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Abstract

Procedurally generated environments such as Procgen Benchmark provide a testbed
for evaluating the agent’s ability to robustly learn a relevant skill, by situating the
agent in ever-changing levels. The diverse levels associated with varying contexts
are naturally connected to curriculum learning. Existing works mainly focus on
arranging the levels to explicitly form a curriculum. In this work, we take a
close look at the learning process itself under the multi-level training in Procgen.
Interestingly, the learning process exhibits a gradual shift from easy contexts to hard
contexts, suggesting an implicit curriculum in multi-level training. Our analysis
is made possible through C-Procgen, a benchmark we build upon Procgen that
enables explicit control of the contexts. We believe our findings will foster a deeper
understanding of learning in diverse contexts, and our benchmark will benefit
future research in curriculum reinforcement learning.

1 Introduction

Training deep reinforcement learning agents in singleton environments is often susceptible to over-
fitting (Zhang et al., 2018a,b; Song et al., 2019; Cobbe et al., 2019, 2020). Recently, procedurally
generated environments, which take into account the agent’s generalization ability, have received
increasing attention (Justesen et al., 2018; Risi and Togelius, 2020; Cobbe et al., 2020). In those
environments, the agent faces an entirely new level in each episode (e.g., different maze layouts).
Succeeding in such ever-changing levels demands that the agent learn robust policies. Compared
to singleton environments, the diverse levels in procedurally generated environments pose new
challenges for reinforcement learning training, calling for a better understanding of how learning
progresses in this multi-level setting.

In procedurally generated environments, each level is associated with some environment parame-
ters (Dennis et al., 2020) that vary across levels, e.g., the agent’s max speed, the size of the maze, or
the number of obstacles. We refer to these various combinations of environment parameters as the
contexts of the environment. The varying contexts give rise to levels of varying difficulties, suggesting
a possible connection to curriculum learning (Bengio et al., 2009). While some previous works
explore this connection, they mainly focus on arranging the order of levels to form a curriculum (Jiang
et al., 2021b), or adaptively generating new levels to create a curriculum (Wang et al., 2019, 2020;
Dennis et al., 2020; Jiang et al., 2021a; Parker-Holder et al., 2022). The learning process itself in the
face of diverse levels is less investigated.
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To bridge this gap, we take a closer look at how reinforcement learning progresses under multi-level
training in Procgen. In particular, we do not consider any form of level prioritization, i.e., the levels
are sampled uniformly as in the standard setting of Procgen. To facilitate our study, we build a new
benchmark, C-Procgen, which provides explicit access and control over the environment parameters.
We then investigate how some metrics (e.g., the agent’s reward and the loss) under different contexts
evolve as the learning progresses. In addition, we inspect how learning will be affected when some
contexts are masked out or additional contexts are included.

We find that the learning process exhibits a gradual shift from easy contexts to hard contexts, despite
the absence of explicit curriculum (e.g., level prioritization). The return and the loss concentrate on
easy tasks in the early stage of training, and gradually shift towards hard tasks as the training goes
on. In addition, we observe a mismatch between the loss and the number of samples across different
contexts in the middle stage of training. Specifically, a large portion of samples collected by the agent
are from hard contexts but the loss is concentrated in easy tasks. This implies that a considerable
number of samples might be wasted and contribute little to updating the policy. Moreover, we find
that this mismatch has a potential connection to how much performance gain can be achieved from
modifying the sample distribution by prioritizing levels (Jiang et al., 2021b).

When the training contexts are partially masked out (easy, medium, or hard), we observe mixed results:
in some games, the excluded contexts are essential for the agent to form an implicit curriculum,
and masking them out will impact the performance; in other games, the remaining contexts are still
able to provide useful information for the agent to learn transferrable policies. Besides, we find that
expanding the set of training contexts helps expedite the learning shift from easy to hard contexts.

Our C-Procgen benchmark exposes the environment parameters in the black-box context generation
process in Procgen. It preserves the advantages of the Procgen benchmark, such as being compre-
hensive and challenging, while greatly expanding its use by adding explicit control of the contexts.
C-Procgen can be useful in curriculum learning and contextual reinforcement learning.

In summary, our paper makes the following contributions:

• We build C-Procgen, a benchmark that enhances Procgen with accessible and controllable
environment parameters, which can be of interest to curriculum learning and other areas.

• Our work offers insights into the learning dynamics under the multi-context training in
Procgen, and makes several interesting observations.

• We reveal that an implicit curriculum occurs in the multi-context training in Procgen despite
that the contexts are uniformly sampled.

2 Related works

2.1 Procedurally generated environments

Recently, procedural content generation has been adopted to design RL environments that consider
the agent’s ability to generalize as a central component of success. In procedurally generated
environments, each episode begins with a new context created from a generation process, which is
analogous to a “level” in video games. Across different episodes, the context is varied in certain
task-relevant (e.g., number of obstacles) or task-irrelevant (e.g., background image) aspects. One
popular procedurally generated environment suite is the Procgen benchmark (Cobbe et al., 2020),
which consists of 16 challenging Atari-like video games. However, in Procgen, multiple choices
during the procedural generation process are governed by a single random seed. The underlying
parameters that control the context generation are not accessible and visible to researchers. In other
words, the context is implicitly determined by a black-box process. As pointed out by (Kirk et al.,
2023), the evaluation protocols supported by such environments are limited to varying the size
of the context set. Our work empowers Procgen by making many factors of variation visible and
controllable, allowing researchers to explicitly configure the environment parameters.

Additionally, several works like Minigrid (Chevalier-Boisvert et al., 2018) and Minihack (Samvelyan
et al., 2021) offer flexible frameworks for creating customizable reinforcement learning environments
with adjustable parameters to generate different contexts. However, their environments are lightweight
and lack convenient APIs for controlling environment parameters.
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Figure 1: An illustrative example comparing the original Procgen and our C-Procgen.

Closely related to our work is the CARL benchmark (Benjamins et al., 2021), which collects
environments from several domains and makes their contexts configurable. While CARL mostly
focuses on control tasks (including classic control environments from OpenAI Gym (Brockman et al.,
2016) and physical simulations), our C-Procgen aims to extend the widely used Procgen benchmark.

2.2 Curriculum learning

Curriculum learning (Bengio et al., 2009) is a general strategy in machine learning that organizes
training examples or tasks in order to boost learning efficiency. The varying contexts in Procgen
pose challenges at different levels of difficulty, which is naturally connected to curriculum learning.
Jiang et al. (2021b) propose to prioritize the contexts that have higher estimated learning potential
when sampling new contexts for the next training levels. This induces an emergent curriculum of
increasingly difficult levels. Another line of work aims to automatically generate novel contexts that
adapt to the agent’s evolving ability (Wang et al., 2019, 2020; Dennis et al., 2020; Jiang et al., 2021a;
Parker-Holder et al., 2022). While these works focus on manipulating the distribution of contexts to
explicitly form a curriculum, our paper reveals that even when the contexts are uniformly sampled,
the agent’s learning process still implicitly follows a curriculum.

The prior works mentioned above can also be viewed as a form of automatic curriculum learn-
ing (Portelas et al., 2020). In this regard, our work is also closely related to the TeachMyAgent
benchmark (Romac et al., 2021). TeachMyAgent extends the Bipedal Walker environment from Ope-
nAI Gym (Brockman et al., 2016) to parametric ones that enable controllable procedural generation,
providing a testbed for benchmarking automatic curriculum learning algorithms. Similarly, our work
aims to make the more challenging Procgen benchmark configurable.

3 C-Procgen: Controllable Contextual Procgen

In this work, we first build a new benchmark that enhances the challenging Procgen suite aiming
to investigate how learning progresses under the multi-context setting. Specifically, we carefully
refactor the source code of Procgen and expose over 100 environment parameters that determine
the context generation, giving users more control and insight into the previously opaque generation
process. The resulting benchmark is C-Procgen 4 , which augments the original Procgen with
Controllable Contextual environment parameters and is well-suited for Curriculum reinforcement
learning research. Throughout this paper, we use the term “environment parameter” (Dennis et al.,
2020) to refer to any configurable factor that can vary across episodes (e.g., the agent’s max speed,
maze size, or number of obstacles). The term “context” refers to a specific configuration determined
by the combination of all environment parameters.

As illustrated in Figure 1, the original Procgen only provides a level ID to implicitly control the
generation of context. In contrast, our C-Procgen allows users to directly control the context

4The source code of C-Procgen can be found on GitHub: https://github.com/zxtan98/CProcgen
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via explicit configuration of the environment parameters. Thus, C-Procgen can serve as a high-
quality testbed for research in the area of Contextual Reinforcement Learning (Hallak et al., 2015).
Furthermore, C-Procgen enables users to integrate the context information into the learning algorithms,
which can be useful in Automatic Curriculum Learning (Portelas et al., 2020).

In addition, C-Procgen also provides several engineering enhancements for improved usability:

• Unlike the original Procgen, which assigns the same configuration to all environments
during the initialization of vectorized environments, C-Procgen allows distinct contexts to
be assigned to each environment. This flexibility helps expose the algorithm to more diverse
game contexts during training.

• Users can dynamically modify the context of each environment between episodes without
creating a new instance. This feature is particularly beneficial for curriculum reinforcement
learning, where environments need dynamically changing contexts throughout the learning
process.

• C-Procgen offers an interface that lets users track detailed context information during the
learning process, enhancing transparency and facilitating better analysis.

In summary, we would like to highlight that C-Procgen enhances Procgen with controllable envi-
ronment parameters while the introduced overhead during simulation is negligible. In the following
sections, we will take advantage of the features provided by C-Procgen to conduct a detailed analysis
of how the learning dynamics evolve across contexts in Procgen.

4 Learning Dynamics in Procgen

In this section, we investigate the learning progress of Procgen under various contexts. For our
experiments, we used C-Procgen, which faithfully simulates the same game logic and context
distributions as the easy mode of the original Procgen benchmark. By leveraging the flexible context
control features of C-Procgen, we recorded key metrics such as loss, entropy, episode length, average
score, and the number of samples for each context. This approach provides a more detailed view of
learning progress across different contexts.

Specifically, we select nine environments from Procgen due to their episodic contexts, which change
with each game reset, resulting in unique configurations for each playthrough. We utilize the Prox-
imal Policy Optimization (PPO) algorithm (Schulman et al., 2017) in our reinforcement learning
experiments. For each of these selected environments, we perform five individual runs, each encom-
passing 25 million steps, to ensure a comprehensive and robust analysis. Notably, the experiment
with C-Procgen allows for the generation of diverse environments under all possible circumstances,
following the sample efficiency experimental protocols of the original Procgen benchmark.

4.1 A Shift from Easy to Hard Contexts

To gain deeper insights into the learning process in C-Procgen, we first focus on the game Ninja. In
the game Ninja, the agent navigates through a field of suspended platforms while avoiding bombs.
This environment contains six unique contexts, each determined by different environment parameters
including section_num, gap_range and bomb_prob. For instance, the number of platforms in
the game, determined by the contextual factor section_num, significantly impacts the gameplay.
Moreover, the environment parameter gap_range determines the distance between the two platforms.
Smaller values correspond to smaller gaps, thus implying easier transitions for the agent. Furthermore,
a higher bomb_prob escalates the likelihood of encountering bombs. For instance, Figure 2 presents
heat maps that visualize some metrics of the learning process across different contexts within the
game Ninja, where each grid indicates a unique context. 5 Take, for example, the grid at coordinates
(2, 1); it corresponds to a context where the game features two platforms, and the gap_range and
bomb_prob are set to their respective minimum values.

5Due to their direct correlation, the environment parameters gap_range and bomb_prob are combined on
the same axis for simplification. Specifically, as gap_range increases, bomb_prob also increases. They are
correlated in the following three combinations: when gap_range is [0], bomb_prob is 0; when gap_range is
[0, 1], bomb_prob is 0.25; and when gap_range is [0, 1, 2], bomb_prob is 0.5.
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Figure 2: Dissecting the learning dynamics in Procgen with game Ninja as an example. Left: The
training curve, where we mark five stages during training (T1-T5). Right: Heatmaps of three metrics
at stage T1-T5, including average score (top row), loss per sample (middle row), and the number of
samples (bottom row) across different contexts.

Average Score. A notable phenomenon is observed in the Average Score for Ninja (depicted in
blue heat maps, see Figure 2). The average score, which measures the agent’s performance, varies
significantly across different contexts. Notably, as early as stage T2, the agent demonstrated high
scoring capability in the context (1, 0), while in other more challenging contexts such as (5, 2), high
scores were only achieved at a later stage as T5. This led us to categorize the contexts into two types:
“Easy contexts”, where high scores were obtained early in training, and “Hard contexts”, where high
scores were achieved much later. This progression of mastering different contexts effectively forms a
curriculum, subtly guiding the agent’s learning process.

Loss per Sample. Another important insight concerns the Loss per Sample of Ninja (depicted in
orange color heat maps, see Figure 2 6. This metric represents the average absolute value of the
sample-wise loss 7 generated at each algorithmic step within a specific context.

More specifically, throughout the learning process, the focus of the loss per sample metric appears to
shift progressively from simpler contexts to more challenging ones, potentially reflecting the order
in which the agent learns to master different scenarios. Notably, this metric tends to concentrate on
contexts that pose a moderate level of difficulty for the agent – those that are neither too easy nor
too difficult. This phenomenon can be understood as follows: in contexts where the agent is either
highly proficient or completely unfamiliar, it can make more accurate value judgments, resulting in
fewer losses. However, in moderately challenging contexts, the agent encounters more variability
in rewards, leading to errors in value estimation and, consequently, a higher number of loss signals
to drive its updates. This observation aligns with the core principle of curriculum learning, which
stresses the importance of guiding the agent through tasks that are neither too easy nor too difficult.

Samples Distribution. An analysis of the Samples Distribution (depicted in green color heat maps,
see Figure 2 reveals insights about the distribution of samples across different contexts within a single
iteration. While the probability of sampling each context remains constant during environment resets
and does not change over time, the length of the episode within each context is not constant, leading
to variation in the samples across contexts. Aside from the earliest stage at T1, it is observed from
the heat map that for the majority of the learning process within the game Ninja, samples tend to
concentrate within the hard contexts.

Figure 3 expands the scope of observation beyond the Ninja environment to encompass a wider
range of environments. We found that the observations made in the Ninja environment can be
generalized to other environments of the Procgen benchmark.

6The value ranges in the heatmaps of Figure 2 and Figure 3 have been normalized. The range for the score is
based on the maximum and minimum values achieved by the agent over the entire learning process, while the
ranges for loss per sample and the number of samples are based on the maximum and minimum values at each
specific time point.

7The loss from PPO (Schulman et al., 2017) is in a weighted sum of three terms: lpolicy,lvalue and lentropy.
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Figure 3: Score, loss per sample, and sample num across different environments and contexts. Each
subplot represents a different environment, with heatmaps depicting the metric values at different
time points and contexts.

4.2 A Mismatch between Loss and Sample Distribution

The metric “Loss per sample” indicates whether the agent has learned new content in a specific
context to a certain extent. As previously discussed, the agent’s focus tends to gravitate toward
contexts of moderate difficulty during learning. However, we observe an inconsistency: the contexts
on which the agent focuses do not match the distribution of samples in the Procgen environments.
This discrepancy suggests that a significant portion of the samples may not be providing sufficient
loss signals to effectively guide the agent’s learning. Particularly in the early stages of the process,
easy contexts often promote the agent’s initial progress, yet a majority of the samples the agent
encounters come from hard contexts, which yield limited learning.

To gain a deeper understanding of this inconsistency, we introduce a measure called “Loss Production
Efficiency” that captures the effectiveness of sample distribution in generating loss signals at the ith

iteration throughout the learning process in Procgen. The Loss Production Efficiency is defined as
the ratio between the loss generated by the current sample distribution across different contexts and
the maximum achievable loss:

Ei =

∑
c∈C p

c
i · lci

maxc∈C lci
(1)

In this equation, Ei represents the Loss Production Efficiency (LPE) for a specific context c from
context space C at the ith iteration. Here, lci refers to the loss per sample for context c at iteration i, and
pci denotes the proportion of samples for context c out of the total samples in the same iteration. The
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LPE for the entire learning process is represented by the average of the Loss Production Efficiencies
across all iterations, given by E = 1

N

∑N
i Ei, where N is the total number of iterations.
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Figure 4: Loss Production Efficiency vs. Score Im-
provement with Prioritized Level Replay in Proc-
gen Games

A notable observation reveals a potential cor-
relation between the LPE and the performance
improvement offered by the Prioritized Level
Replay algorithm (Jiang et al., 2021b) on Proc-
gen games. The performance improvement is
defined as ∆score = scorePLR−scorePPO

scorePPO
, where

scorePLR and scorePPO are the final scores with
and without PLR, respectively. The Prioritized
Level Replay algorithm aims to enhance the
learning process by augmenting data from sam-
ples generated by high-loss levels. Interestingly,
as illustrated in Figure 4, it appears that environ-
ments characterized by lower LPE tend to ex-
hibit more substantial performance gains when
the Prioritized Level Replay algorithm is em-
ployed. This could be attributed to the algo-
rithm’s ability to modify the sample distribution
and increase LPE.

Based on the insights gained from the above findings, it becomes apparent that LPE plays a crucial role
in the learning speed within an environment. When designing environments, optimizing factors such
as the distribution of contexts, maximum episode length, and conditions for terminating episodes can
significantly impact LPE. By carefully manipulating these factors, it is possible to create environments
that promote higher LPE, resulting in accelerated learning processes and improved agent performance.

5 Investigating Learning Dynamics under Context Reconfiguration

To investigate the influence of different training contexts on the reinforcement learning process, we
reconfigure the context setting of games using C-Procgen. Firstly, based on previous findings of loss
per sample across different contexts, we grouped contexts into three categories. We then created
game settings excluding these context groups, to test their necessity to learning progress. Secondly,
we add new contexts into the games, aiming to decrease discontinuity between existing contexts. We
employed the Proximal Policy Optimization (PPO) algorithm, conducting 5 runs for each setting,
consistent with the procedures in Section 4.

5.1 Partially Masking the Training Contexts

The experiments demonstrate the distinct roles of contexts in different games. As depicted in Figure 5,
we present the final average score and loss per sample heat maps for nine games when trained without
certain contexts.

Overall, certain contexts appear to be crucial for the learning process in the game. For instance, in
setting 2 of Coinrun, removing key contexts causes the learning process to stall, preventing the agent
from progressing through the game’s various stages. Similar patterns are observed in setting 1 of
Heist and setting 2 of Ninja. Moreover, a generalization phenomenon was observed across multiple
environments. In many cases, the agent was able to perform well even without training in certain
contexts. Interestingly, the overall performance of the agent improved in some cases when certain
contexts were excluded, such as in setting 3 of Climber, Setting 3 of Coinrun, and both Setting 2
and Setting 3 of Heist. One possible explanation for this improvement is that the excluded contexts
were particularly difficult. By removing these challenging contexts, the agent may have experienced
increased learning progress efficiency (LPE), which in turn enhanced its overall performance.

In summary, our observations indicate that certain contexts play a crucial transitional role in the
learning process. However, the benefit of having a larger number or wider variety of contexts is not
always straightforward.
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5.2 Expanding the Training Contexts

In this section, we focus on the game Leaper as a case study. We aim to provide a detailed exploration
of how the introduction of new contexts in the original Procgen benchmark, can influence the learning
progress, particularly by analyzing the changing distribution of loss during the learning process.

The game environment of Leaper requires the agent to avoid road vehicles and make use of the logs on
the river to reach the top of the map. Within this environment, there are two environment parameters:
the number of road lanes (road_lanes_num) and the number of water lanes (water_lanes_num).
Under the original context setting of Leaper, only four contexts exist: (0, 0), (1, 1), (2, 2), and (3, 3).
This indicates that the game will have an equal number of water lanes and road lanes, with each
context having an equal chance of being sampled at game initialization. In addition to the original
context setting of Leaper, we have introduced two new context settings. In Setting 1, we have six
new contexts to enhance the connectivity among the original context setting. In Setting 2, we permit
both water_lanes_num and road_lanes_num to take any value within the set {0, 1, 2, 3}. In both
Setting 1 and Setting 2, each context has an equal probability of being sampled.

With the original context setting, as observed from the stacked area chart in Figure 6, the loss during
the early stages of learning is primarily focused on context 0, followed by context 1. The transition of
loss focus to context 2, however, is relatively slow, and by the end of training, the loss has not yet
concentrated on context 3. In contrast, in Setting 1, due to the existence of more diverse contexts and
stronger connectivity among them, the proportion of loss generated by contexts 1 and 2 starts to shift
towards context 3 as early as around the 2 million steps. Comparing the results of the original setting
and Setting 1, it is suggested that the expanded contexts serve as stepping stones, aiding in the agent’s
learning and adaptation across different contexts. When comparing Settings 1 and 2, Setting 2 also
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Figure 6: Loss Proportion and Score curve in different expanded context settings

accelerates learning, but its effects appear less significant than those in Setting 1. This observation is
consistent with the trends noted in Section 5.2.

Moreover, upon observing the score curves and loss proportion of these three settings (see Figure 6),
it is notable that the increase in the agent’s loss proportion corresponds to the time when the agent’s
average score in that context begins to rapidly grow. Conversely, when the agent’s loss proportion
begins to decline in a context, it suggests that the agent has already become proficient in that context.
Consistent with the findings in Section 4, when the loss begins to shift, the agent has indeed already
mastered the respective context.

6 Conclusions

Procgen is a widely used procedurally generated environment suite that has varying contexts across
episodes. While previous works pay most attention to explicitly creating a curriculum of contexts, we
seek to investigate the learning process itself under the multi-level training in Procgen. To this end,
we build C-Procgen, which enhances Procgen with explicit access and control of context parameters.
With C-Procgen, we analyze the learning dynamics in Procgen across contexts and reveal that an
implicit curriculum happens as the learning proceeds. Our C-Procgen can also find its use in other
curriculum learning research. In the future, we will explore if this implicit curriculum connects to the
number of contexts and how we can take advantage of it to boost performance.

7 Limitation

We did not provide specific evaluation protocols for C-Procgen. Even though Procgen offers a
comprehensive set of games, we believe there are many other types of games that it doesn’t cover.
While we conducted several experiments, notably those involving modified context distributions,
we did not explore dynamic context distributions — where the context distribution evolves with
the learning progress. We believe that studies in this direction hold significant value for curriculum
learning. We plan to study this deeper in our future work.
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A Experiment Details

We use the PyTorch codebase from Raileanu and Fergus (2021) to train PPO Schulman et al. (2017)
agents on Procgen games. The agent is parameterized by the IMPALA network architecture Espeholt
et al. (2018). Unless otherwise stated, we follow the hyperparameters used in Cobbe et al. (2020) for
the easy mode of Procgen, as summarized in Table 1.

Similar to the original Procgen, our C-Procgen still enjoys high simulating speed. On a server with 2
Intel Xeon CPU cores and 56GB RAM, the FPS of Procgen is around 750 and the FPS of C-Procgen
is around 710. Regarding the training cost, training a PPO agent on an NVIDIA T4 GPU for 25M
steps takes approximately 2.5 3 hours.

Table 2 provides information on the episodic contexts used in our experiments in Sections 4 and 5,
including their descriptions and ranges of values.

HYPERPARAMETER VALUE

γ 0.999
λ 0.95

# timesteps per rollout 256
# epochs per rollout 3

# minibatches per epoch 8
entropy bonus 0.01

clip range 0.2
reward normalization no

learning rate 5e-4
# workers 1

# environments per worker 64
# total timesteps 25M

optimizer Adam
LSTM no

frame stack no

Table 1: Hyperparameters and their values
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GAME ENVIRONMENT PARAMETER DESCRIPTION VALUES

bossfight

Number of rounds

Determines the health or durability of
each round (boss starship). Higher val-
ues indicate a more resilient boss that
requires more damage to be defeated.

[1, 2, 3]

Round health
Specifies the number of rounds in the
game. Each round represents an en-
counter with the boss starship.

[1, 2, 3, 4, 5]

climber Number of platforms
Specifies the number of platforms in the
game. Each platform represents a step
for the player to climb.

[1, 2, · · · , 10]

coinrun
Number of sections Determines the number of sections

present in each game. [0, 1, 2, 3, 4]

Pit threshold

Affects the generation of pits in the
game. When the value is smaller, there
is a higher probability of pits appearing
in the game. Conversely, a larger value
reduces the likelihood of pits. This
environment parameter interacts with
several other environment parameters,
which are further detailed in the code
documentation under the "context de-
tails" section.

[0, 1, 2]

dodgeball Number of enemies

Specifies the number of enemies present
in the game. The player must dodge
the balls thrown by these enemies and
eliminate them to progress.

[1, 2, 3, 4]

fruitbot

Number of good things

Specifies the number of fruits that the
player can collect along the way. Col-
lecting a piece of fruit rewards the
player with a positive reward.

[0, 1, · · · , 9]

Number of bad things

Specifies the number of non-fruit ob-
jects that the player must avoid. Mistak-
enly collecting a non-fruit object results
in a larger negative reward.

[0, 1, · · · , 9]

heist

Number of keys

Specifies the total number of keys re-
quired to unlock the locks and suc-
cessfully complete the heist. The
player must collect these keys scattered
throughout the game.

[1, 2, 3]

Size of maze

Determines the size of the maze layout
in which the heist takes place. The maze
is generated using Kruskal’s algorithm
and serves as the environment for the
player to navigate and find the hidden
gem.

[3, 5, 7, 9]

leaper

Number of road lanes

Specifies the number of lanes in which
cars move. The player must cross these
lanes to reach the finish line and earn a
reward.

[0, 1, 2, 3]

Number of water lanes Specifies the number of lanes with logs
on a river. [0, 1, 2, 3]

maze Size of maze Determines the size of the maze layout. [3, 4, · · · , 15]

ninja

Number of sections
Specifies the number of narrow ledges
that the player, a ninja, must jump
across.

[0, 1, 2, 3, 4]

Gap range Controls the range of gaps between the
ledges that the ninja must traverse. [0, 1, 2]

Table 2: Descriptions of the contexts used in our experiments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims outlined in the abstract and introduction are well-aligned with the
detailed discussions and findings presented throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper do discuss the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The tools could be compiled on any devices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, the code is attached.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:The training code is on the GitHub.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper do not contain information about the statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provice the sufficient information on the computer resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The answer is yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper do no discuss these.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or model realsed in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The answer is yes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Full doc provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments and research with human subjects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
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should clearly state this in the paper.
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