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ABSTRACT

When humans try to distinguish some inherently similar visual concepts, e.g.,
Rosa Peace and China Rose, they may use the underlying hierarchical taxonomy
to prompt the recognition. For example, given a prompt that the image belongs
to the rose family, a person can narrow down the category range and thus fo-
cuses on the comparison between different roses. In this paper, we explore the
hierarchical prompting for deep visual recognition (image classification, in par-
ticular) based on the prompting mechanism of the transformer. We show that the
transformer can take the similar benefit by injecting the coarse-class prompts into
the intermediate blocks. The resulting Transformer with Hierarchical Prompting
(TransHP) is very simple and consists of three steps: 1) TransHP learns a set of
prompt tokens to represent the coarse classes, 2) learns to predict the coarse class
of the input image using an intermediate block, and 3) absorbs the prompt token
of the predicted coarse class into the feature tokens. Consequently, the injected
coarse-class prompt conditions (influences) the subsequent feature extraction and
encourages better focus on the relatively subtle differences among the descendant
classes. Through extensive experiments on popular image classification datasets,
we show that this simple hierarchical prompting improves visual recognition on
classification accuracy (e.g., improving ViT-B/16 by +2.83% ImageNet classifi-
cation accuracy), training data efficiency (e.g., +12.69% improvement over the
baseline under 10% ImageNet training data), and model explainability.

1 INTRODUCTION

For human visual recognition, awareness of the underlying semantic hierarchy is sometimes benefi-
cial, especially when the object is difficult to recognize. More specifically, when trying to distinguish
some inherently similar visual concepts, a person may use the hierarchical taxonomy to prompt the
recognition. For example, the China Rose is easily confused with the Rosa Peace when the scope-
of-interest is the whole Plantae (or even larger). However, given the prompt that the image belongs
to the rose family (i.e., the ancestor class), a person can narrow down the category range and shift
his/her focus to the subtle variation between different roses. Therefore, the prompt of the coarse
(ancestor) class in the hierarchy conditions (influences) the subsequent inference and benefits the
fine (descendant) class recognition.

In this paper, we explore the above hierarchical prompting for deep visual recognition. We base
our exploration on the prompting mechanism of the transformer which typically uses prompt to
condition the model for different tasks ( s ; s ), different
domains ( , ), etc. For the first time, we show that in the image classification task, the
transformer can benefit from being prompted with coarse class information. To this end, we inject
the coarse-class prompts into the intermediate block to dynamically condition the subsequent feature
extraction. Such a hierarchical prompting is similar as in the human visual recognition.

Specifically, exploiting the underlying semantic hierarchy to improve visual recognition has attracted
great research interest and yielded several popular tasks, e.g., hierarchical image classification and
hierarchical semantic segmentation. Considering that classification is fundamental for many com-
puter vision tasks, this paper focuses on hierarchical image classification. Many popular image
classification datasets (e.g., ImageNet and iNaturalist) can well accommodate this task because they
already provide hierarchical annotations (“‘coarse + fine” labels). Compared with prior literature on
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Figure 1: The comparison between Vision Transformer (ViT) and the proposed Transformer with
Hierarchical Prompting (TransHP). In (a), ViT attends to the overall foreground region and recog-
nizes the goldfish from the 1000 classes in ImageNet. In (b), TransHP uses an intermediate block to
recognize the input image as belonging to the fish family and then injects the corresponding prompt.
Afterwards, the last block attends to the face and crown which are particularly informative for distin-
guishing the goldfish against other fish species. Please refer to Fig. 5 for more visualizations. Note
that TransHP may have several prompting blocks, and we only add one in (b) for demonstration.

this topic, our method has significant differences due to the employed prompting mechanism. Please
refer to Section 2 (Related Works) for a detailed comparison.

We model our intuition into a Transformer with Hierarchical Prompting (TransHP) based on Vision
Transformer (ViT) (Fig. 1 (a)). TransHP is very simple, as illustrated in Fig. 1 (b). Without loss of
generality, Fig. 1 assumes the hierarchy has only two levels for simplicity, i.e., a coarse level and
a fine level. In other word, each image has a coarse label (e.g., the fish) and a fine label (e.g., the
goldfish), simultaneously. TransHP selects an intermediate block as the “prompting block™ to inject
the coarse class information. Specifically, given the feature tokens (i.e., the “class” token and the
patch tokens) output from the preceding block, the prompting block concatenates them with a set
of prompt tokens. Each prompt token represents a coarse class and is learnable (Section 3.2). The
prompting block learns to predict the coarse class of the input image and to select the corresponding
prompt token through weighted absorption (i.e., high absorption on the target prompt and low ab-
sorption on the non-target prompt). Therefore, during inference, the prompt injection concentrates
on the predicted coarse class on the fly and dynamically conditions the subsequent recognition.

Since our prompting mechanism follows the coarse-to-fine (or ancestor-to-descendant) semantic
structure, we term it as the hierarchical prompting. We hypothesize this hierarchical prompting
(and conditioning) will encourage TransHP to focus on the subtle differences among the descendant
classes for better discrimination. Fig. 1 partially validates our hypothesis by visualizing the attention
map of the class token in the last transformer block. In Fig. 1 (a), given a goldfish as the input image,
the baseline model (ViT) attends to the whole body for recognizing it from the entire 1000 classes
in ImageNet. In contrast, in TransHP in Fig. 1 (b), since the intermediate block has already received
the prompt of “fish”, the final block mainly attends to the face and crown which are particularly
informative for distinguishing the goldfish against other fish species. Please refer to Section 4.4 for
more visualization examples.

We conduct extensive experiments on multiple image classification datasets (e.g., ImageNet (
s ) and iNaturalist ( s )) and show that the hierarchical prompting im-
proves the accuracy, data efficiency and explainability of the transformer: (1) Accuracy. TransHP
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brings consistent improvement on multiple popular transformer backbones and five image classifi-
cation datasets. For example, on ImageNet, TransHP improves ViT-B/16 ( )
by +2.83% top-1 accuracy. (2) Data efficiency. While reducing the training data 1nev1tably com-
promises the accuracy, TransHP maintains better resistance against the insufficient data problem.
For example, when we reduce the training data of ImageNet to 10%, TransHP enlarges its improve-
ment over the baseline to +12.69%. (3) Explainability. Through visualization, we observe that the
proposed TransHP shares some similar patterns with human visual recognition ( ,

, ), e.g., taking an overview for coarse recognition and then focusing on some
crltlcal local regions for the subsequent recognition after prompting.

2 RELATED WORKS

Hierarchical visual recognition is based on the hierarchy underlying the visual concepts. Many
works have explored hierarchical labels for improving the final fine-level classification. For example,
Guided ( , ) integrates a cost-matrix-defined metric into the supervision of
a prototypical network. HiMulConE ( , ) builds an embedding space in which the
distance between two classes are roughly consistent with the hierarchy (e.g., two sibling classes
sharing a same ancestor are relatively close and the classes with different ancestors are far away).

This paper has fundamental differences from these prior works from the viewpoint of the learned
mapping function. Specifically, a deep visual recognition model can be viewed as a mapping func-
tion from the raw image space into the label space. All these prior methods learns a shared mapping
for all the images to be recognized. In contrast, the proposed TransHP uses the coarse-class prompt
to condition itself (from an intermediate block). It can be viewed as specifying an individual map-
ping for different coarse classes, yielding a set of mapping functions. Importantly, TransHP makes
all these mapping functions share a same transformer, and conditions the single transformer into
different mapping functions through the prompting mechanism.

Prompting was first proposed in NLP tasks ( , ; s ; ),
and then has drawn research interest from the computer vision community, e.g. continual learmng
( , ;d), image segmentation ( , ), and neural architecture
search ( s ). VPT ( s ) focuses on how to fine-tune pre-trained ViT

models to downstream tasks efficiently. Prompting can efficiently adapt transformers to different
tasks or domains while keeping the transforms’ parameters untouched.

Based on the prompting mechanism, our hierarchical prompting makes some novel explorations,
w.r.t. the prompting objective, prompting structure, prompt selection manner, and training process.
1) Objective: previous methods usually prompt for different tasks or different domains. In contrast,
TransHP prompts for coarse classes in the hierarchy, in analogy to the hierarchical prompting in
human visual recognition. 2) Structure: previous methods usually inject prompt tokens to condition
the whole model. In contrast, in TransHP, the bottom blocks is completely shared, and the prompt
tokens are injected into the intermediate blocks to condition the subsequent inference. Therefore,
the prompting follows a hierarchical structure in accordance to the semantic hierarchy under consid-
eration. 3) Prompt selection. TransHP pre-pends all the prompt tokens for different coarse classes
and autonomously selects the prompt of interest, which is also new (as to be detailed in Section 3.3).
4) Training process. The prompting technique usually consists of two stages, i.e., pre-training a base
model and then learning the prompts for novel downstream tasks. When learning the prompt, the
pre-trained model is usually frozen. This pipeline is different from our end-to-end pipeline, i.e. no
more fine-tuning after this training.

3 TRANSFORMER WITH HIERARCHICAL PROMPTING

We first revisit a basic transformer for visual recognition (ViT ( , )) and the
general prompting technique in Section 3.1. Afterwards, we illustrate how to reshape an intermediate
block of the backbone into a hierarchical prompting block for TransHP in Section 3.2. Finally, we
investigate how the prompting layer absorbs the prompt tokens into the feature tokens in Section 3.3.
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Figure 2: (i) illustrates the structure of a prompting block in TransHP. Instead of manually selecting
the prompt of the coarse class, our prompting block pre-pends the whole prompt pool consisting of
M prompts (M is the number of coarse classes) and performs autonomous selection. Specifically, it
learns to predict the coarse class (Section 3.2) and spontaneously selects the corresponding prompt
for absorption through soft weighting (Section 3.3), i.e., the predicted class has the largest absorption
weight. (ii) visualizes the absorption weights of all the 20 coarse-class prompts for some CIFAR-
100 images. It shows how TransHP selects the prompts when the coarse class prediction is correct
(a and b), ambiguous (c and d), and incorrect (e and f), respectively. The red and green columns
correspond to the true and false classes, respectively. The detailed investigation is in Section 3.3.

3.1 PRELIMINARIES FOR VISION TRANSFORMER AND PROMPTING

Vision Transformer (ViT) first splits an image into N patches ({z; € R¥>*F*F | i =1,2,... N},
where P x P is the patch size) and then embeds each patch into a C-dimensional embedding by
x; = Embed (z;). Afterwards, ViT concatenates a class token 27, € R to the patch tokens and
feed them into the stacked transformer blocks, which is formulated as:

(e X' = B ([xa . X7, 1=1.2,.,L (1)

cls

where chls and X' are the class token and the patch tokens after the [-th transformer block B,

respectively. After the total L blocks, the final state of the class token (x%,) is viewed as the
deep representation of the input image and is used for class prediction. In this paper, we call the

concatenation of class token and patch tokens (i.e., [xlcl_sl, Xl_l]) as the feature tokens.

Prompting was first introduced in Natural Language Processing to switch the same transformer
model for different tasks by inserting a few hint words into the input sentences. More generally,
it conditions the transformer to different tasks, different domains, efc, without changing the trans-
former parameters but only changing the prompts. To condition the model for the k-th task (or
domain), a popular practice is to select a prompt py from a prompt pool P = {pg, p1,---} and
pre-pend it to the first block. Correspondingly, Eqn. 1 turns into:

i XU pi) = Br ([, X pi ) @

where py; € P (the superscript is omitted) conditions the transformer for the k-th task.

3.2 THE PROMPTING BLOCK OF TRANSHP

The proposed TransHP selects an intermediate transformer block B; and reshapes it into a prompting
block for injecting the coarse-class information. Let us assume that there are M coarse classes.
Correspondingly, TransHP uses M learnable prompt tokens P, = [po, p1, ..., Par—1] to represent
these coarse classes. Our intention is to inject py, into the prompting layer, if the input image belongs
to the k-th coarse class.
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Figure 3: TransHP gradually focuses on the predicted coarse class when absorbing the prompts,
yielding an autonomous selection. (a) The absorption weight of the target prompt. (b) The ratio
of the target prompt weight against the largest non-target prompt weight (Eqn. 8). The dataset is
CIFAR-100. We visualize these statistics on both the training and validation sets.

Instead of manually selecting the k-th prompt px (as in Eqn. 2), TransHP pre-pends the whole
prompting pool Py; = [po, p1, -, Prm—1] to the prompting layer and makes the prompting layer
automatically select py, for absorption. Specifically, through our design, TransHP learns to automat-
ically 1) predict the coarse class, 2) select the corresponding prompt for absorption through “soft
weighting”, i.e., high absorption on the target prompt and low absorption on the non-target prompts.
The learning procedure is illustrated in Fig. 2 (i). The output of the prompting layer is derived by:
[XilsaxlapM} == Bl ([chzslaxlilva}) ) (3)
where P is the output state of the prompt pool P, through the [-th transformer block B;. P
will not be further forwarded into the following block. Instead, we use P, to predict the coarse

classes of the input image. To this end, we compare P, against a set of coarse-class prototypes and
derive the corresponding similarity scores by:

S={pfw;},i=1,2---,M, 4)

where w; is the learnable prototype of the i-th coarse class. We further use a softmax plus cross-
entropy loss to supervise the similarity scores, which is formulated as:

(&)

T
P w,
['coarse = _log M Y ;
> iz1€Xp (P?Wi)

where y is the coarse label of the input image. We note there is a difference between the above
coarse classification and the popular classification: the popular classification usually compares a
single representation against a set of prototypes. In contrast, our coarse classification conducts a
set-to-set comparison (i.e., M tokens against M prototypes). Note that TransHP may have several
prompting blocks. We only introduce one prompting block in this section, and other blocks follow
a similar procedure. The whole picture is demonstrated in Appendix A.1.

Through the above training, the prompting layer explicitly learns the coarse-class prompts, as well as

predicting the coarse class of the input image. Given all the prompts Py, = {p1,p2,- - ,pn} and

the predicted coarse class £ = argmax (p;rwl) TransHP will spontaneously select py, for prompt
i

absorption in a soft weighting manner, as to be explained in the following Section 3.3.

3.3 INVESTIGATING THE PROMPT ABSORPTION

The self-attention mechanism in the transformer allows each token to absorb information from all
the tokens (including the feature tokens and the prompt tokens). In this section, we investigate how
much the target prompt (i.e., the prompt of the predicted coarse class) is absorbed through self-
attention. In Eqn. 3, given a feature token x € [x.s, X] (the superscript is omitted for simplicity),
we derive its absorption weights from the self-attention, which is formulated as:
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(6)

W (x) = Softmax <Q(X)TK([X615»X7 PMD> ’

Vdy,
where )() and K () are the operation that maps the input tokens into query and keys, respectively.

dy. is the scale factor. More specifically, in 1/ (x), the absorption weight on the i-th prompt token is
calculated by:

w(x  pi) = exp (Q(x) " K (ps)/V'di) -

e (Q() TK ([xaas X, Pa]) V)|

Based on the absorption weights, we consider two statistics:

* The absorption weight of the target prompt, i.e., w(X < pg)-

* The ratio of the target prompt score to the largest non-target prompt score:
R(T:N) = w(x  px)/ max{w(x < pixx)} (8)

The target prompt weight w(x < py) indicates the importance of the target prompt among all
the tokens. R(T :N) measures the importance of the target prompt compared with the most promi-
nent non-target prompt. Fig. 3 visualizes these statistics at each training epoch on CIFAR-100
( s ), from which we make two observations:

Remark 1: The importance of the target prompt gradually increases to a high level. From
Fig. 3 (a), it is observed that the absorption weight on the prompt token undergoes a rapid increase
and finally reaches about 0.09. We note that 0.09 is significantly larger than the averaged weight
1/217 (there are 1 class token + 196 patch tokens + 20 prompt tokens).

Remark 2: The target prompt gradually dominates among all the prompts. From Fig. 3 (b), itis
observed that although the absorption weight on the target prompt is close to the non-target prompt
weight at the start, it gradually becomes much larger than the non-target prompt weight (about 4 x).

Combining the above two observations, we infer that during training, the prompting block of Tran-
sHP learns to focus on the target prompt py (within the entire prompt pool P ) for prompt absorp-
tion (Remark 2), yielding a soft-weighted selection on the target prompt. This dynamic absorption
on the target prompt largely impacts the self-attention in the prompting layer (Remark 1) and con-
ditions the subsequent feature extraction.

We further visualize some instances for intuitively understanding the prompt absorption in Fig.2 (ii).
Specifically, we visualize the absorption weights on all the 20 prompts for CIFAR-100. We note that
the coarse prediction may sometimes be incorrect. Therefore, we use the red (green) column to
mark the prompts of the true (false) coarse class, respectively. In (a) and (b), TransHP correctly
recognizes the coarse class of the input images and makes accurate prompt selection. The prompt
of the true class has the largest absorption weight and thus dominates the prompt absorption. In (c)
and (d), TransHP encounters some confusion for distinguishing two similar coarse classes (due to
their inherent similarity or image blur), and thus makes ambiguous selection. In (e) and (f), TransHP
makes incorrect coarse-class prediction and correspondingly selects the prompt of a false class as
the target prompt. The names of 20 coarse classes are in Appendix A.2.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Please refer to Appendix A.3.

4.2 TRANSHP IMPROVES THE ACCURACY

Improvement on ImageNet and the ablation study. We validate the effectiveness of TransHP on
ImageNet and conduct the ablation study by comparing TransHP against two variants, as well as
the baseline. As illustrated in Fig. 4, the two variants are: 1) we do not inject any prompts, but use
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Figure 4: Comparison between TransHP and its variants (and the baseline) on ImageNet. 1) A
variant uses the coarse labels to supervise the class token in the intermediate layers (No prompts).
2) A variant injects additional tokens without supervision from the coarse-class labels (No coarse
labels). 3) TransHP injects coarse-class information through prompt tokens and achieves the largest
improvement (Ours).

Table 1: The top-1 accuracy of TransHP on some other datasets (besides ImageNet). “w Pre” or
“w/o Pre” denotes the models are trained from ImageNet pre-training or from scratch, respectively.

Accuracy (%) iNaturalist-2018 iNaturalist-2019 CIFAR-100 DeepFashion
Baseline (w/o Pre) 51.07 57.33 61.77 83.42
TransHP (w/o Pre) 53.22 59.24 67.09 85.72

Baseline (w Pre) 63.01 69.31 84.98 88.54
TransHP (w Pre) 64.21 71.62 86.85 89.93

the coarse labels to supervise the class token in the intermediate layers: similar with the final fine-
level classification, the class token is also used for coarse-level classification. 2) we inject learnable
tokens, but do not use the coarse labels as their supervision signal. Therefore, these tokens do not
contain any coarse class information. From Fig. 4, we draw three observations as below:

1) Comparing TransHP against the baseline, we observe a clear improvement of +2.44% top-1
accuracy, confirming the effectiveness of TransHP on ImageNet classification. 2) Variant 1 (“No
prompts”) achieves some improvement (+1.37%) over the baseline as well, but is still lower than
TransHP by —1.07%. It shows that using the hierarchical labels to supervise the intermediate state
of the class token is also beneficial. However, since it does not absorb the prompting information,
the improvement is relatively small. We thus infer that the hierarchical prompting is a superior
approach for utilizing the hierarchical labels. 3) Variant 2 (“No coarse labels”) barely achieves any
improvement over the baseline, though it also increases the same amount of parameters as TransHP.
It indicates that the benefit of TransHP is not due to the increase of some trainable tokens. Instead,
the coarse class information injected through the prompt tokens matters.

TransHP gains consistent improvements on more datasets. Besides the most commonly used
dataset ImageNet, we also conduct experiments on some other datasets, i.e., iNaturalist-2018,
iNaturalist-2019, CIFAR-100 and DeepFashion. For these datasets, we use two settings, i.e., training
from scratch (w/o Pre) and finetuning from the ImageNet-pretrained model (w Pre). The experimen-
tal results are shown in Table 1, from which we draw two observations. First, under both settings,
TransHP brings consistent improvement over the baselines. Second, when there is no pre-training,
the improvement is even larger, especially on small datasets. For example, we note that on the
smallest CIFAR-100, the improvement under “w/o Pre” and “w Pre” are +5.32% and +1.87%, re-
spectively. We infer it is because TransHP considerably alleviates the data-hungry problem of the
transformer, which is further validated in Section 4.3.

TransHP improves various backbones. Besides the light transformer baseline used in all the other
parts of this section, Table 2 evaluates the proposed TransHP on some more backbones, i.e., ViT-
B/16 ( , ), ViIT-L/16 ( , ), DeiT-S ( , )
and DeiT-B ( s ). We observe that for the ImageNet classification, TransHP gains
2.83%, 2.43%, 0.73%, and 0.55% improvement on these four backbones, respectively.

Comparison with state-of-the-art hierarchical classification methods. We compare the proposed
TransHP with two most recent hierarchy-based methods, i.e. Guided ( s ),
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Table 2: TransHP brings consistent improvement on various backbones on ImageNet.

Accuracy (%) ViT-B/16 ViT-L/16 DeiT-S DeiT-B
Baseline 76.68" 76.37" 79.82 81.80
TransHP 79.51 78.80 80.55 82.35

* The performance of our reproduced ViT-B/16 and ViT-L/16 are slightly worse than 77.91 and 76.53 in its
original paper ( s ), respectively.

Table 3: Comparison between TransHP and two most recent state-of-the-art methods. We replace
their CNN backbones with the relatively strong transformer backbone for fair comparison.

Accuracy (%) ImageNet iNat-2018 iNat-2019 CIFAR-100 DeepFashion
Baseline 76.21 63.01 69.31 84.98 88.54
Guided 76.05 63.11 69.66 85.10 88.32

HiMulConE 77.52 63.46 70.87 85.43 88.87
TransHP 78.65 64.21 71.62 86.85 89.93
HiMulConE ( , ). We do not include more competing methods because most prior

works are based on the convolutional backbones and are thus not directly comparable with ours.
Since the experiments on large-scale datasets is very time-consuming, we only select the most re-
cent state-of-the-art methods and re-implement them on the same transformer backbone (based on
their released code). The experimental results are shown in Table 3. It is clearly observed that the
proposed TransHP achieves higher improvement and surpasses the two competing methods. For
example, on the five datasets, TransHP surpasses the most recent state-of-the-art HiMulConE by
+1.13% (ImageNet), +0.75% (iNat-2018), +0.75% (iNat-2019), +1.42% (CIFAR-100) and 1.06%
(DeepFashion), respectively. We also notice that while Guided achieves considerable improvement
on the CNN backbones, its improvement over our transformer backbone is trivial. This is reason-
able because improvement over higher baseline (i.e., the transformer backbone) is relatively difficult.
This observation is consistent with ( s ).

4.3 TRANSHP IMPROVES DATA EFFICIENCY

We investigate TransHP under the data-scarce scenario. To this end, we randomly select 1/10, 1/5,
and 1/2 training data from each class in ImageNet (while keeping the validation set untouched). The
results are summarized in Table 4, from which we draw three observations as below:

First, as the training data decreases, all the methods undergo a significant accuracy drop. This is
reasonable because the deep learning method in its nature is data-hungry, and arguably this data-
hungry problem is further underlined in transformer ( , ). Second, compared
with the baseline and two competing hierarchy-based methods, TransHP presents much higher resis-
tance against the data decrease. For example, when the training data is reduced from 100% — 10%,
the accuracy drop of the baseline and two competing methods are 50.97%, 50.38% and 46.76%, re-
spectively. In contrast, the accuracy drop of the proposed TransHP (40.72%) is significantly smaller.
Third, since TransHP undergoes relatively smaller accuracy decrease, its superiority under the low-
data regime is even larger. For example, its surpasses the most competing HiMulConE by 1.13%,
1.51%, 5.21% and 7.17% under the 100%, 50%, 20% and 10% training data, respectively. Combin-
ing all these observations, we conclude that TransHP improves the data efficiency.

4.4 TRANSHP IMPROVES MODEL EXPLAINABILITY

We analyze the receptive field of the class token to understand how TransHP reaches its prediction.
Basically, the transformer integrates information across the entire image according to the attention
map, yielding its receptive field. Therefore, we visualize the attention map of the class token in
Fig. 5. For the proposed TransHP, we visualize the attention map at the prompting block (which
handles the coarse-class information) and the last block (which handles the fine-class information).
For the ViT baseline, we only visualize the attention score map of the the last block. We draw two
observations from Fig. 5:

First, TransHP has a different attention pattern compared with the baseline. The baseline attention
generally covers the entire foreground, which is consistent with the observation in
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Table 4: Comparison between TransHP and prior state-of-the-art hierarchical classification methods
under the insufficient data scenario. “N %" means using N % ImageNet training data.

Accuracy (%) 100% 50% 20% 10%
Baseline 76.21 67.87 44.60 25.24
Guided 76.05 67.74 45.02 25.67
HiMulConE 77.52 69.23 48.50 30.76
TransHP 78.65 70.74 53.71 37.93

Input image Baseline TransHP (coarse)  TransHP (fine) Input image Baseline TransHP (coarse)  TransHP (fine)
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house finch doormat covering doormat

Figure 5: Visualization of the attention map for analyzing the receptive field. For TransHP, we
visualize a block before and after the receiving the prompt (i.e., coarse and fine), respectively. The
“coarse” block favors an overview for coarse recognition and the “fine” block further filters out the
non-relevant regions after receiving the prompt.

( ). In contrast, in TransHP, although the coarse block attends to the overall foreground as well,
the fine block concentrates its attention on relatively small and critical regions, in pace with the
“prompting — predicting” procedure. For example, given the “hen” image on the second row (left),
TransHP attends to the overall foreground before receiving the coarse-class prompt (i.e., the bird)
and focuses to the eyes and bill for recognizing the “hen” out from the “bird”. Second, TransHP
shows better capacity for ignoring the redundant and non-relevant regions. For example, given the
“doormat” image on the fourth row (right), TransHP ignores the decoration of “GO AWAY” after
receiving the coarse-class prompt of “covering”. Similar observation is with the third row (right),
where TransHP ignores the walls when recognizing the “dome” out from “protective covering”.

5 CONCLUSION

This paper proposes a novel Transformer with Hierarchical Prompting (TransHP) for image classi-
fication. Before giving its final prediction, TransHP predicts the coarse class with an intermediate
layer and correspondingly injects the coarse-class prompt to condition the subsequent inference.
An intuitive effect of our hierarchical prompting is: TransHP favors an overview of the object for
coarse prediction and then concentrates its attention to some critical local regions after receiving the
prompt, which is similar to the human visual recognition. We validate the effectiveness of Tran-
sHP through extensive experiments and hope the hierarchical prompting reveals a new insight for
understanding the transformers.
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A APPENDIX

A.1 MULTIPLE LAYERS OF HIERARCHY.

We illustrate the TransHP in Fig. 6 when a dataset has multiple layers of hierarchy.

A.2 COARSE-LEVEL CLASSES OF CIFAR-100

[0]: aquatic mammals, [1]: fish, [2]: flowers, [3]: food containers, [4]: fruit and vegetables, [5]:
household electrical devices, [6]: household furniture, [7]: insects, [8]: large carnivores, [9]: large
man-made outdoor things, [10]: large natural outdoor scenes, [11]: large omnivores and herbivores,
[12]): medium mammals, [13]: non-insect invertebrates, [14]: people, [15]: reptiles, [16]: small
mammals, [17]: trees, [18]: vehicles-1, and [19]: vehicles-2.
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Figure 6: The illustration of TransHP with multiple layers of hierarchy. k and ! are two insider
layers, and L is the final layer.

Table 5: The balance parameters used for L.,q.sc of different levels (The last 1 is the balance

parameter for the final classification.). “-” denotes that this transformer layer does not have prompt

tokens.
A 0 1 2 3 4 5 6 7 8 9 10 11
ImageNet 0.1 0.1 0.1 0.1 0.1 | 0.15| 0.15 | 0.15| 0.15 1 1 1
iNaturalist-2018 — — - — — — 1 — — — _ 1
iNaturalist-2019 — — — — — — 1 — — _ _ 1
CIFAR-100 - - = = = =] =] =] 1] =1=1n
DeepFashion — — - — — — 0.5 — 1 — _ 1

A.3 IMPLEMENTATION DETAILS

Datasets. We evaluate the proposed TransHP on five datasets with hierarchical labels, i.e., Ima-

geNet ( s ), iNaturalist-2018 ( s ), iNaturalist-2019 (
R ), CIFAR-100 ( R ), and DeepFashion-inshop ( R ). The
hierarchical labels of ImageNet are from WordNet ( . ), with details illustrated on Mike’s

website. Both the iNaturalist-2018/2019 have two-level hierarchical annotations: a super-category
(14/6 classes) for the genus, and 8, 142/1, 010 categories for the species. CIFAR-100 also has two-
level hierarchical annotations: the coarse level has 20 classes, and the fine level has 100 classes.
DeepFashion-inshop is a retrieval dataset with three-level hierarchy. To modify it for the classifica-
tion task, we random select 1/2 images from each class for training, and the remaining 1/2 images
for validation. Both the training and validation set contain 2 coarse classes, 17 middle classes, and
7,982 fine classes, respectively.

Training details. Our TransHP adopts an end-to-end training process. We use a lightweight trans-
former as our major baseline, which has 6 heads (half of ViT-B) and 12 blocks. The dimension of
the embedding and the prompt token is 384 (half of ViT-B). We train it for 300 epochs on 8 Nvidia
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Figure 7: The top-1 accuracy on ImageNet w.r¢ the transformer layer from which to add prompt
tokens. The highest two transformer layers (which do notl have too coarse-level labels) play an
important role.

Table 6: The analysis of the number of coarse-level classes on the CIFAR-100 dataset. “/N-class”
denotes that there are IV classes for the coarse-level classification.

Accuracy (%) baseline 2-class 5-class 10-class 20-class

w/o Pre 61.77 63.34 63.12 64.47 67.09

w Pre 84.98 86.40 86.35 86.50 86.85
A100 GPUs and PyTorch ( , ). The base learning rate is 0.001 with cosine learning

rate. We set the batch size, the weight decay and the number of warming up epochs as 1,024, 0.05
and 5, respectively. We have a qualitative principle to set the position for inserting the prompts: if
the number of coarse classes is small (large), the position of the corresponding prompting blocks
should be close to the bottom (top). Table 5 in Appendix A.4 summarizes the setting of the balance
parameters and the position of prompting layers. We note that our setting of the balance parame-
ters is not elaborately tuned, and shows some robustness for TransHP. Moreover, we find that when
given many levels of hierarchy (e.g., the ImageNet-1000 has at most 12 levels), the benefit from
the highest levels (close to the root) is relatively trivial (See Appendix A.5). Importantly, TransHP
only adds small overhead to the baseline. Specifically, compared with the baseline (22.05 million
parameters), our TransHP only adds 0.60 million parameters (about +2.7%) for ImageNet. When
using ViT-B as the backbone, our TransHP only adds +1.4% parameters.

A.4 THE BALANCE PARAMETERS OF DIFFERENT DATASETS.

Please refer to Table 5 for the positions to insert prompt and corresponding balance parameters.

A.5 IMPORTANCE ANALYSIS OF CLASSIFICATION AT DIFFERENT HIERARCHICAL LEVELS.

From Table 5 (Line 1), each transformer layer is responsible for one level classification. We remove
the prompt tokens from the coarsest level to the finest level. In Fig. 7, n denotes that the prompt
tokens are added from the nth transformer layer. We conclude that only the last two coarse level
classifications (arranged at the 9th and 10th transformer layer) contribute most to the final classifi-
cation accuracy. That means: (1) it is not necessary that the number of hierarchy and transformer
layers are equal. (2) it is no need to adjust any parameters from too coarse level hierarchy. (Note
that: though the current balance parameter for the 8th transformer layer is 0.15, when it is enlarged
to 1, no further improvement is achieved.)

A.6  ANALYSIS OF THE NUMBER OF COARSE-LEVEL CLASSES
As shown in Appendix A.2, the CIFAR-100 dataset has 20 coarse-level classes. When we combine

them into 10 coarse-level classes, we have ([0-1]), ([2-17]), ([3-4]), ([5-6]), ([12-16]), ([8-11]), ([14-
15]), ([9-10)), ([7-13]), and ([18-19]). When we combine them into 5 coarse-level classes, we have
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Table 7: Comparison between TransHP with the original baseline and the “No prompts” baseline.

Accuracy (%) iNat-2018 iNat-2019 CIFAR-100 DeepFashion
Baseline (w/o Pre) 51.07 57.33 61.77 83.42
No prompts (w/o Pre) 51.88 58.45 63.78 84.23
TransHP (w/o Pre) 53.22 59.24 67.09 85.72
Baseline (w Pre) 63.01 69.31 84.98 88.54
No prompts (w Pre) 63.41 70.73 85.50 89.59
TransHP (w Pre) 64.21 71.62 86.85 89.93

Table 8: The top-1 accuracy of TransHP on some other datasets (besides ImageNet) with standard
ViT-B/16 backbone. “w Pre” or “w/o Pre” denotes the models are trained from ImageNet pre-
training or from scratch, respectively.

Accuracy (%) iNaturalist-2018 iNaturalist-2019 CIFAR-100 DeepFashion
ViT-B/16 (w/o Pre) 52.96 58.24 62.91 84.28
TransHP (w/o Pre) 54.33 60.14 69.32 86.82

ViT-B/16 (w Pre) 64.10 70.22 87.13 89.14
TransHP (w Pre) 66.43 73.14 88.76 90.31

([0-1-12-16]), ([2-17-[3-4]), ([5-6-9-10]), ([8-11-18-19]), and ([7-13-14-15]). When we combine
them into 2 coarse-level classes, we have ([0-1-7-8-11-12-13-14-15-16]) and ([2-3-4-5-6-9-10-17-
18-19]). The experimental results are listed in Table 6.

We observe that: 1) Generally, using more coarse-level classes is better. 2) Using only 2 coarse-level
classes still brings over 1% accuracy improvement.

A.7 THE COMPARISON WITH THE “NO PROMPTS” BASELINE.

In this section, we provide more experiments with the “No prompts” baseline. The detail of the “No
prompts” baseline is shown in Fig. 4 (2). The experimental results are shown in Table 7. We find that
though “No prompts” baseline surpasses the original baseline, our TransHP still shows significant
superiority over this baseline.

A.8 MORE EXPERIMENTS WITH THE VIT-B/16 BACKBONE.

In this section, we provide more experiments with the standard ViT-B/16 backbone. The experi-
mental results are shown in Table 8. We find that no matter with pre-trained models or without, the
TransHP achieves consistent improvement on all these datasets.

A.9 ADDITIONAL L¢yqrse WITH DEIT.

We introduce the experimental results by only adopting L.oqrse in DeiT. Note that the Leogrse 1S
imposed on the class token as shown in Fig. 4 (2). We find that the TransHP still shows per-
formance improvement compared with only using L ,qrse 0n DeiT-S and DeiT-B: compared with
DeiT-S (79.82%) and DeiT-B (81.80%), “only with L.oqrsc” achieves 79.98% and 81.76% while
the TransHP achieves 80.55% and 82.35%, respectively.

A.10 LIMITATION OF TRANSHP.

One limitation of our method is that we presently focus on the image classification task in this paper,
while there are some other tasks that are the potential to benefit from hierarchical annotations, e.g.,
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semantic segmentation. That being said, we note that our experiments on five datasets are very
comprehensive compared with prior hierarchical image classification literature.

A.11 EFFICIENCY COMPARISON.

Due to the increase of parameters (+2.7% on our baseline and +1.4% on ViT-B for ImageNet)
and the extra cost of the backward of several L¢oqrses, the training time increases by 15% on our
baseline and 12% on ViT-B for ImageNet. For inference, the computation overhead is very light.
The baseline and TransHP both use around 50 seconds to finish the ImageNet validation with 8
A100 GPUs.
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