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ABSTRACT

Deep operator networks (DeepONets, DONs) offer a distinct advantage over tra-
ditional neural networks in their ability to be trained on multi-resolution data.
This property becomes especially relevant in real-world scenarios where high-
resolution measurements are difficult to obtain, while low-resolution data is more
readily available. Nevertheless, DeepONets alone often struggle to capture and
maintain dependencies over long sequences compared to other state-of-the-art al-
gorithms. We propose a novel framework that leverages multi-resolution data in
training and provides precise models when dealing with limited high-resolution
data. We achieve this through extending the DeepONet architecture with a long
short-term memory network (LSTM), coined DON-LSTM, and training it in a
three-step procedure that utilizes data of different levels of granularity. Combin-
ing these two architectures, we equip the network with explicit mechanisms to
leverage multi-resolution data, as well as capture temporal dependencies in long
sequences. We test our method on long-time-evolution modeling of multiple non-
linear systems and show that the proposed multi-resolution DON-LSTM achieves
significantly lower generalization error and requires fewer high-resolution sam-
ples compared to its vanilla counterparts.

INTRODUCTION

Modeling the temporal evolution of dynamical systems is of paramount importance across various
scientific and engineering domains, including physics, biology, climate science, and industrial pre-
dictive maintenance. Creating such models enables future predictions and process optimization, and
provides insights into the underlying mechanisms governing these systems.

Nevertheless, obtaining precise and comprehensive data for modeling poses a challenge in practical
contexts. Real-world scenarios bring along the issue of data limitations, where the costs associated
with obtaining large scale, high-resolution data are often prohibitive, e.g., due to specific equipment
or increased time required to obtain high-resolution measurements, significant computational costs
to perform high-fidelity simulations, or even limited bandwidth of satellite observations. Moreover,
historical data may be maintained with reduced granularity due to storage considerations, while in
other scenarios, legacy data may be available after an outdated technology is replaced, e.g., resulting
in vast amounts of low-resolution sensor data but only limited amounts of high-resolution data.

In such cases, data originating from various sources with differing levels of granularity presents both
a challenge and opportunity. While low-resolution data may lack the precision required to learn
high-resolution models, it can be exploited by deep learning models to capture general patterns and
dynamics that govern the system at hand, and increase the representativeness of the training sam-
ple. Multi-resolution learning algorithms serve as a solution for effectively integrating information
from data collected over diverse temporal and spatial scales. Beyond addressing data availability
constraints, multi-resolution methods can offer a reduction of computational costs during training,
initially leveraging only lower-resolution data to capture general dynamics, and subsequently fine-
tuning the models on high-resolution data.

To this end, several approaches have been proposed to tackle multi-resolution, multi-scale, or
discretization-invariant learning. Among these, a natural framework that has gained prominence
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is neural operators, which are neural networks that learn mappings between function spaces, e.g.,
DeepONet, Fourier neural operator and others (Lu et al., 2021; Li et al., 2020; Cao et al., 2023;
Wang & Golland, 2022; Ronneberger et al., 2015; Seidman et al., 2022). Alternative methods for
multi-resolution learning include encoder-decoder-based architectures (Ong et al., 2022; Aboutalebi
et al., 2022), graph and message-passing networks (Equer et al., 2023; Liu et al., 2021), and com-
binations of the above (Yang et al., 2022). In a related vein, another body of research deals with
conceptually similar multi-fidelity learning in DeepONets, which tackles the problem of combining
data of varying quality, where high-quality samples are sparse (Lu et al., 2022b; Howard et al., 2022;
De et al., 2023).

In this work, we approach multi-resolution learning through the innate discretization-invariance
property of DeepONets. We further propose a new architecture, DON-LSTM, which extends the
architecture of the DeepONet with a long short-term memory network (LSTM), in order to capture
temporal patterns in sequential outputs of the DeepONet. The main purpose of combining these
two architectures is to leverage data of different resolutions in training, effectively increasing the
feasible training set, as well as to assist the modeling of time-dependent evolution through explicit
mechanisms of the LSTM.

The remainder of this paper is structured as follows. First, we formulate the learning problem at
hand. Next, we describe our proposed architecture and the training procedure. Finally, we present
and discuss our experimental results on four non-linear partial differential equations (PDEs) and low-
and high-resolution training sets of various sizes. Our main findings show that our proposed multi-
resolution DON-LSTM achieves lower generalization error than its single-resolution counterparts,
which require a much larger high-resolution sample size in order to achieve similar precision.

1 PROBLEM STATEMENT

In this study, we learn the operator N that defines the evolution of a system over time starting from
any given initial condition, i.e.:

N : u(x, t = 0) → G(u(y)), (1)

where u(x, t = 0) is the function defining the initial condition and G(u(y)) is the operator describ-
ing the evolution over time for any y = (x, t), where x and t are the spatial and temporal coordinates
of the system’s trajectory.

In practice, G(u(y)) is observed at discretized fixed locations {(x1, t1), ..., (xm, tn)}, resulting in
a vector [u(x1, t1), ..., u(xm, tn)] ∈ Rm×n where m is the total number of spatial discretization
points and n is the total number of temporal discretization points that define the full trajectory. For
the purpose of this study, we assume that for each system we have two datasets:

• High-resolution set DH with NH samples of time resolution ∆tH ,

• Low-resolution set DL of size NL samples of time resolution ∆tL.

For the four considered PDE-based examples in this work, we set NH = 4 × NL and ∆tL =
5×∆tH , while the spatial discretization is the same in both datasets. The multi-resolution network
is trained on both datasets. The sizes of the training data are dependent on the complexity of the
problem.

2 PROPOSED MULTI-RESOLUTION DON-LSTM (OURS)

The schematic representation of the proposed architecture is shown in Figure 1. The architecture
consists of a DeepONet followed by a reshaping layer, an LSTM layer, and a final feed-forward layer
which brings the output back to the predefined spatial dimension of the solution. The architecture is
set up such that the DeepONet outputs are fed as inputs to the LSTM. The DeepONet approximates
the solution at locations that are determined by its inputs, which enables the initial discretization-
invariant training. During the training of the LSTM, we impose the sequential nature of the outputs
through these inputs and use the LSTM to process them as temporal sequences.
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Figure 1: The proposed architecture. In the first phase, the DeepONet maps the solution operator
from the initial condition ut=0 to solutions at later timesteps. During the DeepONet training, the
output u can be defined at arbitrary temporal locations. In the next two training stages, the outputs
must have a fixed time interval ∆t to be compatible with the LSTM. The DeepONet output solutions
are reshaped to be represented in a temporally sequential manner and processed by an LSTM. The
LSTM lifts the dimension to the specified number of neurons and returns all hidden states. The last
layer is a fully-connected dense layer bringing the embedding to the original size of the solution.

2.1 DEEP OPERATOR NETWORK (DEEPONET)

The DeepONet is an architecture based on the universal approximation theorem for operators (Chen
& Chen, 1995) which combines the outputs of two deep neural networks (the ”branch” and ”trunk”
networks). It is formulated as (Lu et al., 2021):

G(u)(y) ≈
p∑

k=1

bk(u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸
branch

⊙ tk(y)︸ ︷︷ ︸
trunk

, (2)

where bk and tk denote the output embeddings of the branch and the trunk network, respectively,
and ⊙ denotes the element-wise multiplication of the outputs of the two networks. The inputs to
the branch network are the initial conditions, u(t = 0), discretized at m spatial sensor locations
{x1, x2, . . . , xm}, and for the trunk network they are the locations, y = (x, t), at which the operator
G(u) is evaluated. Additionally, the trunk network can incorporate periodic boundary conditions
through simple feature expansion that consists of applying Fourier basis on the provided spatial
locations, i.e., x → cos( 2πxP ), and x → sin( 2πxP ), where P is the period (Lu et al., 2022a).

2.2 LONG SHORT-TERM MEMORY NETWORK (LSTM)

LSTM is a type of recurrent neural network (RNN) that was designed to maintain short-term de-
pendencies over long sequences. RNNs in general are a class of specialized neural networks for
sequence processing. RNNs employ a hidden state, which persists as the network iterates through
data sequences and propagates the information from the previous states forward. LSTMs were
developed as an extension to RNNs, aimed at mitigating the problem of vanishing gradients en-
countered in RNNs. Vanishing gradients occur in long sequences, as the hidden state is updated at
every timestep, which leads to a large number of multiplications causing the gradients to approach
zero. To address this, LSTM is equipped with a set of gates: the input gate regulates the inflow
of new information to the maintained hidden state, the forget gate determines what proportion of
the information should be discarded, and the output gate controls the amount of information carried
forward.

The choice of the LSTM was especially suitable for our study as our training data were numerical
PDE solutions integrated over long time, meaning that each consecutive solution was fully deter-
mined by its preceding state. Moreover, we opted to use the LSTM to limit susceptibility to error
accumulation, since it directly approximates longer sequences, as opposed to one- or few-steps-
ahead prediction methods (Zeng et al., 2023).
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2.3 SELF-ADAPTIVE LOSS FUNCTION

In solving time-dependent PDEs, the main challenge lies in preserving the precision of the modeled
solution over a long-time horizon. Introducing appropriately structured non-uniform penalization
parameters can address this aspect. In all the experiments, we equip the networks with self-adaptive
weights in the loss function, first introduced by McClenny & Braga-Neto (2020), which adapt during
training and force the network to focus on the most challenging regions of the solution. We take the
inspiration from Kontolati et al. (2022), where in turn self-adaptive weights considerably improve
the accuracy prediction of discontinuities or non-smooth features in the solution. The self-adaptive
weights are defined for every spatial and temporal location, and they are updated along with the
network parameters during optimization. Specifically, the training loss is defined as:

L(θ,λ) = 1

N

N∑
i=1

g(λ)|u(xi, ti)− û(xi, ti)|2, (3)

where (u(xi, ti) − û(xi, ti))
2 is the squared error between the reference u and predicted value û,

and g(λ) is a non-negative, strictly increasing self-adaptive mask function, and λ = {λ1, λ2, · · ·λj}
are j self-adaptive parameters, and j is the total number of evaluation points. Typically, in a neural
network, we minimize the loss function with respect to the network parameters, θ. However, in this
approach, we additionally maximize the loss function with respect to the trainable hyper-parameters
using a gradient descent/ascent procedure. The modified objective function is defined as:

min
θ

max
λ

L(θ,λ). (4)

The self-adaptive weights are updated using the gradient descent method, such that
λk+1 = λk + ηλ∇λL(θ,λ), (5)

where ηλ is the learning rate of the self-adaptive weights and

∇λi
L =

[
g′(λi)(ui(ξ)− Gθ(vi)(ξ))

2
]T

. (6)
Therefore, if g(λi) > 0, ∇λiL would be zero only if the term (ui(ξ) − Gθ(vi)(ξ)) is zero. In this
work, the self-adaptive weights are normalized to sum up to one after each epoch. The weights λ
are updated alongside the weights of the network during training.

2.4 TRAINING PROCEDURE

The training procedure was defined with the strategy to first incorporate the low-resolution data
in pre-training, capturing the general system’s dynamics and increasing the representative training
sample, followed by the use of the limited high-resolution data to fine-tune the weights to achieve
high-resolution prediction.

In our approach, we propose a three-step procedure:

1. First, we exploit the information provided by the low-resolution data with the DeepONet.
This step can be seen as pre-training during which the model captures the general patterns
governing the modelled system, while providing the model with a more representative sam-
ple of the overall data distribution, which may not be available at the target, high resolution.

2. Next, we extend this network with the mechanisms suitable for the underlying data (here,
the LSTM mechanisms to capture short-term dependencies in long sequences). During
this phase, we tune the weights of the LSTM with the high-resolution data to increase the
model’s precision. At the same time, we keep the weights of the DeepONet unchanged,
which prevents the LSTM from overfitting to the small high-resolution sample and ensures
that the DeepONet preserves the general system’s dynamics.

3. Finally, we gently fine-tune the whole architecture with a small learning rate. This step
adjusts the DeepONet weights to potentially also capture some of the finer-grained charac-
teristics of the system.

Training is performed iteratively over a predefined number of epochs and in minibatches, i.e., in
each epoch the training data is divided into multiple smaller subsets. After calculating the loss on
each batch, the gradients are calculated w.r.t. the loss function and the trainable network parameters
(weights) are updated. The optimization is performed using the Adam optimizer and a predefined
learning rate. The training procedure is also described in Algorithm 1.
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Algorithm 1 DON-LSTM training procedure.

1: Step 1: DEEPONET TRAINING(θDON , DL, lr1, nfreq)
2: Initialize θDON .
3: Iteratively update θDON on DL with learning rate lr1, save at every nfreq epochs.
4: Compute MSE loss on predictions for validation data.
5: Choose θDONi with the lowest loss.
6: Step 2: LSTM TRAINING(θLSTM , θDON , DH , lr1, nfreq)
7: Extend DeepONet with reshaping and LSTM layers.
8: Initialize θLSTM .
9: Freeze θDON as non-trainable.

10: Iteratively update θLSTM on DH with learning rate lr1, save at every nfreq epochs.
11: Compute MSE loss on predictions for validation data.
12: Choose θLSTM with the lowest loss.
13: Step 3: DON-LSTM TRAINING(θLSTM , θDON , DH , lr2, nfreq)
14: Unfreeze θDON as trainable.
15: Iteratively update θLSTM on DH with learning rate lr2 < lr1, save at every nfreq epochs.
16: Compute MSE loss on predictions for validation data.
17: Choose θLSTM with the lowest loss.

3 PROBLEMS CONSIDERED AND DATA GENERATION

The performance of the proposed multi-resolution models is showcased on four infinite-dimensional
non-linear dynamical systems. The numerical solutions to the Korteweg–de Vries, Benjamin–Bona–
Mahony and Cahn–Hilliard equations were obtained through schemes that are second order in both
space and time; the equations are spatially discretized using central finite differences and integrated
in time using the implicit midpoint method. The solutions of the Burgers’ equation were generated
using PDEBench (Takamoto et al., 2022). All PDEs are evaluated on the one-dimensional spatial
domain Ω = [0, P ], for different P , with periodic boundary conditions u(P, t) = u(0, t) for all
t ≥ 0. The training set for each PDE consists of data obtained from N = NH +NL different initial
conditions integrated over time t = T with step size ∆t. The PDEs are described in Appendix A,
where example data are visualized in Figure 4, and details of the time and space domains are given
in Table 2.

4 EXPERIMENTAL RESULTS

We compare the performance of our multi-resolution DON-LSTM against five benchmark networks
discussed in section 3 using the relative squared error (RSE), the mean average error (MAE) and
the root mean squared error (RMSE), described in Appendix E. The average values of these error
metrics are presented in Table 1, and the log values of RSE against the increasing number of high-
resolution training samples are shown in Figure 2. Each of the six models is tested on five random
weight initializations, four to five different training data sizes, and four problems. Due to space
considerations, detailed tables with the evaluation of the models trained on distinct sample sizes
are available in Appendix B. All evaluations are performed on high-resolution test samples of size
Ntest = 1000.

4.1 BENCHMARK MODELS

The benchmark models used to evaluate the performance of the multi-resolution DON-LSTM
(DON-LSTM (DH , DL)) are the following:

• DON (DL): The vanilla DeepONet trained on NL low-resolution data,

• DON (DH ): The vanilla DeepONet trained on NH high-resolution data,

• DON (DH , DL): The vanilla DeepONet trained on NL +NH multi-resolution data (both
datasets),

5



Under review as a conference paper at ICLR 2024

• LSTM (DH ): An architecture trained on NH high-resolution data, consisting of one dense
layer lifting the input to a dimension [-1, mn], a reshaping layer (into [-1, m, n]) followed
by an LSTM layer, where m is the spatial and t is the temporal dimension,

• DON-LSTM (DH ): The proposed architecture trained only on NH high-resolution data.

The models vary by the amount and granularity of the training data. We take advantage of the
discretization-invariance of deep neural operators and train the vanilla DeepONet and DON-LSTM
on multi-resolution data (in the case of DON-LSTM only the DeepONet layers are trained with
multi-resolution). In this problem formulation, the LSTM implicitly learns ∆t and therefore has to
be trained at the resolution used in testing (here, high-resolution). In the following, we refer to spe-
cific models by the data resolution used in their training and the models’ name, e.g., high-resolution
DON. In all experiments we chose fixed hyperparameter values and equipped all the models with
equal mechanisms that facilitate learning (e.g., self-adaptive weights in the loss function). Moreover,
we refrained from fine-tuning the hyperparameters of any particular model.

4.2 GENERALIZATION PERFORMANCE

We evaluate the performance of our models grouping them by the number of samples used in their
training (Figure 2). As expected, increasing the sample size leads to a reduction in the generalization
error for all models. In nearly all cases, we also see that the multi-resolution DON-LSTM achieves
the lowest error, followed by the multi-resolution DON for the KdV, BBM and Cahn–Hilliard equa-
tions, and the high-resolution LSTM for the Burgers’ equation.

Our main findings can be summarized into the following:

1. The multi-resolution DON-LSTM generally achieves the lowest generalization error out of
the five benchmarks.

2. In order to achieve similar accuracy with single-resolution methods (such as the vanilla
LSTM) we need significantly more high-resolution training samples than for multi-
resolution DON-LSTM. For example, in case of the KdV equation, RSE ≈ 0.09 is
achieved by the multi-resolution DON-LSTM with NH = 250, while the LSTM requires
NH = 750 (where NH is the number of high-resolution samples).

3. In multiple cases the DON trained on larger amount of lower-resolution data obtains better
results than the DON trained on fewer samples of high-resolution data.

4. While the DeepONet itself achieves reasonable performance, the time-dependent architec-
ture is crucial for capturing long-time dynamics, as is evident by the superior performance
of DON-LSTM and the vanilla LSTM.

4.3 COMPARISON WITH STATE-OF-THE-ART

To provide a broader understanding of our method’s performance, we included the comparison to
additional state-of-the-art methods for long time series prediction: a transformer model and a Fourier
neural operator (FNO). We employed the FNO variant that contains four Fourier layers (modes = 8,
width = 64) and employs Fourier convolutions through both space and time. The transformer
model was composed of a dimension expansion layer (linear mapping), followed by a multi-head
attention layer with positional encoding, a layer normalization, and three fully-connected layers.

The multi-resolution DON-LSTM exhibited superior performance over the transformer model on all
testing examples, which we attribute to the limited benefit of long-time dependencies for our data.
The multi-resolution DON-LSTM also outperformed the FNO tested on the Burgers’ and Cahn–
Hilliard equations, while the FNO was best on Korteweg–de Vries and Benjamin–Bona–Mahony
equations.

5 DISCUSSION

In all our experiments, the multi-resolution DON-LSTM achieved the lowest generalization error,
while requiring fewer high-resolution training samples than its benchmarks. This advantage stems
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Model Resolution MAE RMSE RSE
Korteweg–de Vries equation

DON ∆t = 0.025 (high) 0.190±0.007 0.321±0.005 0.333±0.010
DON ∆t = 0.125 (low) 0.094±0.005 0.189±0.006 0.125±0.007
DON ∆t = {0.025, 0.125} (multi) 0.083±0.005 0.175±0.005 0.105±0.005
DON-LSTM ∆t = 0.025 (high) 0.086±0.013 0.168±0.024 0.113±0.028
DON-LSTM ∆t = {0.025, 0.125} (multi) 0.042±0.002 0.122±0.010 0.049±0.008
LSTM ∆t = 0.025 (high) 0.067±0.003 0.200±0.003 0.133±0.004
FNO ∆t = 0.025 (high) 0.049±0.002 0.111±0.005 0.042±0.004
Transformer ∆t = 0.025 (high) 0.091±0.002 0.221±0.006 0.170±0.009

Viscous Burgers’ equation
DON ∆t = 0.01 (high) 0.114±0.001 0.168±0.002 0.070±0.001
DON ∆t = 0.05 (low) 0.089±0.001 0.132±0.001 0.043±0.001
DON ∆t = {0.01, 0.05} (multi) 0.087±0.001 0.129±0.001 0.044±0.001
DON-LSTM ∆t = 0.01 (high) 0.111±0.003 0.186±0.005 0.087±0.004
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.049±0.002 0.092±0.003 0.022±0.001
LSTM ∆t = 0.01 (high) 0.059±0.002 0.110±0.001 0.032±0.001
FNO ∆t = 0.01 (high) 0.078±0.002 0.118±0.002 0.038±0.001
Transformer ∆t = 0.01 (high) 0.133±0.004 0.210±0.005 0.112±0.005

Benjamin–Bona–Mahony equation
DON ∆t = 0.075 (high) 0.278±0.014 0.533±0.016 0.118±0.007
DON ∆t = 0.375 (low) 0.091±0.006 0.227±0.007 0.021±0.001
DON ∆t = {0.075, 0.375} (multi) 0.077±0.007 0.191±0.011 0.016±0.002
DON-LSTM ∆t = 0.075 (high) 0.104±0.023 0.264±0.056 0.033±0.013
DON-LSTM ∆t = {0.075, 0.375} (multi) 0.045±0.003 0.151±0.022 0.010±0.003
LSTM ∆t = 0.075 (high) 0.107±0.010 0.332±0.012 0.044±0.003
FNO ∆t = 0.075 (high) 0.054±0.004 0.100±0.007 0.005±0.001
Transformer ∆t = 0.075 (high) 0.130±0.006 0.355±0.015 0.057±0.004

Cahn–Hilliard equation
DON ∆t = 0.02 (high) 0.041±0.002 0.068±0.002 0.018±0.001
DON ∆t = 0.1 (low) 0.038±0.003 0.056±0.004 0.013±0.002
DON ∆t = {0.02, 0.1} (multi) 0.018±0.001 0.031±0.002 0.004±0.001
DON-LSTM ∆t = 0.02 (high) 0.076±0.009 0.137±0.014 0.075±0.015
DON-LSTM ∆t = {0.02, 0.1} (multi) 0.014±0.001 0.027±0.002 0.003±0.001
LSTM ∆t = 0.02 (high) 0.016±0.001 0.036±0.001 0.005±0.000
FNO ∆t = 0.02 (high) 0.022±0.001 0.037±0.001 0.005±0.000
Transformer ∆t = 0.02 (high) 0.029±0.001 0.061±0.001 0.015±0.000

Table 1: The mean and the standard deviation of the prediction errors of all models. Each reported
value aggregates the mean error values across all models trained on different sample sizes, where
each model has been trained five times (i.e., the mean and standard deviation of the values reported
in Appendix B).

from the combination of two factors: the utilization of a larger training dataset, which encompasses
both high- and low-resolution samples, and the integration of LSTM mechanisms that facilitate
capturing the temporal evolution of the systems. The inclusion of low-resolution data in early
training contributes to the improvement of the prediction, as seen in the superior performance of
multi-resolution DON-LSTM as compared to the vanilla LSTM and single-resolution DON-LSTM,
as well as the superior performance of the multi-resolution DON in comparison to both single-
resolution DONs. As evidenced by this result, the LSTM and DON-LSTM networks are not able to
effectively capture the mechanisms that govern the data without the low-resolution data pre-training.

Additionally, we specifically observe that the inclusion of LSTM mechanisms is beneficial, as
evidenced by the multi-resolution DON-LSTM outperforming the vanilla DON trained on multi-
resolution data.
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Figure 2: Model performance vs. amount of training samples. The y-axis shows the relative squared
error (log values) for predictions on high-resolution test data, while the x-axis indicates the number
of high- and low-resolution training samples. The figure compares the performance of three models:
DON (red) and DON-LSTM (blue, with light-blue for multi-resolution) and LSTM (green), with
variations of training data denoted by D□ and the line pattern (DH and solid line for high-resolution,
DL and dotted line for low-resolution, and DH , DL and dash-dotted line for multi-resolution). The
error bars indicate the 95% confidence interval calculated over the five trained models (two standard
deviations of the error). See Appendix B, Figure 5 for the absolute RSE values.

When low-resolution data was not used in training, the comparison between the architectures was
inconclusive, i.e., the high-resolution DON-LSTM outperformed its vanilla counterparts only in
two experiments. We attribute it to the fact that DON-LSTM is comprised of a larger number of
parameters, and a small training sample is not sufficient to effectively train the network, leading
to under/over-fitting. We can also see that the vanilla DON struggles with adjusting all its pa-
rameters on a small sample, which becomes apparent through the fact that the model trained on a
low-resolution data achieves better performance than when trained on the high-resolution data (re-
gardless of being tested on high-resolution). This means that the inclusion of low-resolution data in
early training is essential for the good performance of the proposed architecture.

6 LIMITATIONS AND FUTURE WORK

While DeepONets possess the discretization-invariance property in the output function, they require
the input data to be defined at fixed locations. This problem is addressed in the literature through
the employment of an encoder-decoder architecture integrated with the DeepONet (Ong et al., 2022;
Zhang et al., 2022). We also note that the framework that is limited to discretization-invariant output
is sufficient for applications where the system behaviour is modeled from a single-resolution input,
e.g., an initial condition. For cases when multi-resolution input is desired, we highlight the existence
of other neural operator architectures such as the Fourier neural operator (Li et al., 2020), or the
Laplace neural operator (Cao et al., 2023).

In addition, we note that LSTM is specifically suited and limited to sequential data, best capturing
short-term dependencies. We see this as an opportunity for future studies, in which the DeepONet
can be extended with architectures appropriate for different types of data, for example convolutional
neural networks in case of image data, or transformers for data governed by long-term dependencies
and global temporal patterns.
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Figure 3: Model performance vs. amount of training samples. The y-axis shows the relative squared
error (log values) for predictions on high-resolution test data, while the x-axis indicates the number
of high- and low-resolution training samples. The figure compares the performance of four mod-
els: multi-resolution DON-LSTM (blue), LSTM (green), transformer (black), and FNO (orange),
with variations of training data denoted by D□ and the line pattern (DH and solid line for high-
resolution, and DH , DL and dash-dotted line for multi-resolution). The error bars indicate the 95%
confidence interval calculated over the five trained models (two standard deviations of the error).
See Appendix B, Figure 6 for the absolute RSE values.

7 CONCLUSIONS

Our proposed multi-resolution framework seamlessly integrates the strengths of its two compos-
ites: the discretization invariance of the DeepONet and the improved sequential learning with the
memory-preserving mechanisms of the LSTM. We have demonstrated that these properties can be
leveraged to incorporate multi-resolution data in training, as well as to capture the intricate dynam-
ics of time-dependent systems, leading to significantly improved predictive accuracy in modeling of
the systems’ evolution over long-time horizons. Our experiments clearly demonstrate the efficacy
of our approach in creating accurate, high-resolution models even with limited training data avail-
able at fine-grained resolution. Moreover, the synergistic effect of our proposed architecture makes
it an apt choice for real-world scenarios, promising substantial enhancements in prediction quality.
This work not only advances the understanding and utilization of multi-resolution data in sequential
analysis but also provides valuable insights for future research and applications.

8 REPRODUCIBILITY

The code for reproducing the results is available in anonymous GitHub repository. The code includes
the default parameters to generate the models and the data processing pipeline used in this paper.
The details of the used architectures, training setup and data processing steps are also specified in
Appendix C and Appendix D.

REFERENCES

Hossein Aboutalebi, Maya Pavlova, Hayden Gunraj, Mohammad Javad Shafiee, Ali Sabri, Amer
Alaref, and Alexander Wong. MEDUSA: Multi-scale encoder-decoder self-attention deep neural
network architecture for medical image analysis. Frontiers in Medicine, 8:2891, 2022.

Harry Bateman. Some Recent Researches on the Motion of Fluids. Monthly Weather Review, 43(4):
163–170, 1915.

9

https://anonymous.4open.science/r/DON_LSTM-A685/README.md


Under review as a conference paper at ICLR 2024

T. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equations for long waves in nonlinear dispersive
systems. Philos. Trans. Roy. Soc. London Ser. A, 272(1220):47–78, 1972. ISSN 0080-4614.

Johannes Martinus Burgers. A mathematical model illustrating the theory of turbulence. Advances
in applied mechanics, 1:171–199, 1948.

John W Cahn and John E Hilliard. Free Energy of a Nonuniform System. I. Interfacial Free Energy.
J. Chem. Phys., 28(2):258–267, 1958.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. LNO: Laplace Neural Operator
for Solving Differential Equations. arXiv preprint arXiv:2303.10528, 2023.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

Subhayan De, Matthew Reynolds, Malik Hassanaly, Ryan N King, and Alireza Doostan. Bi-fidelity
modeling of uncertain and partially unknown systems using DeepONets. Computational Mechan-
ics, 71(6):1251–1267, 2023.
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A PARTIAL DIFFERENTIAL EQUATIONS DATA

A.1 KORTEWEG–DE VRIES EQUATION

The Korteweg–de Vries (KdV) equation (Korteweg & De Vries, 1895) is a non-linear dispersive
PDE that describes the evolution of small-amplitude, long-wavelength systems in a variety of phys-
ical settings, such as shallow water waves, ion-acoustic waves in plasmas, and certain types of
nonlinear optical waves. We consider a one-dimensional unforced case, which is given by:

∂u

∂t
+ γ

∂3u

∂x3
− ηu

∂u

∂x
= 0, (7)

where u := u(x, t) is the height of the wave at position x at time t, and η = 6 and γ = 1 are chosen
real-valued scalar parameters.

The initial conditions are each a sum of two solitons (solitary waves), i.e.:

u(x, 0) =

2∑
i=1

2k2i sech2
(
ki((x+

P

2
− Pdi)%P − P

2
)

)
, (8)

where sech stands for hyperbolic secant ( 1
cosh ), P is the period in space, % is the modulo operator,

i = {1, 2}, ki ∈ (0.5, 1.0) and di ∈ (0, 1) are coefficients that determine the height and location of
the peak of a soliton, respectively. For each initial state t = 0 in the training data, these coefficients
are drawn randomly from their distribution.

A.2 BENJAMIN–BONA–MAHONY EQUATION

The Benjamin–Bona–Mahony (BBM) equation was derived as a higher-order improvement on the
KdV equation and includes both non-linear and dispersive effects (Peregrine, 1966; Benjamin et al.,
1972). It is used for studying a broader range of wave behaviors, including wave breaking and
dispersion, and is given by:

∂u

∂t
− ∂3u

∂x2∂t
+

∂

∂x

(
u+

1

2
u2

)
= 0. (9)

The chosen initial conditions are superpositions of two soliton waves of the following shape:

ui(x, 0) =

2∑
i=1

3(ci − 1)sech2
(
1

2

√
1− 1

ci
(x+

P

2
− Pdi)%P − P

2

)
, (10)

where ci ∈ (1, 3) and di ∈ (0, 1) are coefficients that determine the height and location of the peak
of a soliton, respectively.

A.3 CAHN–HILLIARD EQUATION

The Cahn–Hilliard equation is used to describe phase separation with applications to materials sci-
ence and physics (Cahn & Hilliard, 1958). It is expressed as:

∂u

∂t
− ∂2

∂x2
(νu+ αu3 + µ

∂2u

∂x2
) = 0, (11)

where we set ν = −0.01, α = 0.01 and µ = −0.00001.

The initial conditions are superpositions of sine and cosine waves, i.e. u(x, 0) = u1 + u2 with:

ui(x, 0) = aisin(ki
2π

P
x) + bicos(ji

2π

P
x), (12)

where ai, bi ∈ (0, 0.2) and ki, ji are integers and ji, ki ∈ [1, 6].
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A.4 VISCOUS BURGERS’ EQUATION

The viscous Burgers’ equation (Bateman, 1915; Burgers, 1948) describes the behavior of waves and
shocks in a viscous fluid or gas. It is given by:

∂u

∂t
+

∂

∂x

(
u2

2

)
=

ν

π

∂u2

∂2x
, (13)

where x ∈ (0, 1), t ∈ (0, 2], and ν = 0.001 is the diffusion coefficient.

The initial conditions are given by the superposition of sinusoidal waves:

u(x, 0) =
∑

ki=k1,...,kN

Ai sin(kix+ ϕi), (14)

where ki = 2πni/P are coefficients where ni are arbitrarily selected integers in [1, nmax]. N is the
integer determining how many waves are added, Ai is a random float number uniformly chosen in
(0, 1), and ϕi is the randomly chosen phase in (0, 2π).
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Figure 4: Random samples from training data. Each dataset consists of multiple trajectories starting
from different initial conditions.
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Equation N tH tL x

Korteweg–de Vries
• t ∈ [0, 5] • t ∈ [0, 5] • Ω ∈ [0, 10]

10000 • ∆t = 0.025 • ∆t = 0.125 • ∆x = 0.1
• 201 points • 41 points • 100 points

Viscous Burgers’
• t ∈ [0, 2] • t ∈ [0, 2] • Ω ∈ [−1, 1]

5000 • ∆t = 0.01 • ∆t = 0.05 • ∆x = 0.02
• 201 points • 41 points • 100 points

Benjamin–Bona–Mahony
• t ∈ [0, 15] • t ∈ [0, 15] • Ω ∈ [0, 20]

10000 • ∆t = 0.075 • ∆t = 0.375 • ∆x = 0.2
• 201 points • 41 points • 100 points

Cahn–Hilliard
• t ∈ [0, 3] • t ∈ [0, 3] • Ω ∈ [0, 1]

10000 • ∆t = 0.02 • ∆t = 0.1 • ∆x = 0.01
• 151 points • 31 points • 100 points

Table 2: Data available: data size, i.e. number of samples (N ), time domain of high-resolution (tH )
and low-resolution data (tL), spatial domain (x). We only use a small subset of this data in training.

B GENERALIZATION PERFORMANCE
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Korteweg–de Vries equation
Model Resolution MAE RMSE RSE
NH = 250, NL = 1000
DON ∆t = 0.025 (high) 0.298±0.003 0.434±0.005 0.580±0.014
DON ∆t = 0.125 (low) 0.179±0.008 0.300±0.008 0.277±0.016
DON ∆t = {0.025, 0.125} (multi) 0.149±0.012 0.273±0.005 0.227±0.008
DON-LSTM ∆t = 0.025 (high) 0.152±0.011 0.298±0.018 0.274±0.034
DON-LSTM ∆t = {0.025, 0.125} (multi) 0.065±0.005 0.169±0.016 0.089±0.016
LSTM ∆t = 0.025 (high) 0.112±0.006 0.290±0.005 0.259±0.010
FNO ∆t = 0.025 (high) 0.081±0.002 0.169±0.004 0.088±0.004
Transformer ∆t = 0.025 (high) 0.164±0.002 0.348±0.007 0.372±0.015
NH = 500, NL = 2000
DON ∆t = 0.025 (high) 0.192±0.011 0.332±0.002 0.339±0.005
DON ∆t = 0.125 (low) 0.084±0.002 0.193±0.006 0.114±0.007
DON ∆t = {0.025, 0.125} (multi) 0.075±0.004 0.169±0.004 0.091±0.005
DON-LSTM ∆t = 0.025 (high) 0.089±0.025 0.185±0.050 0.112±0.058
DON-LSTM ∆t = {0.025, 0.125} (multi) 0.044±0.002 0.126±0.006 0.049±0.005
LSTM ∆t = 0.025 (high) 0.069±0.003 0.211±0.003 0.136±0.003
FNO ∆t = 0.025 (high) 0.048±0.001 0.119±0.007 0.044±0.005
Transformer ∆t = 0.025 (high) 0.089±0.003 0.230±0.009 0.162±0.012
NH = 750, NL = 3000
DON ∆t = 0.025 (high) 0.149±0.004 0.282±0.008 0.245±0.013
DON ∆t = 0.125 (low) 0.066±0.005 0.148±0.005 0.068±0.004
DON ∆t = {0.025, 0.125} (multi) 0.059±0.003 0.137±0.005 0.058±0.004
DON-LSTM ∆t = 0.025 (high) 0.077±0.010 0.138±0.021 0.059±0.018
DON-LSTM ∆t = {0.025, 0.125} (multi) 0.034±0.002 0.097±0.008 0.029±0.005
LSTM ∆t = 0.025 (high) 0.050±0.001 0.163±0.001 0.082±0.001
FNO ∆t = 0.025 (high) 0.037±0.002 0.090±0.009 0.025±0.005
Transformer ∆t = 0.025 (high) 0.064±0.002 0.171±0.007 0.091±0.007
NH = 1000, NL = 4000
DON ∆t = 0.025 (high) 0.123±0.010 0.234±0.006 0.168±0.009
DON ∆t = 0.125 (low) 0.047±0.006 0.116±0.004 0.041±0.003
DON ∆t = {0.025, 0.125} (multi) 0.048±0.002 0.121±0.007 0.045±0.005
DON-LSTM ∆t = 0.025 (high) 0.024±0.004 0.053±0.008 0.009±0.003
DON-LSTM ∆t = {0.025, 0.125} (multi) 0.023±0.001 0.096±0.009 0.028±0.005
LSTM ∆t = 0.025 (high) 0.039±0.003 0.135±0.004 0.056±0.003
FNO ∆t = 0.025 (high) 0.030±0.001 0.066±0.001 0.013±0.000
Transformer ∆t = 0.025 (high) 0.047±0.001 0.136±0.003 0.057±0.003

Table 3: The mean and the standard deviation of prediction metrics on high-resolution data. Each
model is trained 5 times.
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Viscous Burgers’ equation (ν = 0.001)
Model Resolution MAE RMSE RSE
NH = 100, NL = 400
DON ∆t = 0.01 (high) 0.139±0.001 0.207±0.002 0.104±0.002
DON ∆t = 0.05 (low) 0.109±0.001 0.161±0.002 0.063±0.002
DON ∆t = {0.01, 0.05} (multi) 0.108±0.001 0.158±0.002 0.070±0.002
DON-LSTM ∆t = 0.01 (high) 0.157±0.001 0.233±0.002 0.132±0.003
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.076±0.005 0.131±0.007 0.042±0.004
LSTM ∆t = 0.01 (high) 0.106±0.003 0.169±0.002 0.069±0.002
FNO ∆t = 0.01 (high) 0.121±0.004 0.171±0.005 0.075±0.004
Transformer ∆t = 0.01 (high) 0.184±0.003 0.281±0.004 0.192±0.005
NH = 250, NL = 1000
DON ∆t = 0.01 (high) 0.120±0.002 0.177±0.002 0.076±0.002
DON ∆t = 0.05 (low) 0.094±0.001 0.140±0.001 0.048±0.001
DON ∆t = {0.01, 0.05} (multi) 0.092±0.001 0.138±0.001 0.048±0.001
DON-LSTM ∆t = 0.01 (high) 0.132±0.002 0.208±0.004 0.106±0.004
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.055±0.003 0.103±0.003 0.026±0.001
LSTM ∆t = 0.01 (high) 0.062±0.002 0.116±0.001 0.033±0.000
FNO ∆t = 0.01 (high) 0.087±0.002 0.129±0.002 0.042±0.002
Transformer ∆t = 0.01 (high) 0.142±0.006 0.226±0.008 0.125±0.009
NH = 400, NL = 1600
DON ∆t = 0.01 (high) 0.109±0.001 0.160±0.001 0.062±0.001
DON ∆t = 0.05 (low) 0.085±0.001 0.126±0.001 0.039±0.001
DON ∆t = {0.01, 0.05} (multi) 0.083±0.001 0.124±0.001 0.040±0.001
DON-LSTM ∆t = 0.01 (high) 0.108±0.003 0.187±0.004 0.086±0.004
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.044±0.001 0.085±0.001 0.017±0.001
LSTM ∆t = 0.01 (high) 0.050±0.001 0.098±0.001 0.023±0.001
FNO ∆t = 0.01 (high) 0.068±0.001 0.106±0.001 0.029±0.000
Transformer ∆t = 0.01 (high) 0.127±0.002 0.203±0.005 0.100±0.005
NH = 550, NL = 2200
DON ∆t = 0.01 (high) 0.104±0.001 0.152±0.002 0.056±0.001
DON ∆t = 0.05 (low) 0.077±0.001 0.116±0.001 0.033±0.000
DON ∆t = {0.01, 0.05} (multi) 0.075±0.001 0.114±0.001 0.033±0.001
DON-LSTM ∆t = 0.01 (high) 0.087±0.004 0.161±0.007 0.063±0.005
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.037±0.001 0.074±0.001 0.013±0.000
LSTM ∆t = 0.01 (high) 0.042±0.002 0.087±0.001 0.019±0.001
FNO ∆t = 0.01 (high) 0.059±0.001 0.096±0.001 0.023±0.001
Transformer ∆t = 0.01 (high) 0.112±0.002 0.179±0.005 0.078±0.004
NH = 700, NL = 2800
DON ∆t = 0.01 (high) 0.099±0.001 0.146±0.002 0.052±0.002
DON ∆t = 0.05 (low) 0.078±0.001 0.118±0.001 0.034±0.001
DON ∆t = {0.01, 0.05} (multi) 0.075±0.000 0.113±0.001 0.032±0.000
DON-LSTM ∆t = 0.01 (high) 0.071±0.003 0.140±0.006 0.048±0.004
DON-LSTM ∆t = {0.01, 0.05} (multi) 0.033±0.000 0.068±0.001 0.011±0.000
LSTM ∆t = 0.01 (high) 0.036±0.001 0.079±0.001 0.015±0.000
FNO ∆t = 0.01 (high) 0.055±0.000 0.090±0.000 0.021±0.000
Transformer ∆t = 0.01 (high) 0.101±0.005 0.163±0.005 0.065±0.004

Table 4: The mean and the standard deviation of prediction metrics on high-resolution data. Each
model is trained 5 times.
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Benjamin–Bona–Mahony
Model Resolution MAE RMSE RSE
NH = 250, NL = 1000
DON ∆t = 0.075 (high) 0.554±0.019 0.932±0.031 0.297±0.020
DON ∆t = 0.375 (low) 0.166±0.012 0.383±0.011 0.050±0.003
DON ∆t = {0.075, 0.375} (multi) 0.155±0.011 0.331±0.011 0.041±0.003
DON-LSTM ∆t = 0.075 (high) 0.198±0.041 0.510±0.095 0.092±0.034
DON-LSTM ∆t = {0.075, 0.375} (multi) 0.088±0.005 0.271±0.036 0.025±0.007
LSTM ∆t = 0.075 (high) 0.191±0.008 0.544±0.013 0.101±0.005
FNO ∆t = 0.075 (high) 0.098±0.006 0.195±0.015 0.013±0.002
Transformer ∆t = 0.075 (high) 0.264±0.006 0.684±0.021 0.160±0.010
NH = 500, NL = 2000
DON ∆t = 0.075 (high) 0.250±0.010 0.530±0.011 0.096±0.004
DON ∆t = 0.375 (low) 0.096±0.006 0.245±0.010 0.021±0.002
DON ∆t = {0.075, 0.375} (multi) 0.074±0.008 0.192±0.010 0.013±0.001
DON-LSTM ∆t = 0.075 (high) 0.107±0.020 0.264±0.033 0.024±0.006
DON-LSTM ∆t = {0.075, 0.375} (multi) 0.042±0.002 0.135±0.020 0.006±0.002
LSTM ∆t = 0.075 (high) 0.111±0.018 0.344±0.014 0.041±0.003
FNO ∆t = 0.075 (high) 0.050±0.006 0.091±0.009 0.003±0.001
Transformer ∆t = 0.075 (high) 0.117±0.006 0.337±0.013 0.039±0.003
NH = 750, NL = 3000
DON ∆t = 0.075 (high) 0.181±0.018 0.380±0.008 0.050±0.002
DON ∆t = 0.375 (low) 0.058±0.006 0.168±0.005 0.010±0.001
DON ∆t = {0.075, 0.375} (multi) 0.046±0.002 0.140±0.012 0.007±0.001
DON-LSTM ∆t = 0.075 (high) 0.048±0.007 0.119±0.025 0.005±0.002
DON-LSTM ∆t = {0.075, 0.375} (multi) 0.032±0.006 0.125±0.022 0.005±0.002
LSTM ∆t = 0.075 (high) 0.068±0.005 0.250±0.008 0.021±0.001
FNO ∆t = 0.075 (high) 0.037±0.002 0.063±0.004 0.001±0.000
Transformer ∆t = 0.075 (high) 0.081±0.009 0.233±0.015 0.019±0.002
NH = 1000, NL = 4000
DON ∆t = 0.075 (high) 0.125±0.009 0.288±0.012 0.028±0.002
DON ∆t = 0.375 (low) 0.043±0.002 0.110±0.001 0.004±0.000
DON ∆t = {0.075, 0.375} (multi) 0.033±0.006 0.103±0.011 0.004±0.001
DON-LSTM ∆t = 0.075 (high) 0.061±0.023 0.162±0.071 0.011±0.008
DON-LSTM ∆t = {0.075, 0.375} (multi) 0.019±0.001 0.074±0.011 0.002±0.001
LSTM ∆t = 0.075 (high) 0.056±0.008 0.191±0.013 0.012±0.002
FNO ∆t = 0.075 (high) 0.030±0.001 0.052±0.001 0.001±0.000
Transformer ∆t = 0.075 (high) 0.057±0.004 0.167±0.012 0.010±0.001

Table 5: The mean and the standard deviation of prediction metrics on high-resolution data. Each
model is trained 5 times.
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Cahn–Hilliard equation
Model Resolution MAE RMSE RSE
NH = 250, NL = 1000
DON ∆t = 0.02 (high) 0.066±0.004 0.104±0.005 0.039±0.004
DON ∆t = 0.1 (low) 0.050±0.006 0.074±0.007 0.020±0.004
DON ∆t = {0.02, 0.1} (multi) 0.031±0.003 0.053±0.004 0.010±0.002
DON-LSTM ∆t = 0.02 (high) 0.125±0.015 0.206±0.021 0.154±0.032
DON-LSTM ∆t = {0.02, 0.1} (multi) 0.023±0.003 0.043±0.004 0.007±0.001
LSTM ∆t = 0.02 (high) 0.025±0.000 0.054±0.001 0.011±0.000
FNO ∆t = 0.02 (high) 0.032±0.002 0.054±0.004 0.011±0.001
Transformer ∆t = 0.02 (high) 0.049±0.001 0.093±0.001 0.031±0.001
NH = 500, NL = 2000
DON ∆t = 0.02 (high) 0.041±0.001 0.067±0.001 0.016±0.001
DON ∆t = 0.1 (low) 0.044±0.002 0.063±0.004 0.014±0.002
DON ∆t = {0.02, 0.1} (multi) 0.018±0.001 0.031±0.002 0.003±0.000
DON-LSTM ∆t = 0.02 (high) 0.079±0.010 0.141±0.013 0.072±0.014
DON-LSTM ∆t = {0.02, 0.1} (multi) 0.016±0.002 0.030±0.003 0.003±0.001
LSTM ∆t = 0.02 (high) 0.015±0.000 0.037±0.001 0.005±0.000
FNO ∆t = 0.02 (high) 0.022±0.001 0.036±0.001 0.005±0.000
Transformer ∆t = 0.02 (high) 0.028±0.002 0.062±0.001 0.014±0.000
NH = 750, NL = 3000
DON ∆t = 0.02 (high) 0.034±0.002 0.056±0.002 0.011±0.001
DON ∆t = 0.1 (low) 0.047±0.004 0.066±0.006 0.016±0.003
DON ∆t = {0.02, 0.1} (multi) 0.013±0.001 0.024±0.001 0.002±0.000
DON-LSTM ∆t = 0.02 (high) 0.055±0.007 0.109±0.013 0.043±0.010
DON-LSTM ∆t = {0.02, 0.1} (multi) 0.011±0.001 0.021±0.002 0.002±0.000
LSTM ∆t = 0.02 (high) 0.013±0.001 0.029±0.001 0.003±0.000
FNO ∆t = 0.02 (high) 0.018±0.000 0.031±0.000 0.003±0.000
Transformer ∆t = 0.02 (high) 0.021±0.001 0.049±0.001 0.009±0.000
NH = 1000, NL = 4000
DON ∆t = 0.02 (high) 0.025±0.002 0.044±0.001 0.007±0.000
DON ∆t = 0.1 (low) 0.010±0.000 0.020±0.001 0.001±0.000
DON ∆t = {0.02, 0.1} (multi) 0.009±0.000 0.016±0.000 0.001±0.000
DON-LSTM ∆t = 0.02 (high) 0.045±0.003 0.092±0.007 0.031±0.004
DON-LSTM ∆t = {0.02, 0.1} (multi) 0.007±0.000 0.015±0.000 0.001±0.000
LSTM ∆t = 0.02 (high) 0.011±0.001 0.025±0.001 0.002±0.000
FNO ∆t = 0.02 (high) 0.017±0.000 0.028±0.000 0.003±0.000
Transformer ∆t = 0.02 (high) 0.016±0.000 0.041±0.001 0.006±0.000

Table 6: The mean and the standard deviation of prediction metrics on high-resolution data. Each
model is trained 5 times.
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Figure 5: Model performance vs. amount of training samples. The y-axis shows the relative squared
error for predictions on high-resolution test data, while the x-axis indicates the number of high- and
low-resolution training samples. The figure compares the performance of three models: DON (red)
and DON-LSTM (blue, with light-blue for multi-resolution) and LSTM (green), with variations of
training data denoted by D□ and the line pattern (DH and solid line for high-resolution, DL and
dotted line for low-resolution, and DH , DL and dash-dotted line for multi-resolution). The error bars
indicate the 95% confidence interval calculated over the five trained models (two standard deviations
of the error).
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Figure 6: Model performance vs. amount of training samples. The y-axis shows the relative squared
error for predictions on high-resolution test data, while the x-axis indicates the number of high-
and low-resolution training samples. The figure compares the performance of four models: multi-
resolution DON-LSTM (blue), LSTM (green), transformer (black), and FNO (orange), with varia-
tions of training data denoted by D□ and the line pattern (DH and solid line for high-resolution,
and DH , DL and dash-dotted line for multi-resolution). The error bars indicate the 95% confidence
interval calculated over the five trained models (two standard deviations of the error).

C ARCHITECTURE DETAILS

C.1 DEEPONET

The vanilla DeepONet is constructed with a branch and trunk network with the same output sizes,
which are merged using Einstein summation (Figure 1). The input to the branch network is of the
size [batch size, x len], the input to the trunk network is of the size [x len×t len, 2], and the output
of the network after the Einstein summation is [batch size, x len×t len], where batch size refers to
the number of samples in each minibatch, and x len and t len, to the sizes of the spatial and temporal
dimensions, i.e., the number of discretization points.

Table 7: Branch network.

LAYER OUTPUT SHAPE ACTIVATION PARAM
0 INPUT (NONE, X) - 0
1 DENSE (NONE, 150) SWISH 150x+ 150
2 DENSE (NONE, 250) SWISH 37, 750
3 DENSE (NONE, 450) SWISH 112, 950
4 DENSE (NONE, 380) SWISH 171, 380
5 DENSE (NONE, 320) SWISH 121, 920
6 DENSE (NONE, 300) LINEAR 96, 300
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Table 8: Trunk network.

LAYER OUTPUT SHAPE ACTIVATION PARAM
0 INPUT (NONE, 2) - 0
1 DENSE (NONE, 200) SWISH 600
2 DENSE (NONE, 220) SWISH 44, 220
3 DENSE (NONE, 240) SWISH 53, 040
4 DENSE (NONE, 250) SWISH 60, 250
5 DENSE (NONE, 260) SWISH 65, 260
6 DENSE (NONE, 280) LINEAR 73, 080
7 DENSE (NONE, 300) LINEAR 84, 300

The DeepONet is trained in minibatches of 50 samples using the Adam optimizer and learning rate
of 1e−4. For the DeepONet the data is normalized in the following manner: the inputs to the branch
network and the outputs of the DeepONet use standard scaling, and the inputs to the trunk network
use min-max (Appendix D). The vanilla DeepONet for the full trajectory is trained up to 25, 000
epochs.

C.2 DON-LSTM

Table 9: LSTM extension for the input of t timesteps.

LAYER OUTPUT SHAPE ACTIVATION PARAM
0 DEEPONET OUTPUT (NONE, x× t) - 0
1 RESHAPE (NONE, t, x) - 0
2 LSTM (NONE, t, 200) TANH 4× ((x+ 1)× 200 + 2002)
3 DENSE (NONE, t, x) LINEAR xt+ x

The inputs and outputs in the LSTM training are normalized using standard scaling.

D DATA SCALING DETAILS

When training the DeepONets, the inputs to the branch net are scaled using standard scaling, while
the inputs to the trunk net use the min-max scaling. For the LSTM, the inputs are scaled using
standard scaling. The outputs are always scaled with the standard scaling.

D.1 STANDARD SCALING

The standard scaling formula is defined as:

x′ =
x− µ

σ
, (15)

where x′ are the standardized values, x are the original values, µ is the mean, and σ is the standard
deviation of x.

D.2 MIN-MAX SCALING

Min-max scaling, also known as Min-max normalization, scales the data between 0 and 1. It is
expressed by the equation:

x′ =
x− xmin

xmax − xmin
, (16)

where x′ are the normalized values, x are the original values, and xmin and xmax are the minimal
and maximal values of x.
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E EVALUATION METRICS

In this study, we used several metrics to evaluate the performance of the model such as mean average
error, root mean squared error, and relative squared error.

E.1 MEAN AVERAGE ERROR

The mean average error (MAE) is expressed as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (17)

where n is the number of samples, yi is the true value of the ith sample, and ŷi is the predicted value
of the ith sample.

E.2 ROOT MEAN SQUARED ERROR

The root mean squared error (RMSE) is expressed as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (18)

where: n is the number of samples, yi is the true value of the ith sample and ŷi is the predicted value
of the ith sample.

E.3 RELATIVE SQUARED ERROR

The relative squared error (RSE) is the total squared error between the predicted values and the
ground truth normalized by the total squared error between the ground truth and the mean. RSE is
interpreted on the scale between 0-1, where 0 indicates the perfect fit, while values of 1 and larger are
obtained only if the model’s prediction is worse than fitting the mean line. The metric is expressed
as:

RSE =
1
n

∑n
i=1(yi − ŷi)

2

1
n

∑n
i=1(yi − ȳ)2

(19)

where yi is the true value of the ith sample, ŷi is the predicted value of the ith sample, and ȳ is the
mean value of all samples.
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