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ABSTRACT

Explainability is necessary for many tasks in biomedical research. Recent explain-
ability methods have focused on attention, gradient, and Shapley value. These
do not handle data with strong associated prior knowledge and fail to constrain
explainability results based on known relationships between predictive features.
We propose GraphPINE, a graph neural network (GNN) architecture leveraging
domain-specific prior knowledge to initialize node importance optimized during
training for drug response prediction. Typically, a manual post-prediction step ex-
amines literature (i.e., prior knowledge) to understand returned predictive features.
While node importance can be obtained for gradient and attention after predic-
tion, node importance from these methods lacks complementary prior knowledge;
GraphPINE seeks to overcome this limitation. GraphPINE differs from other GNN
gating methods by utilizing an LSTM-like sequential format. We introduce an
importance propagation layer that unifies 1) updates for feature matrix and node
importance and 2) uses GNN-based graph propagation of feature values. This
initialization and updating mechanism allows for informed feature learning and
improved graph representation.
We apply GraphPINE to cancer drug response prediction using drug screening
and gene data collected for over 5,000 gene nodes included in a gene-gene graph
with a drug-target interaction (DTI) graph for initial importance. The gene-gene
graph and DTIs were obtained from curated sources and weighted by article
count discussing relationships between drugs and genes. GraphPINE achieves a
PR-AUC of 0.894 and ROC-AUC of 0.796 across 952 drugs. Code is available
at https://anonymous.4open.science/r/GraphPINE-40DE.

1 INTRODUCTION

Drug response prediction (DRP) is an open research challenge in personalized medicine and drug
discovery. Work in this research area seeks to improve treatment outcomes and reduce adverse
effects. However, the complex interplay between drug compounds and cellular entities makes this
task challenging. Traditional approaches often fail to capture the intricate network of interactions that
influence drug response, leading to suboptimal predictions with limited interpretability. Despite recent
advancements, current DRP methods face challenges such as data heterogeneity, limited sample sizes,
and the need for multi-omics integration (Azuaje, 2017; Lu, 2018; Vamathevan et al., 2019).
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Greater data availability combined with algorithmic improvements have led to an increase in machine
learning (ML) techniques in this research area. GNNs have emerged as a promising approach due to
their ability to model complex relational data (Kipf & Welling, 2016). Recent GNN variants, such
as Graph Transformer Networks (Yun et al., 2019) and Graph Diffusion Networks (Klicpera et al.,
2019), have shown promise in capturing complex, long-range dependencies in biological networks.
However, these advanced architectures often come at the cost of increased complexity and reduced
interpretability. This leads to two main limitations in existing GNN models for DRP. First, many
models do not incorporate known biological information, such as DTI. This omission can lead to
predictions that, while accurate, may not align with known biological mechanisms. Second, the
“black box” nature of many deep learning models makes it difficult for researchers and clinicians to
understand and trust the predictions. This lack of interpretability is a significant barrier to adopting
these models for furthering understanding of drug mechanisms.

While some attempts have been made to incorporate biological priors into GNNs (Zitnik et al., 2018)
or improve interpretability (Ying et al., 2019), no existing method addresses both challenges in
the context of DRP. To address these limitations, we introduce GraphPINE (Graph Propagating
Importance Network for Explanation), a novel GNN approach combining the predictive power of
deep learning with biologically informed feature importance propagation and interpretability.

The key innovation of GraphPINE lies in its Importance Propagation (IP) Layer, which updates and
propagates gene importance scores across the network during the learning process. This mechanism
allows GraphPINE to:

1. Integrate known DTI information with the underlying gene network structure, ensuring the model’s
predictions are grounded in known biological interactions.

2. Capture drug-gene interactions with N-hops GNN layers, providing a more comprehensive view
of drug influence on the gene network.

3. Generate interpretable visualizations of gene-gene interactions under the drug treatment, offering
new perspectives on potential drug action mechanisms.

2 RELATED WORKS

2.1 DRUG RESPONSE PREDICTION

DRP refers to the process of forecasting how a particular drug will affect the viability of a biological
system based on various data inputs such as genomic information and molecular structures (Adam
et al., 2020). The goal is to predict the drug sensitivity, which can aid in personalized medicine,
allowing for more targeted treatments for patients.

Several notable models have emerged: Li et al. (2019) developed DeepDSC combining an autoencoder
for gene expression to obtain hidden embeddings, which are then used as input to a feed-forward net-
work along with drug fingerprint embeddings. Lao et al. (2024) implemented the DeepAEG, including
transformer for SMILES and attention for multi-omics data (e.g., mutation, gene expression).

2.2 GRAPH NEURAL NETWORKS IN COMPUTATIONAL BIOLOGY

GNNs have emerged as a powerful tool for modeling complex biological systems. Huang et al.
(2021) utilized GNNs for side effect prediction with drug-drug interaction networks. GNNs have also
been used for molecular property prediction, showcasing the potential of GNNs in cheminformatics
(Fu et al., 2021b). For the DRP, GraphDRP (Nguyen et al., 2021) integrates gene expression and
protein-protein interaction networks, while MOFGCN (Peng et al., 2021) combines multi-omics data.

2.3 EXPLAINABLE AI IN BIOLOGICAL APPLICATIONS

As ML models become complex, there is a growing need for interpretability, especially in biomedical
applications where understanding the rationale behind predictions is fundamental for clinical research.
Explainable AI methods can be categorized into three main types:

1. Gradient-based methods: These techniques utilize gradient information to highlight impor-
tant features. For example, Grad-CAM (Selvaraju et al., 2020) generates visual explanations
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for decisions made by convolutional neural networks. Fu et al. (2021a) produces molecular
substructure-level gradient to provide interpretability for drug design.

2. Attention-based methods: These approaches leverage attention coefficients to identify relevant
inputs. Abnar & Zuidema (2020) propose attention flow to quantify the information propagation
through self-attention layers, improving the interpretability of the Transformer. For DRP, Inoue
et al. (2024) employs Graph Attention Network (GAT) (Veličković et al., 2017) on a heterogeneous
network of proteins, cell lines, and drugs, offering interpretability through attention coefficients.

3. Shapley value-based methods: SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017;
Wang et al., 2024) assigns importance values to input features based on game theory principles,
providing a unified measure of feature contributions to model predictions.

GraphPINE is related to the attention-based methods but with key distinctions. Unlike typical
attention mechanisms assigning importance to edges, GraphPINE uses DTI information to initialize
node importance scores. It propagates this importance throughout the learning process along with the
graph structure. This approach incorporates biological knowledge, thereby enhancing interpretability.

2.4 INFORMATION PROPAGATION IN NEURAL NETWORKS

Shrikumar et al. (2017) proposed DeepLIFT (Deep Learning Important FeaTures). This method
computes importance scores, capturing non-linear dependencies that might be missed by other
approaches. DeepLIFT addresses the limitations of traditional gradient-based methods by considering
the difference from a reference input. This approach offers a more nuanced understanding of feature
contributions and provides more interpretable explanations of model outputs.

More recently, Abnar & Zuidema (2020) introduced Attention Flow, a method designed for Trans-
former models. This approach models the propagation of attention through the layers of a Transformer,
quantifying how information flows from input tokens to output tokens. Attention Flow provides a
more accurate measure of token relationships compared to raw attention weights, offering insights
into how Transformer models process and utilize information across their multiple attention layers.

These methods can all be viewed as specialized forms of information propagation. In each case, the
“information” being propagated represents the relevance, importance, or attention associated with
different components of the network. These approaches demonstrate how the concept of information
propagation can be leveraged to enhance the interpretability of complex neural network models,
offering valuable insights into their decision-making processes across various network architectures.

2.5 IMPORTANCE GATING WITH GNNS

Recent studies have proposed different approaches for incorporating gating mechanisms into GNNs.
Two notable examples are Event Detection GCN (Lai et al., 2020) and CID-GCN (Zeng et al., 2021).

Event detection is a natural language processing (NLP) task aiming to identify specific events (e.g.,
accidents) from documents. Event Detection GCN implements a gating mechanism utilizing trigger
candidate information (e.g., potential event-indicating words: ”attacked”) to filter noise from hidden
vectors. The model incorporates gate diversity across layers and leverages syntactic importance scores
from dependency trees, which represent grammatical relationships between words in sentences.

CID-GCN, designed for chemical-disease relation extraction, constructs a heterogeneous graph with
mentions (representing specific entity occurrences), sentences (containing the textual context), and
entities (normalizing multiple mentions) nodes. The model employs gating mechanisms to address
the over-smoothing problem and enables effective information propagation between distant nodes.

GraphPINE advances these concepts through two key ideas. First, it introduces a novel approach
to importance scoring by leveraging domain-specific prior knowledge for initialization rather than
relying solely on previous hidden states. Second, it implements a unified importance score updating
mechanism through graph learning, departing from the context-based or two-step gating methods.

3 METHODS

This section presents the GraphPINE model, including data preprocessing, network construction, and
the model architecture. GraphPINE is a GNN architecture designed for accurate and interpretable
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Figure 1: Overview of GraphPINE Components. (A) Importance Propagation (IP) Layer: This
illustrates the key components of the IP Layer in the GraphPINE model, including the GNN, impor-
tance gating, feature updates with residual connections, importance propagation, and updates. The
symbols represent the following operations: σ is the activation function, ⊙ is element-wise multipli-
cation, × is multiplication, + is addition, W denotes weighted calculation with bias, || represents
concatenation, and α is a hyperparameter for controlling importance. (B) GraphPINE architecture.
(C) Data Creation Overview: The model integrates multi-omics data (gene expression, copy number,
methylation, mutation) from NCI60 (Shoemaker, 2006) with gene-gene interaction networks from
PathwayCommons (Cerami et al., 2010; Rodchenkov et al., 2019). Each edge has attributes such as
“interact-with”, which are converted into one-hot vectors for edge attribution.

DRP, leveraging multi-omics data (e.g., gene expression, copy number variation, methylation, and
mutation information), along with known biological interactions to provide comprehensive insights
into drug-target relationships, as illustrated in Figure 1.

3.1 DATA PREPROCESSING AND NETWORK CONSTRUCTION

We integrated three key datasets to generate a gene-gene interaction network with initial importance
weights. First, we incorporated a gene-gene interaction network from PathwayCommons as our
base graph structure. Second, we collected multi-omics profiles from NCI-60 cell lines to serve as
node features. Third, we obtained drug-target interactions from five databases: CTD (Davis et al.,
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2023), DrugBank (Wishart et al., 2018), DGIdb (Freshour et al., 2021), STITCH (Szklarczyk et al.,
2021), and KIBA (Tang et al., 2014), which we used to establish initial node importance weights.
We selected genes based on their variance, network centrality, and drug-target interaction frequency.
Comprising 5,181 genes and 630,632 interactions. In addition, network edge types were encoded as
one-hot vectors (see Appendix A.1).

Gene expression data was normalized using TPM, Log2 transformation, and winsorization. Each
gene in each cell line was represented by a 4-dimensional feature vector combining all multi-omics
data. DTI scores were calculated from multiple databases, encompassing both direct physical binding
between drugs and targets, as well as their indirect associations.

Let Sdti(di, gj) be the initial importance score for drug di and gene gj . We normalized these scores
to a range of [0.5, 1]:

log count = log(1 + PubMed ID count)

Sdti(di, gj) = 0.5 + 0.5× log count −min(log count)
max(log count)−min(log count)

.
(1)

Here, log count refers to the log-transformed PubMed ID counts, where PubMed ID count represents
the number of papers retrieved from PubMed ESearch(Sayers, 2009) using the query that searches
for co-mentions by combining drug name and gene name. di and gj denote specific drugs and genes.
The 0.5 is added to distinguish the genes that are in databases, but they don’t have the literature
information. Therefore, the range of Sdti(di, gj) is Sdti (di, gj) ∈ {0} ∪ [0.5, 1].

3.2 GRAPHPINE MODEL ARCHITECTURE

The GraphPINE model predicts drug response and learns gene importance using a gene interaction
network G = (V,E) with node features X ∈ R|V |×d; edge features Eattr ∈ R|E|×f , and importance
scores I ∈ R|V |. The model outputs a predicted drug response ŷ ∈ R and updated importance score
I ′ ∈ R|V |, utilizing edge-aware GNN architectures (i.e., Graph Attention Network (GAT) (Veličković
et al., 2017), Graph Transformer (GT) (Yun et al., 2019), and Graph Isomorphism Network with
Edge features (GINE) (Hu et al., 2019)).

3.2.1 IMPORTANCE PROPAGATION LAYER

The Importance Propagation Layer (IP Layer) is a key component that processes and updates node
features while considering their importance scores. The layer operates through five main steps:

1. Apply TransformerConv to process node features. This step transforms the input node features
using graph topology:

hi = TransformerConv(xi, edge index, edge attr) (2)

2. Generate gate using GT output and importance scores. The gate controls information flow based
on node importance:

gi = σ(Wg[hi∥Ii] + bg) (3)
where σ is the sigmoid function and ∥ denotes concatenation.

3. Update node features using a gating mechanism that combines original and transformed features:
x̂i = gi ⊙ hi + (1− gi)⊙ xi (4)

where ⊙ represents element-wise multiplication.

4. Propagate importance scores through the network using a learnable transformation:
I ′i = Wpx̂i + bp (5)

5. Update and normalize importance scores. First, update scores using a decay mechanism:

I
(l+1)
i = αI

(l)
i + (1− α)I

′(l)
i (6)

Then, normalize and threshold the scores:

Inorm
i =

Ii −min(I)

max(I)−min(I)
, Ifinal

i =

{
Inorm
i if Inorm

i ≥ θ

0 otherwise
(7)

where θ is the importance threshold that determines which nodes are considered significant.
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3.2.2 MODEL ARCHITECTURE

The model consists of three stacked IP Layers with GraphNorm, Dropout, and ReLU between layers.
The final prediction is computed as follows:

p = σ

(
Wf

( 1

|V |
∑

v ∈ V h(L)
v

)
+ bf

)
(8)

where p is the positive class probability and h
(L)
v is the final node representation. The loss function

combines binary cross entropy (BCE) and importance regularization:

L = LBCE + wimp · Limp (9)

where Limp is L1 regularization on importance scores.

4 EXPERIMENTS

4.1 DATASET

571We processed the NCI-60 dataset (Shoemaker, 2006) using rcellminer (Luna et al., 2016),
applying a threshold of -4.595 to log-transformed IC50 (50% inhibitory concentration) values to
initially achieve a balanced 50:50 drug sensitive/resistance labels ratio. After selecting drugs with
NSC (National Service Center number) identifiers, the final dataset comprised 53,852 entries (36,171
positive, 17,681 negative). For zero-shot prediction, we split the data using 70% cell lines and 60%
drugs for training/validation (571 drugs, 42 cell lines) and the rest for testing (381 drugs, 18 cell
lines). This resulted in 18,067 training, 4,516 validation, and 6,525 test samples.

4.2 PREDICTION PERFORMANCE

To evaluate GraphPINE, we compared it against several baseline methods, including five traditional
ML approaches, two current research methods, and 3 GNNs without an IP layer. Table 1 presents the
performance metrics for each method, averaged over five independent runs.

Our GraphPINE model, particularly the GT variant, demonstrates superior performance across
multiple metrics. Given the imbalanced nature of our dataset, we place particular emphasis on the
PR-AUC and ROC-AUC scores as the most critical evaluation metrics. Notably, GraphPINE (GT)
achieves the highest PR-AUC (0.894) and ROC-AUC (0.796), underscoring its effectiveness in
handling imbalanced data. While DeepDSC shows higher accuracy (0.751) and precision (0.807),
GraphPINE (GT)’s balanced performance across multiple metrics indicates its robust ability to
effectively discriminate between classes.

MOFGCN exhibits a performance pattern with a high specificity (0.901) but poor performance across
other metrics (ROC-AUC: 0.492, PR-AUC: 0.666, Accuracy: 0.355). This suggests that while the
model excels at identifying resistance, it does so at the expense of overall classification performance,
indicating a highly imbalanced prediction behavior that limits its utility.

The ablation study demonstrates the significant impact of the IP layer across all architectures. The GT
variant achieves the best performance with PR-AUC of 0.894 and ROC-AUC of 0.796, representing
improvements of 2.29% and 2.74% from its baseline scores of 0.874 and 0.774, respectively. The GAT
architecture exhibits notable enhancements, with PR-AUC increasing by 2.74% (from 0.868 to 0.892)
and ROC-AUC by 4.04% (from 0.758 to 0.789). Most remarkably, the GINE architecture shows
the most substantial improvement, with PR-AUC increasing by 12.29% (from 0.794 to 0.891) and
ROC-AUC by 5.36% (from 0.750 to 0.790), demonstrating the IP layer’s effectiveness in enhancing
model performance.

It is worth noting that all variants of GraphPINE (GINE, GAT, and GT) show low standard deviations
across runs, indicating the stability and reliability of our proposed method. This consistency is
valuable when dealing with imbalanced datasets, as it suggests that our model’s performance is robust
across different data splits and initializations.
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Methods Explainability ROC-AUC (↑) PR-AUC (↑) Accuracy (↑) Precision (↑) Specificity (↑)

B
as

el
in

e

RF Feature
Importance

0.788
(±0.001)

0.892
(±0.002)

0.716
(±0.002)

0.726
(±0.002)

0.632
(±0.003)

LightGBM Feature
Importance

0.790
(±0.000)

0.870
(±0.000)

0.747
(±0.000)

0.769
(±0.000)

0.457
(±0.000)

MLP - 0.750
(±0.010)

0.838
(±0.006)

0.710
(±0.004)

0.721
(±0.009)

0.271
(±0.051)

MPNN - 0.792
(±0.013)

0.892
(±0.006)

0.728
(±0.009)

0.726
(±0.011)

0.571
(±0.044)

GCN - 0.766
(±0.019)

0.872
(±0.010)

0.710
(±0.021)

0.710
(±0.020)

0.559
(±0.029)

Pr
ev

io
us

R
es

ea
rc

h DeepDSC - 0.713
(±0.014)

0.783
(±0.009)

0.751
(±0.011)

0.807
(±0.009)

0.599
(±0.021)

MOFGCN - 0.492
(±0.000)

0.666
(±0.000)

0.355
(±0.000)

0.650
(±0.000)

0.901
(±0.000)

A
bl

at
io

n
w

/o
IP

la
ye

r GAT - 0.758
(±0.019)

0.868
(±0.013)

0.703
(±0.007)

0.687
(±0.011)

0.395
(±0.066)

GT - 0.774
(±0.019)

0.874
(±0.016)

0.717
(±0.020)

0.717
(±0.019)

0.566
(±0.034)

GINE - 0.750
(±0.019)

0.794
(±0.014)

0.700
(±0.018)

0.670
(±0.018)

0.336
(±0.037)

G
ra

ph
PI

N
E GAT Node Importance 0.789

(±0.006)
0.892
(±0.005)

0.720
(±0.012)

0.717
(±0.013)

0.547
(±0.048)

GT Node Importance 0.796
(±0.006)

0.894
(±0.001)

0.724
(±0.005)

0.719
(±0.006)

0.548
(±0.019)

GINE Node Importance 0.790
(±0.003)

0.891
(±0.001)

0.730
(±0.012)

0.728
(±0.015)

0.575
(±0.056)

Table 1: Predictive Performance Comparison for Binary Classification. Results show averages of
5 independent runs with standard deviations in parentheses. The best values for each metric are in
bold. Abbreviations: ROC-AUC: Receiver Operating Characteristic Area Under the Curve, PR-AUC:
Precision-Recall Area Under the Curve, RF: Random Forest, MLP: Multiple Layer Perceptron,
MPNN: Message-Passing Neural Network, GCN: Graph Convolutional Networks, MOFGCN: Multi-
Omics Data Fusion and Graph Convolution Network, GAT: Graph Attention Network, GT: Graph
Transformer, GINE: Graph Isomorphism Network with Edge features. Feature Importance: A
measure of how much each feature contributes to a model’s predictions.

TOP1

TOP1MT

TP53 TRAF3

TUBB1

TUBD1

UTP20

ZNF655ACTL8

ABCA10

9-Methoxycamptothecin-Related Gene Interaction Network

Unknown Drug-Target Interaction (N: 9)
Known Drug-Target Interaction (N: 1)

Figure 2: Gene importance scores for 9-
Methoxycamptothecin. Node size describes the
propagated gene importance, and node color shows
the initial DTI score.

Rank Initial
Importance

Gene PMIDs Relationship

1 1 TOP1 29312794... Target
2 - TOP1MT 24890608... Indirect
3 - TUBD1 - -
4 - ZNF655 - -
5 - UTP20 - -
6 - TUBB1 - -
7 - ACTL8 - -
8 - ABCA10 10606239 Indirect
9 - TRAF3 - -

10 - TP53 12082016... Indirect

Table 2: Top 10 predicted important genes
for 9-Methoxycamptothecin and related lit-
erature. (-) represents no initial DTI (0), and
(...) describes multiple papers. Target: Genes
encoding proteins that directly bind to and inter-
act with the drug. Indirect: Genes that do not
encode proteins that physically interact with the
drug but are involved in its mechanism of action,
pathway, or response.

4.3 INTERPRETABILITY ANALYSIS

GraphPINE assigns importance scores to each gene, indicating their relative significance in pre-
dicting drug responses. Figure 2 illustrates the gene interaction network associated with 9-
Methoxycamptothecin (MCPT), a DNA damage-related anticancer drug and derivative of camp-
tothecin (CPT). In this network, the size of each node reflects the propagated gene importance after
prediction, while the node shape differentiates between known DTIs (denoted by a star) and unknown
interaction partners (denoted by a circle). The color of the nodes represents known DTI scores. The
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known target of 9-MCPT is TOP1; other genes may affect response directly or indirectly. Figure 2
shows that the known target, TOP1, has the highest DTI score and propagated importance, and other
genes have propagated importance but are low compared with TOP1. ABCA10 lacks an edge because
it is not among the top interactions shown.

Table 2 lists the top 10 important predictive genes related to 9-MCPT, including TOP1. Although
TOP1MT is not known as a target of 9-MCPT, CPT and CPT derivatives can trap TOP1MT-DNA
cleavage complexes (Zhang & Pommier, 2008), suggesting 9-MCPT may be indirectly effective
against TOP1MT. Additionally, there is an established association between CPT and ABC transporters,
making it plausible that ABCA10 might also be related to 9-MCPT activity. Moreover, the efficacy
of 9-MCPT may be influenced by the status of TP53, which modulates cellular responses to DNA
damage (Abuetabh et al., 2022).

These results demonstrate that GraphPINE can identify biologically relevant gene relationships
from gene-gene networks by incorporating prior DTI information. While TOP1MT and TP53 are
established as functionally related genes but not known drug targets, our model captures several of
these secondary relationships, highlighting its ability to detect both direct and indirect drug-gene
associations.

4.4 EVALUATION OF IMPORTANCE SCORE PROPAGATION

Metric Value
Cosine sim. 0.87

Spearman corr. 0.82
Rank changes 90.42%

Avg. shift ±67.02
Max up 946

Max down -932

Table 3: Differences in Node (Gene) Ranks Be-
fore and After Propagation. Cosine sim.: Cosine
similarity between initial/propagated importance
rank. Spearman corr.: Spearman Rank correla-
tion between initial/propagated importance rank.
Rank changes: The percentage of genes whose
ranks changed after propagation. Avg. shift: The
average rank shift. Max up/down: Maximum up-
ward/downward rank mobility.

To understand the extent to which our impor-
tance propagation affects our initial importance
scores, we analyzed 6000 randomly selected
drug-cell combinations (389 unique drugs × 26
cell lines) across 5181 genes. Our prior knowl-
edge interaction data is highly sparse; each drug
was associated with between 1 and 956 inter-
actors (an average of 39.86 interactions). Ap-
pendix B.4 includes a distribution of the num-
ber of interactions (Table 3). Importance scores
of 0 imply the absence of an interaction, and
non-zero values imply an interaction. Therefore,
we first examine the extent to which our prop-
agation method increased non-zero values. We
observed that non-zero values increased from
0.77% to 39.8% after propagation; this increased
the average number of non-zero values per drug
from 39.86 to 2061.81 (Appendix B.4). Next,
we examined how much individual non-zero val-
ues were altered by propagation using a similarity comparison and a rank change analysis. For the
similarity analysis (using cosine similarity and Spearman rank correlation), we observe a high but not
perfect correlation (0.89 and 0.82, respectively); this suggests importance values that are updated as
part of the training process. Approximately 90% of importance values showed some rank change as
an effect of propagation with an average shift of ±67.02 (maximum +946/-932), Next, we considered
the situation of starting with random initial importance values, and asked if training shifts these values
toward our prior knowledge-derived importance values.

5 DISCUSSION

We introduced GraphPINE, an interpretable GNN architecture featuring an “Importance Propagation
Layer”. Equations 2 through 7 show how node features and importance scores are updated through
training while preserving prior knowledge for stability and adaptability.

Our analysis demonstrates that GraphPINE effectively balances initial knowledge with learned
patterns. While the model starts with initial node importance values, the propagation mechanism
successfully discovers new relationships (increasing interactions from 0.77% to 39.8%) while main-
taining meaningful initial characteristics (0.9 cosine similarity). This balance enables both stability
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from prior knowledge and adaptability to new patterns. Future work could explore additional
information sources, such as protein-protein interaction networks, to further enhance this capability.

While our study focuses on DRP, the GraphPINE framework holds potential for a wide range of
applications in fields that involve complex network structures with inherent node importance. For
instance, PageRank scores could be used as initial importance values to enhance the propagation of
search relevance among web pages in graph analysis.
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A IMPLEMENTATION DETAILS AND HYPERPARAMETER TUNING

A.1 DATA PREPROCESSING AND NETWORK CONSTRUCTION

We integrated multiple data sources to create a comprehensive gene-gene interaction network and
DTI dataset. Our approach involves several key steps.

A.1.1 DATA INTEGRATION

Let G = g1, g2, ..., gn be the set of all genes, and D = d1, d2, ..., dm be the set of all drugs. We
collected data from various sources. From NCI-60 cell lines, we obtained multi-omics data including
gene expression (Xexp ∈ Rn×c), methylation (Xmet ∈ Rn×c), mutation (Xmut ∈ 0, 1n×c), and copy
number variation (CNV) (Xcnv ∈ Rn×c), where n is the number of genes and c is the number of cell
lines. Gene-gene interaction data (Egg ⊆ G×G) was sourced from PathwayCommons (Cerami et al.,
2010; Rodchenkov et al., 2019), containing various types of interactions such as catalysis-precedes,
controls-expression-of, controls-phosphorylation-of, controls-state-change-of, controls-transport-of,
in-complex-with, and interacts-with. DTI data (Edti ⊆ D ×G) was collected from multiple sources,
including the CTD, DrugBank, DGIdb, STITCH, and the KIBA dataset.

A.1.2 GENE-GENE NETWORK CONSTRUCTION

We selected a subset of genes G′ ⊆ G based on three criteria. (1) First, we considered variance
in multi-omics data. For each data source s ∈ {exp,met,mut, cnv} where exp represents gene
expression, met represents methylation, mut represents mutation, and cnv represents copy number
variation, we computed the variance for each gene across cell lines:

vars(gi) =
1

c− 1

c∑
j=1

(Xsij − X̄si)
2 (10)

We selected the top 3000 genes with the highest variance for each data source. (2) Second, we
computed network centrality, calculating the degree of centrality for each gene in the initial interaction
network:

centrality(gi) =
|(gi, gj) ∈ Egg ∨ (gj , gi) ∈ Egg|

|G| − 1
(11)

We selected the top 3000 genes with the highest centrality. (3) Third, we considered DTI frequency,
calculating the frequency of each gene in the DTI data:

freqdti(gi) = |(dj , gi) ∈ Edti| (12)
We selected the top 3000 genes with the highest DTI frequency. The final set of genes G′ was the
union of these selections, resulting in 5,181 genes. We then constructed the gene-gene interaction
network G′ = (V ′, E′), where V ′ = G′ and E′ = Egg ∩ (G′ ×G′), containing 630,632 interactions.

A.1.3 EDGE ENCODING

Each interaction between genes is categorized into one of seven types based on the information from
PathwayCommons:“catalysis-precedes”, “controls-expression-of”, “controls-phosphorylation-of”,
“controls-state-change-of”, “controls-transport-of”, “in-complex-with”, and “interacts-with”. These
interaction types were encoded as one-hot vectors.

Let T = {t1, t2, ..., t7} represent the set of all interaction types. For each edge e ∈ E′, a binary
vector ve ∈ {0, 1}7 was created, where each element corresponds to a specific interaction type:

ve[i] =

{
1 if edge e has interaction type ti
0 otherwise.

(13)

A.1.4 MULTI-OMICS DATA PREPROCESSING

We focused on normalizing gene expression data through several steps. First, we converted the data
to Transcripts Per Million (TPM):

TPMij =
Xexpij∑n
i=1 Xexpij

× 106. (14)
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Next, we applied a Log2 transformation:

X ′
expij = log2(TPMij + 1). (15)

Finally, we performed Winsorization. Let q0.1 and q99.9 be the 0.1 and 99.9 percentiles of X ′exp.
We applied:

X ′′
expij

=


q0.1 if X ′

expij
< q0.1

q99.9 if X ′
expij

> q99.9

X ′
expij

otherwise.
(16)

These steps ensured our gene expression data was normalized and scaled for further analysis. We
then created 4-dimensional feature vectors for each gene in each cell line:

Xi = [X ′′
expi

, Xmeti , Xmuti , Xcnvi ]. (17)

A.2 IMPLEMENTATION DETAILS

The GraphPINE model was implemented using Python 3.10, PyTorch 2.4.0, and PyTorch Geometric
2.5.3, leveraging their efficient deep learning and graph processing capabilities. We employed the
Adam optimizer for training, with a learning rate of 0.001 and a batch size of 32. The model
architecture incorporates 3 Importance Propagation Layers (L = 3), each containing 64 hidden units.
To balance model performance and interpretability, we set the importance regularization coefficient λ
to 0.01 and the importance threshold τ to 0.1.

All experiments were conducted on NVIDIA Tesla A100 GPUs with 80 GB memory. The average
training time for GraphPINE was 0.2 seconds, with an inference time of 0.1 seconds per drug-
cell line pair, demonstrating its feasibility for large-scale DRP tasks. To ensure reproducibility
and facilitate further research, we have made our code and datasets publicly available at https:
//anonymous.4open.science/r/GraphPINE-40DE.

A.3 TRAINING PROCEDURE

The training procedure for the GraphPINE model is designed to optimize performance while pre-
venting overfitting. Algorithm 1 presents a detailed overview of this process. Concretely, the
GraphPINE training procedure involves initializing model parameters, iterating through epochs,
performing forward and backward passes, computing losses, and updating parameters. The procedure
also includes an early stopping mechanism to prevent overfitting.

We employ the Adam optimizer with an initial learning rate of η = 10−3.

A.4 HYPERPARAMETER TUNING

To optimize the performance of our GraphPINE model, we conducted extensive hyperparameter
tuning using Optuna (Akiba et al., 2019), an efficient hyperparameter optimization framework. We
utilized MLflow for experiment tracking and logging, ensuring comprehensive documentation of our
optimization process.

Our hyperparameter search space encompassed key model parameters, including the number of
epochs (1-3), number of attention heads (1, 2, 4), number of GNN layers (2-4), dropout rate (0.1-0.3),
importance decay (0.7-0.9), importance threshold (1e-5 to 1e-3), hidden channel size (16, 32), BCE
weight (0.9-1.1), importance regularization weight (0.005-0.02), and learning rate (0.001-0.1). The
batch size was initially set to 5, with a dynamic reduction mechanism implemented to handle potential
memory constraints.

The optimization process consisted of 20 trials, each involving the following steps: (1) hyperparameter
suggestion by Optuna, (2) GraphPINE model initialization with the suggested configuration, (3)
model training and validation, and (4) reporting of the minimum validation loss as the objective
value for optimization. This systematic approach allowed us to identify the optimal hyperparameter
configuration that balanced model performance and computational efficiency.
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Algorithm 1 GraphPINE Training Procedure

1: Initialize model parameters θ
2: Initialize optimizer with learning rate η
3: Set early stopping patience p and minimum delta δ
4: for epoch = 1 to Ttotal do
5: for batch in training data do
6: Forward pass: ŷ, I ′ = fθ(X,E, I)
7: Compute loss: L = wBCE · LBCE(ŷ, y) + wimp · Limp(I

′, I)
8: Backward pass: Compute ∇θL
9: Update parameter using Adam optimizer.

10: end for
11: Evaluate on the validation set
12: if validation loss improved by at least δ then
13: Reset patience counter
14: Save the best model
15: else
16: Decrement patience counter
17: if patience counter = 0 then
18: Early stop and return best model
19: end if
20: end if
21: end for

Throughout the implementation and tuning process, we leveraged several key libraries and tools.
PyTorch served as the foundation for building and training our neural network model. Optuna
facilitated efficient hyperparameter optimization, while MLflow provided robust experiment tracking
and logging capabilities. We also utilized NumPy for numerical computations and Pandas for data
manipulation and analysis, ensuring a comprehensive and efficient development environment.

This rigorous implementation and tuning process enabled us to develop a highly optimized Graph-
PINE model capable of accurate and interpretable DRPs. The combination of advanced deep learning
techniques, efficient hyperparameter optimization, and careful implementation considerations resulted
in a model that balances performance, interpretability, and computational efficiency.

A.5 BASELINE SETTING

We implemented three baseline models for comparison: Random Forest (RF), LightGBM, and
Multiple Layer Perceptron (MLP). All models were trained on the same dataset, which combined
gene expression, methylation, mutation, copy number variation, and drug-target interaction data.

Random Forest (RF): We used scikit-learn’s RandomForestClassifier with hyper-
parameters optimized via Optuna. The key hyperparameters included the number of estimators
(100–1000), max depth (10–100), min samples split (2–20), min samples leaf (1–10), and max
features (None, "sqrt", or "log2").

LightGBM: We implemented LightGBM (Ke et al., 2017) with binary classification objective
and log loss metric. Hyperparameters were tuned using Optuna, including num leaves (31–255),
learning rate (1e-3 to 1.0), feature fraction (0.1–1.0), bagging fraction (0.1–1.0), bagging freq (1–
7), min child samples (5–100), lambda l1 and lambda l2 (1e-8 to 10.0), and num boost round
(100–2000).

Multiple Layer Perceptron (MLP): We created a PyTorch-based MLP with a flexible archi-
tecture. Hyperparameters optimized via Optuna included the number of layers (2–5), hidden
dimensions (64–512 units per layer), learning rate (1e-5 to 1e-1), batch size (32, 64, 128, or 256),
dropout rate (0.1–0.5), and normalization type (batch or layer normalization).
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DeepDSC and MOFGCN: For DeepDSC, we follow the original architecture consisting of a
stacked autoencoder followed by a feed-forward network. The encoder comprises three hidden layers
(2,000, 1,000, and 500 units), while the decoder mirrors this with hidden layers of 1,000 and 2,000
units. The activation function is selu for hidden layers and sigmoid for the output layer. Training
employs AdaMax optimizer with a learning rate of 0.0001, gradient clipping at 1.0, and Xavier
uniform initialization1.

For MOFGCN, we utilize the following hyperparameters: scale parameter ε = 2, proximity parameter
N = 11, number of iterations t = 3, embedding dimension h = 192, correlation information
dimension k = 36, scaling parameter α = 5.74, learning rate 5× 10−4, and 1000 training epochs.
The model uses the PyTorch framework with Adam optimizer.

Both models employ early stopping to prevent overfitting - DeepDSC with the patience of 30 epochs
and MOFGCN monitoring the validation loss.

MPNN, GCN, and GINE: For the MPNN (Message-Passing Neural Network) (Gilmer et al.,
2017), GCN (Graph Convolutional Network) (Kipf & Welling, 2016), and GINE (Graph Isomorphism
Network with Edge features) (Hu et al., 2019), we tuned the hyperparameters using the following
configuration. The number of epochs (num epochs) was selected from {10, 50, 100}. The batch size
was chosen from {2, 3, 4}. The number of GNN layers was selected from {1, 2, 3}. The dropout
rate was selected from {0.1, 0.2, 0.3}. The importance decay was chosen from {0.7, 0.8, 0.9}. The
importance threshold was selected from {1e-5, 1e-4, 1e-3}. The hidden channel size was selected
from {16, 32}. The weight for the mean squared error loss was selected from {0.9, 1.0, 1.1}. The
weight for importance regularization was selected from {0.005, 0.01, 0.02}. The learning rate was
selected from {0.001, 0.01, 0.1}.

GAT and Graph Transformer: For the GAT (Graph Attention Network) (Veličković et al.,
2017) and Graph Transformer models (Yun et al., 2019), we used a similar hyperparameter tuning
configuration as for MPNN, GCN, and GINE. However, for GAT and Graph Transformer, we also
included the number of attention heads, which was selected from {1, 2, 4}. This additional parameter
helps in controlling the number of attention mechanisms in the model, enabling it to learn more
complex representations.

For all models, we used Optuna for hyperparameter optimization, maximizing accuracy on the
validation set. Each model was then trained five times with the best hyperparameters, and we reported
the mean and standard deviation of accuracy, precision, recall, and F1 score on the test set.

The data preprocessing steps were consistent across all models, including normalization of gene
expression data and concatenation of multi-omics features. This ensured a fair comparison between
the baseline models and our proposed GraphPINE method.

B EXPERIMENTS

B.1 DATASET AND PREPROCESSING

In this study, we utilized a comprehensive drug response dataset containing information on multiple
cell lines and compounds. The dataset was preprocessed and split to ensure a rigorous evaluation of
the model’s generalization capabilities. Initially, the dataset contained IC50 data for unique cell lines
and unique NSC (Cancer Chemotherapy National Service Center number) identifiers for compounds.

To adapt this data for binary classification, we applied an empirically determined threshold, which
was set to achieve an approximately 50:50 ratio of response to non-response using the formula below.

binarize(x) =
{
1 if x < threshold
0 otherwise,

, (18)

where the threshold is the hyperparameter, and we set -4.595.

This process resulted in a dataset of 331,558 entries. We then refined our dataset to focus on the 60
cell lines present in the NCI60 panel, reducing the data to 315,778 entries. Further narrowing our
scope to include only the drugs used in the NCI60 project, we arrived at a final dataset of 53,852
entries.
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Figure 3: Gene importance scores and interactions
for Roscovitine derivative 1. Node size describes
the propagated gene importance.

Table 4: Top 10 predicted important genes for
Roscovitine derivative 1.

Rank Gene Name Evidence (PMID)

1 CDK1 37635245
2 NDE1 -
3 INCENP -
4 EEF1D -
5 NEDD1 -
6 CDT1 35931300
7 CSNK2B -
8 TPX2 -
9 ERCC6L -

10 FLNA -

To set up a zero-shot prediction scenario, we randomly selected 70% of unique cell lines and 60%
of unique NSC identifiers for the training and validation sets. The remaining cell lines and NSC
identifiers were used for the test set, ensuring no overlap of cell lines or compounds between the
train/validation and test sets. This approach allows us to evaluate the model’s ability to generalize to
entirely new cell-compound combinations.

The data was split as follows: The training set comprises 18,067 entries, consisting of 571 unique
drugs (NSCs) and 42 unique cell lines. The validation set contains 4,516 entries, utilizing the same
571 drugs and 42 cell lines as the training set. The test set includes 6,525 entries, encompassing 381
unique drugs and 18 unique cell lines.

Notably, while the training and validation sets share common cell lines and drugs, the test set
introduces new drug-cell line combinations. This configuration allows for a rigorous assessment of
our model’s generalization capability, enabling us to evaluate its predictive performance on unseen
drug-cell line pairs.

B.2 EVALUATION METRICS

We evaluated GraphPINE using a comprehensive set of metrics to assess its classification performance.
The Accuracy was used to measure the overall correctness of the model’s predictions across all classes.
To provide a more nuanced assessment of the model’s discriminative ability, we calculated the Area
Under the Receiver Operating Characteristic curve (ROC-AUC) and the Area Under the Precision-
Recall curve (PR-AUC). ROC-AUC quantifies the model’s ability to distinguish between classes
across various threshold settings, while PR-AUC is particularly useful for evaluating performance
on imbalanced datasets. To further characterize the model’s performance on negative instances, we
computed the Specificity, which measures the proportion of actual negatives correctly identified.
Additionally, we calculated the Negative Predictive Value (NPV), which quantifies the proportion
of negative predictions that were correct. These metrics collectively offer a thorough evaluation of
GraphPINE’s ability to correctly classify both positive and negative instances, providing insights into
its performance across different aspects of the classification task.

B.3 INTERPRETABILITY ANALYSIS

Figure 3 shows the predicted interaction network for a roscovitine derivative. The network contains
mostly unknown interactions (9) with only one known interaction. CDK1 is highlighted as the most
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important predicted target gene. This suggests the roscovitine derivative may have new mechanisms
of action beyond the known CDK inhibition, but CDK1 remains a key target.

Table 4 lists the top 10 predicted important genes for the roscovitine derivative. CDK1 is ranked first,
consistent with roscovitine’s known mechanism as a CDK inhibitor. However, most other predicted
genes, like NDE1, INCENP, EEF1D, etc. are new interactions without existing evidence. This
suggests potential new pathways the derivative may affect beyond CDK inhibition.

B.4 EVALUATION OF IMPORTANCE SCORE PROPAGATION

To validate our important propagation mechanism’s effectiveness, we analyzed rank comparisons
before/after propagation across 6000 randomly selected drug-cell combinations (389 unique drugs,
26 unique cell lines) and 5181 genes.

The initial importance density was 0.77% with an average of 39.86 interactions per drug-cell com-
bination. After propagation, the interaction density increased to 39.8% (+38.96%) with 2061.81
average interactions.

The metrics comparison revealed a high cosine similarity of 0.9, indicating that 90% of genes main-
tained their original characteristics post-propagation. While the overall Spearman rank correlation
was low due to zero entries, non-zero entries showed a strong correlation of 0.81, confirming the
preservation of meaningful relationships during network expansion.

99.98% of genes showed rank changes, with an average shift of ±1156.82 positions (maximum: +2658,
minimum: -2590). This substantial change, combined with high similarity (0.90) to the original data,
indicates the successful discovery of hidden connections while maintaining data integrity.

For non-zero DTI entries specifically, 90.5% of genes changed ranks with an average shift of ±69.71
(maximum: +946, minimum: -932). This demonstrates that our model modifies rankings for both
zero and non-zero entries while preserving cosine similarity and rank correlation.

Figure 4: Distribution of Interactions Numbers Be-
fore/After Propagation. Initial interactions (blue)
show a concentrated distribution near zero inter-
actions, while Propagated interactions (orange)
demonstrate a broader distribution centered around
2000 interactions.
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