntax Trees (ASTs) from about 450k Python method definitions. The task is to predict the
sub-tokens forming the method name, given the method body represented by the AST. We also adopt
the standard dataset splitting from the benchmark. All baseline performances are as reported on the
OGB leaderboard.

Training Setups. We also apply the default settings of GCN for Code2 from OGB, with 4 GNN
layers, 300 hidden dimension, and a dropout ratio of 0.0. We apply a dropout ratio of 0.3 to the
Transformer module to avoid overfitting. We train all the models for 30 epochs with a batch size of
16, due to the large scale of the dataset. For the GraphTrans (PNA) model, we follow the settings
in [26], with a hidden embedding of 272 for the GNN module and a weight decay of 3e-6. The only
difference is that we still use the learning rate of 0.0001, instead of the heavily tuned 0.00063096 [26].
We run each experiment 5 times and take the average and standard deviation of the F1 score.

Results. In Table 3, we compare our GraphTrans with top tier architectures on the leaderboard
on Code2 dataset. As the average number of nodes in each graph increases, the global information
becomes more important as it becomes more difficult for the GNN to gather information from
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Table 3: OpenGraphBenchmark Code2 dataset All the baselines are collected from the OGB
leaderboard. GraphTrans outperforms the state-of-the-art DAGNN. The improvement based on
PNA model indicates that our method is orthogonal to the type of GNN module.

Model Valid F1 score Test F1 score
GIN [36] 0.1376±0.0016 0.1495±0.0023
GCN [18] 0.1399±0.0017 0.1507±0.0018
GIN-Virtual [36] 0.1439±0.0026 0.1581±0.0020
GCN-Virtual [18] 0.1461±0.0013 0.1595±0.0018
PNA [8] 0.1453±0.0025 0.1570±0.0032
DAGNN (SOTA) [27] 0.1607±0.0040 0.1751±0.0049

Transformer [28] 0.1546±0.0018 0.1670±0.0015

GraphTrans (GCN) 0.1599±0.0009 0.1751±0.0015
GraphTrans (PNA) 0.1622±0.0025 0.1765±0.0033
GraphTrans (GCN-Virtual) 0.1661±0.0012 0.1830±0.0024

Table 4: Ablation of Transformer module On the Code2 dataset, only training the Transformer
module in GraphTrans with a frozen pre-trained GNN module also improves the F1-score. It
indicates that training the Transformer on GNN embeddings can learn information that is not captured
by the GNN.

Model Valid F1 score Test F1 score
Pre-trained GCN-Virtual 0.1457 0.1574
GraphTrans, pre-trained GCN-Virtual, frozen GNN 0.1479 0.1616
GraphTrans, pre-trained GCN-Virtual, fine-tuned GNN 0.1564 0.1733

nodes far away. Even without heavy tuning, GraphTrans significantly outperforms the state-of-
the-art (DAGNN) [27] on the leaderboard. We also include the results for the PNA model and
our GraphTrans with the PNA model as the GNN encoder. Our GraphTrans also significantly
improves the result, which indicates that our architecture is orthogonal to the variants of the GNN
encoder module.

5.4 Transformers can capture long-range relationships

As we previously observed in Figure 2 and discussed in Section 3, the attention inside the transformer
module can capture long-range information that is hard to be learned by the GNN module.

To further verify the hypothesis, we designed an experiment to show that the Transformer module can
learn additional information to the GNN module. In Table 4, we first pretrain a GNN (GCN-Virtual)
until converge on the Code2 dataset, and then freeze the GNN model and plug our Transformer
module after it. By training the model on the training set with a fixed GNN module, we can still
observe a 0.0022 F1-score improvement on validation set and 0.0042 on test set. It indicates that the
Transformer can learn additional information that is hard to be learned by the GNN module along.

With pretrained and unfrozen GNN module, our GraphTrans can achieve an even higher F1-score.
That may because the GNN module can now focus on learning the local structure information, by
leaving the long-range information learning to the Transformer layer after it. The model benefits
from the specialization as mentioned in [34]. Note that for all the experiments in Table 4, we do not
concatenate the embeddings from the input graph to the input of Transformer for simplicity.

5.5 Effectiveness of <CLS> embedding

In Figure 2b, we can observe that row 18 (the last row is for <CLS>) has dark red on multiple
columns, which indicates that the <CLS> learns to attend to important nodes in the graph to learn the
representation for the whole graph.
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Table 5: Ablation of <CLS> token The mean and last are two commonly used embedding
aggregation method for sequence classification.

Model Valid Test
GraphTrans, mean 0.1398 0.1509
GraphTrans, last 0.1566 0.1716
GraphTrans, <CLS> 0.1593 0.1784
GraphTrans, <CLS>, cat 0.1670 0.1810

Table 6: Scalability of Transformer to large graphs We profile our Code2 model on random
graphs and list runtime in milliseconds. GraphTrans scales comparably to the GCN model due to
the high cost neighbor sampling in GNN training. With graphs over 1000 nodes, GraphTrans is no
less scalable than the GCN baseline.

Edge Density
Node count Model 20% 40% 60% 80%

500 GCN-Virtual [18] 44.3 58.5 79.3 99.0
GraphTrans (GCN) 48.4 57.5 76.4 93.7

1000 GCN-Virtual [18] 99.1 171.8 249.5 OOM
GraphTrans (GCN) 96.9 168.4 244.3 OOM

1200 GCN-Virtual [18] 131.8 237.7 OOM OOM
GraphTrans (GCN) 127.9 236.6 OOM OOM

We also examined the effectiveness of our <CLS> embedding quantitatively. In Table 5, we tested
several common methods to for sequence classification. The mean operation averages the output
embeddings of the transformer to a single graph embedding; the last operation takes the last
embedding in the output sequence as the graph embedding. The quantitative results indicate that
the <CLS> embedding is most effective with 0.0275 improvements on the test set, as the model can
learn to retrieve information from different nodes and aggregate them into one embedding. The
concatenation of the embeddings in the input graph and the input embeddings of the transformer can
further improve the validation and test F1-score to 0.1670 and 0.1733.

5.6 Scalability

To quantitatively benchmark how GraphTrans scales with large graphs over 100 nodes, we ran a
microbenchmark of iteration time for training with varying graph size and edge density. We train
baselines on randomly generated Erdos-Renyi graphs with a varying number of nodes and edge
density. As shown in the Table 6, our GraphTrans model scales at least as well as the GCN model
when the number of nodes and edge density increases. Both GCN and GraphTrans see out of
memory errors (OOM) with large dense graphs, but we note that GraphTrans had similar memory
consumption to the GCN baseline.

5.7 Computational efficiency

To evaluate the overhead that our GraphTrans adds over a specific GNN backbone, we evaluate the
forward pass runtime and backward pass runtime per iteration. We normalize models to have roughly
similar parameter counts. The results are shown in Table 7. For the NCI1 dataset, GraphTrans
is actually faster to train than a comparable GCN model. For the OGB-molpcba and OGB-Code2
datasets, GraphTrans is 7-11% slower than the baseline GNN architectures.

5.8 Number of parameters

We compare the number of parameters of the GNN baseline and the GraphTrans on different dataset
in Table 8. Overall, GraphTrans only increases total parameters marginally for Molpcba and NCI.
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Table 7: Speedup of Transformer module For GraphTrans models trained over the NCI1, OGBG-
Molpcba and OGBG-Code2 datasets, we find that the Transformer module adds minimal overhead.
Speedup is the training iteration speed compared to GNN based model; larger number indicates a
faster running speed.

Dataset Method Forward time (ms) Backward time (ms) Speedup

NCI1
GCN-Virtual [18] 22.27 ± 2.04 14.35 ± 2.46 1.00×
Transformer 12.31 ± 1.68 9.32 ± 1.68 1.69×
GraphTrans 15.01 ± 1.63 12.04 ± 2.25 1.35×

Molpcba
GCN-Virtual [18] 14.79 ± 2.54 12.75 ± 3.00 1.00×
Transformer 12.34 ± 1.43 10.52 ± 1.60 1.20×
GraphTrans 16.55 ± 2.93 14.3 ± 3.15 0.89×

Code2
GCN-Virtual [18] 22.97 ± 6.13 38.53 ± 6.92 1.00×
Transformer 31.01 ± 9.00 33.30 ± 16.09 0.96×
GraphTrans 34.93 ± 6.85 31.14 ± 12.90 0.93×

Table 8: Parameter count Overall, GraphTrans achieves improved accuracy with a minor increase
in parameters.

Dataset GNN GraphTrans Delta
Molpcba 3.4M 4.2M 0.8M
NCI 0.4M 0.5M 0.1M
Code2 12.5M 9.1M -3.4M

For Code2, GraphTrans is substantially more parameter-efficient than the GNN while improving test
F1 score from 0.1629 to 0.1810. One reason for improved parameter efficiency is that the Transformer
reduces feature dimension before the expensive final prediction layer.

6 Conclusion

We proposed GraphTrans, a simple yet powerful framework for learning long-range relationships
with GNNs. Leveraging recent results that suggest structural priors may be unnecessary or even
counterproductive for high-level, long-range relationships, we augment standard GNN layer stacks
with a subsequent permutation-invariant Transformer module. The Transformer module acts as a
novel GNN “readout” module, simultaneously allowing the learning of pairwise interactions between
graph nodes and summarizing them into a special token’s embedding as is done in common NLP
applications of Transformers. This simple framework leads to surprising improvements upon the
state of the art in several graph classification tasks across program analysis, molecules and protein
association networks. In some cases, GraphTrans outperforms methods that attempt to encode
domain-specific structural information. Overall, GraphTrans presents a simple yet general approach
to improve long-range graph classification; next directions include applications to node and edge
classification tasks as well as further scalability improvements of the Transformer to large graphs.
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