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Abstract

Developing schemes to enable zero-shot stitching between different neural net-
works with minimal or no information exchange has become increasingly important
in the era of large and powerful pre-trained models. Considering the example of an
autoencoder based data compression framework, having the ability to select the
architecture and train an encoder model completely independently of the decoder
model while ensuring interoperability between them can revolutionize how these
models are developed, deployed, and maintained. In this work, we propose a
novel approach that utilizes topological regularizations to align the latent spaces
of two different autoencoder models that can be trained independently, without
coordination. Our solution introduces two distinct training schemes: Data2Latent
and Latent2Latent. The Data2Latent scheme focuses on preserving the topological
structure of the input data in the latent space, while the Latent2Latent scheme pre-
serves the latent space of a pre-trained, unconstrained model. Through numerical
experiments in reconstruction tasks, we demonstrate that our approach yields a
near-optimal solution, closely approximating the performance of an end-to-end
model.

1 Introduction

Compressing data into meaningful low-dimensional representations is a long-standing challenge with
applications in image compression [2, 20], audio compression [9], wireless communication [11, 24],
and more. Neural networks address this by training an encoder-decoder pair, where the intermediate
representation serves as compressed data. The decoder then reconstructs the original data, and the
pair is trained end-to-end.

Recent works have studied the zero-shot stitching problem [8] in the context of autoencoders,
which involves interconnecting encoders and decoders trained independently using limited datasets.
In [22], the authors proposed a method that maps the latent representation of each autoencoder
to a relative space. However, this approach requires a specialized decoder trained in the relative
representation, which is a significant drawback as it necessitates a large amount of data. More recent
methods [14, 19] suggest that a linear transformation might suffice to align latent spaces. However, a
significant performance gap remains between end-to-end autoencoders and interconnected models
when trained on finite, small datasets, suggesting that linear transformations alone are insufficient.
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Figure 1: Data2latent scheme: a,b) Topological autoencoders. In this case, we regularize the training
of each autoencoder AE1,AE2 with the input data, preserving its topological structure in the latent
space independently of the architecture of the encoder. As an example, we consider a 2D synthethic
dataset with 5 classes, its corresponding latent space when considering a bottleneck of dimension
two and the topological loss, and the output data which has the same shape as the input. Notice that
each autoencoder maps the input data to a different latent space, but both latent spaces preserves the
topology up to a rotation and a stretching. c) Stitching between two regularized autoencoders. The
transformation is simplified, leading to a linear transformation (rotation).

We hypothesize that this performance gap arises due to a lack of geometric similarity between the
latent spaces. The encoder’s nonlinear mapping from input data to the latent space is often biased by
the network architecture, training parameters and weight initializations, making the latent spaces of
independently trained autoencoders incompatible when using simple linear transformations.

To address this, we propose preserving the topological features of the input data within the latent
space. This regularization encourages architecture-agnostic latent spaces, making them easier to
align. Our approach quantitatively measures the dataset’s underlying topology and employs it as
a regularizer in the training of interoperable autoencoder models. In particular, we build upon
the topological regularizer proposed in [21]. Specifically, this regularization aligns the minimum
spanning trees of the source (input data) and the target (latent space), leveraging persistent homology
to preserve topological features2. We propose two training frameworks termed Data2Latent (Fig. 1)
and Latent2Latent (Fig. 2).

Contributions. The contributions of this paper are twofold:
1) We propose two training frameworks termed Data2Latent and Latent2Latent. Each one exploits
the topological regularization differently: while the former aims to preserve the structure of the input
data, the second one aims to preserve the topological structure of the latent space of unconstrainedly
trained autoencoder.
2) Through numerical experiments we show that incorporating topological information facilitates the
zero-shot stitching operation with a simple linear transformation.

2 Alignment with topological constraints

Direct alignment between latent spaces. Given two autoencoders AE1 and AE2 with latent spaces
Z1 and Z2 respectively, we seek a method to align their latent space with minimal interaction between
the models; the ultimate goal is to interconnect the encoder E(.) of AE1 (AE2) with the decoder D(.)
of AE2 (AE1). Based on the assumption that latent spaces of models trained independently tend to
be similar, the authors in [14, 19] propose to estimate a transformation T(.) by minimizing the mean
square error as follow 3

T(.) = argmin
T(.)∈T

∥Z1 −T(Z2)∥2 (1)

Although these works claimed that a linear transformation is enough to align the latent spaces of
independently trained autoencoders Z1 and Z2, the gap in terms of reconstruction error between

2The referenced paper aligns persistence diagrams obtained via persistent homology, focusing on 0-
dimensional topological features, effectively aligning the minimum spanning trees

3Although here we focus on the euclidean distance, a different function L(.) can be used.
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Figure 2: Latent2latent scheme. In this case, we regularize the training of second autoencoder AE2

with the latent space of pre-trained, unconstrained autoencoder AE1. We compute the topological
loss using a pre-defined set Dtopo.

the end-to-end autoencoder and the interconnection is still significant. This difference highlights
that the linear assumption for interconnection is insufficient. While a non-linear transformation
could potentially improve the alignment [17], it requires a large number of samples from Z1 and Z2,
violating our goal of minimizing interaction between the models. To cope with this challenge, we
propose to incorporate a geometric regularization to linearize the relationship.

Topological regularizations aid similar latent spaces. We hypothesize that the relationship be-
tween the latent spaces can be linear, but achieving this requires an additional constraint. Specifically,
we facilitate alignment by incorporating a geometric regularizer that enforces similar topology be-
tween both latent spaces. In particular, we aim to make both latent spaces share the same topological
features. A natural way to achieve this is by preserving the shape of the data in each latent space,
which can be done using the topological loss introduced in [21]. In essence, this loss function
aligns the minimum spanning tree between a source space and the learnable space by leveraging
algebraic topology tools, particularly persistent homology; see Appendices B and C for more details
on persistent homology and the topological loss. We incorporate this topological regularization and
propose two training schemes that constrain the latent space:

1) Data2latent: In this first strategy, we regularize the latent space of both autoencoders so that each
latent space retains the same connectivity and topological information as the input space. Formally,
we define the loss function as

LD2L = ∥x−D(E(x))∥2 + λLtopo(x, E(x)) (2)

where Ltopo(.) is defined in (4) and λ is a regularization constant. By doing this, and assuming
both autoencoders are trained on the same dataset, we constrain the latent spaces to share the same
topological structure as the input space, thereby inducing similarity between them. As a consequence,
the transformation between Z1 and Z2 becomes simpler.

2) Latent2latent: In this second strategy, we assume an autoencoder AE1 has been trained without
any constraints. Then, given a subset of the training data, Dtopo and the corresponding encoded
vectors {E1(x)|x ∈ Dtopo}, we train AE2 to minimize the following loss function

LL2L = ∥x−D2(E2(x))∥2 + λLtopo(E1(x), E2(x)) (3)

where the topological loss is evaluated only on Dtopo. Intuitively, during training, we are constraining
Z2 to share the topological structure with Z1, harmonizing their topological features and simplifying
the transformation between them.

Once both models are trained, we estimate the transformation T(.) by minimizing (1) using a
small subset of data points from the dataset denoted as DT . We consider a linear transformation
T(Zi) = TZi.

3 Results

We present the results of the proposed scheme on two datasets, MNIST [5] and Fashion MNIST [25].
We utilize two completely different model architectures to show the robustness of the proposed
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scheme for the model architectures of the two autoencoders. For the first autoencoder (AE1), a feed-
forward architecture is utilized, and for the second autoencoder (AE2), a convolutional neural network
architecture is utilized. For MNIST, we consider a bottleneck of 128, while for FashionMNIST 250.
Details on the model architecture, hyperparameters, and training can be found in Appendix A.1.

3.1 Comparison with other methods

As baselines, we consider the direct alignment with a linear transformation between two unconstrained
autoencoders [14] and the relative representation, where a specialized decoder is trained to handle
the relative representation [22]. For the direct alignment and our methods, we use 500 samples to
estimate the linear transformation, while for the relative representation, we use 1000 anchor points.
The normalized mean-square error (NMSE)4 is shown in Table 1, while qualitatives results are
shown in Appendix A.2 in Figs. 4a and 4b. For the quantitative results, we average over five trials
with different seeds. The topological constraint harmonizes the latent space, making them easy to
stitch: the topological autoencoder achieves an NMSE almost as good as its upper bound (L11) for
FasionMNIST.

Table 1: NMSE for related and our proposed methods on MNIST and FashionMNIST. L11 and L22

denote the NMSE of decoding using AE1 (MLP) and AE2 (CNN) respectively, while L21 is the
NMSE of decoding using directly (T = I) the encoder from AE2 with the decoder from AE1. We
do not include the standard deviation when it is in the fourth decimal place. We consider the average
accross 4 trials with different seeds.

Method MNIST FashionMNIST

L11 (MLP-MLP) 0.020 0.018
L22 (CNN-CNN) 0.014 0.010
L21 (CNN-MLP) 0.923± 0.002 0.644± 0.061

Direct alignment (CNN-MLP) [14] 0.611± 0.081 0.193± 0.03
Rel. representation [22] 0.225± 0.003 0.100± 0.003

Data2Latent (CNN-MLP) (ours) 0.055 0.023± 0.003
Latent2Latent (CNN-MLP) (ours) 0.065± 0.001 0.028± 0.002

3.2 Ablation

Finally, we do an ablation study of our proposed methods compared to the linear transformation
between unconstrained autoencoders [14]. We compare the performance when increasing the size of
samples for the linear transformation. For the latent2latent training, we consider |Dtopo|= 20. The
results for |DT |= {10, 100, 200, 500} and MNIST is shown in Fig. 3a, while for the FashionMNIST is
in 3b. We observe that for |DT |≥ 200, the performance of the interconnection between autoencoders
gets closer to the upper bound, while the gap between the non-regularized case remains large. Notice
that increasing the size of the bottleneck (recall for for FashionMNIST we consider a bottleneck of
250) improves the performance of our methods, achieving a near-optimal performance.

4 Conclusion

We study the problem of zero-shot stitching in autoencoders, showing that topological regularization
aids a simplified relationship (linear) between two latent spaces. Our proposed solution encompasses
two different training schemes: Data2Latent and Latent2Latent, which aim to preserve the topological
structure of the input data and the latent space of an unconstrained autoencoder, respectively. Through
numerical experiments on MNIST and FashionMNIST, we showed that our method simplifies
dramatically the relationship between two latent spaces. Future work includes studying alternatives
geometric losses to align topological features, formalizing the trade-off between performance and
samples for the topological loss [12], which is particularly relevant for for the Latent2Latent scheme,
and expanding the experiments on more complex datasets, such as ImageNet, and of different
modalities, such as language and wireless data.

4We normalize w.r.t. the clean image.
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Figure 3: Performance analysis of our proposed methods as a function of the number of samples (|DT |) for
estimating T(.) in (1). a) NMSE vs |DT | for MNIST. b) NMSE vs |DT | for FashionMNIST.
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A Additional details

A.1 Details of the architectures and training

We now expand on the details of the architectures and training process. The encoder and decoder
of AE1 are feed-forward architectures with three layers with ReLU activation function followed by
batch normalization and a bottleneck of 128 for MNIST and 250 for FashionMNIST. The hidden
dimension at the output of each layer is 1000 for the first layer, 500 for the second one, and 250 for
the third. The non-linear activation function at the last layer of the decoder is Tanh(.). The encoder
and decoder of AE2 are convolutional architectures with five convolutional layers. The first layer is a
kernel with size of 3 and a stride of 2, with padding to preserve spatial dimensions. The number of
channels at the output is 32. The second layer keeps the number of channels constant and has the
same kernel size and stride of 1. The third layer has a kernel with size of 3 and a stride of 2, with
padding, doubling the number of channels to 64. The next layer preserves the spatial dimensions and
retains the same channel depth. The final convolutional layer applies a kernel with size three and a
stride of 2 again, maintaining the number of channels. After the final convolutional operation, the
output is flattened into a one-dimensional vector, which is then passed through a linear transformation
which reduces the feature representation to the same MLP bottleneck (128 for MNIST and 250 for
FashionMNIST). Each convolutional layer is followed by a LeakyReLU activation function.

We train for 200 epochs with a batch size of 256. We use ADAM optimizer [13] with a learning rate
lr = 1 × 10−4. For the training scheme Latent2Latent we consider |Dtopo|= 20, i.e., 20 samples
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for the topological loss. Lastly, for both schemes we fixed λ = 0.5 for MNIST and λ = 0.02 for
FashionMNIST. We consider 4 trials per method with different seeds (0, 100, 1000, 10000) and report
the average.

A.2 Additional results

In Figs. 4a and 4b we show qualitative results for MNIST and FasionMNIST for the experiments
described in Section 3.1

(a) MNIST

(b) FashionMNIST

Figure 4: Qualitative results for all the methods. From left to right: input, L11 (MLP), L22 (CNN),
L21 (CNN-MLP), Direct Alignment (CNN-MLP) [14], Rel. Representation [22], Data2Latent (D2L),
Latent2Latent (L2). For linear transformation and our two methods, we used |DT |= 500 samples to
estimate the transformation; for Rel. Representation, we used 1000 anchor points.

Running time. We compared the training times of the AEs with and without the topological loss.
On an NVIDIA DGX A100, the AE without topological loss trains in approximately 10 minutes,
while incorporating the topological loss increases the time to around 15 minutes. It’s important to
note that, in this case, we are only using 0-dimensional persistence features. Future work will include
an ablation study on larger datasets to further analyze the impact.

B Persistence homology

Our method leverages algebraic topology tools [10]. In particular, we build a simplicial complex
given a dataset representing a point cloud in a N-dimensional space. A simplicial complex is a
set composed of points, lines, triangles, and n-dimensional counterpart objects; for example, a
0-simplicial corresponds to the points of the simplicial. In particular, one-dimensional simplicial
complexes are equivalent to an undirected graph. We use persistence homology to find topological
features of the dataset, namely connectivity patterns such as connected components; the homology
groups describe these topological features.

Formally, we assume that we have a dataset represented as a point cloud, where samples lie in an
unknown manifold. Thus, we seek to approximate the unknown manifold. We represent the point
cloud as a nested sequence of simplicial complexes; we consider the Vietoris-Rips complex [23].
The sequence is built following a filtration process: for 0 < ϵ < ∞, the Vietoris-Rips complex (at
each scale ϵ) contains all the simplices of the point cloud whose elements satisfy that dist(xi, xj) <
ϵ ∀i, j [10]. Notice that this construction satisfies the nested relationship, i.e., for ϵi < ϵj , the
simplicial at scale ϵi is contained in the simplicial at scale ϵj ; for

The output of the persistence homology calculation of a point cloud are tuples of persistence diagrams
Dd and persistence pairings Pd, where d is the dimensionality. For example, the persistence pairing
P0 contains the edge indices that are in the minimum spanning tree, i.e., the edges that are "relevant"
from a topological perspective. The d-dimensional persistence diagram contains coordinates (a, b),
where a indicates the scale ϵ at which a d-dimensional topological feature is created, while b indicates
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the scale ϵ′ at which it is destroyed. On the other hand, the persistence pairing contains indices (i, j)
that correspond to simplicies si, sj that create and destroy the topological feature identified by (a, b).

C Topological autoencoders

Building a tractable loss function that compares the topological features between the target (input)
and learnable spaces is challenging. We consider the loss function defined in [21], which compares
the persistence diagrams. We now briefly describe its construction and main ingredients. First, we
compute the pair-wise distances between samples in the point cloud (points in the dataset). Let P be
the set of all pairs of data points in the point cloud, the set of all corresponding pairwise distances is
denoted as A. We fix the maximum scale ϵ = maxA and the maximum dimension d = 0. Given this
scale, we construct the Vietoris-Rips complex as described above and given the dimension d, we keep
all the persistence diagrams and pairings up to the dimension d. Since, d = 0, the persistence diagram
corresponds to the minimum spanning tree: recall that the persistence diagram for 0-dimensional
features indicates when two connected components are merged. We do this for both, the target
space (i.e. input data space in the Data2Latent setting and latent space of the unconstrained trained
autoencoder in the Latent2Latent scheme) and learnable spaces.

Denoting PX as the pairing indices of the connected points in the target space (edges of the persistence
diagram/ minimum spanning tree in the target space), PZ as the pairing indices in the learnable space
(edges of the persistence diagram/ minimum spanning tree in the learnable space), AX and AZ as the
set of all possible pairwise distances in the target space and learnable space, respectively. We obtain
the distance corresponding to the edges of the minimum spanning trees in the target and learnable
spaces as, DXX = AX[PX] and DZZ = AZ[PZ], respectively. Finally, we consider the union of all
selected edges across the target and learnable spaces, i.e., DZX = AZ[PX] and DXZ = AX[PZ].
Finally, the topological loss is given by

Ltopo =
1

2
∥DXX −DZX∥2 + 1

2
∥DXZ −DZZ∥2. (4)

Although we consider the Euclidean norm here, we can also consider other types of distance to
compare the persistence diagram. In a nutshell, this loss function combines two terms: the first one
seeks to minimize the dissimilarity between the adjacency matrix in the input and latent space when
considering the pairing obtained from data graph. Similarly, the second term minimize the difference
but when considering the pairing obtained from the latent graph. Considering the union instead of
the intersection is essential to have informative gradients; otherwise, if we consider the difference
between DXX and DZZ, then in the first step, the number of distances selected by the persistence
pairing in the learnable spaces would be small due to its random initialization.

D Related works

This section expands on the baseline methods and other related works.

D.1 Relative representation

Relative representation [22] is one of the most popular papers in zero-shot stitching. The work
builds on the observation that the representations learned by different neural networks trained on the
same data are related via conformal maps; in other words, the angles between latent embeddings
are preserved. Based on this observation, they propose to map the latent space of each autoencoder
to a pre-defined relative representation, which is invariant by construction to the transformations
induced by stochastic factors in the training process. More precisely, they select at random a set of
anchor elements A ∈ Dtrain; every sample in the anchor set is represented concerning the embedded
anchors ea(j) = E

(
a(j)

)
. Then, the relative representation is defined as

rx(i) = (sim (ex(i) , ea(1)) , sim (ex(i) , ea(2)) , . . . , sim (ex(i) , ea(|A|))) (5)

where sim : Rd × Rd → R is a similarity function, yielding a scalar score r between two absolute
representations r = sim (ex(i) , ex(j)). In particular, they consider the cosine similarity. Notice that
the number of anchor points gives the dimensionality of this new latent space; therefore, it is expected
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to improve the performance when increasing the number of anchor points. This proposed method
requires a specialized decoder trained on the relative representation.

While in the original paper, the authors considered only the cosine similarity, other similarity functions
can be incorporated [3, 4]. Lastly, a recent work [7] proposes a method to do zero-shot stitching that
leverages functional maps, i.e., by learning a linear transformation in the spectral domain.

D.2 Autoencoders via geometric regularization

This work focused on topological autoencoders; however, several previous works incorporate a
geometric regularization [15]. Many of them build on the notion of curvature of a generator [1].
In [16], the authors propose first to build a neighborhood graph on the input data and use it to
regularize the geometry and connectivity of the learned manifold. Remarkably, they propose a
local approximation of the decoder instead of the encoder to extract local geometric information on
the decoded manifold. In [26], a regularization based on conformal mapping, i.e., a mapping that
preserves angles, is used to enforce the preservation of angles and relative distances between data and
latent space. In [6], inspired by manifold learning, a regularization based on spectral embeddings is
incorporated, encouraging the learned latent representation to align with the data geometry. Recently,
a graph-preserving autoencoder was proposed in [18], which aims to preserve a pre-build Laplacian
between the input data and the latent space.
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