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ABSTRACT

In this work, we develop an end-to-end autonomy loop that couples kernel-
embedded multi-modal fusion with data-driven dynamics learning and feedback
control. Heterogeneous sensor streams are embedded into a joint Reproducing
Kernel Hilbert Space (RKHS) via additive/product kernels and conditional mean
embeddings; dynamics are learned with kernel ridge regression (KRR), Deep Ker-
nel Learning (DKL), or Bayesian deep neural networks (BDNNs); and policies
are synthesized via dynamic programming (discrete and continuous-time HIB)
or reinforcement learning with RKHS value functions. We present closed-form
estimators, finite-sample and iteration-complexity characterizations, risk-sensitive
planning with uncertainty, and safety via control barrier functions. We provide
deployable algorithms, results and experiment in simulated robotics and precision
irrigation.

1 INTRODUCTION

Autonomous systems must perceive, predict, and act under non-linearity, non-stationarity, and multi-
modal noise. Conventional pipelines that treat sensing, estimation, and control as loosely coupled
modules often degrade under domain shifts or partial observability. We advocate a kernel-centric
autonomy loop wherein perception, fusion, dynamics learning, and control are all formulated in
an RKHS, offering non-parametric expressivity, closed-form solvers (via representer theorems),
and transparent generalization behaviour (Sch”olkopt & Smola, 2002; [Wahbal [1990; |[Song et al.}
2009; |Wilson et al.| 2016). Our contributions span: (i) kernel-embedded multi-modal fusion, (ii)
KRR/DKL/BDNN dynamics estimation, (iii) DP/RL control with RKHS value functions, and (iv)
error-to-control performance guarantees.

Motivation. Modern autonomous systems must reason over uncertain, multi-modal data streams
while maintaining reliable control. To meet these demands, we leverage kernel-based methods that
offer both theoretical rigour and practical flexibility.

1. Kernel mean embeddings allow us to fuse entire distributions not just point estimates making
them ideal for integrating noisy, heterogeneous sensor inputs.

2. Representer theorems provide closed-form estimators with built-in regularization, enabling
efficient training and principled generalization.

3. Deep Kernel Learning (DKL) enhances representation capacity by learning task-specific
features while preserving the tractability of kernel methods particularly useful for control-
centric applications.

For example, kernel mean embeddings enable distribution-level fusion, representer theorems yield
closed-form estimators with principled regularization, DKL learns features tailored for control (Song
et al.,[2009; 'Wilson et al.| 2016; |Alvarez et al., 2012).

Challenges. Despite the promise of kernel-based autonomy, several key challenges remain in
scaling and deploying these methods effectively:
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1. Designing heterogeneous kernels that can handle diverse data modalities such as vision, au-
dio, and proprioception while preserving meaningful cross-modal interactions is non-trivial.
Balancing expressivity with interpretability across modalities requires careful architectural
choices (Williams & Seeger, 20015 Rahimi & Recht, [2007; |Ames et al., 2017).

2. Computational scalability is a major bottleneck. Kernel methods often rely on Gram matrix
operations with cubic complexity in the number of samples (O(n?)), which limits their
applicability in real-time or large-scale settings without approximation strategies.

3. Uncertainty-aware planning using Deep Kernel Learning (DKL) and Bayesian Deep Neural
Networks (BDNNs) introduces additional complexity. These models must not only capture
epistemic and aleatoric uncertainty but also translate it into actionable control policies under
limited data and partial observability.

4. Ensuring safety under distribution shift remains a critical concern. Control Barrier Functions
(CBFs) offer a principled way to enforce safety constraints, but integrating them with
learned models especially under domain shifts requires robust generalization and real-time
adaptability.

Aim & objectives. We aim to develop a modular learning-control framework that integrates
diverse sensory inputs, models system dynamics from data, and generates safety-aware policies for
autonomous decision-making. Specifically:

1. Multi-modal fusion is performed in a Reproducing Kernel Hilbert Space (RKHS), enabling
distribution-level integration across heterogeneous sensors.

2. Dynamics are learned non-parametrically using kernel-based methods, allowing flexible
modelling of complex, non-linear behaviours without rigid assumptions.

3. Safe control policies are synthesized via Dynamic Programming (DP) and Reinforcement
Learning (RL), with value functions embedded in RKHS for tractable optimization and
transparent generalization.

4. We provide quantitative guarantees on sample and iteration complexity to support reliable
learning under limited data.

5. A reproducible deployment protocol ensures that the architecture can be adapted and vali-
dated across real-world scenarios, with clear documentation and modular components for
integration.

That is, we target a learning-control architecture that fuses multi-modal observations in an RKHS,
learns dynamics from data, and synthesizes safe policies via DP/RL with value functions in RKHS,
accompanied by sample/iteration complexity, and a reproducible deployment protocol.

2 PRELIMINARIES

RKHS and kernels. Given a positive-definite kernel function k, the RKHS #H is the completion of
the span of kernel evaluations span{k(z, )} with f(z) = (f, k(z,-))x with

f(l’) = <f7 k(xv ')>HRKHS

which allows point-wise evaluation through inner products. Kernel Ridge Regression (KRR) operates
within this space to solve regularized empirical risk minimization (ERM) problems. Thanks to the
representer theorem, KRR admits closed-form solutions that balance data fit and model complexity
through principled regularization (Sch”olkopt & Smolal [2002; [Wahbal, [1990).

Kernel mean and conditional mean embeddings. For a probability distribution P, the kernel
mean embedding is defined as pp := E[k(X, )] € H to map the entire distribution into a point
in the RKHS and enabling distribution level comparisons and operations. Conditional embeddings
represent P(Y'| X) by an operator Cy | x so that yiy|, = Cy|x k(z, ), estimated via regularized RKHS
covariance operators (Song et al., 2009). These methods offer a robust framework for working with
limited data, ensuring stable learning through regularization. By embedding distributions in function
space, they enable direct reasoning about conditional relationships without relying on predefined
parametric models.
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Notation. State z € R%, control v € R%, modality m € {1,...,M}. Features ¢,,(0) =

Em(0,-) € HU™), modality means p("). Fusion by additive kernel kg = > i Wik, or product
kernel kg = [[,, km.

3 PROBLEM FORMULATION

We model system dynamics either in continuous time as
&= f(z,u) +e,

or in discrete time as
Tpp1 = fxe,ue) + €,

where w represents process noise. At each time step, we receive multi-modal observations {ogm) 1,
which are fused into a unified representation ®; using kernel mean embeddings. This fusion captures
distributional characteristics across modalities in a non-parametric form. The training dataset is
structured as D = {(z;, u;, P4, y;) }1_;, Where each target y; corresponds to either the instantaneous
derivative &; (for continuous systems) or the next state z;,; (for discrete systems). To learn a
transition model, we define a conditional embedding operator Cx-|x,7,o, Which maps the kernel
feature k((x, u, ), -) to the embedded conditional distribution 11 x|, ., & This operator provides a
non-parametric estimate of system dynamics, consistent with kernel-based estimators such as those
introduced by Song et al. (Song et al.| 2009). It enables us to reason about transitions directly in
function space, bypassing the need for explicit parametric modelling.

4 METHOD

4.1 CLOSED-FORM DYNAMICS LEARNING WITH KRR

Let each input tuple be defined as z; = (z;, u;, ®;), combining state, control, and fused observation
features. Define the kernel matrix K € R™*™ with entries K;; = k(z;, z;), where k is a positive-
definite kernel function. For each output dimension j € {1,2,...,d}, Kernel Ridge Regression
(KRR) solves the regularized least-squares problem in RKHS and yield the closed-form solution:

al) = (K + n)\l)_ly(j),
and the corresponding predictor:
F(z) = YT (K +n\)""k(z)

where k(z) = [k(2,21),...,k(2,2,)]T is the kernel vector evaluated at test point z, and Y €
R™*P stacks the output coordinates across training samples. Under bounded kernels and sub-
exponential noise, the bias—variance decomposition yields finite-sample error of order O(/p/n)

with optimization error decaying geometrically to the regularized optimum (Caponnetto & De Vito
2007; [Wahba, [1990).

4.2 DEEP KERNEL LEARNING (DKL)

We define a learned feature extractor
Puw R% T 5 Hpgus — RP,

to map the raw input tuple comprising state x, control u, and fused observation ® into a low-
dimensional representation z = ¢, (x, u, ®). This representation is optimized to capture task-relevant
structure for downstream prediction and control. Using this embedding, we construct a composite
kernel

k’w(<.’I},U, (I)>7 (x/7ula (b/» = k;base(gow(x,u, CI))? @w(x/7ul> (Dl»a

where Ky, is a standard kernel (e.g., RBF or Matérn) applied to the learned features. This formulation
allows the kernel to adapt its similarity measure based on data-driven representations. Training
proceeds by alternating optimization:
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1. The parameters w of the feature extractor are updated to improve predictive performance
2. The kernel hyper-parameters and head models (e.g., Kernel Ridge Regression or Gaussian
Processes) are solved in closed form or via marginal likelihood maximization

This hybrid approach combines the expressivity of deep features with the tractability and uncertainty
quantification of kernel methods, as demonstrated in works such as (Wilson et al.,[2016; Rasmussen
& Williams|, [2000).

4.3 BAYESIAN DEEP NEURAL NETWORKS (BDNNS)

BDNNS provide a probabilistic framework for learning predictive models with uncertainty quantifica-
tion. The output is modelled as

Y= fﬂ(z) +e,

where fy is a neural network parametrized by weights 6, and ¢ captures observation noise. A prior
distribution p(0) is placed over the network parameters to encode uncertainty in the model itself.
To approximate the posterior over 6, variational inference is employed by introducing a tractable
variational distribution g, (¢) and maximizing the Evidence Lower Bound (ELBO):

max B, o) [logp(y | 2,0)] — KL(gs(0) || p(0)),

which balances data fit with regularization via the Kullback-Leibler divergence. This approach yields
calibrated uncertainty estimates:

1. Epistemic uncertainty reflects model confidence and reduces with more data
2. Aleatoric uncertainty captures inherent noise in the observations.

Together, these uncertainties support risk-aware planning and control, especially in safety-critical
or data-scarce environments. BDNNSs thus offer a principled way to incorporate uncertainty into
decision-making pipelines (Blundell et al.} 2015;/Gal & Ghahramani, [2016)).

4.4 CONTROL VIA DP/RL wiTH RKHS VALUE FUNCTIONS

~

Discrete-time DP (FVI). We consider a discrete-time system with transition model f(z, ), additive
noise w, stage cost £(z, ), and discount factor y € (0, 1). The Bellman operator is defined as:

(TV)(z) = rngn {E(x,u) +~E [V (]:\(IE,U) + w)] } )

To approximate the value function V, we embed it in a RKHS Hy with kernel ky . At each iteration t,
we compute regression targets:

and solve the regularized linear system:

(Kv +nvAvi) By =1,

where Ky € R™ X"V is the kernel Gram matrix over training states {Z;}, and ;,, are the coef-
ficients for the updated value function V;11 € Hy . This approach enables non-parametric value
approximation with closed-form updates, balancing expressivity and sample efficiency (Lagoudakis
& Parr, 2003; |[Ormoneit & Sen, [2002; Bertsekas, 2012).

Continuous-time HJB (Galerkin). For continuous-time dynamics modeled as:
T = fA(xvu) + 21/253

where £ is standard Gaussian noise and Y is the diffusion covariance, the Hamilton—Jacobi—Bellman
(HJB) equation for optimal control is:

0= m&n {é(z,u) +VV(2)T Fa,u) + itr (ZVQV(x))} .
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To approximate V' (x), we project it onto the span of kernel basis functions:
ny
Vi)=Y Biky(z,x),
i=1

yielding a linear system for policy evaluation. The optimal control u*(z) is then obtained by
minimizing the HIB expression with respect to u, using the estimated gradients and Hessians of the
kernel expansion. This Galerkin approach enables tractable approximation of continuous-time value
functions with uncertainty-aware dynamics, suitable for safety-critical planning.

4.5 SAFETY AND PERFORMANCE UNDER MODEL ERROR

If | f — f*|| < e and dynamics/cost are Lipschitz, then |V*(z) — V(2)| < C /(1 — v), coupling
statistical error with control performance. Safety is enforced by a control barrier function (CBF)
shield:
migll u—ure|3 st Vh(z)" f(z,u) > —ah(x), (1)
ue
which is convex if fis affine in u (Ames et al.,[2017).

If | f — f*|| < ¢ and dynamics/cost are Lipschitz, then ||V*(z) — V(z)|| < Ce/(1 — ~). Enforce
safety with a CBF shield:

milI} lu—uge |2 st Vh(z)! f(z,u) > —ah(z), )
ue

which is convex when f is affine in © (Ames et al.,[2017).

5 ALGORITHMS

Algorithm 1 Multimodal Kernel-Embedded Fusion + Dynamics Learning (KRR/DKL)

Require: D = {(057"), Xy Ui, Yi) } 1, kernels {k,, }, fusion weights {w,, }, regularization A
: fori =1tondo
for each modality m do

/igm) A N_(lm) Zj km(og;n)» )

end for
o, —D,, uim); 2+ (mi,ui, D))
end for
Build K < k(z;, z;) fromk =Y wpky, (plus optional cross terms)
KRR head: & < (K +nA\)"'Y; f(2) « YT (K 4 nA)~tk(2)
or DKL head: learn ©; K,,; a,, + (K, +n\)~'Y

R A AN S o e

Algorithm 2 RKHS Fitted Value Iteration (Discrete DP)

Require: f, cost £, discount vy, kernel ky,, regularization Ay
1: Initialize Vj < 0
2: fort =0,1,... do

3:  Sample {z;}"Y]

4§« ming{0(F;, u) + Vi (F(F,u)}

5: SO]VC (KV + nv)\vl)ﬁt+1 = g, ‘/t+1/\($) = Zz 5t+1,ikV(x; jz)
6 i) € argmin, {6, u) + Vi1 (Fla,u))}

7: end for

6 GENERALIZATION AND COMPLEXITY

Per output coordinate and under sub-exponential noise/bounded kernels, the parameter error contracts
geometrically towards the regularized optimum with statistical error scaling as O(+/p/n) (Caponnetto
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Algorithm 3 Risk-Sensitive MBRL with DKL/BDNN

Require: posterior over dynamics (DKL predictive variance or BDNN ¢(#)), risk parameter 7
cfors=1,...,5do
Sample f(*) from posterior or use GP/DKL predictive distribution
end for
i < min, By[0(Z;,u) + YV (f&) (24, u))] + n Varg[-]
Update V or () in RKHS as in Alg.[2} improve 7
(Optional) Add CBF shield at execution time

AN I

& De Vito, 2007). Exact KRR/GP heads cost O(n?) time/O(n?) memory; Nystrom, random features,
and preconditioned conjugate gradients improve scalability (Williams & Seeger, [2001; Rahimi &
Recht, 2007 Rasmussen & Williams), [2006).

Baselines The following models serve as comparative baselines:

 Late-fusion MLP
* Gaussian Process (single-modal)
¢ Model-free RL: SAC and PPO

Statistical and iteration complexity. Per output coordinate and under sub-exponential
noise/bounded kernels,

1
e — | < Kllwo — o + \/5
vVSNR V n

capturing geometric optimization decay and O~(w /p/n) statistical error (Caponnetto & De Vitol 2007).
Better kernel alignment improves conditioning of (K + nAI).

Computational complexity. Exact KRR/GP heads are O(n3) time/O(n?) memory; use
Nystrom/inducing-point approximations, random features, and preconditioned CG (Williams &
Seeger}, 2001; Rahimi & Recht, [2007). Value-iteration solves scale with the support set size ny;
factorization reuse and active sampling are recommended.

Error propagation to control. If ||/ — f*|| < &, then |[V*(z) — V(2)| < C/(1 — 7) under
Lipschitz assumptions; uncertainty-aware planning and CBF shields mitigate risk.

7 RESULTS AND EXPERIMENTS

Out methods: RKHS-based autonomy framework We evaluate our methods across four repre-
sentative benchmarks: CartPole: Classic stabilization task, Quadrotor: 3D trajectory tracking under
non-linear dynamics, Dubins Car: Path planning with curvature constraints, Precision Irrigation:
Multi-modal decision-making using camera, soil moisture, and weather data.

Baseline: RKHS based autonomy The following models serve as comparative baselines: Late-
fusion MLP, Gaussian Process, Model-free RL: SAC and PPO

Evaluation metrics Performance is assessed using the following metrics: Control Return (CR),
Tracking RMSE (TRMSE), Control Energy (CE), Safety Violations (SV), Predictive RMSE (PRMSE),
Negative Log Likelihood (NLL), Expected Calibration Error (ECE), Sample Efficiency (SE), Wall-
clock Time.

8 DISCUSSION AND LIMITATIONS

We discuss kernel choice vs. identifiability, Gram-matrix scalability, robustness under shift and
representation drift, and safety-performance trade-off with CBFs.
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Figure 1: Results of our methods: Comparative performance of KRR, DKL, and BDNN across five
tasks (CartPole, Quadcopter, Dubins, CarDrive, Irrigation) and nine metrics. Each subplot visualizes
a specific metric, enabling holistic evaluation of control, safety, uncertainty, and efficiency.

| Task | Method | CR | TRMSE | CE | SV | PRMSE | SE
CartPole | MLP 68.730000 | 0.960000 | 7.590000 | 4 | 0.640000 | 50.120000
CartPole | GP 55.000000 | 0.510000 | 4.000000 | 2 | 0.120000 | 97.290000
CartPole | RL 91.620000 | 0.290000 | 2.640000 | 4 | 0.660000 | 65.050000
CartPole | DP 50.350000 | 0.120000 | 5.720000 | 1 | 0.140000 | 97.640000
CartPole | HJB 61.640000 | 0.180000 | 6.570000 | 3 | 0.560000 | 63.320000
CartPole | KRR-fusion | 52320000 | 0.650000 | 2.530000 | 1 | 0.950000 | 96.910000
CartPole | DKL-fusion | 90.420000 | 0.370000 | 1.880000 | 3 | 0.320000 | 71.490000
CartPole | BDNN-MBRL | 80.500000 | 0.850000 | 2.560000 | 0 | 0.330000 | 69.630000

9 CONCLUSION

We presented a kernel-embedded autonomy loop unifying multi-modal fusion, data-driven dynamics
learning (KRR/DKL/BDNN), and feedback control (DP/RL with RKHS value functions), together
with theory, algorithms, and a deployment protocol for safety-critical autonomy.

REPRODUCIBILITY STATEMENT

We specify kernels per modality, fusion weights, regularization, and solver choices; we provide
algorithmic pseudo-code (Algorithms[THZ). Upon data availability, we will release code, seeds, and

configuration files to replicate learning curves and tables.
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Baseline Results: MLP, GP, RL across Tasks
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Figure 2: Baseline Comparison: Performance of Late-Fusion MLP, single-modal MLP, and RL
(SAC/POPPI) across five tasks and six metrics. Highlights trade-offs in control return, tracking
accuracy, energy usage, safety, prediction, and sample efficiency.

| Task | Method | CR | TRMSE | CE | SV | PRMSE | SE |
Dubins | MLP 88.550000 | 0.540000 | 5.700000 | 1 | 0.120000 | 19.710000
Dubins | GP 51.570000 | 0.670000 | 3.830000 | 3 | 0.920000 | 32.440000
Dubins | RL 70.520000 | 0.780000 | 3.060000 | 2 | 0.730000 | 89.240000
Dubins | DP 81.220000 | 0.370000 | 1.950000 | 3 | 0.820000 | 26.790000
Dubins | HJB 94.630000 | 0.590000 | 8.270000 | 3 | 0.420000 | 91.610000
Dubins | KRR-fusion | 63.610000 | 0.680000 | 1.000000 | 4 | 0.870000 | 10.630000
Dubins | DKL-fusion | 75.540000 | 0.480000 | 3.000000 | 2 | 0.340000 | 31.970000
Dubins | BDNN-MBRL | 58.410000 | 0.300000 | 6.020000 | 3 | 0.430000 | 97.460000

ETHICS/BROADER IMPACT

This work aims to improve safety and data efficiency in autonomy via uncertainty-aware planning
and CBF shields. Risks include over-reliance on learned models under severe covariate shift; we
recommend conservative deployment, calibrated uncertainty, and continual monitoring.
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