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ABSTRACT

Graph Neural Networks (GNNs) have shown remarkable success in molecular tasks,
yet their interpretability remains challenging. Traditional model-level explanation
methods like XGNN and GNNInterpreter often fail to identify valid substructures
like rings, leading to questionable interpretability. This limitation stems from
XGNN’s atom-by-atom approach and GNNInterpreter’s reliance on average graph
embeddings, which overlook the essential structural elements crucial for molecules.
To address these gaps, we introduce an innovative Motif-bAsed GNN Explainer
(MAGE) that uses motifs as fundamental units for generating explanations. Our
approach begins with extracting potential motifs through a motif decomposition
technique. Then, we utilize an attention-based learning method to identify class-
specific motifs. Finally, we employ a motif-based graph generator for each class
to create molecular graph explanations based on these class-specific motifs. This
novel method not only incorporates critical substructures into the explanations
but also guarantees their validity, yielding results that are human-understandable.
Our proposed method’s effectiveness is demonstrated through quantitative and
qualitative assessments conducted on six real-world molecular datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Xu et al., 2018; Gao et al., 2018; Rong et al.,
2020; Sun et al., 2022; Wang et al., 2023) have become increasingly popular tools for modeling data
in the molecule field. As an effective method for learning representations from molecule data, GNNs
have attained state-of-the-art results in tasks like molecular representation learning (Gao & Ji, 2019;
Yu & Gao, 2022a; Fang et al., 2022; Zang et al., 2023), and molecule generation (Bongini et al.,
2021; Lai et al., 2021). Despite their growing popularity, questions arise about the trustworthiness
and decision-making processes of GNNs.

Explaining GNNs has become a major area of interest in recent years and existing methods can be
broadly categorized into instance-level explanations and model-level explanations. Instance-level
explanations (Ying et al., 2019; Baldassarre & Azizpour, 2019; Pope et al., 2019; Huang et al., 2020;
Vu & Thai, 2020; Schnake et al., 2020; Luo et al., 2020; Funke et al., 2020; Zhang et al., 2021a;
Shan et al., 2021; Wang et al., 2021; Yuan et al., 2021; Wang et al., 2022; Yu & Gao, 2022b) aim
to pinpoint specific nodes, edges, or subgraphs crucial for a GNN model’s predictions on one data
instance. Model-level explanations (Yuan et al., 2020; Wang & Shen, 2022) seek to demystify the
overall behavior of the GNN model by identifying patterns that generally lead to certain predictions.
While instance-level methods offer detailed insights, they require extensive analysis across numerous
examples to be reliable. In addition, for instance-level explainer, there is no requirement for an
explanation to be valid (e.g., a chemically valid molecular graph). Conversely, model-level methods
provide more high-level and broader insights explanations that require less intensive human oversight.

Model-level explanation methods have two main categories: concept-based methods and generation-
based methods. Concept-based explanation methods focus on identifying higher-level concepts that
significantly influence the model’s predictions (Azzolin et al., 2022; Xuanyuan et al., 2023). Also,
these methods establish rules to illustrate how these concepts are interconnected, like using logical
formulas (Azzolin et al., 2022). Generation-based models try to learn a generative model that can
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generate synthetic graphs that are optimized to maximize the behavior of the target GNN (Yuan et al.,
2020; Wang & Shen, 2022). Instead of defining the relationships between important concepts with
formulas, generation-based models can generate novel graph structures that are optimized for specific
properties. This capability is particularly crucial in the field of molecular learning.
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Figure 1: Validity of explanations generated
by XGNN and GNNInterpreter on Mutagenic-
ity dataset

Despite the notable benefits of generation-based
model-level explanation methods for GNNs, they
have received relatively low attention. Presently,
the available generation-based model-level explain-
ers for GNNs are somewhat limited in their appli-
cation, especially in molecular graphs. For exam-
ple, XGNN (Yuan et al., 2020) explains models by
building an explanation atom-by-atom and sets a
maximum degree for each atom to maintain the ex-
planation’s validity. On the other hand, GNNInter-
preter (Wang & Shen, 2022) adopts a more flexible
approach by learning a generative explanation graph
distribution. However, it ensures the validity of ex-
planations by maximizing the similarity between the
explanation graph embedding and the average embed-
ding of all graphs, which is not particularly effective
for molecular graphs. These existing methods often
fail to consider the unique aspects of molecular structures. This oversight makes it challenging
for these methods to include crucial substructures in their explanation graphs. It compromises the
validity and reliability of the model-level explanations they provide for molecular graphs. In Figure 1,
the explanations produced by both XGNN and GNNInterpreter exhibit low validity, making them
ineffective for further analysis. Consequently, there’s a clear need for more advanced and specialized
model-level explanation methods that can effectively handle the unique characteristics of molecular
graphs and provide meaningful insights into how GNNs interpret and process molecular data.

This paper introduces a motif-based approach for model-level explanations, MAGE, specifically
tailored for GNNs in molecular representation learning tasks. The method begins by identifying
all possible motifs from the molecular data. Following this, our method focuses on pinpointing
particularly significant motifs for a specific class. This is achieved through a novel attention-based
motif learning process, which aids in selecting these key motifs. Once these important motifs
are identified, we employ a motif-based graph generator trained to produce explanations based
on these motifs. Our experimental results show that our method reliably produces explanations
featuring complex molecular structures, achieving complete validity across various molecular datasets.
Furthermore, both quantitative and qualitative evaluations demonstrate that the explanation molecules
created by our method are more representative and human-understandable than those generated by
baseline methods.

The main contribution of our paper can be summarized as below:

1. We propose a novel framework for model-level explanations of GNNs that produces chemical
valid explanations on molecular graphs.

2. We develop an attention-based mechanism to extract class-specific motifs, allowing MAGE
to provide tailored model-level explanations aligned with the predictive behavior of the
target GNNs for each class.

3. We employ motifs as foundational building blocks for model-level explanations generation,
offering interpretable and structurally coherent insights into GNN behavior.

4. We emonstrate MAGE’s superiority over existing methods through quantitative and qualita-
tive evaluations on multiple molecular datasets.

2 PRELIMINARY

Notations. A molecular dataset can be depicted as G = {G1, G2, ..., Gi, ..., Gn}, where each
molecular graph within this set is denoted by Gi = (V,E). The label of each graph will be assigned
by li ∈ L = {l1, l2, ...}. In this representation, V constitutes a set of atoms, each treated as a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Motif 
Extraction

Molecules

Φ(·) --- Target GNN
𝑓(⋅) --- Target Classifier

Data

Φ(·) Φ(·)

G1 G2

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8

Φ(·)

m1 m2 m3 m4 m5 m6 m7 m8

ℎீభ
ℎீమ G1 G2

ℎଵ ℎଶ ℎଷ ℎସ ℎହ ℎ଺ ℎ଻ ℎ଼m1 m2 m3 m4 m5 m6 m7 m8

ℎீభ

ᇱ ℎீమ

ᇱ

Attention
Learning

𝑓(⋅) 𝑓(⋅)
𝑙𝑜𝑠𝑠(𝑦ீభ

, 𝑦ீభ

ᇱ )

𝑙𝑜𝑠𝑠(𝑦ீమ
, 𝑦ீమ

ᇱ )

U
pdate

0.
07

0.
04

0.05

0.35

0.21

0.07

0.13

0.04

0.04

0.11

0.00

0.00

0.00

0.00

0.07

0.04

0.75

0.14

molecule-motif relation score

G1 G2

m1

m2

m3

m4

m5

m6

m7

m8

0.92 0.08

0.04 0.96

G1

G2

C1 C2

Probability

0.042

0.322

0.193

0.064

0.122

0.038

0.066

0.106

0.005

0.004

0.028

0.016

0.077

0.041

0.723

0.143

C1 C2

m1

m2

m3

m4

m5

m6

m7

m8

1.0

1.0

1.0

1.0

1.0 1.0

1.0 1.0

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

m1

m2

m3

m4

m5

m6

m7

m8

𝐷ିଵ 𝐷ିଵ

0.042

0.322

0.193

0.064

0.061

0.019

0.033

0.053

0.005

0.004

0.028

0.016

0.038

0.020

0.361

0.071

C1 C2

m1

m2

m3

m4

m5

m6

m7

m8

Filter
𝑀஼భ

: {𝑚௜|𝑆௜ଵ > 𝜃}
𝑀஼మ

: {𝑚௜|𝑆௜ଶ > 𝜃}

--- Element-wise MultiplicationScore Matrix 𝑆௖௠

Figure 2: An illustration of the proposed MAGE framework. Given a dataset, a motif extraction
algorithm is initially employed to identify all potential motifs. Each motif’s feature encoding is
derived from the output encoding produced by the target model, which uses the motif graph as
its input. A single-layer attention operator is employed to learn the optimal motif combination,
maximizing the likelihood that the target classifier will classify both the reconstructed and original
molecular encodings identically. To get a score matrix, the method performs a dot product between
the attention coefficient matrix and the prediction probability matrix. This score matrix is then
normalized using a degree matrix. Finally, motifs whose corresponding scores exceed a specific
threshold are selected.

node, while E comprises the bonds, represented as edges connecting these nodes. The structural
information of each graph Gi is encoded in several matrices. The adjacency matrix A ∈ {0, 1}N×N

represents the connections between atoms, where a ‘1’ indicates the presence of a bond between
a pair of atoms, a ‘0’ signifies no bond, and N represents the total number of atoms in the graph.
Additionally, an atom feature matrix X ∈ RN×D captures the features of each atom, with D being
the number of features characterizing each atom. Similarly, a bond feature matrix Z ∈ R|E|×Db

is used to describe the attributes of the bonds, where |E| represents the number of edges and Db

denotes the number of features describing each bond.

Graph Neural Networks. Graph Neural Networks (GNNs) leverage adjacency matrix, node feature
matrix, and edge feature matrix to learn node features. Despite the existence of various GNN
variants like Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), and Graph
Isomorphism Networks (GINs), they generally follow a message-passing mechanism. In this process,
each GNN layer aggregates information from a node’s neighbors to refine its representation. For a
given hidden layer i, the message passing operation can be formulated as hi = f(hi−1,A,Z), where
h0 = X . Here, hi ∈ RN×D is the node representation output from layer i, and D is the dimension of
the output features. The function f involves computing messages based on the previous layer’s node
embeddings (hi−1), aggregating these messages from neighboring nodes, and updating the hidden
representation hi for each node using the aggregated messages.

Motif. A motif is essentially a recurring subgraph within a graph, closely associated with the graph’s
property, which has been thoroughly researched across various domains, including biochemistry,
ecology, neurobiology, and engineering (Milo et al., 2002; Shen-Orr et al., 2002; Alon, 2007; 2019)
and has been demonstrated to be of significant importance. GSN (Bouritsas et al., 2022) introduces
motif information into node features to improve the learning of GNNs. HMGNN (Yu & Gao,
2022a) generates a heterogeneous motif graph to enhance the molecular representation learning.
MotifExplainer (Yu & Gao, 2022b) applies motifs to learn an instance-level explanation for GNNs.
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3 MOTIF-BASED MODEL-LEVEL GNN EXPLAINER

This work introduces a Motif-bAsed GNN Explainer (MAGE), a novel approach for model-level
GNN explanations. This method uses motifs as fundamental elements for interpreting the overarching
behavior of a trained GNN for molecular graph classification at the model level. Instead of generating
a graph at the atomic level, using motifs allows the generator to assemble graphs from these predefined
blocks. This method prevents the creation of potentially invalid intermediate substructures and speeds
up the generation process. It achieves this by reducing the number of configurations the generator
must consider, focusing solely on the arrangement of motifs rather than the specific placement of
each atom and bond.

Given a dataset, denoted as G with |G| molecules and C classes, our objective is to generate model-
level explanations for a target GNN, which comprises a feature extractor ϕ(·) and a classifier f(·).
ϕ(·) takes a molecular graph or subgraph as input and outputs its feature representation. f(·) utilizes
this representation to predict the classification of a molecule.

MAGE begins with identifying all potential motifs within M. Following this, an attention-driven
motif learning phase is employed to identify the most significant motifs for each class using ϕ(·) and
f(·). Finally, a graph generator uses the identified motifs to explain each class.

3.1 MOTIF EXTRACTION

There are mainly four methods for motif extraction. It’s important to note that these motif extraction
methods can be integrated into our MAGE explanation method, demonstrating its versatility.

1) Ring and bonded pairs (R&B). Methods (Jin et al., 2018; Yu & Gao, 2022a; Bouritsas et al., 2022)
in this category recognize simple rings and bonded pairs as motifs. 2) Molecule decomposition. In this
category, methods recognize motifs through molecule breakdown. These methods initially establish a
catalog of target bonds, either through domain-specific knowledge, such as the “breakable bonds”
used by RECAP (Lewell et al., 1998; Zhang et al., 2021b) and BRICS (Degen et al., 2008; Zang
et al., 2023; Jiang et al., 2023), or through hand-crafted rules, like “bridge bonds” (Jin et al., 2020).
The algorithms remove these target bonds from the molecules and use the consequent molecular
fragments as motifs. 3) Molecule tokenization. Certain methods (Fang et al., 2023; Kuenneth &
Ramprasad, 2023) leverage the string representations of molecules, such as SMILES, and directly
apply the WordPiece algorithm from the NLP domain. The resulting strings within the constructed
vocabulary are regarded as motifs. 4) Data-driven method. MotifPiece (Yu & Gao, 2023) statistically
identifies underlying structural or functional patterns specific to a given molecular data.

3.2 CLASS-WISE MOTIF IDENTIFICATION

With extracted significant motifs from the previous section, this section introduces an attention-based
motif identification approach for each classification class.

Stage 1: molecule-motif relation score calculation.
Given the absence of a direct linkage between classification categories and motifs, we propose
bridging them through molecules. To this end, we employ an attention operator to learn motif-
molecule relation scores using the trained feature extractor ϕ(·) and a classifier f(·).
For a given molecule graph Gi and its associated motif set Mi, we use an attention operator to identify
a combination of motifs that can accurately reconstruct the representations of the molecule graph.
The learned attention scores between Gi and motifs in Mi are interpreted as their relation scores. The
initial step involves obtaining feature encoding for the molecule and motif graphs. This is done by
feeding a molecule graph or motif graph into ϕ(·), and the output encoding serves as the molecule or
motif:

hGi
= ϕ(Gi),hmi

= ϕ(mi), for all mi ∈ Mi.

Next, an attention operator is used to aggregate the motif encoding using hGi
as query and hmi

s as
keys and values. The resulting encoding, denoted as h′

Gi
, is the aggregated molecular encoding by
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combining motifs in Mi.

eGimi = g(WhGi ,Whmi), αGimi =
exp(eGimi)∑

mi∈Mi
exp(eGimi

)
,h′

Gi
=

∑
mi∈Mi

αGimi · hmi ,

where g(·) is an attention operator, and W is weight matrix. The target classifier f(·) then uses
aggregated encoding to generate predictions. The training process is designed to minimize the
cross-entropy loss between the predicted probabilities of the aggregated molecular encoding and
those of the original molecular encoding:

L =
∑
i

L(f(hGi
), f(h′

Gi
)). (1)

The attention operator is trained to identify important motifs to represent the molecule. This leads
to the molecule-motif relation score αGimi and the probabilities associated with label predictions
ŷ = f(h′

Gi
).

Stage 2: class-motif relation score calculation.
We repeat the process of Stage 1 to compute the molecule-motif scores for each molecular graph.
After that, we create a molecule-motif score matrix Smm ∈ RV×|G| and a molecule-class probability
matrix P ∈ R|G|×C . Here, Smm

pk represents the molecule-motif relation score between molecule k
and motif p. If the motif i does not appear in the molecule j, we set Smm

ij = 0. Element Pkr denotes
the probability that molecule k is associated with label r.

Subsequently, we perform a matrix multiplication between Smm and P to get class-motif relation
score matrix Scm:

Scm = SmmP , Scm
pr =

|G|∑
k=1

Smm
pk Pkr

which represents the relationship between motif p and class r. Then, we normalize Scm by dividing
each column, corresponding to a motif, by the number of molecules it appears.

Stage 3: class-wise motif filtering.
We filter motifs for each class using class-wise motif scores from the previous stage. The motif set
for the class Cr is

MCr = {mi|Scm
ir > θ, 1 ≤ i ≤ V } (2)

where θ is a hyper-parameter to control the size of the important motif vocabulary. An illustration of
our class-wise motif identification is provided in Figure 2.

3.3 CLASS-WISE MOTIF-BASED GRAPH GENERATION

𝐳ீ

Graph  Encode

𝐳்

Tree  Encode

Tree  Decode

Graph Decode

Molecular Graph G Junction Tree T

Figure 3: Class-wise motif-
based graph generation. Start-
ing with a molecular graph,
we first construct a junction
tree. Next, a tree encoder is
applied to obtain a tree encod-
ing, which is then decoded by
a tree decoder to reconstruct
the junction tree. Finally, a
graph decoder uses the pre-
dicted junction tree to repro-
duce the molecular graph.

Section 3.2 identifies motifs of high relevance for each class. Build-
ing on this, our methodology employs a motif-based generative
model to construct model-level explanations tailored to each class.
The motif-based molecular generation method can be divided into
VAE-based (Jin et al., 2018; 2020) and RL-based methods (Yang
et al., 2021). In our approach, we employ a VAE-based method as
a generator. However, our approach can easily adapt to RL-based
methods. The graph generation process is illustrated in Figure 3.

3.3.1 TREE DECOMPOSITION

Given a target class r, a set of important motifs MCr associated with
the class r, and the set of molecules Gr whose predicted class by
trained GNN is r. For each molecular graph Gi ∈ Gr, we first iden-
tify the motifs in MCr

from Gi: Mr
i = Mi ∩MCr

. Subsequently,
we pinpoint every edge in Gi that does not belong to any motif in
Mr

i . We treat each motif in Mr
i and each non-motif edge as a cluster

node. Then, we construct a cluster graph by connecting clusters with
intersections. Finally, a spanning tree T is selected from this cluster
graph, defined as the motif junction tree for Gi.
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3.3.2 GRAPH ENCODER

We encode the latent representation of G = (A,X) by the target GNN feature extractor ϕ(·):
hG = ϕ(A,X). The mean µG and log variance logσG of the variational posterior approximation
are computed from hG with two separate affine layers. zG is sampled from a Gaussian distribution
N (µG,σG). In the variational posterior approximation, we use two different affine layers to compute
the mean, represented as µG, and the log variance, denoted as logσG, from hG. Then, we sample
zG from a Gaussian distribution N (µG,σG).

3.3.3 TREE ENCODER

We employ a graph neural network to encode the motif tree T = (AT ,XT ), where every node i’s
feature xi is initially encoded by feeding its corresponding motif graph to ϕ(·). Formally, the node
embedding and tree embedding are updated as follows:

HT = GNN(AT ,XT ),hT = AGG(HT ).

where GNN(·) is a graph neural network, and AGG(·) is an aggregation function. zT is sampled
similarly as in the graph encoder, where zT is a tree encoding.

3.3.4 TREE DECODER

A tree decoder is used to decode a junction tree T from a tree encoding zT . The decoder builds the
tree in a top-down approach, where nodes are created sequentially, one after the other. The node
under consideration first obtains its embedding by inputting the existing tree into the tree encoder,
and the resulting output is then used as the node embedding. The node embedding is utilized for
two predictions: determining whether the node has a child and identifying the child’s label if a child
exists. Formally, for node i

H ′ = GNN(A′,X ′),pi = PRED(COMB(zT ,H ′
i)), qi = PREDl(COMBl(zT ,H

′
i))

where A′ and X ′ are the existing tree’s adjacent matrix and node features, respectively. COMB(·)
and COMBl(·) are combination functions, and PRED(·) and PREDl(·) are predictors. When the
current node does not have a new child, the decoder will go to the next node in the existing tree.

3.3.5 GRAPH DECODER

The final step is reproducing the molecular graph from the predicted junction tree T . Let G(T ) be a
set of graphs whose junction tree is T . The decoder aims to find Ĝ as

Ĝ = arg max
G′∈G(T )

fa(G′).

In our approach, we aim to ensure that the reproduced molecule maintains the characteristics of the
target GNN. So we design the score function as fa(Gi) = f(ϕ(Gi))[r], where r is the target label.

3.3.6 LOSS FUNCTION

The loss function for graph generation comprises two components: the reconstruction loss and the
property loss. The reconstruction loss ensures the generated graph matches the distribution of original
dataset. The property loss ensures the behavior of the generated graph aligns with the target GNN.

The reconstruction loss can be formally defined as below:

LR =
∑

Lchild +
∑

Llabel (3)

, where Lchild corresponds to predicting whether a node has a child, while Llabel represents the loss
associated with predicting the label of the newly added child. We perform teacher forcing for the
reconstruction loss to make the information get the correct history at each step.

The property loss is like below:

LP =
∑

MSE(hG,hT ) +
∑

L(f(hT ), r) (4)

6
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Table 1: Validity results on six real-world datasets. OOM refers to out of memory.
Datasets Models Label 0 Label 1 Average

Mutagenicity
XGNN 0.34 0.25 0.295

GNNInterpreter 0.11 0.21 0.16
Ours 1.00 1.00 1.00

PTC MR
XGNN 0.70 0.21 0.45

GNNInterpreter 0.10 0.05 0.07
Ours 1.00 1.00 1.00

PTC MM
XGNN 0.49 0.56 0.51

GNNInterpreter 0.15 0.20 0.17
Ours 1.00 1.00 1.00

PTC FM
XGNN 0.48 0.37 0.42

GNNInterpreter 0.13 0.08 0.10
Ours 1.00 1.00 1.00

AIDS
XGNN 0.92 0.71 0.81

GNNInterpreter 0.09 0.08 0.08
Ours 1.00 1.00 1.00

NCI-H23
XGNN OOM OOM OOM

GNNInterpreter 0.59 0.62 0.60
Ours 1.00 1.00 1.00

, where hT is the embedding of the generated tree, T represents the predicted motif-node tree, hG

is the corresponding graph embedding, G refers to the generated molecular graph, f(·) is the target
classifier, and r is the target label. The final loss function is

L = LR + LP (5)

4 EXPERIMENT

We conduct qualitative and quantitative experiments on six real-world datasets to evaluate the
effectiveness of our proposed methods.

4.1 DATASET AND EXPERIMENTAL SETUP

We evaluate the proposed methods using molecule classification tasks on six real-world datasets:
Mutagenicity, PTC MR, PTC MM, PTC FM, AIDS, and NCI-H23. The details of six datasets and
experimental settings are represented in Appendix B and C.

Baselines. We compare our MAGE model with two state-of-the-art baselines: XGNN and GNNIn-
terpreter. Noted that all methods are tested using official implementation and compared in a fair
setting. We extract motifs by identifying “bridge bonds”. We build a variant that uses the same motif
extraction and graph generation processes but without our attention-based motif identification step.
This variant is to demonstrate the effectiveness of our class-wise motif identification process. The
details of this variant will be discussed in section 4.2.

Evaluation metrics. Our quantitative evaluation uses two distinct metrics to assess performance:
Validity and Average Probability.

Validity. This metric is defined as the proportion of chemically valid molecules out of the total number
of generated molecules (Bilodeau et al., 2022).

Validity =
# valid molecules

# generated molecules
This metric serves as a critical indicator of the practical applicability of our method, ensuring that the
generated molecules not only align with the intended class but also adhere to fundamental chemical
validity criteria.

Average Probability. Following the GNNInterpreter (Wang & Shen, 2022), this metric calculates the
average class probability and the standard deviation of these probabilities across 1000 explanation

7
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Table 2: Quantitative results for different explanation methods. We highlight the average class
probability (higher is better) for six datasets. The best performances on each dataset are shown in
bold. OOM refers to out of memory.

Datasets Models Label 0 Label 1 Average

Mutagenicity

XGNN 0.8992 ± 0.0835 0.9831 ± 0.0514 0.9411
GNNInterpreter 0.8542 ± 0.3198 0.9938 ± 0.0191 0.9240

Variant 0.9897 ± 0.0754 0.9888 ± 0.0302 0.9892
Ours 0.9977 ± 0.0032 0.9941 ± 0.0240 0.9959

PTC MR

XGNN 0.9906 ± 0.0718 0.9698 ± 0.0417 0.9802
GNNInterpreter 0.9067 ± 0.1728 0.9697 ± 0.0211 0.9382

Variant 0.9902 ± 0.0480 0.9641 ± 0.1163 0.9771
Ours 0.9961 ± 0.0375 0.9918 ± 0.0621 0.9939

PTC MM

XGNN 0.9899 ± 0.0994 0.9266 ± 0.1059 0.9582
GNNInterpreter 0.9601 ± 0.0638 0.9541 ± 0.0207 0.9571

Variant 0.9784 ± 0.0475 0.9693 ± 0.0279 0.9738
Ours 0.9914 ± 0.0342 0.9833 ± 0.0019 0.9873

PTC FM

XGNN 0.9967 ± 0.0309 0.9380 ± 0.0991 0.9673
GNNInterpreter 0.9945 ± 0.0147 0.9460 ± 0.0295 0.9702

Variant 0.9882 ± 0.0024 0.9790 ± 0.0024 0.9836
Ours 0.9979 ± 0.0024 0.9890 ± 0.0024 0.9934

AIDS

XGNN 0.9259 ± 0.1861 0.9977 ± 0.0225 0.9618
GNNInterpreter 0.4600 ± 0.4983 0.9973 ± 0.0116 0.7286

Variant 0.9802 ± 0.1112 0.9939 ± 0.0564 0.9870
Ours 0.9883 ± 0.0663 0.9903 ± 0.0539 0.9893

NCI-H23

XGNN OOM OOM OOM
GNNInterpreter 0.9883 ± 0.0711 0.9997 ± 0.0015 0.9940

Variant 0.9874 ± 0.0685 0.9863 ± 0.01069 0.9868
Ours 0.9936 ± 0.0329 0.9934 ± 0.0422 0.9935

graphs for each class within all six datasets.

Average Probability =

∑
class probability

# generated molecules
.

This approach provides a comprehensive measure of the consistency and reliability of the explanation
graphs in representing different classes.

Together, these two metrics offer a robust framework for evaluating the effectiveness of our approach
from both the accuracy and applicability perspectives. Considering XGNN’s limitation in generating
explanation graphs with edge features, we assign the default bond type from the RDKit library as
the default edge feature for explanations produced by XGNN. We also report the training time and
sampling time of different models in appendix E.

4.2 QUANTITATIVE RESULTS

Table 1 details the Validity results for various models across six datasets. A notable observation from
these results is that our method consistently produces valid molecular explanation graphs for both
classes in all cases. This reliability stems from our method’s use of valid substructures as foundational
elements, effectively overcoming the limitation seen in atom-by-atom generation methods, which
often compel the model to create chemically invalid intermediate structures.

Additionally, the data reveals that XGNN exhibits better validity than GNNInterpreter. The reason
for this difference lies in the design of the algorithms: XGNN incorporates a manual constraint on
the maximum atom degree, which aids in maintaining chemical validity. In contrast, GNNInterpreter
is to align the embedding of its generated explanations with the average embedding of the dataset,
which does not inherently ensure chemical validity and leads to more invalid generated molecules.

These findings from the validity experiment highlight a principle: maximizing the inductive biases
inherent in the molecular graph structure is important. It enables models to achieve higher levels of
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Table 3: The qualitative results for Mutagenicity dataset. The first row of the table displays the
explanation graphs corresponding to the Nonmutagen label, while the second row presents the
explanation graphs for the Mutagen label. The final column in the table provides examples of actual
graphs. The different colors in the nodes represent different values in the node feature

Class Generated Model-Level Explanation Graphs for Mutagenicity Dataset
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validity in the outputs, demonstrating that careful consideration of the structural characteristics of
molecules can significantly enhance the performance and reliability of these models.

Table 2 shows the average probability of four models on six real-world datasets. Our method outper-
forms the baseline methods in ten out of twelve experiments, clearly highlighting its effectiveness.
Additionally, our method consistently delivers strong results across both classes in each dataset.
This contrasts XGNN and GNNInterpreter, which tend to excel in one class but fall short in the
other. We attribute this success of our method to its unique strategy of generating explanations in a
motif-by-motif way, effectively reducing the influence of extraneous or noise atoms in the data.

Furthermore, we conducted a comparative analysis between our method and a variant model. This
variant model operates by first identifying all potential motifs within the dataset. Once these motifs
are extracted, it assesses them by putting each motif as an input to the target model. The evaluation of
each motif is based on the output probability associated with a particular class, which is assigned as
the motif’s score. Following this scoring process, the method ranks all motifs in order of their scores.
Only motifs whose scores exceed 0.9 are chosen to refine the selection.

The outcomes of our study indicate that our method outperforms the variant model across all classes.
This significant improvement underscores the efficiency of our attention-based motif learning module.
Unlike the variant model, which solely focuses on the individual motifs without considering their
functional roles within the molecules, our method learns and understands the interplay between
motifs and molecules. This enables our approach to effectively identify and select motifs relevant
to the specific molecular context while simultaneously filtering out motifs that do not contribute
meaningfully, often called noise motifs.

4.3 QUALITATIVE RESULTS

Table 3 presents the qualitative assessment of three different methods applied to the two classes
of the Mutagenicity dataset. The table also includes actual graph examples from the dataset for
reference. Our analysis reveals that our method can consistently produce human-understandable and
valid explanation graphs, which XGNN and GNNInterpreter seem to lack. More qualitative results
can be found in Appendix G.

We observed a trend in GNNInterpreter to produce explanations that are disconnected. This is
likely due to its approach of aligning explanation embeddings with the dataset’s average embedding,
resulting in a focus on node features rather than structural details. XGNN, on the other hand, tends
to create explanations with invalid ring structures. Although XGNN imposes constraints on the
degree of each atom, its atom-by-atom generation approach makes it challenging to form valid ring
structures. Our method can generate explanations with meaningful substructures like rings.

This inability of XGNN and GNNInterpreter to effectively identify complex molecular structures may
contribute to their lower validity in explanation generation. Our method, in contrast, successfully nav-
igates these complexities, offering more meaningful, accurate and structurally coherent explanations.
This difference highlights the importance of considering both node features and molecular structures
in the generation of explanation graphs, a balance that our approach seems to strike effectively.
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Table 4: Comparison of different components of the loss function on Mutagenicity dataset.
Loss function Label 0 Label 1

LR 0.9827± 0.0580 0.9892± 0.0482

LP 0.9881± 0.0518 0.9805± 0.0589

LR + LP 0.9977± 0.0032 0.9941± 0.0240

4.4 ABLATION STUDY: LOSS FUCTION

In this section, we evaluate performance on Mutagenicity dataset when using each loss component
independently. Table 4 shows the results. From the table, we observe that using only the reconstruction
loss results in high accuracy, though it is slightly lower than configurations that include property
alignment. This indicates that, while the model is proficient at preserving input structure, it may
lack alignment with target-specific characteristics. The table also shows that using only the property
loss results in slightly lower performance than the combined loss. This suggests that, without the
reconstruction loss, the model may lose some structural accuracy, leading to a minor decrease in
overall performance.

5 RELATED WORK

Model-level explanation methods in the field are currently under-researched, with only a few studies
addressing this issue. These methods can be divided into two categories. The first category is concept-
based methods. GCExplainer (Magister et al., 2021) introduced the incorporation of concepts into
GNN explanations, using the k-Means clustering algorithm on GNN embeddings to identify clusters,
each representing a concept. PAGE (Shin et al., 2022) provides clustering on the embedding space to
discover propotypes as explanations. GLGExplainer (Azzolin et al., 2022) adopts prototype learning
to identify data prototypes and then uses these in an E-LEN model to create a Boolean formula that
replicates the GNN’s behavior. GCNeuron (Xuanyuan et al., 2023), on the other hand, employs
human-defined rule in natural language and considers graphs with certain masked nodes as concepts,
using compositional concepts with the highest scores for global explanations. The second category
comprises generation-based methods. XGNN (Yuan et al., 2020) uses deep reinforcement learning
to generate explanation graphs node by node. GNNInterpreter (Wang & Shen, 2022), alternatively,
learns a probabilistic model that identifies the most discriminative graph patterns for explanations.

6 CONCLUSION

This work proposes a novel motif-based model-level explanation method for Graph Neural Networks,
specifically applied to molecular datasets. Initially, the method employs a motif extraction technique
to identify all potential motifs. Following this, a one-layer attention mechanism is used to evaluate the
relevance of each motif, filtering out those that are not pertinent. Finally, a graph generator is trained
to produce explanations based on the chosen motifs. Compared to two baseline methods, XGNN
and GNNInterpreter, our proposed method offers explanations that are more human-understandable,
accurate, and structurally consistent.
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concept-based interpretability for graph neural networks via neuron analysis. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 10675–10683, 2023.

Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead discovery
with explorative rl and fragment-based molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32:9240, 2019.

Zhaoning Yu and Hongyang Gao. Molecular representation learning via heterogeneous motif graph
neural networks. In International Conference on Machine Learning, pp. 25581–25594. PMLR,
2022a.

Zhaoning Yu and Hongyang Gao. Motifexplainer: a motif-based graph neural network explainer.
arXiv preprint arXiv:2202.00519, 2022b.

Zhaoning Yu and Hongyang Gao. Motifpiece: A data-driven approach for effective motif extraction
and molecular representation learning. arXiv preprint arXiv:2312.15387, 2023.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 430–438, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In International conference on machine learning, pp. 12241–
12252. PMLR, 2021.

Xuan Zang, Xianbing Zhao, and Buzhou Tang. Hierarchical molecular graph self-supervised learning
for property prediction. Communications Chemistry, 6(1):34, 2023.

Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model explainer. In
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 1042–1049, 2021a.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph self-
supervised learning for molecular property prediction. Advances in Neural Information Processing
Systems, 34:15870–15882, 2021b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS OF DECODE A VALID MOLECULE EXPLANATION

To decode a valid molecule explanation from a tree structure, we have the following steps:

1. Start with a decoded Tree: The decoding process begins with a decoded tree T , which
represents the hierarchical structure of motifs.

2. Enumerate motif Combinations: For each motif node in the tree and its neighboring motifs,
we enumerate different combinations to find feasible arrangements. Certain combinations
lead to chemically infeasible molecules, and are discarded from further consideration.

3. Rank and Combine combined subgraphs: At each node, we rank the combined subgraphs
based on our target GNN, ensuring that the final graph is following the same distribution of
our target class.

4. The final graph is decoded by putting together all the predicted subgraphs.

Algorithm 1 Decoding a Molecule from a Tree Structure
Require: Decoded tree T representing the hierarchical structure of motifs.
Ensure: Final molecular graph G.

1: Initialization: Set the final graph G to an empty graph.
2: for each motif node m in the tree T do
3: Identify neighboring motifs of m in T .
4: Enumerate all feasible combinations of m with its neighboring motifs.
5: Discard combinations that lead to chemically infeasible molecules.
6: Rank the remaining combined subgraphs using the target GNN model to assess alignment

with the target class distribution.
7: Select the top-ranked combined subgraph.
8: Integrate the selected subgraph into the final graph G.
9: end for

10: Output: The final molecular graph G obtained by assembling all predicted subgraphs.

Algorithm shows the details of our graph decoder.

B DETAILS OF DATASETS

Table 5: Statistics and properties of four real-world molecule datasets.
Mutag PTC MR PTC MM PTC FM AIDS NCI-H23

# Nodes (avg) 30.32 14.29 14.32 14.48 15.69 26.07

# Edges (avg) 30.77 14.69 13.97 14.11 16.20 28.10

# Graphs 4337 344 336 349 2000 40353

# Classes 2 2 2 2 2 2

The statistics and properties of four datasets are summarized in Table 5.

Mutagenicity (Kazius et al., 2005; Riesen & Bunke, 2008) is a chemical compound dataset containing
4,337 molecule graphs. Each of these graphs is classified into either mutagen or non-mutagen cate-
gories, signifying their mutagenic impact on the Gram-negative bacterium Salmonella typhimurium.

PTC MR, PTC MM, and PTC FM (Morris et al., 2020) are three collections of chemical compounds,
each respectively documenting carcinogenic effects on male rats (MR), male mice (MM), and female
mice (FM).

AIDS (Morris et al., 2020) comprises 2,000 graphs that represent molecular compounds, all of which
are derived from the AIDS Antiviral Screen Database of Active Compounds.
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NCI-H23 (Morris et al., 2020) is a collection of 40353 molecular compounds to evaluate the efficacy
against lung cancer cells.

C EXPERIMENTAL SETTINGS

By following baseline approaches, our experiments adopt a simple GCN model and focus on explana-
tion results. For the target GNN, we use a 3-layer GCN as a feature extractor and a 2-layer MLP as
a classifier on all datasets. The model is pre-trained and achieves reasonable performances on all
datasets. Following the (Xu et al., 2018), the hidden dimension is selected from {16, 64}. We employ
mean-pooling as the readout function and ReLU as the activation function. We use Adam optimizer
for training. The target model is trained for 100 epochs, and the learning rate is set to 0.01. The CPU
in our setup is an AMD Ryzen Threadripper 2990WX, accompanied by 256 GB of memory, and the
GPU is an RTX 4090. For training an explainer, the number of epochs is selected from {50, 100},
the learning rate is selected from {0.01, 0.0001, 0.0005}, the batch size is selected from {32, 320}.

D STUDY OF MOTIF EXTRACTION TIME

In this section, we study the motif extraction time for all six datasets.

Average Number of Nodes Motif Extraction Time (ms/graph)

Mutagenicity 30.23 0.799

PTC MR 14.29 0.428

PTC MM 13.97 0.415

PTC FM 14.11 0.444

AIDS 15.69 0.457

NCI-H23 26.07 0.877

The table demonstrates that the bridge bond cut-off method achieves decomposition times in the
millisecond range. This approach allows us to process large datasets with minimal computational
cost.

E STUDY OF TRAINING AND INFERENCE TIME

We also present a detailed comparison of the training and sampling times between our method
and other baseline approaches in table 6. Here, sampling time is the average time to generate
a single explanation. Compared to the two baselines, a key distinction of our method lies in its
requirement for an initial training phase for the explanation graph generator. This phase confers a
significant benefit: the ability to efficiently sample explanations. Our experimental data underscores
this advantage. Following the completion of the training phase for the explanation generator, our
method demonstrated the capacity to generate a large number of explanations rapidly. Specifically, it
could sample 1000 explanations in a matter of seconds. This starkly contrasts other baseline methods,
which required at least 3.3 hours to produce the same number of examples. This dramatic reduction
in sampling time not only highlights the efficiency of our method but also suggests its practical
applicability in scenarios where quick generation of explanations is crucial. Due to the space limit,
we put the study of hyper-parameter θ in Appendix F.

F STUDY OF HYPERPARAMETER

Table 7 shows the study of hyperparameter θ, we found that as θ increases, the number of motifs
selected for the Mutagen class decreases. The average probability rises until θ reaches 0.10, where
peak performance is observed, after which it starts to decline. This trend occurs because when θ is
low, some irrelevant motifs are included in the explanations. As θ increases, these ’noise’ motifs
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Table 6: Training and inference time for different explanation methods. XGNN and GNNInterpreter
do not have training time because they only have sampling process.

Datasets Models Training Time Sampling Time

Mutagenicity

XGNN — 54s
GNNInterpreter — 29s

Variant 528s 0.0015s
Ours 539s 0.0029s

PTC MR

XGNN — 62s
GNNInterpreter — 27s

Variant 338s 0.0005s
Ours 368s 0.0006s

PTC MM

XGNN — 46s
GNNInterpreter — 17s

Variant 303s 0.0023s
Ours 367s 0.0002s

PTC FM

XGNN — 47s
GNNInterpreter — 12s

Variant 307s 0.0027s
Ours 386s 0.0018s

AIDS

XGNN — 19s
GNNInterpreter — 32s

Variant 468s 0.0065s
Ours 513s 0.0076s

NCI-H23

XGNN — OOM
GNNInterpreter — 21s

Variant 10189s 0.0115s
Ours 13657s 0.0126s

Table 7: Study of Hyperparameter θ on Mutagen class of Mutagenicity dataset
θ = 0.01 θ = 0.05 θ = 0.10 θ = 0.20

# Selected Motifs 1591 1328 1206 1073
Average Probability 0.9621 ± 0.1151 0.9850 ± 0.0784 0.9977 ± 0.0032 0.9753 ± 0.0981

are filtered out, enhancing performance. However, if θ is set too high, the resulting small number of
selected motifs is insufficient for forming a comprehensive explanation.
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G MORE QUALITATIVE RESULTS

Table 8: More qualitative results for Nonmutagen class on Mutagenicity dataset.
Class XGNN GNNInterpreter Ours Example
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Table 9: More qualitative results for Mutagen class on Mutagenicity dataset.
Class XGNN GNNInterpreter Ours Example
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