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Abstract

3D Human Pose Estimation (HPE) is a fundamental task in the computer vision.
Generalization in 3D HPE task is crucial due to the need for robustness across
diverse environments and datasets. Existing methods often focus on learning
relationships between joints to enhance the generalization capability, but the role of
the loss landscape, which is closely tied to generalization, remains underexplored.
In this paper, we empirically visualize the loss landscape of the 3D HPE task,
revealing its complexity and the challenges it poses for optimization. To address
this, we first introduce a simple adaptive scaling mechanism that smooths the
loss landscape. We further observe that different solutions on this smoothed loss
landscape exhibit varying generalization behaviors. Based on this insight, we
propose an efficient ensemble approach that combines diverse solutions on the
smooth loss landscape induced by our adaptive scaling mechanism. Extensive
experimental results demonstrate that our approach improves the generalization
capability of 3D HPE models, and can be easily applied, regardless of model
architecture, with consistent performance gains.

1 Introduction

3D Human Pose Estimation (HPE) is one of the essential computer vision tasks. In recent years,
it has received increased attention due to its successful application in the areas of autonomous
driving [33, 39], robotics [40, 12, 26], and industrial safety [31] along with the advancement of Deep
Neural Networks (DNNs). Especially, in the domain of industrial safety, it is crucial to ensure the
generalization capability of the model as its accuracy can be directly tied to safety concerns.

Unfortunately, it is challenge to get a robust 3D HPE model due to the inherent complexity and
variability of human poses across different datasets and domains. Previous researches have addressed
these challenges by focusing on multi-hypothesis concept [8, 4, 22, 19], learning better posture
information [16, 10, 29], designing elastic model architectures [36, 27], and data augmentation
[7, 28]. Although previous methods have achieved notable performance improvements, they often
overlook the structure of the loss landscape, which plays a critical role in understanding model
generalization and stability [5, 1].

In our analysis, we found that the loss landscape of 3D HPE task can be highly complicated and has
multiple disconnected local minima. Such disconnected modes can pose significant challenges for

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 1: The local and global loss landscape when K is 3. (a) Local loss landscape of C1. (b)
Local loss landscape of C2. (c) Local loss landscape of C3. (d) Global loss landscape of D. The
local loss landscapes have various shape depending on the degree of depth ambiguity. Especially, the
global loss landscape and some local loss landscapes have multiple local minima. θC1 , θC2 , and θC3

are model parameter around local minimum of each local loss landscape. Note that the local loss
landscape of Ck is a result when the model trained with only Ck.

optimization and may adversely affect the generalization performance of the model (i.e. converging
to the sharp minimum). Despite its critical impact on generalization, there has been lack of attempt to
design training or inference strategies that explicitly leverage this insight in the 3D HPE field. We
argue that this structural insight is critical to enhance the generalization ability of the model because
simply optimizing a single model over such loss landscape may result in a biased convergence toward
sharp minimum, which is not desirable.

To mitigate this, we propose a simple adaptive scaling mechanism to smooth the loss landscape,
effectively reducing the likelihood of existence of high-loss barriers between local minima and
forming a loss landscape geometry where diverse solutions reside on a low-loss region. Furthermore,
we found that the diverse solutions on the smoothed loss landscape by our adaptive scaling mechanism
exhibits various generalization behavior. Based on this observation, we also introduce an efficient
ensemble strategies with the adaptive scaling mechanism that combine multiple solutions on the
smooth loss landscape without destructive interference to improve robustness and generalization
ability of the model. It is worth noting that our method requires a similar amount of time as training a
single model and can be applied regardless of the model architecture.

Our contributions are as follows:

• We propose a novel and simple ensemble method that can be integrated with simple mod-
ifications, regardless of the model structure. The proposed method is designed to induce
flatness of loss landscape while concurrently enable parameter-efficient ensemble method,
and can be implemented easily.

• We shed light on the difficult learning process of 3D HPE task through a analysis from a loss
landscape perspective. To the best of our knowledge, we are the first to take this direction of
analysis in a 3D HPE task.

• Our method enhances performances of the model for the representative model architectures
(MLP, CNN, GCN, and Transformer) of 3D HPE in benchmark datasets such as Human3.6M
[14], MPI-INF-3DHP [24], 3DPW [30], and BEDLAM [2].

2 The Loss Landscape of 3D Human Pose Estimation

In this section, we explore the loss landscape of 3D HPE task. During our experiment, we leverage
the dataset, Human3.6M [14], which is popularly utilized as benchmark dataset in the 3D HPE task.
For the network, we utilized the BaselineNet from a foundation work [23]. For the results of other
network architectures, see the Appendix. We start our analysis from elaborating the experimental
setting and ending with summary of our analysis and key insight.

2.1 Experimental Setting

Considering the loss value for a whole dataset D at parameter θ is a linear combination of loss values
for individual examples in D at θ, analyzing loss landscapes for subsets of D is an effective approach
to understand the loss landscape. To efficiently explore the high-dimensional loss landscape of 3D
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Figure 2: The different loss landscape characteristics depending on each class. (a) Class-wise training
loss per epoch when K is 5. (b) Top-1 eigenvalue of each local loss landscape when K is 21. (c)
Class-wise original train MPJPE (blue line) and the gap between MPJPE after small input perturbation
and original MPJPE (red line). Note that the (b) and (c) are results when the model is trained with the
whole dataset D when K is 21. (d) The training trajectory of the model when the model is trained
with D\C20 when K is 20 (blue line is train loss and green line is test accuracy).

HPE, we first divided the dataset according to the degree of ambiguity of each example, which can be
different depending on inherent data patterns, rather than random partitioning. The inherent depth
ambiguity of 3D HPE can be understood as a one-to-many mapping between the input and output
space, which means multiple valid loss values can exist for a single input. Especially, a high degree
of depth ambiguity implies a high variance of the valid loss values for a single input. Since this
property directly affects the geometry of the loss landscape, partitioning based on depth ambiguity
is an appropriate choice. To quantify of the depth ambiguity per example, we borrow a definition,
Depth Ambiguity Ratio (DAR), from a recent work [16]. With this DAR, we can add the quantified
depth ambiguity to each data pair. The train dataset can be re-expressed as D = {(xi, yi, ui)}Ni=1.
The x, y are the coordinates of 2D pose and 3D pose, respectively. The u is the DAR for a data
pair (x, y) and N is the size of dataset. To partition the dataset based on the values of u, we sorted
{ui}Ni=1 in ascending order and defined the bin edges {bk}Kk=0 by selecting values from the sorted
u values such that b0 < b1 < · · · < bK . Each example (xi, yi, ui) is assigned to the k-th bin if it
satisfies bk−1 ≤ ui < bk for k = 1, 2, . . . ,K − 1, and bK−1 ≤ ui ≤ bK for k = K. See Appendix
for the detailed binning procedure. From now on, we call the subset assigned to the k-th bin as a class
Ck. So, the degree of the depth ambiguity for each class can be ordered as C1 < C2 < · · · < CK .
For convenience, we call the loss (landscape) of each class as local loss (landscape) and the loss
(landscape) of whole dataset as global loss (landscape) from now on.

2.2 Local Loss Landscape of Each Class

Considering that the global loss is a linear combination of the local losses, analyzing each local loss
landscape significantly aids in understanding the global loss landscape. To this end, we begin by
analyzing the individual local loss landscapes. At first, we present a simple results that the training
loss roughly varies depending on each class in Figure 2(a). There can be various reasons for this,
the main factor of this would be the different local loss landscape for each class. In this reason,
we explore the top-1 eigenvalue λmax of the Hessian matrix for each class to see the local loss
landscape curvature around the trained model parameter with D in Figure 2(b)1. As expected, the
curvature of local loss landscapes are different depending on each class. While the λmax of local
loss landscapes for the both extremely low and middle degrees of depth ambiguities are similar, their
geometries are different to each other. To show this, we inspect the loss value after input perturbation
for each class in Figure 2(c)2. The data for extremely low degree of depth ambiguity exhibited
a tendency to be memorized by the model because the model cannot appropriately address small
input perturbation. Considering the extremely low degree of depth ambiguity as one-to-one mapping
relationship between input space and output space, this is natural. On the other hand, the data for
high degree of depth ambiguity exhibited steep loss landscape, which implies that they are not being
learned enough and the model is located on the unstable loss landscape. These all results indicate that
the local loss landscape for each class is shaped differently, suggesting that the global loss landscape
can be highly complicated depending on the individual local loss landscape. To show this empirically,
we train the network with D\C20 when K is 20. We can observe that the training trajectory is highly
complicated when we see the training loss and test accuracy through epochs in Figure 2(d). This

1We estimate the top-1 eigenvalue λmax of each local loss landscape following [34].
2Similar to [20], we perturb the input 2D pose in a scale-invariant manner with Gaussian noise. The perturbed

input with a perturbation scale s is expressed as xpert = x+ d
∥d∥ · ∥x∥ · s where the d ∼ N(0, I).
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indicates that a small change of arbitrary local loss landscape may lead to highly complicated global
loss landscape.

2.3 Visualizing Loss Landscapes

In this section, we visualized the local and global loss landscape of 3D HPE task to inspect the local
loss landscape in detail3. As expected, the local minimum of each local loss landscape are located
in the different parameter space as shown in Figure 1. As we mentioned above, the global loss is
a linear combination of local losses, thus leading to the highly complicated global loss landscape
that potentially has disconnected multiple local minima, which cannot be distinguished from the
perspective of model. This is because the model cannot distinguish which one is better because the
gradient at those local minima are all same as zero. In fact, even when the K is 3, the global loss
landscape has two local minima as shown in Figure 1(d), which implies that the model can converge
to different local minimum depending on their initial parameter or some arbitrary dominant local loss
landscape, or even cannot be converged without delicated training strategy. For the results of various
K values, see Appendix. These disconnected local minima can exhibit different generalization
behavior depending on their own sharpness and the loss value at the minimum[5, 1, 32].

2.4 Summary and Key Insight

As shown in Section 2.3, the local minimum of each local loss landscape can be differently located
in the parameter space and they are all potential local minima in the global loss landscape. If the
local minima of global loss landscape are disconnected to each other and their loss level are different
at their local minimum, the model tends to be overfitted to an arbitrary dominant class Ck so that
generalization capacity can be deteriorated or exhibits highly unstable training process. Hence, it
is important to reduce the likelihood that disconnected local minima may exist in the global loss
landscape. This consideration leads us to our key insight to mitigate this as follows:

• Flatness of local minimum of each local loss landscape.

If the local minimum of each local loss landscape is sufficiently flat, there will be no significant high
loss barriers between them, which reduces the likelihood of multiple disconnected local minima in the
global loss landscape. We empirically validated this intuition in Section 4. This property facilitates
stable training of 3D HPE model and may improve the generalization capability of the model. Based
on this, we introduce a simple method motivated by this insight in the following section.

3 Proposed Method

Motivated by our key insight in Section 2, we aim to mitigate the problem of highly complicated
loss landscape of 3D HPE task. To this end, we first propose a simple yet effective adaptive scaling
mechanism that smooths the loss landscape of 3D HPE model. We elaborate our detailed method in
following sections.

3.1 Adaptive Scale Adjustment of Prediction

In general, the behavior and output of 3D HPE network can be expressed simply by the following
equation, where the network predicts the 3D pose ŷ.

ŷ = fθ(gϕ(x)), (1)
where x is input 2D pose, gϕ is the network before last layer, and fθ is last layer. Our core idea is to
encourage flatness in the local minimum of the local loss landscape. Since the meaningful maximum
value of K is the dataset size, in the case where the number of class K = |D|, this is equivalent to
promoting flatness around the local minimum of local loss landscape for every individual training
example. One simple method for this is to apply adaptive scaling mechanism to Eq. 1 as follows.

ỹ =
fθ(gϕ(x))

σ(hψ(gϕ(x))) + 1
, (2)

3We visualized the loss landscape following [6]. For batch normalization [13], we run one additional forward
pass for one epoch to calculate the running mean and standard deviation of activations of each layer with
interpolated network weights.
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where hψ : Rd → R that predicts a scalar value and σ is ReLU function. The d is output dimension
of gϕ. This simple mechanism induces the flatness of entire loss landscape.

For example, the ŷ in Eq. 1 can be expressed as aŷ × 1
a where a is a scalar value. This is

similar form of Eq. 2 where aŷ = fθ(gϕ(x)) and a = σ(hψ(gϕ(x))) + 1. Then for a overall
network parameter set of Eq. 2 S = {θ, ϕ, ψ}, this means that there exists multiple solutions
such that {S | fθ(gϕ(x))

σ(hψ(gϕ(x)))+1 = ỹ} that predict the same ỹ in Eq. 2 depending on the value of
σ(hψ(gϕ(x))) + 1. This redundancy creates a smooth region in the loss landscape, which is known
to correlate with better generalization. The empirical validation of this is provided in Section 4.
Also, this simple mechanism enhances expressive power of the model because the scale parameter
σ(hψ(gϕ(x)))+1 is input-dependent, thus the model is capable of representing more diverse functions
that could not be expressed before.

Figure 3: Deviation of predictions from each
solution on the smooth loss landscape for diffi-
cult joints of 3DHP [24]. Note that the models
are trained with H36M [14].

The adaptive scaling mechanism allows for various
parameter solutions by intentionally introducing re-
dundancy into the loss landscape. This naturally
raises an important question: how do these distinct
solutions differ in their generalization behavior? To
explore this, we conducted a simple yet illustrative
experiment to examine the generalization behaviors
of models trained under the adaptive scaling scheme
with different random seeds. Interestingly, we ob-
served that the resulting models from different ran-
dom seeds exhibited diverse generalization behaviors,
as shown in Figure 3. We calculate the deviation of
model predictions for joints that are difficult to es-
timate. For example, the deviation of j-th joint for
i-th model can be calculated as pij − µj where µj is
1
n

∑n
i=1 p

i
j and pij is a j-th joint of prediction from

model trained with random seed i. This observation
led to our second key insight: ensembling these solutions can effectively leverage this diversity to
further improve generalization capability.

3.2 Finding Multiple Solutions on Smooth Loss Landscape

Figure 4: Overall proposed frame-
work with m regression heads with
adaptive scaling mechanism. The op-
eration k(a, b) represents a

σ(b)+1 .

The second key insight is corresponding to find multiple
solutions on the same global loss landscape that are reside
on the same low-loss level region. This can be done by
leveraging multiple regression heads (fθ and hψ in Eq. 2).
Our proposed framework for efficient ensembling is shown in
Figure. 4. The representation gϕ(x) from the encoder is fed
into each regression head to get fθi(gϕ(x)) and hψi(gϕ(x))
for i-th regression head. With these representations from i-th
regression head, we can get ỹi in Eq. 2 for each head. Then,
the loss function L(ỹi, y) is applied to each ỹi. While each
function, parameterized by {ϕ, θi, ψi}, serves a same purpose
(estimating target y), they are represented differently, thus
leading to enhanced expressive power. With this formation,
we can get diverse parameter solution set {Si} where Si =
{ϕ, θi, ψi} on the smooth loss landscape induced by our adaptive scaling mechanism. Consequently,
the proposed framework facilitates an efficient ensemble strategy to boost generalization ability of
the model. Because each solution Si lies on a smooth and flat region of the loss landscape, which is
known to be associated with improved stability and generalization ability of the model. So when the
number of regression heads is M , the formulation of this framework and the loss function during
training can be expressed as:

ỹi = k(fθi(gϕ(x)), hψi(gϕ(x))) =
fθi(gϕ(x))

σ(hψi(gϕ(x))) + 1
, L =

1

M

M∑
i=1

Li, (3)
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where k(a, b) represents a
σ(b)+1 and Li = L(ỹi, y) for 1 ≤ i ≤M . During inference, we averaged

ỹi as follows:

ỹfinal =
1

M
(ỹ1 + ỹ2 + · · ·+ ỹM ). (4)

Additionally, we intentionally initialized the parameters of regression heads differently to get diverse
solution set. This is to prevent each head from converging to similar minimum in the global
loss landscape. Also, it is worth noting that this ensemble strategy is valid when the adaptive
scaling mechanism is combined. Since the loss landscape is highly complicated without adaptive
scaling mechanism and potentially has multiple local minima with different loss level that cannot
be distinguish from the perspective of the model, the differently initialized each regression head
may converge to different local minima with different loss level, which could reduce the benefit of
ensembling. We empirically validated this in Section 4.6.

4 Experiments

We experiment our method on benchmark datasets, Human3.6M (H36M) [14], MPI-INF-3DHP
(3DHP) [24], 3D Poses in the Wild (3DPW) [30], and BEDLAM [2]. H36M [14] is broadly utilized
for training and evaluation in 3D HPE task. They are consisted of over 3.6 million 3D pose and 2D
pose pairs. We utilize the data from subjects 1, 5, 6, 7, and 8 as training set, while the data from
subjects 9 and 11 are utilized as test set following the literature of 3D HPE. 3DHP [24] presents
rather complex situations compared to H36M [14], including diverse indoor and outdoor scenarios.
3DPW [30] is a widely-used benchmark for 3D human pose estimation in unconstrained outdoor
environments, featuring over 51,000 frames of video with accurate ground-truth 3D pose and shape.
BEDLAM [2] is a large-scale synthetic video dataset for 3D human pose and shape estimation,
featuring realistic clothing and high diversity in body shapes and motions. This dataset is specifically
designed to train models that generalize to real-world scenario. We report metrics, Mean Per Joint
Position Error (MPJPE) and Procrustes Aligned MPJPE (PA-MPJPE), on H36M [14] following
convention. For 3DPW [24], we report Percentage of Correct Keypoints (PCK) within 150mm, Area
Under the Curve (AUC), and MPJPE to evaluate the generalization capability of the model with our
approach. For network architecture, we utilize representative architecture (i.e. MLP, CNN, GCN, and
Transformer) of 3D HPE task to evaluate our proposed method.

4.1 Comparison on H36M

In this section, we apply our proposed method to a variety of baseline models [23, 27, 38, 37] in
order to comprehensively evaluate the effectiveness and generalization capbility of our approach.
Specifically, we integrate our method into multiple representative 3D HPE architectures and compare
their performances before and after the application of our method in Table 1. To gain deeper insights
into the individual contributions of each component within our framework, we conduct ablation
studies under the following settings: (1) standard training without any modifications, (2) training
with the adaptive scaling mechanism only, and (3) training with both the ensembling method and the
adaptive scaling mechanism. The experimental results show that our proposed method consistently
leads to performance improvements across a wide range of network architectures, highlighting
its robustness and versatility. This consistent gain suggests that the integration of the ensembling
strategy with the adaptive scaling mechanism generates a synergistic effect, effectively enhancing the
generalization ability of the model. Moreover, these results indicate that our approach contributes
to reshaping the loss landscape in a way that facilitates better optimization and improved final

Table 1: Before and after applying our method to various models. We report MPJPE and PA-MPJPE
in a single frame setting for evaluation on H36M. Similar to other 3D HPE works [8, 27, 36, 21], we
use cascaded pyramid network [3] as a 2D pose detector.

Architecture Method MPJPE
Basic +Scale +Both

PA-MPJPE
Basic +Scale +Both

MLP BaselineNet [23] 55.4 54.2 53.6 44.2 43.1 42.7
CNN VPose [27] 55.7 54.9 54.4 44.0 43.4 43.3
GCN SemGCN [37] 64.8 61.6 59.9 51.2 48.9 48.3

Transformer PoseFormer [38] 56.2 55.5 54.5 44.3 44.4 43.9
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Figure 5: (a) Top-1 eigenvalue of each local loss landscape when K is 21 after applying SAM [5] and
adaptive scaling mechanism. (b) Global loss landscape of after applying adaptive scaling mechanism
alone. (c) Training loss and test accuracy along the line between local minimum (θC1 , θC2 , and θC3 )
of local loss landscape. The dashed lines refer to the test accuracy. The blue line is for standard
model and green line is for model with adaptive scaling mechanism. Note that these results are from
BaselineNet [23].

accuracy. Overall, the results validate the practical utility of our method as a simple yet meaningful
enhancement to existing 3D HPE frameworks.

4.2 Cross-Dataset Evaluation on 3DPW

Table 2: Cross-dataset evaluation on 3DPW.

Method PCK AUC MPJPE

BaselineNet [23] 85.8 47.6 87.2
+Ours 87.1 50.8 81.9
VPose [27] 85.3 47.4 88.8
+Ours 86.5 47.9 86.0
SemGCN [37] 78.2 41.4 104.3
+Ours 84.4 48.7 88.7
PoseFormer [38] 84.3 47.2 90.9
+Ours 86.0 50.3 84.1

To further assess how effectively our proposed
method enhances the generalization ability of 3D
HPE models, we conducted a cross-dataset evalu-
ation. This type of evaluation is crucial for under-
standing whether a model trained on one dataset
can perform well on data from a different domain,
which is often more reflective of real-world deploy-
ment scenarios. We trained each model with a
combined ground-truth training set of the H36M,
3DHP, and BEDLAM and then, evaluated its per-
formance on the 3DPW dataset. During testing, we
used ground-truth 2D poses from 3DPW as input
and predicted the corresponding 3D poses using the
trained models. We report three standard metrics
to comprehensively assess performance: PCK, AUC, and MPJPE. As presented in Table 2, our
method consistently leads to significant improvements in all three metrics across various baseline
architectures. These results strongly suggest that our approach enhances the generalization ability
of the model beyond the training data distribution, making it more robust to unseen domains and
varying data characteristics. Such improvements in generalization capability are particularly valuable
for practical applications where the test-time data may differ from the training distribution.

4.3 Flatness of Local minima

To investigate whether our adaptive scaling mechanism effectively smooths the loss landscape, we
estimated the top-1 eigenvalue of the Hessian matrix when only the adaptive scaling mechanism
was applied. As shown in Figure 5(a), the curvature of each local loss landscape became noticeably
flatter compared to that of baseline. Additionally, we visualized the global loss landscape under the
adaptive scaling mechanism alone in case of BaselineNet [23] to compare the global loss landscape
without our adaptive scaling mechanism in Figure 1(d). As illustrated in Figure 5(b), the landscape
exhibited a smoother topology with a single local minimum. This provides a significant advantage in
network convergence and, as demonstrated in Section 4.2, the flatness of the loss landscape correlates
with improved generalization performance. Furthermore, in Figure 5(c), we investigate the training
loss and test MPJPE along the line between each local minimum. Our adaptive scaling mechanism
exhibits better training loss and test MPJPE through the all points on the line between each local
minimum. Also there was no high loss barrier between each local minimum. This validates our
intuition in Section 2.4.
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Figure 6: (a) Diverse solution set on the train loss landscape under our adaptive scaling mechanism.
θm1

, θm2
, and θm3

are solutions when the number of heads M is 3. (b) Diverse solution set on the
test loss landscape under our adaptive scaling mechanism. (c) Joint-wise deviation for predictions of
PoseFormer [38]. (d) Robustness against input Gaussian noise. ∆MPJPE represents the gap between
MPJPE for perturbed input and original MPJPE.

4.4 Example of Diverse Solutions on Loss Landscape

DNNs typically consist of millions to even billions of parameters, making it challenging to analyze
their loss landscapes directly. Nevertheless, several effective techniques have been proposed to
visualize the loss landscape in a interpretable manner [20, 6]. Similar to the [6], we visualize the loss
landscape of BaselineNet [23] with 3 heads in Figure 6. Because visualizing the loss landscape with
all solutions becomes challenge when the number of solutions exceeds 3. The visualization results
show that all solutions reside on low-loss and flat regions of the training loss landscape. Similarly,
we observe that the corresponding test loss landscapes also place the solution set in flat regions with
low-loss level. We further investigate the joint-wise prediction diversity for PoseFormer [38] in
Figure 6(c). The predictions exhibited diversity across different heads. These results suggest that
ensembling the solutions can lead to a highly stable model, benefiting from low bias and reduced
variance. Such stable models are crucial in real-world applications, where consistent and reliable
predictions are essential under varying and potentially noisy conditions.

4.5 Comparison with Other Loss Landscape Flattening Method

Table 3: Comparison with SAM on H36M.

Method MPJPE PA-MPJPE

BaselineNet [23] 54.8 43.8
+SAM [5] 56.1 44.4
+Scale only 54.2 43.1
VPose [27] 55.7 44.0
+SAM [5] 57.3 45.7
+Scale only 54.9 43.4

There are various approaches to promoting flatness
in the loss landscape. A representative example is
Sharpness-Aware Minimization (SAM [5]), which
explicitly encourages flatness by applying pertur-
bations and penalizing sharp regions in the loss
landscape. However, such methods operate without
considering the characteristics of individual local
loss landscapes, instead applying a global flatten-
ing effect. As a result, they may disproportionately
flatten regions around specific local minimum, po-
tentially overlooking others. In fact, we investigate
the top-1 eigenvalue of Hessian matrix when applying SAM in Figure 5(a). As we expected, the
SAM tends to flatten the loss landscape in a biased manner, favoring certain local regions over others.
We also experiment the performance of 3D HPE + SAM in Table 3. The results show that applying
SAM to a 3D HPE model yielded no performance gain, which confirmed our hypothesis. Note
that the models are trained for a longer duration because of the slow convergence of SAM and the
perturbation radius is set as 0.05 for SAM training.

4.6 Ensembling without Adaptive Scaling Mechanism

We further validate that the proposed ensembling method performs effectively when combined with
the adaptive scaling mechanism in Table 4. As we expected, the ensembling approach alone does not
achieve satisfactory results in the absence of adaptive scaling, primarily due to the highly complex
and irregular nature of the global loss landscape. This complexity can cause each regression head
to converge to different local minima, leading to a severe gradient conflicts between heads or a
lack of coherence among the predictions and diminishing the overall benefit of ensembling. To
further clarify this, we evaluate the combination of another loss landscape flattening method, SAM,
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Table 4: Results of esembling without adaptive
scaling mechanism on H36M.

Method MPJPE PA-MPJPE

BaselineNet [23] 54.8 43.8
+SAM [5] and Ens. 54.5 43.2
+Ens. only 73.3 58.1

VPose [27] 55.7 44.0
+SAM [5] and Ens. 55.3 44.0
+Ens. only 69.8 55.2

with the ensemble strategy. The results indicate
that 3D HPE + SAM + Ensemble achieves better
performance than ensemble alone, which supports
that the loss landscape of 3D HPE is highly com-
plicated. All these findings underscore the crucial
role of adaptive scaling mechanism in aligning the
optimization trajectories of individual heads and en-
hancing ensemble performance. The adaptive scal-
ing mechanism harmonizes the learning dynamics
across heads, facilitating more coordinated updates
and yielding a more effective ensemble representa-
tion.

4.7 Robustness of Ensembling Strategy

We further experiment the robustness of our model to the input noise. Lifting-based 3D HPE, a
prevalent approach in the literature, typically relies on the output of a 2D pose detector as input. As
a result, the input inevitably contains noise. Therefore, evaluating the robustness of the 3D HPE
network to input noise is crucial. To simulate noisy inputs, we perturb the 2D pose inputs with
Gaussian noise of varying magnitudes in input scale-invariant manner. In this reason, we experiment
our method to evaluate the robustness to input noise on the dataset 3DHP [24] for the BaselienNet
[23] in Figure 6(d). Note that the model is trained with H36M [14]. The model with our method
shows better generalization capability. Especially, our model is robust when the noise level is high,
which suggests that our method can generalize better for unseen poses. Stability under high noise
levels is crucial, as it enables fail-safe mechanisms, in which the robot system can still recognize a
human shape in a danger zone even when the predicted pose is inaccurate.

4.8 Converging Speed

Figure 7: Loss trajectories with adaptive
scaling mechanism. ASM refers to the
adaptive scaling mechanism.

As mentioned above, the adaptive scaling mechanism
serves to smooth the loss landscape. Consequently, it is
natural to think that the optimization of models with adap-
tive scaling mechanism becomes more easier than before.
To illustrate this, we compare the training loss trajectories
of the model with and without adaptive scaling mechanism
during 20 epochs on H36M [14] in Figure 7. As we ex-
pected, the model with adaptive scaling mechanism shows
a faster convergence. The training loss with adaptive scal-
ing mechanism shows lower training loss throughout the
epochs. Especially, the test accuracy is significantly lower
at the beginning of the training. With this property, while
our adaptive scaling mechanism facilitates faster conver-
gence, the model with adaptive scaling mechanism may
need to be early-stopped to avoid undesirable overfitting.

5 Related Work

5.1 3D Human Pose Estimation

A wide range of methods have been proposed for 3D HPE. The prevalent research direction in this area
is to lift 2D keypoints in image coordinate system to 3D pose coordinates in camera coordinate system
[23, 27, 37, 38]. There are various representative network architectures starting from transformer-
based model [22, 38], GCN-based model [37], CNN-based model [27], and MLP-based model
[23, 35]. These researches proposed elastic network design to learn better posture information to
enhance the generalization capability of the 3D HPE model. On the other hand, augmentation-based
approaches [7, 16, 21] have been proposed to address the limited availability of training data in
3D HPE task. These methods primarily aim to improve model generalization by enhancing data
diversity through various augmentation techniques. While these methods have demonstrated notable
performance improvements, they overlooked the perspective of the loss landscape, which is closely
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related to generalization. In this work, we aim to provide a novel perspective on 3D HPE by analyzing
its loss landscape and propose a simple yet effective approach based on this analysis.

5.2 Loss Landscape and Generalization

Improving generalization through loss landscape smoothing has become a prominent research di-
rection in deep learning, as flatter minima are often associated with improved robustness and better
out-of-distribution performance. This phenomenon was revealed by a pioneer work [9]. After this, a
number of influential techniques have been proposed to address this, most notably Sharpness-Aware
Minimization (SAM) [5], which explicitly penalizes sharp minima by optimizing for the worst-case
loss within a neighborhood around each parameter update. With SAM, various SAM-variant method
was proposed in recent years [17, 32, 25]. However, these methods incur high computational costs
due to the use of double backpropagation during training. Nevertheless, we argue that the insight
they provide is valuable, and applying it to the 3D HPE task is worthwhile despite the overhead. In
this work, we aim to analyze the loss landscape of 3D HPE to leverage this insight and propose a
simple yet effective method based on the analysis.

5.3 Deep Ensemble Learning

Deep ensemble learning has emerged as a widely used technique to improve the robustness and
generalization of neural networks, particularly in settings where model uncertainty and out-of-
distribution (OOD) performance are critical. [18] introduced a simple yet effective deep ensemble
method by independently training multiple neural networks with random initialization, showing
improved predictive uncertainty estimation and better calibration compared to single models. Based on
this, [11] introduced a simple yet effective deep ensemble method by leveraging multiple checkpoints
during training process. [6] proposed fast geometric ensembling method by utilizing connected
modes property to enhance the generalization capability. [15] proposed weight ensembling method to
find more flatter region on the loss landscape. Despite their effectiveness, these approaches tend to
be computationally expensive or rely on two-stage training pipelines, which limit their practicality.
In this work, we aim to propose parameter-efficient ensembling method to boost generalization
capability of the 3D HPE model.

6 Conclusion

In this work, we analyzed the loss landscape of the 3D HPE task. Our empirical investigation
showed that the loss landscape of the 3D HPE can be highly complicated and potentially have
multiple local minima, which poses significant challenge during training process. This observations
highlight the importance of considering loss landscape geometric properties during optimization.
To mitigate these issues, we introduced a novel and simple adaptive scaling mechanism to flatten
the loss landscapes. With this adaptive scaling approach, we also provide a efficient ensembling
method to boost the generalization ability of the model. The proposed method effectively addresses
the challenges identified in our analysis, and our experimental results validate the soundness and
practicality of our approach. Furthermore, our adaptive scaling mechanism could be beneficial for
tasks with highly complicated loss landscapes, such as 3D HPE, although it must also account for
task-specific characteristics, including the location where adaptive scaling mechanisms are applied.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We made our contributions in the abstract and introduction clearly by introduc-
ing our adaptive scaling mechanism and efficient ensembling strategy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a section for limitations in the supplementary material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper doesn’t include theoretical results that requires rigorous proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the paper, we provide detailed experimental results on benchmark dataset
such as H36M and 3DHP and reported the metric (MPJPE, PCK, and AUC).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is included in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided a detailed analysis setting in the analysis section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We discuss about the tables and figures with standard evaluation metric in the
3D HPE area.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain the GPU we used in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The method we proposed fitted to the ethical guidelines for research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide potential positive societal results for our method in the introduction
section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper has no risks about the data or models that have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly cites sources and resources such as dataset properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduced adaptive scaling mechanism and efficient ensembling
strategy appropriately.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involved with any crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper doesn’t have potential risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We don’t use LLMs for important core methods in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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