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ABSTRACT

Learning diverse skills without hand-crafted reward functions could potentially
accelerate reinforcement learning in downstream tasks. However, existing skill
discovery methods focus solely on maximizing the diversity of skills without
considering human preferences, which leads to undesirable behaviors and pos-
sibly dangerous skills. For instance, a cheetah robot trained using previous
methods learns to roll in all directions to maximize skill diversity, whereas we
would prefer it to run without flipping or entering hazardous areas. In this work,
we propose a Foundation model Guided (FoG) skill discovery method, which
incorporates human intentions into skill discovery through foundation models.
Specifically, FoG extracts a score function from foundation models to evalu-
ate states based on human intentions, assigning higher values to desirable states
and lower to undesirable ones. These scores are then used to re-weight the re-
wards of skill discovery algorithms. By optimizing the re-weighted skill discov-
ery rewards, FoG successfully learns to eliminate undesirable behaviors, such as
flipping or rolling, and to avoid hazardous areas in both state-based and pixel-
based tasks. Interestingly, we show that FoG can discover skills involving be-
haviors that are difficult to define. Interactive visualisations are available from
https://sites.google.com/view/iclr-fog.

1 INTRODUCTION

Reinforcement learning (RL) has shown promising results in robotics (Tang et al., 2024; Wu et al.,
2023) and games (Vasco et al., 2024; Zhang et al., 2024). Typically, RL requires carefully designed
reward functions, which demand significant expert effort (Schenck & Fox, 2018; Sowerby et al.,
2022). In contrast, Unsupervised RL (URL) (Laskin et al., 2021; Rajeswar et al., 2023) aims to elim-
inate task-specific reward functions and train agents in a self-supervised manner. One key direction
in URL is pre-training agents to acquire diverse skills that can potentially be useful in downstream
tasks (Eysenbach et al., 2018; Park et al., 2023b), termed unsupervised skill discovery. Most prior
methods in unsupervised skill discovery focus on maximizing skill diversity, encouraging agents to
achieve diversity in both low-level behaviors and high-level policies. For instance, a cheetah robot
trained using previous methods (Park et al., 2022; 2023b) learns to flip or roll (low-level behavior) in
all directions (high-level policy). However, wide motions like flipping or rolling could damage the
robot, and entering restricted areas might pose safety risks. Ideally, we want agents to learn skills
that are not only diverse, but also align with specific intentions, such as eliminating undesirable
behaviors or avoiding certain areas.

To integrate human intentions into skill discovery, Kim et al. (2024b) trains agents to align with
behaviors presented in pre-collected demonstrations, enabling the discovery of diverse and desir-
able skills. However, collecting such demonstrations requires expert-level operations (Fu et al.,
2024; Pertsch et al., 2021), which may not be feasible in tasks where human performance is limited.
For instance, in high-dimensional humanoid robotic control tasks, we may want a humanoid robot
to adopt stretched postures rather than twisted ones. Yet, defining criteria such as “stretched” or
“twisted”, which is necessary for designing a reward function to collect such demonstrations, is ex-
tremely challenging. Concurrent work by Rho et al. (2024) utilizes large language models (Achiam
et al., 2023) to generate textual descriptions of every state based on state-specific queries. These de-
scriptions are then embedded (Reimers, 2019) to form a reward function to guide agents to discover
semantically diverse skills. However, this method only works in state-based tasks (language mod-
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def score_fn(state):
  y_coord = state[1]
  ...

⭐concept 

text2

text1
Foundation 

Models

Task description

Query ��
text embedding image embedding score functiondesirable intention undesirable intention

st
at

e-
b

as
ed

p
ix

el
-b

as
ed

CLIP

!

Figure 1: FoG leverages foundation models (such as ChatGPT, Claude and CLIP) to score states
in relation to given commands during training. These scores are used to re-weight the rewards of
the underlying skill discovery algorithm. Left: In state-based tasks (top row), task descriptions are
provided to foundation models, which are queried to generate a score function f(s) based on our
requirements. In pixel-based tasks (bottom row), the current visual state, textual descriptions of
desirable and undesirable intentions are input to foundation models to obtain embeddings. These
embeddings are then used to form the score function f(s), see Equation (8). Right: During train-
ing, skill discovery rewards are re-weighted using the score function. Re-weighting rewards of the
underlying skill discovery method (we use METRA (Park et al., 2023b)) by the score function is
equivalent with using the score function as the distance metric in the DSD objective.

els cannot handle visual input) and requires step-wise chat-style querying during training, which is
extremely expensive.

To address these limitations, in this work, we leverage the recent success on foundation models (Rad-
ford et al., 2021; Ouyang et al., 2022) and introduce a Foundation model Guided (FoG) skill discov-
ery method (see Figure 1). More specifically, we propose to extract a score function from foundation
models (in an one-time or batch-forwarding manner) to score states based on our intentions, assign-
ing higher scores for desirable behaviors and lower for undesirable ones. These scores are then used
to re-weight rewards of unsupervised skill discovery algorithms. By optimizing the re-weighted re-
wards, FoG learns not only to maximize skill diversity, but also to satisfy given human intentions.
Our results show that FoG successfully learns to follow human guidance on a variety of state-based
and pixel-based tasks, including high-dimensional humanoid control.

Our main contributions are threefold: 1) We introduce a novel foundation model guided unsuper-
vised skill discovery method (FoG), which leverages foundation models to incorporate human in-
tentions into skill discovery. Unlike most previous methods that focus solely on maximizing skill
diversity, FoG not only learns diverse skills but also aligns them with specified human intentions.
2) We evaluate FoG alongside three state-of-the-art baselines on both state-based and pixel-based
tasks. FoG outperforms baselines in both scenarios, showcasing superior generalization. 3) We
show FoG can learn behaviors that are challenging to define, such as being ‘twisted’ and ‘stretched’
on a humanoid robot, suggesting its potential for more complex applications. The FoG codebase
can be found in the supplemental materials.

2 PRELIMINARIES AND PROBLEM SETTING

We consider a reward-free Markov Decision Process defined as M = (A,S, p). S denotes
the state space, A denotes the action space and p is the transition dynamics function. A la-
tent vector z ∈ Z (also called ‘skill’) is sampled during training and its conditioned policy
π(·|s, z) is executed to get a skill trajectory τ = (s0, s1, ..., sT ) following the process: p(τ |z) =

p(s0)
∏T−1

t=0 π(at|st, z)p(st+1|st). π(·|s, z) can be learned by optimizing unsupervised exploration
objectives we discussed in Section 5, based on mutual information or distance-maximization.

FoG utilizes the Distance-maximizing Skill Discovery (DSD) (Park et al., 2023a) objective. Unlike
mutual information based methods (Eysenbach et al., 2018), DSD aims to maximize the Wasserstein
dependency measure (WDM) (Ozair et al., 2019) defined as:

IW(S;Z) = W(p(s, z), p(s)p(z)), (1)
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where W is the 1-Wasserstein distance on the metric space (S × Z, d) for distance metric d. By
maximizing the objective in Equation (1), the agent will not only maximize the diversity of skills,
but also maximize the distance metric d. Under some simplifying assumptions (Ozair et al., 2019;
Villani et al., 2009), maximization of Equation (1) can then be rewritten as:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(s′)− ϕ(s))
⊤
z

]
s.t. ∥ϕ(x)− ϕ(y)∥2 ≤ d(x, y), ∀(x, y) ∈ S, (2)

where ϕ is a function that maps states to a D-dimensional space, which is the same as the skill space
Z. Intuitively, Equation (2) aims to align the direction of z and ϕ(s′)−ϕ(s) (to learn distinguishable
and diverse skills), while maximizing the length of ||ϕ(s′)−ϕ(s)||, which leads to an increase in the
distance between states based on the given distance metric d due to the Lipschitz constraint (Park
et al., 2023a). In principle, d(x, y) in Equation (2) can be replaced by any of the distance metrics in
Table 1, resulting in different unsupervised skill discovery methods. Equation (2) can be optimized
with dual gradient descent, incorporating a Lagrange multiplier λ and a small slack variable ϵ > 0:

Update ϕ to maximize: E[(ϕ(s′)− ϕ(s))⊤z] + λ ·min(ϵ, d(s, s′)− ∥ϕ(s)− ϕ(s′)∥) (3)

Update λ to minimize: −λ · E[min(ϵ, d(s, s′)− ∥ϕ(s)− ϕ(s′)∥)] (4)

Update π with reward: (ϕ(s′)− ϕ(s))⊤z (5)

For derivation of these equations we refer to Park et al. (2022; 2023a;b).

3 FOUNDATION MODEL GUIDED SKILL DISCOVERY

The key idea of FoG is to extract a score function from foundation models based on human intentions
to re-weight skill discovery rewards. This process is illustrated in Figure 1. In state-based tasks, the
foundation model is queried to output a score function that meets our intentions. In pixel-based
tasks, state embedding and human intentional text embedding of a foundation models are used to
form the score function. During unsupervised skill discovery, the skill-conditioned policy is trained
to maximize the re-weighted rewards of the underlying skill discovery algorithm.

3.1 SCORE FUNCTION

We extract a score function from foundation models that can assign higher values for desirable
states and lower values for undesirable states with respect to the given intentions. This score func-
tion is then used to reweight rewards of the underlying skill discovery method. By optimizing the
reweighted rewards, agents will learn skills that are both diverse and desirable. We define the score
function f : S → [0, 1] which takes a state as input and outputs a value between 0 and 1, indicating
the desirability of the given state. This score function is then used to reweight the skill discovery
rewards. The skill discovery reward rskill of Equation (5) therefore becomes:

r = f(s′)× rskill = f(s′)(ϕ(s′)− ϕ(s))⊤z, (6)

where we care about the states s′ the agent reaches instead of the state s the agent comes from.
Thus, the score function f takes s′ as the input. Since we use METRA (Park et al., 2023b) as the
underlying skill discovery algorithm, and use the score function to re-weight the METRA rewards,
this is equivalent to using it as the distance metric in the DSD objective:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ f(s′), ∀(s, s′) ∈ Sadj , (7)

where Sadj represents the set of adjacent state pairs. The derivation of Equation (7) can be found
in Appendix A.1. By using the score function as the distance metric in the DSD objective, FoG not
only maximizes the diversity of skills, but also maximizes the output of the score function, leading
to skills that are more aligned with our intentions.

In practice, we find that a binary score function works well, i.e. outputting 1 if the state is desirable
and α if it is not, where 0 ≤ α < 1. We examine different values of α and a non-binary score
function in Section 4.2.4.
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3.2 IMPLEMENTATION DETAILS

Our work builds on top of METRA (Park et al., 2023b), which is the state-of-the-art unsupervised
skill discovery method that works for both state-based and pixel-based input. FoG re-weights the
skill discovery reward of METRA by the score function that is extracted from foundation models.
For state-based tasks, we ask foundation models to generate the score function directly. For pixel-
based tasks, we use foundation models to output embeddings to form the score function. All code is
available through the supplemental materials.

State-based: We ask ChatGPT or Claude to generate a score function f(s) that equals 1 if the state
satisfies our intentions, and α otherwise. Unlike Eureka (Ma et al., 2023), which queries foundation
models to generate a reward function for training agents from scratch, FoG instead asks for a score
function to modulate skill discovery. Prompt details for state-based tasks and examples of resulting
output score functions are provided in Appendix A.12.

Pixel-based: We use CLIP (Radford et al., 2021), a vision-language model that is trained to align
images and text, to first generate embedding for images (pixel-based states) and texts (textual de-
scriptions of our intentions). Then, the score function is formed by computing the Cosine similarity
between the image and text embedding. If the current state is more similar to the description of the
desirable intention, the output is 1. Conversely, if it is more similar to the undesirable one, the output
is α. The score function can be expressed as Equation (8).

f(s) =

{
1, if Cosine(Es, Etext1) > Cosine(Es, Etext2).

α, otherwise.
(8)

where Es is the embedding of the current pixel-based state, Etext1 and Etext2 are the embedding of
the textual descriptions of desirable and undesirable intentions, respectively. Setting α = 0 attempts
to not learn undesirable behaviors at all (since α × rskill = 0) while setting α = 1 reduces FoG to
the underlying skill discovery algorithm METRA. We examine different values of α in Section 4.2.
Details of textual descriptions of desirable and undesirable intentions can be found in Appendix A.8.

4 EXPERIMENTS

⭐envs

HalfCheetah Ant Cheetah Quadruped Humanoid

Figure 2: Environments used in our work. HalfCheetah and Ant are state-based, and other three are
pixel-based.

Through our experiments, we aim to answer the following questions: 1) How does FoG perform
in state-based tasks where more context and informative features are provided? 2) In pixel-based
tasks, where only visual information is provided, can FoG guide agents to learn diverse and desirable
behaviors and skills?

We use environments that are commonly used in unsupervised skill discovery literature, see Figure 2,
including two state-based tasks and three pixel-based tasks: HalfCheetah and Ant are state-based
tasks from OpenAI gym (Brockman et al., 2016), Cheetah, Quadruped and Humanoid are pixel-
based tasks from DMC (Tunyasuvunakool et al., 2020).

FoG falls into the category of unsupervised skill discovery methods, but with human intentions inte-
grated. DoDont (Kim et al., 2024b) and LGSD (Rho et al., 2024) are the most relevant baselines, as
both incorporate human intentions to skill discovery in different ways. DoDont relies on demonstra-
tion videos, which can be difficult to obtain in certain scenarios. LGSD uses large language models,
which needs step-wise chat-style query and are limited to state-based tasks. For these reasons, we
skip LGSD and use DoDont as one of the baselines instead. Overall, we have five baselines for FoG
to compare against: 1) METRA (Park et al., 2023b), the state-of-the-art unsupervised skill discovery
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method; 2) METRA+, which uses hand-defined reward functions as score functions, and was also
used as a baseline in DoDont (Kim et al., 2024b); 3) LSD (Park et al., 2022), an unsupervised skill
discovery method that maximizes DSD objective with Euclidean distance as the distance metric; 4)
DoDont (Kim et al., 2024b), a demonstration-guided unsupervised skill discovery method, learns
diverse and desirable behaviors shown in the demonstrations; 5) DoDont+, a variant of DoDont that
replaces expert demonstrations with demonstrations annotated using foundation models.

All agents in the same task are trained with the same number of environment steps and all exper-
iments are performed three times with different independent seeds, and average results with error
bars are reported. For simplicity, we set α = 0 for all experiments. More details of environments
and baseline implementations can be found in Appendix A.9. See website1 for videos of the learned
behaviors and skills.

4.1 STATE-BASED TASKS

To test whether FoG can work in state-based tasks, we train FoG in HalfCheetah and Ant. Following
the details in Section 3.2, we input the description of the tasks, information about state space and
action space to foundation models as context, then ask foundation models to generate a score func-
tion that returns 1 when the requirement in the query is satisfied otherwise α. In HalfCheetah, we
train FoG to eliminate dangerous behaviors (flipping over). In Ant, we train FoG to avoid a specific
area, in this case to not go south.

(9k) METRA FoG

% Flips 0.56, 0.56, 0.83 0, 0, 0

⭐State-based 

def score_fn(state):
  y_coord = state[1]
  if y_coord > 0:
    return 1
  else:
    return 0

% Rolls (HalfCheetah) FoGMETRA Generated score fn for Ant

def score_fn(state):
  front_tip_angle = state[2]
  threshold = 1.57
  if front_tip_angle > threshold:
    return 1
  else:
    return 0

Generated score fn for HalfCheetah

Figure 3: Left: Comparison between METRA and FoG on two state-based tasks, HalfCheetah and
Ant. FoG learns not to roll in HalfCheetah and not move to south in Ant, while METRA rolls
more than 50% of the time in HalfCheetah and goes to all directions, violating our intention in Ant.
Right: Score functions generated by foundation models which are uesed to re-weight skill discovery
rewards. In both HalfCheetah and Ant, foundation models successfully capture the relevant state
dimension and set threshold for it.

Results of these experiments are visualized in Figure 3, with generated score functions for both tasks
at the right. We first of all see that foundation models can recognize feature dimensions of the state
that are important for meeting our requirements. For example, in HalfCheetah the second dimension
of the state is the angle of Cheetah’s front tip, which is important for determining if the agent flips
over or not. In Ant, the first dimension of the state is the y-coordinate of Ant, which can be used to
locate the agent in a south-north position. We see foundation models clearly set the right threshold
and implement the logic to fulfil the intention we asked for, i.e., if the angle of the Cheetah’s front
tip is larger than 1.57 in radians (90 degrees) it flips over, and if the y-coordinate of Ant is larger than
0 it is in the north part of the plane. By re-weighting the skill discovery rewards using the generated
score function from foundation models, FoG learns to not roll in Cheetah while METRA flips a lot
(left graph of Figure 3). In Ant, FoG learns to always move to north and METRA learns to go every
directions (second and third graph in Figure 3).

4.2 PIXEL-BASED TASKS

We now conduct experiments in pixel-based tasks, where only visual information is available. Un-
like in state-based tasks, where we ask foundation models to directly generate a score function, in
pixel-based tasks we leverage foundation models to output embeddings of 1) the visual state and
2) textual descriptions of our desirable and undesirable intentions. The score function is then com-
puted from Equation (8). We examine FoG in three aspects: a) Can it learn to eliminate undesirable
behaviors? b) Can it learn to avoid certain areas? c) Can it learn complex behaviors that are difficult
to clearly define?

1https://sites.google.com/view/iclr-fog
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4.2.1 LEARN TO ELIMINATE UNDESIRABLE BEHAVIORS

⭐Learn to eliminate undesirable behaviors 

State Coverage% Flips

Figure 4: Left: Executions of example skills from different agents in pixel-based environment,
Cheetah. From top to bottom: METRA, METRA+, LSD, DoDont, DoDont+, FoG. Right: Per-
centage of flips (which should be prevented based on the guidance) and state coverage for different
agents. METRA, METRA+, DoDont and DoDont+ learn to discover diverse states, but suffer from
frequent flipping. LSD fails to learn diverse skills. FoG learns to run without flipping, achieving
both high state coverage and low flipping percentage.

We first focus on guiding the agent to learn desirable low-level behaviors (e.g., standing normal)
while eliminating undesirable ones (e.g., flipping over) that could potentially damage the robot.
In pixel-based Cheetah, we use ‘agent flips over’ and ‘agent stands normally’
as textual descriptions to express our intentions. The score function is then formed according to
Equation (8).

As shown in the left figure of Figure 4, FoG (bottom) consistently learns to run without flipping,
demonstrating the lowest percentage of flips during evaluation. In contrast, other methods struggle
to prevent flipping effectively. METRA flips in over 70% of episodes, DoDont in more than 35%,
and DoDont+ in 50% of the episodes. LSD and METRA+ struggle to learn to move in different
directions, discovering static behaviors and rarely flipping. Although METRA, DoDont, DoDont+
and FoG achieve similar state coverage, FoG effectively prevents flipping.

The poor performance of METRA+ suggests that defining a proper score function manually is not
trivial (we follow the definition in (Kim et al., 2024b) and use rrun − rflip as the score function).
The poor performance of DoDont stems from the inaccurate classifier, which exploits the color of
the ground to distinguish different states (normal and flipping postures), outputting high scores for
unseen undesirable behaviors. To evaluate how these learned skills perform in downstream tasks,
we train a controller to select from the learned set of skills. This controller trained using FoG skills
shows quick adaptations in the downstream tasks, as shown in Appendix A.3.

4.2.2 LEARN TO AVOID HAZARDOUS AREAS

Previous unsupervised skill discovery methods focus solely on maximizing skill diversity, often
leading agents to explore to all possible directions. In practice, however, we want agents to avoid
certain areas when they are hazardous. For instance, a robot operating in a factory should be able
to avoid prohibited areas. To test whether FoG can learn to avoid certain areas (high-level policies,
as opposed to low-level behaviors in Section 4.2.1), we train FoG in the pixel-based versions of
Cheetah and Quadruped. We designate the right area in Cheetah and bottom-left area in Quadruped
are hazardous and train agents to avoid them. Since there are no explicit indicators of directions
in these two tasks, we express our intentions through colors. For example, in Cheetah, we use
descriptions like ‘ground is blue’ and ‘ground is orange’ to signal whether the agent
is on the left or right part and then form the score function following Equation (8).

Figure 5 illustrates the learned skills and ‘Safe State Coverage’ (the coverage of safe areas minus
that of hazardous areas) of different agents. FoG clearly biases movement toward the safe areas. In
Cheetah it prefers to go to the left part and in Quadruped it avoids the bottom-left area, resulting in
higher safe state coverage than the baselines. However, METRA explores all directions indiscrim-
inately and LSD fails to move, leading to the lowest safe state coverage. DoDont performs well
in Quadruped but not in Cheetah (the classifier are unsure about initial states thus harm the explo-
ration). The slightly worse performance of DoDont+ (compared to DoDont) in Quadruped stems

6
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⭐Learn to avoid hazardous areas
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Figure 5: Top: Results on the pixel-based environment Cheetah, with learned skills shown in x-
coordinates. METRA+ learns to perfectly avoid the undesirable area and FoG has a strong prefer-
ence to go to the desirable area, as also clearly visible from the Safe State Coverage on the right.
Other agents fail. Bottom: Results on the pixel-based environment Quadruped, with learned skills
shown as xy-coordinates. Similar conclusions can be drawn regarding most of agents. Unlike in
Cheetah, DoDont successfully learns to avoid the bottom-left areas.

from its inaccurate demonstrations annotated by foundation models. METRA+ performs the best,
likely because that defining a score function in these tasks is straightforward (assigning 1 to states
in safe regions and 0 for ones in hazardous regions (Kim et al., 2024b)). The results suggest that
with expert-level demonstrations and ‘perfect’ hand-crafted score function, DoDont and METRA+
could potentially outperform FoG. However, the strength of FoG shines in scenarios where obtaining
expert-level demonstrations or crafting a perfect score function is challenging, which is generally
the case.

Non-expert demonstrations (like ones annotated by foundation models, which are used in DoDont+)
introduce inaccuracies to the classifier, with annotation accuracy around 70%. This leads to an
inaccurate classifier that consistently generates unreliable signals, ultimately resulting in poor per-
formance. In contrast, FoG leverages CLIP on-the-fly. Although CLIP does not achieve perfect
accuracy, FoG adapts and aligns its learning process with the overall positive trend of CLIP’s out-
put. This creates a self-correcting loop, culminating in significantly better performance.

4.2.3 LEARN TO TWIST IN HUMANOID

⭐ Humanoid exps

LSDMETRA FoG Human Selection

Random Snapshots

Fo
G

M
ET

R
A

Figure 6: Top: Random snapshots during evaluation of METRA
and FoG in pixel-based Humanoid. Bottom: Learned skills (shown
in xy-coordinates) of different agents and results on human partic-
ipants. Humans pick FoG to be more “twisted” 90% of the time.

Humanoid is a challenging
high-dimensional control
task with a 21-D action
space. Defining when this
humanoid robot is “twisted”
or “stretched” is both hard
and subjective. This also
makes it hard to design a
reward function that can
guide the agent to learn such
behaviors. Therefore, we
instead leverage a foundation
model to determine when the
agent is twisted or stretched,
assigning a higher score for
the former and a lower score
for the latter. As such FoG can
discover intricate behaviours
that are hard to explicitly de-
fine, such as being “twisted”
or “stretched”. We could not

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

compare FoG with DoDont (Kim et al., 2024b) as the original paper does not include results on
Humanoid, probably because demonstrations of a humanoid robot are challenging to obtain (an
issue we also encountered).

We train FoG in the Humanoid task using intention descriptions ‘agent is stretched’ and
‘agent is twisted’, and form the score function according to Equation (8). To quantitatively
assess whether the agent has successfully learned to twist, we create a questionnaire and ask ten
human participants to evaluate videos of different agents, selecting the ones they perceive as more
“twisted”. Videos and the questionnaire can be found on the project website and details of the
experimental setup can be found in Appendix A.11.

In the top part of Figure 6, it is clear that FoG learns to exhibits more “twisted” postures while ME-
TRA tends to appear more “stretched”. Both FoG and METRA successfully learn to move in differ-
ent directions, highlighting the diversity of the learned skills. The ‘Human Selection’ (right-bottom
of Figure 6) shows how participants perceive the trained skills, with 90% of the time participants
selecting FoG as more “twisted”, further validating the observed outcomes. FoG’s ability to move
in different directions with “twisted” postures suggests its potential to guide agents in discovering
skills involving behaviors with subjective definitions.

4.2.4 ABLATION STUDY

FoG introduces two new hyperparameters. The first, α in the binary score function of Equation (8),
controls how much the skill discovery rewards are re-weighted when the state is undesirable. Higher
values assign greater weights to undesirable states, making rewards for these states less distinguish-
able with those of desirable states. As a result, agents are more likely to learn undesirable behaviors.
We evaluate three values, α = 0, 0.5, 0.8. Meanwhile, since we compute similarities between visual
images and texts, shown in Equation (8), rather than forming a binary function, we can also softmax
both similarities and directly use them to re-weight (see Equation (12)) the skill discovery rewards.
The left part of Figure 7 shows flip percentages of FoG agents trained with different α values in
the Cheetah task. Unsurprisingly, higher α values lead to more undesirable behaviors: the agent
flips more often. Directly using similarity (sim) to re-weight skill discovery rewards returns poor
performance. Although setting α = 0 works well across all experiments performed in this work, in
some cases, it could be too strict and weaken exploration. See extra results in Appendix A.5.

⭐ Ablation: on DMC cheetah

alpha No. skip

Figure 7: Percentages of flips that
different FoG shows on the Chee-
tah environment. Smaller α and N
return better performance.

When we use FoG in pixel-based tasks, obtaining embeddings
for every pixel state is computationally expensive. In practice,
we calculate embeddings for every N th state and apply the
score for that state to the following (N − 1) states. Smaller
N values result in more accurate scores but increase compu-
tational costs. The right part of Figure 7 therefore shows per-
formance for three different values of N . Smaller N values
score states more frequently, leading to more accurate scores
and improved performance (fewer flips). However, there is no
significant difference in performance between N = 10 and
N = 20, suggesting behaviors in Cheetah are quite smooth
and skipping 10 or 20 states leads to similar results.

5 RELATED WORK

Unsupervised Skill discovery: FoG builds on top of unsupervised skill discovery methods, allow-
ing agents to learn diverse skills without the use of hand-crafted reward functions. One line of
research in unsupervised skill discovery focuses on maximizing mutual information I(·; ·) between
skills Z and states S, i.e., I(S;Z) = H(S) − H(S|Z) = H(Z) − H(Z|S), where H(·) denotes
entropy. By associating states s ∈ S with different latent skill vectors z ∈ Z, these methods learns
diverse skills that are mutually distinct (Eysenbach et al., 2018; Sharma et al., 2019; Laskin et al.,
2022). SASD (Kim et al., 2023) integrates a pre-defined safety-indicator function into the critic
learning process of mutual-information based unsupervised skill discovery methods, enabling the
learning of safe behaviors. EDL (Hussonnois et al., 2023) employs preference-based RL to integrate
human preferences, requiring a human-in-the-loop to continuously provide feedback on trajectory
segments. Both methods depend on human effort, either to pre-define the safety-indicator function
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Table 1: Distance metrics used by different methods in the distance-maximizing skill discovery
objective. qθ is a density function parameterized by θ. Temporal distance is defined as the minimum
number of environmental steps needed for the agent to go from one state to another state. slang is
the textual description of the state s. pφ is a classifier parameterized by φ.

LSD CSD METRA LSGD DoDont ours
||s′ − s|| − log qθ(s

′|s) temporal distance distance(s′lang, slang) pφ(s
′, s) score fn

or to actively provide preferences, and they operate only with state-based input. In contrast, FoG
eliminates the need for human involvement and supports both state and pixel-based input.

Aforementioned mutual information-based methods do not always encourage the agent to discover
distant states, as the mutual information objective can be satisfied by learning simple and static
skills (Park et al., 2023b; 2022). To address this limitation, Park et al. (2023a) introduces a Distance-
maximizing Skill Discovery (DSD) framework that learns diverse skills while maximizing the trav-
eled distance under the given distance metric d. LSD (Park et al., 2022) uses Euclidean distance
between states as the distance metric to encourage agents to visit states that are as far apart as pos-
sible. CSD (Park et al., 2023a) employs a density function over visited states as the distance metric,
to encourage agents to visit less frequently visited states. However, LSD and CSD only work with
state-based inputs and fail in pixel-based tasks. METRA (Park et al., 2023b) instead uses a temporal
distance function that is applicable in visual tasks as well, as the distance metric to push the agent to
discover states that are temporally far apart. LGSD (Rho et al., 2024) utilizes foundation models to
first convert state-based inputs to text descriptions, then uses embedding distance between text de-
scriptions as the distance metric to encourage agents to learn semantic diverse skills. DoDont (Kim
et al., 2024b) employs demonstrations to guide agents in learning desirable behaviors. Specifically,
it trains a classifier over the demonstrations of what the agent should and should not do, and uses it
as a distance metric in DSD, encouraging agents to learn to maximize intentions of the given demon-
strations. Some distance metrics used by different methods are summarized in Table 1. Note that
FoG can be interpreted as using a score function extracted from foundation models as the distance
metric in DSD. We refer to Section 3 for further details.

FoG is most closely related to DoDont and LGSD, as both these methods aim to incorporate human
preferences into skill discovery. However, DoDont requires expert demonstrations, which can be
expensive to obtain, and it only works well with state-based inputs when incorporating behavioral
intentions. LGSD uses language models so only works for state-based tasks (language models can-
not handle visual input), and querying large language models in a step-wise chat-style manner is
expensive. In contrast, FoG leverages vision-language models and extracts a score function from
them in a one-time (in state-based tasks) or batch-forwarding manner (in pixel-based tasks) to re-
weight the underlying skill discovery rewards. It therefore has a fast response time and works well
in both state-based and pixel-based tasks.

Foundation Models in Reinforcement Learning: FoG leverages foundation models to guide un-
supervised skill discovery in learning desirable behaviors. Thanks to success of foundation mod-
els (Touvron et al., 2023; Liu et al., 2023b) they can now be used to provide information for
RL agents. Motif (Klissarov et al., 2023) employs large language models to generate exploration
bonuses in the text-based game NetHack (Küttler et al., 2020). Eureka (Ma et al., 2023) uses large
language models to generate reward functions for state-based robotic tasks, outperforming human
designed reward functions across multiple tasks. IGE (Lu et al., 2024) leverages large language mod-
els to select interesting goals and propose actions in state-based environments with text descriptions.
LAMP (Adeniji et al., 2023) utilizes the similarity between pixel embedding and text-commands
embedding, as output by a vision-language model, as the reward to pre-train agents in visual robotic
tasks. RoboCLIP (Sontakke et al., 2024) uses a video-language model to label exploration trajec-
tories as either success or failure, supplying sparse rewards in visual robotic tasks. Additionally,
Rocamonde et al. (2023) investigate how vision-language models can be used as reward models in
a zero-shot manner. These approaches utilize existing pre-trained foundation models in a zero-shot
manner, without fine-tuning them for specific tasks. However, to achieve better performance, other
works such as Minedojo (Fan et al., 2022) and EmbodiedGPT (Mu et al., 2024) train foundation
models from scratch or fine-tune them on specific downstream tasks (Adeniji et al., 2023). Despite
this, FoG demonstrates that pre-trained foundation models, even without fine-tuning, can be used to
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guide RL agents to discover diverse and desirable skills. FoG is evaluated in both state-based and
pixel-based tasks. For state-based tasks, we ask foundation models to generate a score function that
meets our intentions. FoG therefore differs from, e.g., Eureka (Ma et al., 2023) in two key ways: 1)
FoG does not require iterative feedback from the environment. Eureka involves providing feedback
multiple times and adjusting the reward function iteratively. 2) FoG leverages foundation models to
generate a score function, which is used to re-weight underlying skill discovery rewards. In contrast,
Eureka generates a reward function that is directly used for training agents.

6 LIMITATIONS AND FUTURE WORK

Although FoG performs well, it is not without limitations. FoG employs foundation models to guide
desirable skill discovery. However, there is no 100% guarantee that score functions generated by
foundation models are always appropriate. Additionally, since the score function is defined based
on individual states, FoG may struggle to capture process-based alignment. This limitation could be
addressed by defining the score function over a sequence of states. For example, RoboCLIP (Son-
takke et al., 2024) utilizes foundation models to provide sparse reward signals based on performance
of the whole episode.

Furthermore, FoG uses CLIP (Radford et al., 2021), a well-established vision-language model for
pixel-based tasks. We believe FoG could benefit from more advanced foundation models (Liu et al.,
2023a; Yao et al., 2024) or task-specific models (Padalkar et al., 2023; Valevski et al., 2024). One
could also explore the performance of FoG with more complex intentions. In addition, FoG should
also be scaled to more challenging tasks. Some preliminary results can be found in Appendices A.6
and A.7.

7 CONCLUSION

We propose a novel unsupervised skill discovery method, FoG, guided by foundation models to
incorporate human intentions. FoG first extracts a score function from foundation models based on
input intentions, assigning higher preference to desirable states and lower preference to undesirable
ones. This score function is then used to re-weight the underlying skill discovery rewards. By
optimizing re-weighted rewards, FoG discovers not only diverse but also desirable skills. In addition,
we also show FoG can learn skills involving behaviors that are complex and subjectively defined. We
hope FoG inspires future efforts in incorporating human intentions in unsupervised skill discovery.
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A APPENDIX

A.1 DERIVATION OF EQUATION (7)

The original DSD objective is shown in Equation (2). It is crucial to define a appropriate distance
metric to encourage agents to not only learn diverse skills but also maximize the given distance
metric. Park et al. (2023b) uses the temporal distance as the distance metric for the DSD objective
in METRA, shown in Equation (9).

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj . (9)

Now, we use the score function f(s′) to re-weight the METRA rewards to get the objective of FoG.
The new objective (FoG) now becomes Equation (10):

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

f(s′) (ϕ(st+1)− ϕ(st))
⊤
z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj . (10)

Following Kim et al. (2024a), let scaled state function ϕ̃(s) = ϕ(s)f(s). By replacing ϕ(s) with
ϕ̃(s)/f(s) and transforming the constraint in Equation (10) (since f(s) ≥ 0), we derive Equa-
tion (11) (Equation (7)), which is using the score function as the distance metric in the DSD objec-
tive.

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(
ϕ̃(st+1)− ϕ̃(st)

)⊤
z

]
s.t. ∥ϕ̃(s)− ϕ̃(s′)∥2 ≤ f(s′), ∀(s, s′) ∈ Sadj . (11)

Hereby, we show that using the score function to re-weight the METRA rewards is equivalent as
using it as the distance metric in the DSD objective.

A.2 NON-BINARY SCORE FUNCTION

Instead of using a binary score function in Equation (8), we can also form a non-binary score func-
tion.

f(s) =
eCosine(Es,Etext1)

eCosine(Es,Etext1) + eCosine(Es,Etext2)
, (12)

where Es is the embedding of the current pixel-based state, Etext1 is the embedding of textual
descriptions of the desirable intention and Etext2 is the embedding of textual descriptions of the
undesirable intention.

A.3 DOWNSTREAM TASKS

Figure 8: Downstream task
performance.

After obtaining skills, we can train a controller to select these
(frozen) learned skills to achieve given downstream goals. We
follow the implementation of Park et al. (2023b), and set g ∼
[−10, 10] as the goal. During training, the agent receives a reward
of 10 if the goal is reached. We train a controller to select a skill
z every K = 50 steps, and the learned policy π(·|s, z) is executed
for K steps. We use SAC (Haarnoja et al., 2018) for training the
controller and all hyperparameters are kept the same as the ME-
TRA codebase. Results are shown in Figure 8. The controller that
is trained using frozen skills learned by FoG shows better perfor-
mance at the beginning and converges faster than the baselines, in-
dicating that FoG effectively learns meaningful skills that can be
quickly adapted to downstream tasks. LSD does not learn useful
skills thus the trained controller performs poorly. METRA slightly
lags behind of DoDont.
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A.4 FOUNDATION MODELS

For state-based tasks, we query ChatGPT2 or Cluade3 to generate score functions that meet our
requirements. For pixel-based tasks, we use pre-trained CLIP (clip-vit-large-patch14) from hug-
gingface4.

A.5 QUADRUPED LEARNS TO NOT FLIP

⭐ Quadruped exps

State Coverage% Flips

alpha=0 could harm exploration.

(2.5k) alpha=0 alpha=0.1

% Flips 0, 7, 0 0,0, 0

State coverage 12,11,22 57,53,92

Figure 9: Results on the Quadruped
task. Setting α = 0 explores less (lower
state coverage) thus results in worse
performance (more flips).

Although we found that setting α = 0 works well in
experiments presented in Section 4, sometimes it might
hurt the exploration. Similar with experiments per-
formed in Section 4.2.1, here, we train FoG to not flip
in Quadruped. We see in Figure 9, FoG learns to not flip
most of time (less than 20%) when setting α = 0, but it
almost always stays near the starting point and does not
explore, resulting in low state coverage. After loosing α
a bit and set it to 0.1, FoG learns to eliminate all flips and
has a significant higher state coverage.

A.6 RESULTS ON FRANKA KITCHEN

To examine FoG in more complicated tasks, we train FoG in Franka Kitchen (introduced by
Gupta et al. (2019)) with different textual descriptions of intentions, such as ‘robotic arm is
stretched’, ‘robotic arm is twisted’ and ‘robotic arm is on the right
of the scene’. Results can be seen in Figure 10. By using different intentions, we see robotic
arms clearly bias the movements to different areas. However, we did not find a way to use these skills
to better solve the downstream tasks yet. We hope this could inspire future efforts in investigating
FoG in more complex tasks.

Figure 10: In Franka Kitchen, different skills FoG learned with different textual descriptions of
intentions. Skills are displayed with x-y coordinates of the robotic arm.

A.7 RESULTS ON MULTIPLE INTENTIONS

In Section 4, only one intention is used in FoG. In principle, multiple intentions could be used
simultaneously to form the score function. Then, Equation (8) becomes:

f(s) =



1, if Cosine(Es, E
1
text1) > Cosine(Es, E

1
text2) and

Cosine(Es, E
2
text1) > Cosine(Es, E

2
text2) and

...

Cosine(Es, E
n
text1) > Cosine(Es, E

n
text2)

α, otherwise.

(13)

where En
text1 and En

text2 are the nth textual descriptions of our intentions. Now, the score function
f(s) only assigns higher values to desirable states when all provided intentions are satisfied. For

2https://chatgpt.com
3https://claude.ai/new
4https://huggingface.co/openai/clip-vit-large-patch14
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example, we could ask FoG to not only learns to not flip, but also to avoid the right area. The textual
descriptions we should use are: 1) ‘agent flips over’, ‘agent stands normally’;
2) ‘ground is Yellow-Orange’, ‘ground is Green-Blue’. See the result in Fig-
ure 11, the agent does not learn to avoid the right part at all but it does learn to eliminate flips (not
shown in the figure). We found that using multiple intentions restricts the exploration too much so
that the agent might just learn to fulfill one intention and ignore others or ignore all of them and
learns to not move at all. Using multiple intentions in FoG still needs more investigations and we
hope the preliminary results and ideas presented in this section could inspire future efforts.

Figure 11: Skills learned by FoG with two intentions, i.e. 1) not flip; 2) not go right.

A.8 INTENTION PROMPTS USED FOR PIXEL-BASED TASKS

Textual descriptions of intentions we used for Cheetah:

• Section 4.2.1: ‘The simulated two-leg robot flips over’, ‘The
simulated two-leg robot stands normally’

• Section 4.2.2: ‘The underneath plane is Yellow-Orange’, ‘The
underneath plane is Green-Blue’

Textual descriptions of intentions we used for Quadruped in Section 4.2.2: ‘The underneath
plane is Pink-Purple’, ‘The underneath plane is Green-Blue’.

Textual descriptions of intentions we used for Humanoid in Section 4.2.3: ‘The simulated
humanoid robot is stretched’, ‘The simulated humanoid robot is
twisted’.

A.9 EXPERIMENT DETAILS

A.9.1 ENVIRONMENT DETAILS

State-based: HalfCheetah and Ant are from OpenAI Gym (Brockman et al., 2016). The state
space of HalfCheetah is 18-dimensional and the one of Ant is 29-dimensional. HalfCheetah has a
6-dimensional action space while Ant has a 8-dimensional action space.

Pixel-based: Cheetah, Quadruped and Humanoid are from DeepMind Control Suite (Tunyasuvu-
nakool et al., 2020). Following previous work (Lee et al., 2021; Park et al., 2024; 2023b), pixel-based
DMC tasks are all with gradient-colored floors to indicate different directions. The size of visual
observations is 64× 64× 3. The dimension of action space for Cheetah, Quadruped and Humanoid
are 6, 12 and 21, respectively. The episode length is 200 for Ant, HalfCheetah and Cheetah, 400 for
Quadruped and Humanoid.
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A.9.2 BASELINE DETAILS

METRA: We take the official codebase5 from Park et al. (2023b) and use default hyperparameters
for all experiments performed in this paper.

METRA+: We follow the implementation of METRA+ in the DoDont paper. For experiments in
Section 4.2.1, we use rrun − rflip as the reward. For experiments in Section 4.2.2, we assign +1 for
the safe region and 0 for the hazardous region.

LSD: We take the codebase of METRA, by setting correct arguments (turning off the dual regular-
ization and turning on the spectral normalization), to run LSD. Detailed instructions can be found in
the METRA codebase.

DoDont: We take the official codebase from Kim et al. (2024b) and implement the training of
the instruction net ourselves. We use eight demonstrations for each task, so four for “dos” and
four for “donts”. Demonstrations are obtained from trained FoG agents and can be found on our
project website: https://sites.google.com/view/iclr-fog. We stop the training of
the classifier after it has more than 97% of accuracy.

DoDont+: We use CLIP to score frames (follow Equation (8)) in demonstrations that are used to
train DoDont, and assign frames with score of 0 in the “dos” demonstration to “donts” demonstra-
tions, and vice versa. Since CLIP cannot perfectly score frames, some states from “dos” demonstra-
tion are moved to “donts” demonstrations, and some states from “donts” demonstration are moved
to “dos” demonstration. After training, the classifier has about 70% of accuracy.

A.9.3 HYPERPARAMETERS DETAILS

We use α = 0 and N = 2 for all our experiments, unless otherwise mentioned. We train all agents in
the same task with the same number of epochs and the performance at the end of training is reported.
Details can be seen in Table 2. The same number of episodes is executed in each epoch, and within
each episode the same number of environment steps is taken. We train continuous skills and the
number of dimensions we used to train all agents in each task can be found in Table 3. We refer
readers to read Park et al. (2023b) for details of all used hyperparameters.

HalfCheetah Ant Cheetah Quadruped Humanoid
9000 9000 2000 3000 4000

Table 2: Number of epochs we used for training agents in different environments.

HalfCheetah Ant Cheetah Quadruped Humanoid
4 2 4 4 2

Table 3: Dimensions of skills we used for training skills in different environments.

A.10 COMPUTATION USAGE

We run our experiments on an internal cluster consisting of A100 and H100 GPUs. Each run takes
no more than 24 hours.

A.11 EXPERIMENTAL SETUP FOR HUMAN JUDGE

In Section 4.2, we train FoG to be twisted in DMC Humanoid task. However, it is difficult for human
to design a reward function to measure if learned skills contains more twisted postures or not. Thus,
we ask human to be the judge to tell if FoG learns more twisted skills than the ones learned by the
baselines.

We pick ten skills of each method randomly, in this case, FoG and METRA, and then pair them
randomly. Participates are asked to select the video that shows the most ‘twisted’ behaviors without

5https://github.com/seohongpark/METRA
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given any other information. Please see the full questionnaire we used in https://sites.
google.com/view/iclr-fog/questionnaire-of-humanoid.
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A.12 PROMPTS USED FOR STATE-BASED TASKS

Input to foundation models for HalfCheetah: [Descriptions of the task, state
space and action space] According to the given info, could you
please write a python function to check if the cheetah is flipped
over or not. If yes, output 1 otherwise 0.

Possible output:
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Input to foundation models for Ant: [Descriptions of the task, state space
and action space] The agent always starts at [0, 0]. According
to the given info, could you please write a python function to
check if the agent is in the north part or not. If yes, output 1
otherwise 0.

Possible Ouput:
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