

# 000 001 002 003 004 005 HALDEC-BENCH: BENCHMARKING HALLUCINATION 006 DETECTOR IN IMAGE CAPTIONING 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029

## ABSTRACT

030  
031  
032  
033  
034 Recent progress in large vision-language models (VLMs) has been driven by ad-  
035 vances in image-text alignment, i.e., learning the relationship between image and  
036 text. Hallucination detection in captions, **HalDec**, is a task to assess VLM’s  
037 image-text alignment ability, and aims to identify errors in VLM-generated cap-  
038 tions that misrepresent image content. Detecting these errors is crucial not only for  
039 evaluating alignment ability but also for curating high-quality image-caption pairs  
040 used to train VLMs. While VLMs have been explored as hallucination detectors,  
041 their generalizability across different captioning models, image domains, and hal-  
042 lucination types remains unclear due to a lack of a benchmark. In this work, we  
043 present HalDec-Bench, the first benchmark for principled and interpretable eval-  
044 uation of HalDec models. It covers diverse VLMs used as captioning models, image  
045 domains, and provides high-quality hallucination-existence annotations enriched  
046 with hallucination-type labels. HalDec-Bench thus serves as a comprehensive  
047 testbed to advance HalDec and probe the image-text alignment ability of VLMs.  
048 Our analysis shows that HalDec-Bench offers tasks of varying difficulty, making it  
049 well-suited as a HalDec benchmark. Evaluating diverse VLMs reveals key limita-  
050 tions: (i) CLIP-like models are nearly blind to hallucinations in recent VLMs,  
051 (ii) detectors tend to over-score early sentences, and (iii) they display strong  
052 self-preference—favoring their own captions—which undermines detection per-  
053 formance. We will release our evaluation code and dataset upon acceptance.

## 1 INTRODUCTION

030  
031  
032  
033  
034 We have seen remarkable progress in large vision-language models (VLMs) (Wang et al., 2024a; Liu  
035 et al., 2023; 2024; Chen et al., 2023; Li et al., 2023a) and text-to-image generative models (Betker  
036 et al., 2023). A key to this progress lies in understanding image content in the form of text, i.e.,  
037 learning image-text alignment. Once this mapping between images and text is effectively learned,  
038 large language models (LLMs) can be leveraged for various visual reasoning tasks (Li et al., 2023a).

039 Hallucination detection in captions, called **HalDec** hereafter, is a task that assesses VLM’s image-  
040 text alignment capability. It aims to identify errors in captions that misrepresent image content, such  
041 as misstated object counts, incorrect attributes or relationships, or the introduction of entities absent  
042 from the image (Biten et al., 2022; Li et al., 2023b; Rohrbach et al., 2018). Beyond evaluating the  
043 alignment ability of VLMs, HalDec enables filtering out unaligned image-caption pairs (Li et al.,  
044 2022) from the training data. In practice, VLM training often relies on captions synthesized by  
045 a *Captioner*<sup>1</sup> to supplement the limited availability of human-annotated data. However, these syn-  
046 thetic captions frequently suffer from hallucinations. Curating high-quality image-caption pairs with  
047 strong detectors, therefore, plays a crucial role in building performant VLMs (Chen et al., 2024a).  
048 Indeed, models such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022) have already been  
049 widely used to curate large-scale training datasets for VLMs (Betker et al., 2023; Li et al., 2023a).

050 Considering the scalability of detectors, we expect the detector to be universally applicable across  
051 diverse image-caption pairs. Thus, as shown in Fig. 1, evaluating HalDec requires testing models  
052 to detect hallucinations across different Captioners, image domains, and hallucination types, since

053 <sup>1</sup>To avoid confusion, we use the term *Captioner* to denote a VLM used for caption generation, and use  
054 *Detector* to denote a VLM used for hallucination detection model.



Figure 1: We introduce a novel benchmark, **HalDec-Bench**, for evaluating hallucination detectors on image captions generated by VLMs. Beyond measuring the effectiveness of hallucination detection in image captions, the benchmark also probes VLMs’ ability to capture fine-grained image-text alignment. It spans a diverse set of captioning VLMs (top left) and image domains (top center), and provides high-quality annotations (bottom left) enriched with hallucination type labels (bottom center).

each factor can introduce distinct language styles and error patterns. Yet, the universality of large VLMs as a hallucination detector remains unclear, even though recent studies have fine-tuned them for hallucination detection (Gunjal et al., 2024; Wada et al., 2025). Similarly, CLIP has been developed to learn the relationship between an image and a detailed sentence (Patel et al., 2024; Yuksekgonul et al., 2023), but its effectiveness is not clear for captions synthesized by advanced Captioners. The challenge of making the comprehensive HalDec benchmark is to build a dataset suited for such evaluation, requiring a significant cost of human annotation, where annotators must carefully check the image-sentence alignment. In fact, existing HalDec datasets suffer from limited model coverage and insufficient scale. MHalDetect (Gunjal et al., 2024) provides annotations for only a single VLM, and MHaluBench (Chen et al., 2024b) covers only a small set of models and samples. Also, despite the development of benchmarks for multimodal reasoning (Yue et al., 2024; 2025; Liu et al., 2023; Lu et al., 2023), a benchmark to evaluate VLMs’ fundamental image-caption alignment is limited to hallucinated sentences generated by a human-designed pipeline (Yuksekgonul et al., 2023; Hsieh et al., 2023).

In this paper, we introduce HalDec-Bench, a benchmark designed to evaluate hallucination detectors for image captions in a principled and interpretable manner. As illustrated in Fig. 1, it covers a diverse set of captioning VLMs and image domains, and provides high-quality annotations enriched with hallucination-type labels and segment-level annotations. Beyond serving as a tool for analyzing detectors, HalDec-Bench also functions as a testbed for probing VLMs’ fundamental ability to capture image-caption alignment. In our experiments, we focus on sentence-level hallucination detection and assess a variety of VLMs as detectors. The results demonstrate that HalDec-Bench offers tasks with diverse levels of difficulty, making it well-suited as a HalDec benchmark. Our extensive analysis further yields several key insights. First, detectors tend to recognize sentences at the beginning of a response as *correct*, regardless of their correctness. Second, they exhibit self-preference, i.e., consider their own output captions as *correct*, which degrades performance as detectors. This observation is consistent with prior findings (Panickssery et al., 2024). Third, we show that diverse ensembling strategies can effectively improve HalDec performance.

## 2 RELATED WORK

**Benchmarks for VLMs.** Many benchmarks evaluate the broad reasoning ability of VLMs (Yue et al., 2024; 2025; Guan et al., 2024; Fu et al., 2023; Li et al., 2024b; Tong et al., 2024a) or expert knowledge with visual inputs (Lu et al., 2023). Some quantify VLMs for questions that are designed to hallucinate VLMs (Guan et al., 2024; Wang et al., 2023a). While prior datasets evaluate whether questions can mislead VLMs, we instead assess their capability to detect hallucinations in image captions, thereby emphasizing understanding of image-text alignment. Tong et al. (2024b) test fine-grained visual comprehension using CLIP-blind image pairs and related questions. HalDec-Bench instead utilizes captions from advanced VLMs, whose errors are difficult to detect.

**Hallucination detection and mitigation in image captioning.** Hallucination detection in image captioning has been widely studied (Rohrbach et al., 2018). CHAIR (Rohrbach et al., 2018) was the first metric to evaluate image-caption alignment at the object level using an object detector. However, its effectiveness is constrained by the detector’s coverage and accuracy; thus, it fails in capturing the diverse hallucination types and captioning styles. Also, many works attempt to mitigate the hallucinations in image captions (Zhang et al., 2024; Leng et al., 2024; Farquhar et al., 2024; Zhou et al., 2024; Zhuang et al., 2025; Favero et al., 2024; Woo et al., 2025; Suo et al., 2025), especially, mitigating hallucinations in long captions is important as they are prone to contain more hallucinations (Zhou et al., 2024; Hirota et al., 2025), which we confirm in Sec. 4.2. Refining a captioning model based on image-caption alignment score, computed by VLMs, is a promising approach (Deng et al., 2024), and our work closely contributes to this line of work. Recent approaches fine-tune VLMs (Gunjal et al., 2024) with human-annotated data, calling LLM to leverage tools like open-vocabulary detectors, OCR (Chen et al., 2024b), or estimate prediction uncertainty (Farquhar et al., 2024). Despite these methodological developments and the use of VLMs as a detector, VLMs’ fundamental ability to detect hallucinations in captions is unclear due to the lack of a benchmark.

**Datasets for hallucination detection in image captioning.** Some datasets are introduced for HalDec (Wang et al., 2023b; Chen et al., 2024b; Gunjal et al., 2024; Wada et al., 2025) (Table C<sup>2</sup>), but they are limited as VLM benchmarks, often lacking diverse Captioners or sufficient samples per model. Our benchmark, HalDec-Bench, addresses these gaps by (i) covering more responses, (ii) balancing data across diverse models, and (iii) incorporating text-to-image outputs. SUGARCREPE (Hsieh et al., 2023) and ARO (Yuksekgonul et al., 2023) probe CLIP’s fine-grained image-text alignment ability, but rely on rule-based perturbations and simple sentences. In contrast, HalDec-Bench uses VLM-generated captions, which are more challenging as shown in Sec. 4.2.

### 3 DATASETS

We aim to collect datasets that cover diverse image-caption pairs equipped with high-quality annotations of hallucination presence. This section first explains how we collect image-caption pairs and provide annotations to them, followed by an analysis of the dataset. We focus on obtaining labels for sentence-level hallucination presence for two reasons: (i) sentence-level labels give a cue to easily find more fine-detailed locations of hallucinations, and (ii) span-level annotation suffers more from the subjectivity of annotation than sentence-level. For deeper analysis, we additionally provide span-level hallucination presence labels and categorize the types of hallucinations. Due to the limited space, we leave most details in Appendix C.

#### 3.1 COLLECTING IMAGE-CAPTION PAIRS

HalDec takes an image and a caption as input and decides the presence of hallucinations. Thus, coverage of diverse image domains and caption patterns is essential to building a benchmark. We thus obtain image-caption pairs using six image-to-text and two text-to-image models. This process produces image-caption pairs, where each *caption* consists of multiple consecutive sentences.

**Image-to-text models (Captioner).** We employ CC12M (Changpinyo et al., 2021) and the validation split of COCO 2017 (Lin et al., 2014) as image inputs. To ensure the diversity of the test images, we cluster images into 50 clusters and pick 40 images from each cluster, resulting in 2000 images in total. We manually categorize each cluster to enable interpretable analysis. As shown in Table A, we employ GPT-4o, ShareGPT (S-GPT) (Chen et al., 2024a), LLaVA-1.6 (Li et al., 2024a), Llama-4 (Meta.AI, 2025), Qwen 2 (Wang et al., 2024a), and CogVLM (Wang et al., 2024b), covering diverse architectures, scales, and openness. This diversity enables the collection of captions with differing levels of detail and language style. For each Captioner-image pair, we apply a chat template (e.g., “Describe the image.”), yielding 12K outputs in total.

**Text-to-image models.** To ensure the diversity in a text prompt, we first pick 170 common object categories and prompt GPT-4o-mini (OpenAI, 2023) to include at least one of the categories and generate 3-4 sentences per prompt, resulting in 1000 prompts. To convert the prompts into images, we utilize Stable Diffusion 3.5 (SD) (Stability AI, 2024) as an open-source model and image generation model accessible through GPT-4o-mini (GPT-Gen), yielding 2K outputs in total.

<sup>2</sup>ZINA is concurrent with ours, and details were unavailable at submission; we compare as best we can.

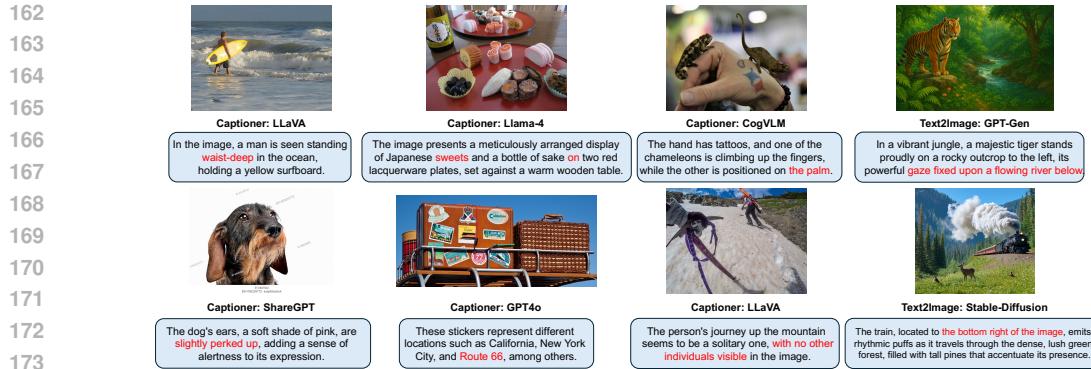


Figure 2: **Examples of hallucinated sentences in HalDec-Bench.** The hallucinated portions are often subtle, requiring fine-grained image-text alignment ability to detect them.

Table 1: **Stats of HalDec-Bench in sentence-level hallucination presence.** Our benchmark contains a large number of annotated sentences, enough for benchmarking models. We exclude sentences with *unknown* label.

| Stats             | Image-to-Caption (Captioners) |             |                  |             |                   |             | Text-to-Image         |                       |              |
|-------------------|-------------------------------|-------------|------------------|-------------|-------------------|-------------|-----------------------|-----------------------|--------------|
|                   | CogVLM                        | GPT4o       | ShareGPT (S-GPT) | Llama-4     | LLaVA-1.6 (LLaVA) | Qwen2       | Stable Diffusion (SD) | gpt-image-1 (GPT-Gen) | Total        |
| Sentences         | 7372                          | 12790       | 17610            | 14800       | 15170             | 15790       | 2417                  | 3524                  | <b>89473</b> |
| Sentences / Image | 3.7                           | 6.4         | 8.8              | 7.4         | 6.9               | 7.9         | 2.4                   | 3.5                   | <b>6.3</b>   |
| Correct (%)       | <b>91.5</b>                   | <b>91.8</b> | <b>73.4</b>      | <b>85.2</b> | <b>80.9</b>       | <b>88.8</b> | <b>34.1</b>           | <b>79.7</b>           | <b>82.7</b>  |
| Incorrect (%)     | 8.5                           | 8.2         | 26.6             | 14.8        | 19.1              | 11.2        | 65.9                  | 20.3                  | 17.3         |

### 3.2 ANNOTATION

In the main paper, we focus on how to obtain labels for sentence-level hallucination presence and leave the fine-detailed annotation process in Appendix C. The use of SOTA models as Captioners makes the annotation non-trivial because hallucinations produced by such models are often subtle and not immediately apparent at first glance, as shown in Fig. 2.

**Annotation labels.** We are inspired by the labeling scheme of Gunjal et al. (2024), where annotators assign one of three categories: *correct*, *incorrect*, or *unknown*. A sentence is labeled *correct* if it accurately describes the image, and *incorrect* if it contains a part that does not correctly describe the image. When correctness cannot be determined—for example, if the object is too small to recognize or if the description involves non-visible attributes such as smell or wind—it is labeled *unknown*. The *unknown* category is introduced to exclude unreliable cases from evaluation.

**Annotation process.** To ensure high-quality annotations, we adopt a two-stage process for sentence-level annotation: (i) crowd-sourced workers annotate each sentence, and (ii) we review the merged outcomes to guarantee quality. In the first stage, five independent workers annotate each sentence, reducing the risk of missing hallucinations. Moreover, their performance is continuously monitored through regular checks and feedback. The results are then merged based on majority voting, as detailed in the appendix, and subsequently reviewed. During the review, to minimize the inclusion of ambiguous cases in the evaluation, sentences that are difficult to judge are labeled as *unknown*. This process creates the dataset with sentence-level hallucination presence annotations. We further annotate this dataset to provide segment-level hallucination presence labels and hallucination category labels as detailed in Appendix C, where hallucinations are categorized into eight types. These categories should reveal the weakness of the current VLMs in understanding the image content.

### 3.3 ANALYSIS OF THE DATASET

**Examples of annotated sentences.** Figure 2 presents examples of hallucinated sentences. Captioners' errors often involve visual details or object relationships rather than clear mistakes, making them harder to detect. Therefore, detectors require a fine-grained understanding of image-text alignment.

**Basic stats.** Table 1 summarizes the statistics of about 90K annotated *correct* or *incorrect* sentences. HalDec-Bench provides a balanced number of correct and incorrect sentences (excluding

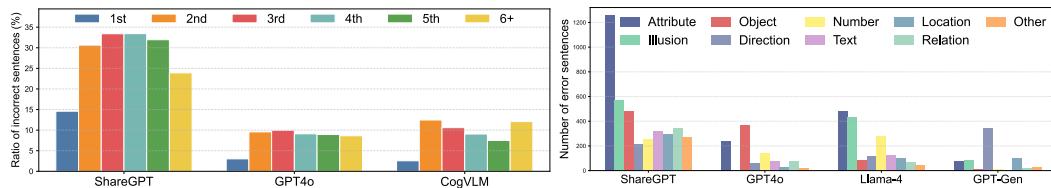


Figure 3: **Left:** Ratio of incorrect sentences within each sentence position per Captioner. Different colors indicate different positions. All models produce fewer errors at the 1st position. **Right:** Number of hallucinations for each category. Most models make many mistakes in attributes and text.

unknown cases). GPT-4o achieves the highest accuracy (91.8%), with only a small fraction of incorrect or unknown cases. Among open-source VLMs, Qwen (88.9%) and CogVLM (91.5%) perform comparably to GPT-4o. This suggests that for advanced Captioners, a large number of outputs are needed to obtain sufficient hallucinated samples. In contrast, models like LLaVA, LLaMA-4, and ShareGPT generate more sentences but with only 70% accuracy.

**Positions of the hallucinations.** The left of Fig. 3 computes the ratio of incorrect sentences in each position of the sentence. Across models, incorrect sentences appear most frequently in the second to fourth positions. This observation is consistent with previous work (Zhou et al., 2024; Hirota et al., 2025). The first sentence is less likely to contain hallucinations, likely because it often provides an overall image summary. In contrast, subsequent sentences typically provide finer-grained details, which are more error-prone. Beyond the sixth sentence, the error rate decreases again, as later sentences often serve as conclusions or closing remarks rather than detailed descriptions.

**Hallucination categories.** We show the hallucination type for each model on the right of Fig. 3. Errors in *attributes* are the leading category for many models, indicating that adjectival descriptions (e.g., color, texture) are prone to hallucination. Also, many models tend to cause errors in *text*, probably because small texts are hard to read even with advanced models.

## 4 EXPERIMENTS

We aim to benchmark and analyze diverse VLMs on the HalDec task to uncover key factors for building a performant HalDec model. After describing the experimental setup, we first present an overview of the empirical results, followed by a detailed analysis. In summary, we discover many notable findings: (i) HalDec-Bench offers tasks with diverse levels of difficulty, making it a strong benchmark for systematic and interpretable analysis; (ii) CLIP-like models are no longer effective to detect hallucinations generated by advanced Captioners; (iii) VLMs tend to regard sentences at the beginning of the whole caption as *correct* irrespective of their correctness; and (iv) detectors exhibit strong self-preference, consistently scoring their own outputs more favorably.

**Setups.** We aim to benchmark diverse VLMs in sentence-level hallucination detection, i.e., identifying if hallucination exists given an image and a single sentence. Specifically, each sentence and image is independently fed into VLMs. We choose this evaluation protocol since the prior work on hallucination detection (Mishra et al., 2024) also employs sentence-level evaluation. Following (Chan et al., 2023), we prompt the VLMs to output the score of the alignment between the image and an input sentence, ranging from 0 to 100, as shown in Appendix D.1. We also include BLIP-2 (Li et al., 2023a), TripletCLIP (Patel et al., 2024), and SigLIP (Zhai et al., 2023) as fundamental image-text alignment models. Given the alignment score, we compute the AUROC within each Captioner, which enables threshold-free evaluation, and the random prediction results in a score of 50.

### 4.1 OVERVIEW OF RESULTS

Table 2 presents the results evaluated on diverse VLMs. Samples of detectors' outputs are available in Fig. 8.

**HalDec-Bench covers diverse levels of hallucination detection.** We see variations in the performance across the tested VLMs and caption models. Thus, HalDec-Bench is suitable to quantify the ability of VLMs as a hallucination detector in captions.

270 Table 2: AUROC results across VLMs. Cells with the best performance within open-source and closed-source  
 271 groups are highlighted in a blue background, while the best model within each model family is marked in bold.  
 272

| 273<br>Detector           | 274<br>Reference         | 275<br>Params | 276<br>Image-to-Caption Models |              |               |              |               | 277<br>Text-to-Image Models |             | 278<br>Avg. |
|---------------------------|--------------------------|---------------|--------------------------------|--------------|---------------|--------------|---------------|-----------------------------|-------------|-------------|
|                           |                          |               | 279<br>S-GPT                   | 280<br>Llava | 281<br>Qwen-2 | 282<br>GPT4o | 283<br>CogVLM | 284<br>Llama-4              | 285<br>SD   |             |
| <b>Open-Source Models</b> |                          |               |                                |              |               |              |               |                             |             |             |
| TripletCLIP               | Patel et al. (2024)      | 0.3B          | 50.7                           | 51.9         | 53.9          | 53.9         | 51.0          | 50.9                        | 48.2        | 44.9        |
| SigLIP                    | Zhai et al. (2023)       | 0.2B          | 51.7                           | 52.0         | 53.3          | 52.8         | 53.1          | 54.9                        | 50.7        | 55.2        |
| BLIP-2                    | Li et al. (2023a)        | 1.2B          | 53.4                           | 55.9         | 52.4          | 52.5         | 52.1          | 52.2                        | 48.8        | 42.1        |
| Phi-4                     | Abouelenin et al. (2025) | 5.6B          | 54.2                           | 53.1         | 52.5          | 51.4         | 51.9          | 50.8                        | 52.6        | 50.9        |
| Qwen-2                    | Wang et al. (2024a)      | 7B            | 60.2                           | 55.3         | 55.9          | 46.0         | 51.9          | 53.2                        | 54.6        | 46.0        |
| Deepseek-VL2              | Wu et al. (2024)         | 27B           | 58.0                           | 56.6         | 56.9          | 54.4         | 54.2          | 53.9                        | 56.1        | 50.5        |
| LLaVA-NeXT                | Li et al. (2024a)        | 72B           | 59.4                           | 56.6         | 58.9          | 56.7         | 57.5          | 54.9                        | 59.0        | 53.3        |
| Pixtral-12B               | Agrawal et al. (2024)    | 12B           | 64.3                           | 60.8         | 60.6          | 57.1         | 57.3          | 55.7                        | 64.7        | 56.7        |
| Gemma-3                   | Gemma Team et al. (2025) | 12B           | 67.0                           | 63.3         | 63.1          | 57.6         | 59.4          | 54.0                        | <b>64.1</b> | <b>52.2</b> |
|                           |                          | 27B           | <b>67.6</b>                    | <b>64.4</b>  | <b>67.9</b>   | <b>61.1</b>  | <b>66.4</b>   | <b>60.6</b>                 | 63.7        | 50.5        |
|                           |                          | 2B            | 55.7                           | 56.0         | 58.4          | 55.7         | 60.3          | 56.1                        | 52.0        | 48.5        |
| InternVL2                 | Chen et al. (2024d)      | 8B            | 66.6                           | <b>65.7</b>  | <b>69.1</b>   | <b>63.9</b>  | <b>67.6</b>   | 60.6                        | 64.3        | 52.5        |
|                           |                          | 26B           | 63.9                           | 60.6         | 61.2          | 57.1         | 58.9          | 55.6                        | 53.1        | 43.8        |
|                           |                          | 40B           | <b>69.3</b>                    | 63.0         | 66.5          | 59.6         | 61.9          | <b>61.5</b>                 | <b>69.5</b> | <b>56.5</b> |
| InternVL2.5               | Chen et al. (2024c)      | 78B           | 74.1                           | 70.3         | 73.7          | 63.9         | 68.1          | 63.1                        | 72.0        | 55.7        |
| Qwen-2.5                  | Bai et al. (2025)        | 7B            | 68.6                           | 65.3         | 66.5          | 55.7         | 64.6          | 61.0                        | 65.4        | 55.7        |
|                           |                          | 32B           | <b>73.6</b>                    | <b>71.6</b>  | <b>70.6</b>   | <b>66.1</b>  | <b>69.0</b>   | <b>66.0</b>                 | <b>68.9</b> | <b>61.0</b> |
| Llama-4                   | Meta.AI (2025)           | 109B          | 80.7                           | 78.6         | 77.6          | 67.5         | 77.2          | 59.9                        | 81.1        | 64.7        |
|                           |                          | 400B          | <b>81.1</b>                    | <b>80.9</b>  | <b>79.0</b>   | <b>71.9</b>  | <b>81.3</b>   | 64.7                        | <b>83.0</b> | <b>67.8</b> |
| <b>Closed Models</b>      |                          |               |                                |              |               |              |               |                             |             |             |
| Gemini-2.0 Flash          | Gemini team (2024)       | N/A           | 76.8                           | 73.5         | 74.9          | 65.5         | 70.4          | 64.8                        | 73.4        | 57.0        |
| GPT4o-mini                |                          | N/A           | 69.9                           | 65.7         | 68.2          | 60.0         | 62.3          | 60.3                        | 56.5        | 47.7        |
| GPT4o                     |                          | N/A           | 75.8                           | 72.6         | 72.8          | <b>58.2</b>  | 69.7          | 63.8                        | 63.2        | 52.4        |
| GPT4.1-mini               | OpenAI (2023)            | N/A           | 77.8                           | 75.8         | 74.4          | 65.8         | 69.2          | 66.0                        | 68.7        | 56.1        |
| GPT5-mini                 |                          | N/A           | 81.5                           | 82.2         | 80.2          | 69.7         | 81.1          | 73.0                        | 83.8        | 65.7        |
| GPT5                      |                          | N/A           | <b>85.4</b>                    | <b>86.0</b>  | <b>85.3</b>   | <b>72.3</b>  | <b>85.5</b>   | <b>78.4</b>                 | <b>84.9</b> | <b>72.0</b> |

299 **Best model.** On average, GPT-5 shows the best performance of all models, while Llama-4, the best  
 300 open-source model, performs on par with GPT-5-mini. Llama-4 outperforms many private models  
 301 with a large margin. Its activated parameters during inference are only 17B. When considering the  
 302 balance of inference time and accuracy, Llama-4 is the best in open-source models.

303 **CLIP-based models are almost blind.** TripletCLIP, SigLIP, and BLIP-2 show AUROC around 50,  
 304 indicating that they cannot distinguish correct and incorrect sentences.

306 **Which Captioner produces hard-to-detect hallucinations?** Hallucinations from GPT-4o, GPT-  
 307 Gen, and Llama-4 are difficult to detect, even for proprietary models, as shown by their low scores.  
 308 Since SOTA models like GPT-4o and Llama-4 accurately understand many scenes, their errors might  
 309 be subtle and harder to identify. GPT-Gen’s hallucinations often involve eye direction or fine visual  
 310 details, which are also challenging. In contrast, detectors achieve higher performance on ShareGPT,  
 311 LLaVA, and SD, whose outputs contain many object-level hallucinations (see Fig. F).

312 **Increasing the model size improves performance.** In the same model family, larger language  
 313 models yield better performance, probably because the task requires interpreting diverse captions.

314 **Robustness to text-to-image models differs by detectors.** Models such as Llama-4 and GPT-5-  
 315 mini show the highest performance in SD across captioners, indicating that SD is the easiest split  
 316 for these models. By contrast, for Gemma-3 (27B) and Qwen-2.5 (32B), the performance on SD  
 317 is lower than S-GPT and Qwen-2. The difference should be due to the domains of images and the  
 318 difference in language patterns. Inclusion of diverse data in our benchmark helps to find such trends.

## 321 4.2 ANALYSIS

322 Given the overview above, we further provide a detailed analysis of the benchmark and detectors.

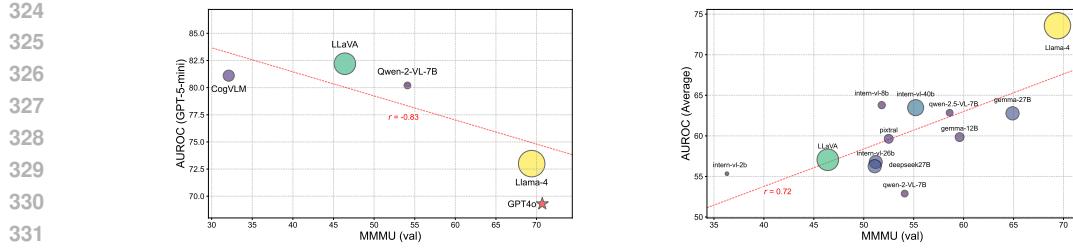


Figure 4: The size of plots indicates the parameter size. **Left:** MMMU performance measured on *Captioners* (X-axis) vs. AUROC measured by GPT-5-mini (Y-axis) for each Captioner. Advanced Captioners tend to produce hard-to-detect hallucinations. **Right:** MMMU (X-axis) vs. AUROC (Y-axis) measured on each *detector*. Detectors with better MMMU performance tend to show better performance on our benchmark.

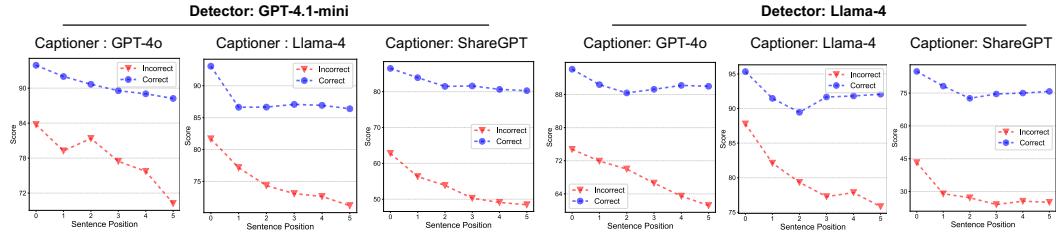


Figure 5: **Detectors show positional bias in scoring.** We average the detectors’ correctness scores (Y-axis) by sentence position (X-axis) and visualize the results using GPT-4o (Left) and Llama-4 (Right) as detectors. Both detectors assign higher scores to sentences appearing near the beginning of the output. The detector is *not* provided with any positional information during inference.

Table 3: **Comparison to existing datasets** (AUROC). We compare with other HalDec datasets and the dataset used to assess VLM’s compositionality understanding. Numbers of prior benchmarks that exceed HalDec-Bench are highlighted. This result indicates that HalDec-Bench is more challenging than existing datasets.

| Detector | Params | HalDec-Bench |       |       |         | Hallucination Detection |      |      | VL-Compositionality |            |
|----------|--------|--------------|-------|-------|---------|-------------------------|------|------|---------------------|------------|
|          |        | ShareGPT     | Llava | GPT4o | Llama-4 | MHalDetect              | Foil | HAT  | ARO                 | SugarCrepe |
| Qwen-2.5 | 7B     | 68.6         | 65.3  | 55.7  | 61.0    | 78.7                    | 85.5 | 68.0 | 78.3                | 84.9       |
| Gemma-3  | 27B    | 67.6         | 64.4  | 67.9  | 60.6    | 81.7                    | 91.8 | 76.6 | 79.2                | 87.6       |
| Llama-4  | 109B   | 80.8         | 78.7  | 67.8  | 59.9    | 82.8                    | 90.3 | 76.3 | 84.8                | 89.4       |

**Hallucinations generated by better Captioners are harder to detect.** The left of Fig. 4 plots Captioner performance on MMMU (x-axis) against AUROC measured by GPT-5-mini (y-axis). Captioners with higher MMMU scores tend to yield lower AUROC, indicating that stronger Captioners generate hallucinations that are harder to detect.

**The performance on HalDec-Bench is highly correlated with that on MMMU.** The right of Fig. 4 plots the performance on MMMU (x-axis) and HalDec-Bench (y-axis), and indicates that models effective on MMMU perform well on HalDec-Bench and vice versa.

**VLMs are biased to favor the sentence near the beginning of the output.** Figure 5 computes the detectors’ output scores averaged within each sentence position. For both *correct* and *incorrect* image-text pairs, the detectors give a higher score to the sentences located near the beginning of the output. The first sentence often provides the overview of the image without details, and VLMs seem to prefer such a sentence, possibly because such sentences are abundant in training datasets.

**HalDec-Bench is more challenging than prior HalDec datasets.** Table 3 compares HalDec-Bench with prior hallucination detection and VL-compositionality datasets. We evaluate on HAT and FOIL (Petryk et al., 2024), which inject hallucinations by word replacement in human captions, and MHalDetect (Gunjal et al., 2024), which annotates outputs of InstructBLIP (Dai et al., 2023). ARO (Yuksekgonul et al., 2023) and SugarCrepe (Hsieh et al., 2023) target compositionality eval-

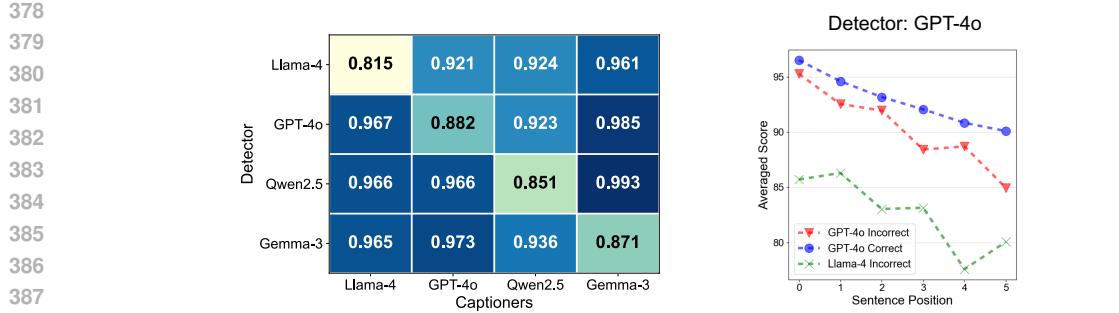


Figure 6: **Detectors struggle to detect their own hallucination.** **Left:** Self- and cross-evaluation results. AUROC scores for each Captioner (columns), normalized by the average AUROC of each Detector (rows). Diagonal entries show self-evaluation. **Right:** We pick GPT-4o as a detector, with their output correctness scores averaged by sentence position. Blue and red lines show scores for *correct* and *incorrect* GPT-4o’s outputs; green shows scores for *incorrect* Llama-4 outputs.

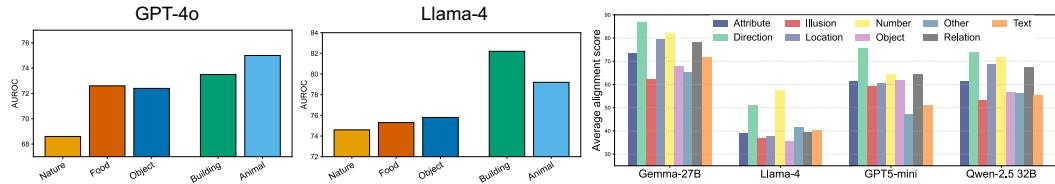


Figure 7: **Left: AUROC on different image domains.** The relative ordering of AUROC was highly consistent across models, exhibiting similar patterns of strength and weakness across domains. **Right: Detectors’ score averaged within each hallucination type.** All models show weakness in *Direction* and *Number* hallucination.

ShareGPT is the easiest split of HalDec-Bench, with performance close to HAT. All detectors excel on FOIL, suggesting these hallucinations are easy to detect for current SOTA VLMs.

**Detectors struggle to detect their own hallucinations.** Table 2 shows that Llama-4 (109B) and GPT-4o perform poorly on their own outputs (highlighted by underline). Their average rankings across Captioners are 3 and 6.8, respectively, but drop to 13 and 12 in detecting their own hallucinations. This finding aligns with prior work reporting LLM evaluators favor their own outputs (Panickssery et al., 2024). We annotate captions generated by Qwen-2.5 (32B) and Gemma-3 (27B) to enable more extensive self- and cross-evaluations. Figure 6 (left) confirms much lower AUROC on self-generated captions (diagonal elements). Figure 6 (right) shows that GPT-4o scores its own *incorrect* sentences higher than those of Llama-4, and the gap between incorrect and correct scores is small in its own output, which is causing the performance degradation.

**Detectors show similar domain-wise robustness.** The left of Fig. 7 studies AUROC on different image domains. The relative ordering of accuracies was consistent across models, meaning that models show similar trends in strength and weakness across domains. Performance is notably lower on *Nature*, *Food*, and *Object*. As shown in Fig. D, Captioners tend to generate accurate descriptions on such domains. Then, detecting errors from such mostly precise descriptions can get harder.

**Detectors are poor at detecting *Direction* and *Number* hallucinations.** The right of Fig. 7 assesses detectors’ robustness across hallucination categories using correctness scores (lower is better since only hallucinated sentences are accounted). *Direction* errors occur when object orientation is misdescribed; identifying the errors requires fine-grained visual understanding, and detectors consistently perform poorly. *Number* errors arise from incorrect object counts—an issue long recognized in early VLMs like CLIP (Paiss et al., 2023) and still evident in advanced models. Figure 8 illustrates some results, highlighting that detectors still misunderstand the subtle visual details.

**Segment-level localization has more room for improvement.** HalDec-Bench includes hallucination segments for each hallucinated sentence, enabling segment-level evaluation. We present VLMs with a hallucinated sentence-image pair and prompt them to localize the hallucinated span, explicitly noting that one exists. Performance is measured by alignment with human annotations (see Appendix for prompts and metrics). As shown in Table 4, Llama-4 (400B), the best model, localizes

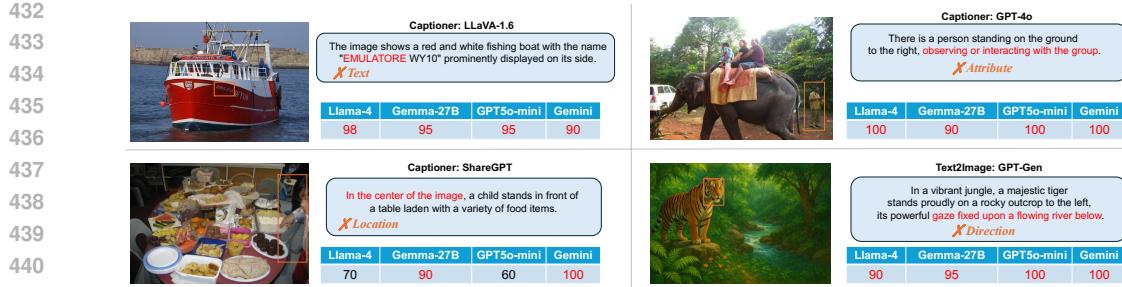


Figure 8: Examples of *incorrect* sentences with detectors’ correctness scores. Higher scores indicate greater confidence in correctness. Detectors are prone to being overconfident in these examples. We highlight detectors’ errors in red within the text and mark the grounded *incorrect* regions in the image with orange boxes.

Table 4: Results of hallucinated segment localization task (Average precision (%)). Localizing the segment of the hallucinated caption is challenging even for performant models.

| Detector    | Params | Image-to-Caption Models |             |             |             |             |             | Text-to-Image Models |             | Avg.        |
|-------------|--------|-------------------------|-------------|-------------|-------------|-------------|-------------|----------------------|-------------|-------------|
|             |        | S-GPT                   | Llava       | Qwen-2      | GPT4o       | CogVLM      | Llama-4     | SD                   | GPT-Gen     |             |
| Qwen-2.5    | 32B    | 17.3                    | 22.4        | 14.0        | 20.8        | 22.5        | 12.6        | <b>15.9</b>          | <b>12.1</b> | 17.2        |
| GPT-4o mini | -      | 25.2                    | 28.9        | 20.6        | 29.5        | 28.0        | 18.7        | 14.7                 | 14.6        | 22.5        |
| Llama-4     | 109B   | 24.9                    | 27.0        | 24.8        | <b>34.3</b> | 29.3        | <b>19.6</b> | 15.1                 | 11.0        | 23.3        |
| Llama-4     | 400B   | <b>28.2</b>             | <b>29.1</b> | <b>26.2</b> | 34.0        | <b>29.8</b> | 19.4        | 15.4                 | 12.0        | <b>24.2</b> |

Table 5: Results of model ensemble. Ensembling detectors’ outputs improves performance in almost all cases. The increase or decrease from the *better* model used for ensembling is highlighted next to each score.

| Detector 1     | Detector 2     | Image-to-Caption Models |                      |                      |                      |                      |                      | Text-to-Image Models |                      |
|----------------|----------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                |                | S-GPT                   | Llava                | Qwen-2               | GPT4o                | CogVLM               | Llama-4              | SD                   | GPT-Gen              |
| Qwen-2.5 (7B)  | Gemma-3 (27B)  | 71.9 ( <b>+3.3</b> )    | 68.4 ( <b>+4.0</b> ) | 71.3 ( <b>+3.4</b> ) | 64.6 ( <b>+3.5</b> ) | 69.3 ( <b>+2.9</b> ) | 63.3 ( <b>+2.3</b> ) | 67.6 ( <b>+2.2</b> ) | 54.8 ( <b>-0.9</b> ) |
| Llama-4 (109B) | LLama-4 (400B) | 84.6 ( <b>+3.5</b> )    | 83.4 ( <b>+2.4</b> ) | 82.9 ( <b>+3.9</b> ) | 74.0 ( <b>+2.1</b> ) | 83.5 ( <b>+2.2</b> ) | 65.8 ( <b>+1.1</b> ) | 84.6 ( <b>+1.6</b> ) | 69.1 ( <b>+1.2</b> ) |
| Llama-4 (109B) | GPT5-mini      | 86.0 ( <b>+4.5</b> )    | 84.8 ( <b>+2.7</b> ) | 83.6 ( <b>+3.4</b> ) | 73.9 ( <b>+4.2</b> ) | 84.4 ( <b>+3.2</b> ) | 72.3 ( <b>-0.7</b> ) | 85.2 ( <b>+1.4</b> ) | 68.6 ( <b>+2.9</b> ) |

only 24.2% of hallucinated segments on average, underscoring substantial room for improvement. Notably, GPT-4o mini outperforms Qwen-2.5 (32B), in contrast to Table 2, indicating that strong sentence-level detectors are not always effective for segment-level localization.

**Ensembling improves performance.** We examine whether ensembling improves detection. We average alignment scores from two comparably strong models (Table 2) and observe consistent gains (Table 5). This suggests that models apply distinct criteria for image-caption alignment, and combining them enhances performance. A drop occurs for ensembling Llama-4 and GPT-5-mini on Llama-4 captions, likely due to the large performance gap between the two models.

**Contents in the appendix.** Table F compares the prior approach in HalDec with VLM-based detectors, indicating that VLM-based detectors can surpass the prior one with a large margin. Table D and Table E study the effectiveness of the chain-of-thought and self-ensembling, respectively. More visualizations of annotation and detectors’ output are available in Sec. F and Fig. H, respectively.

## 5 CONCLUSION

We present a benchmark, HalDec-Bench, designed to evaluate the performance of hallucination detection in image captioning. The benchmark covers diverse models and image domains, containing detailed annotations for the hallucinations. The evaluation on this benchmark reveals that HalDec-Bench contains tasks with different levels of difficulty, and is suitable for analyzing detectors. Moreover, we provide diverse interesting observations: (i) CLIP-like models are nearly blind for detecting hallucinations in this benchmark, (ii) VLMs tend to favor the sentence near the beginning of the output, and (iii) VLMs show the trend of self-preference. HalDec-Bench will become a key to establishing a more effective hallucination detector in image captions.

486 REFERENCES  
487

- 488 Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin  
489 Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical  
490 report: Compact yet powerful multimodal language models via mixture-of-loras. *arXiv preprint*  
491 *arXiv:2503.01743*, 2025.
- 492 Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-  
493 sica Chudnovsky, Diogo Costa, Baudouin De Moncault, Saurabh Garg, Theophile Gervet, et al.  
494 Pixtral 12b. *arXiv preprint arXiv:2410.07073*, 2024.
- 495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
496 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,  
497 2025.
- 498 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang  
499 Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu, Yunxin Jiao,  
500 and Aditya Ramesh. Improving image generation with better captions, 2023. URL <https://cdn.openai.com/papers/dall-e-3.pdf>.
- 501 Ali Furkan Biten, Lluís Gómez, and Dimosthenis Karatzas. Let there be a clock on the beach:  
502 Reducing object hallucination in image captioning. In *Proceedings of the IEEE/CVF Winter*  
503 *Conference on Applications of Computer Vision*, 2022.
- 504 David Chan, Suzanne Petryk, Joseph E Gonzalez, Trevor Darrell, and John Canny. Clair: Evaluating  
505 image captions with large language models. In *EMNLP*, 2023.
- 506 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing web-  
507 scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.
- 508 Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman  
509 Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large  
510 language model as a unified interface for vision-language multi-task learning. *arXiv preprint*  
511 *arXiv:2310.09478*, 2023.
- 512 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahuai  
513 Lin. Sharegpt4v: Improving large multi-modal models with better captions. In *ECCV*, pp. 370–  
514 387. Springer, 2024a.
- 515 Xiang Chen, Chenxi Wang, Yida Xue, Ningyu Zhang, Xiaoyan Yang, Qiang Li, Yue Shen, Lei  
516 Liang, Jinjie Gu, and Huajun Chen. Unified hallucination detection for multimodal large language  
517 models. In *ACL*, 2024b.
- 518 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-  
519 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source  
520 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,  
521 2024c.
- 522 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,  
523 Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to com-  
524 mercial multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024d.
- 525 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,  
526 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models  
527 with instruction tuning. *NeurIPS*, 2023.
- 528 Ailin Deng, Zhirui Chen, and Bryan Hooi. Seeing is believing: Mitigating hallucination in large  
529 vision-language models via clip-guided decoding. *arXiv preprint arXiv:2402.15300*, 2024.
- 530 António Farinhas, José GC de Souza, and André FT Martins. An empirical study of translation  
531 hypothesis ensembling with large language models. In *EMNLP*, 2023.
- 532 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large  
533 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

- 540 Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera,  
 541 Alessandro Achille, Ashwin Swaminathan, and Stefano Soatto. Multi-modal hallucination control  
 542 by visual information grounding. In *CVPR*, 2024.
- 543 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu  
 544 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal  
 545 large language models. *arXiv preprint arXiv:2306.13394*, 2023.
- 546 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang  
 547 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for  
 548 entangled language hallucination and visual illusion in large vision-language models. In *CVPR*,  
 549 pp. 14375–14385, 2024.
- 550 Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision  
 551 language models. In *AAAI*, 2024.
- 552 Yusuke Hirota, Boyi Li, Ryo Hachiuma, Yueh-Hua Wu, Boris Ivanovic, Yuta Nakashima, Marco  
 553 Pavone, Yejin Choi, Yu-Chiang Frank Wang, and Chao-Han Huck Yang. Lotus: A leaderboard  
 554 for detailed image captioning from quality to societal bias and user preferences. In *ACL*, 2025.
- 555 Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay Krishna. Sugarcrape:  
 556 Fixing hackable benchmarks for vision-language compositionality. *NeurIPS*, 2023.
- 557 Hugging Face. Hugging face. URL <https://huggingface.co/>.
- 558 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models  
 559 with pairwise ranking and generative fusion. In *ACL*, 2023.
- 560 Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.  
 561 Mitigating object hallucinations in large vision-language models through visual contrastive de-  
 562 coding. In *CVPR*, 2024.
- 563 Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan  
 564 Zhang, Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multi-  
 565 modal capabilities in the wild, 2024a. URL <https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/>.
- 566 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan. Seed-  
 567 bench: Benchmarking multimodal large language models. In *CVPR*, pp. 13299–13308, 2024b.
- 568 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-  
 569 training for unified vision-language understanding and generation. In *ICML*. PMLR, 2022.
- 570 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image  
 571 pre-training with frozen image encoders and large language models. In *ICML*. PMLR, 2023a.
- 572 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating  
 573 object hallucination in large vision-language models. In *EMNLP*, 2023b.
- 574 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr  
 575 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, pp.  
 576 740–755, 2014.
- 577 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*,  
 578 36:34892–34916, 2023.
- 579 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction  
 580 tuning. In *CVPR*, 2024.
- 581 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-  
 582 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of  
 583 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.
- 584 Meta.AI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, 2025.  
 585 URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.

- 594 Abhika Mishra, Akari Asai, Vidhisha Balachandran, Yizhong Wang, Graham Neubig, Yulia  
 595 Tsvetkov, and Hannaneh Hajishirzi. Fine-grained hallucination detection and editing for language  
 596 models. In *COLM*, 2024.
- 597 598 OpenAI. ChatGPT. <https://chat.openai.com/chat>, 2023.
- 599 Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.  
 600 Teaching clip to count to ten. In *ICCV*, pp. 3170–3180, 2023.
- 601 602 Arjun Panickssery, Samuel Bowman, and Shi Feng. Llm evaluators recognize and favor their own  
 603 generations. *NeurIPS*, 2024.
- 604 Maitreya Patel, Naga Sai Abhiram Kusumba, Sheng Cheng, Changhoon Kim, Tejas Gokhale, Chitta  
 605 Baral, et al. Tripletclip: Improving compositional reasoning of clip via synthetic vision-language  
 606 negatives. *NeurIPS*, 2024.
- 607 Suzanne Petryk, David M Chan, Anish Kachinthaya, Haodi Zou, John Canny, Joseph E Gonzalez,  
 608 and Trevor Darrell. Aloha: A new measure for hallucination in captioning models. In *ACL*, 2024.
- 609 610 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 611 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 612 models from natural language supervision. In *ICML*, 2021.
- 613 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object  
 614 hallucination in image captioning. In *EMNLP*, 2018.
- 615 616 Stability AI. Stable diffusion 3.5 large. <https://stability.ai/news/introducing-stable-diffusion-3-5>,  
 617 2024.
- 618 Wei Suo, Lijun Zhang, Mengyang Sun, Lin Yuanbo Wu, Peng Wang, and Yanning Zhang. Octopus:  
 619 Alleviating hallucination via dynamic contrastive decoding. In *CVPR*, 2025.
- 620 621 Gemini team. Gemini 2.0 flash, 2024. URL <https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#gemini-2-0-flash>.
- 622 623 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 624 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical  
 625 report. *arXiv preprint arXiv:2503.19786*, 2025.
- 626 627 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha  
 628 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully  
 629 open, vision-centric exploration of multimodal llms. *NeurIPS*, 37:87310–87356, 2024a.
- 630 631 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide  
 632 shut? exploring the visual shortcomings of multimodal llms. In *CVPR*, pp. 9568–9578, 2024b.
- 633 634 Yuiga Wada, Kazuki Matsuda, Komei Sugiura, and Graham Neubig. Zina: Multimodal fine-grained  
 635 hallucination detection and editing. *arXiv preprint arXiv:2506.13130*, 2025.
- 636 637 Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Jiaqi Wang, Haiyang  
 638 Xu, Ming Yan, Ji Zhang, et al. Amber: An llm-free multi-dimensional benchmark for mllms  
 639 hallucination evaluation. *arXiv preprint arXiv:2311.07397*, 2023a.
- 640 641 Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye,  
 642 Ming Yan, Ji Zhang, Jihua Zhu, et al. Evaluation and analysis of hallucination in large vision-  
 643 language models. *arXiv preprint arXiv:2308.15126*, 2023b.
- 644 645 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,  
 646 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the  
 647 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.
- 648 649 Weihang Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,  
 650 Lei Zhao, Song XiXuan, et al. Cogvilm: Visual expert for pretrained language models. *NeurIPS*,  
 651 2024b.

- 648 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny  
 649 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *NeurIPS*,  
 650 2022.
- 651 Sangmin Woo, Donguk Kim, Jaehyuk Jang, Yubin Choi, and Changick Kim. Don't miss the forest  
 652 for the trees: Attentional vision calibration for large vision language models. In *ACL Findings*,  
 653 2025.
- 654 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao,  
 655 Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng  
 656 Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai  
 657 Yu, Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-  
 658 of-experts vision-language models for advanced multimodal understanding. *arXiv preprint*  
 659 *arXiv:2412.10302*, 2024.
- 660 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,  
 661 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal  
 662 understanding and reasoning benchmark for expert agi. In *CVPR*, pp. 9556–9567, 2024.
- 663 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,  
 664 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal  
 665 understanding benchmark. In *ACL*, 2025.
- 666 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and  
 667 why vision-language models behave like bags-of-words, and what to do about it? In *ICLR*, 2023.
- 668 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language  
 669 image pre-training. In *ICCV*, 2023.
- 670 Ruiyang Zhang, Hu Zhang, and Zhedong Zheng. Vi-uncertainty: Detecting hallucination in large  
 671 vision-language model via uncertainty estimation. *arXiv preprint arXiv:2411.11919*, 2024.
- 672 Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit  
 673 Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language  
 674 models. In *ICLR*, 2024.
- 675 Xianwei Zhuang, Zhihong Zhu, Yuxin Xie, Liming Liang, and Yuexian Zou. Vasparse: Towards  
 676 efficient visual hallucination mitigation via visual-aware token sparsification. In *CVPR*, 2025.
- 677  
 678  
 679  
 680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701

702 A LIMITATION  
703  
704

705 **Methodology.** HalDec needs to be a light-weight model, considering its application to curate  
706 datasets. However, our results indicate that VLMs with more parameters show superior performance.  
707 Also, our evaluation relies on sentence-by-sentence score output, which regards each sentence as in-  
708 dependent. However, this protocol ignores the context of consecutive sentences. We observe that  
709 many sentences can be regarded as independent, yet considering multiple sentences together might  
710 improve the performance of hallucination detection.

711 **Annotations.** Judging the hallucinations in image captions involves subjective criteria of annotators.  
712 Captions may look hallucinated to some annotators, while they do not to others. Having a unified  
713 consensus on this criterion is difficult. For sentence-level annotation, we introduce a category *un-  
714 known*, which allows us to exclude such ambiguous samples during evaluation. This issue can be  
715 more significant in segment localization and categorizing hallucination types. Then, we focus on  
716 sentence-level detection to benchmark VLMs following Mishra et al. (2024).

717  
718 B THE USE OF LARGE LANGUAGE MODELS (LLMs)

719 In preparing this manuscript, we made limited use of large language models (LLMs) such as Chat-  
720 GPT. Specifically, LLMs were employed only to assist with polishing the writing for grammar,  
721 clarity, and readability. No part of the research design, analysis, interpretation, or results was gen-  
722 erated or influenced by LLMs. All scientific content, data, and conclusions are the sole work of the  
723 authors.

## 724 C DATASET

## 725 C.1 IMAGE-CAPTION COLLECTION

726 We describe the list of models used for collection in Table A. All models except for closed ones are  
727 downloaded from Hugging Face.

728 Table A: Details of VLMs picked as Captioners and Text2Image models. We cover diverse models considering  
729 their size, provider, and release date.

| 730 Model                              | 731 Provider               | 732 Open/Closed | 733 Scale | 734 Release |
|----------------------------------------|----------------------------|-----------------|-----------|-------------|
| 735 GPT-4o                             | 736 OpenAI                 | 737 Closed      | 738 -     | 739 2024/05 |
| 740 ShareGPT (Share Captioner)         | 741 Shanghai AI Laboratory | 742 Open        | 743 7B    | 744 2023/11 |
| 745 LLaVA-1.6 (llava-next-72b-hf)      | 746 Microsoft              | 747 Open        | 748 72B   | 749 2024/01 |
| 750 Llama-4-Scout (17B-16E)            | 751 Meta                   | 752 Open        | 753 109B  | 754 2025/04 |
| 755 Qwen2.5-VL (7B-Instruct)           | 756 Alibaba                | 757 Open        | 758 7B    | 759 2024/12 |
| 760 CogVLM ( cogvlm2-llama3-chat-19B ) | 761 Tsinghua Univ.         | 762 Open        | 763 19B   | 764 2024/06 |
| 765 Stable-diffusion-3.5-medium (SD)   | 766 Stability AI           | 767 Open        | 768 2.5B  | 769 2024/10 |
| 770 GPT-Gen (GPT4o-mini)               | 771 OpenAI                 | 772 Closed      | 773 -     | 774 2024/05 |

775 **Captioner models.** We collect data from two sources and employ two text-to-image models. The  
776 first source is CC12M, which is designed for vision-and-language pre-training and provides broad  
777 domain coverage. The second source is the COCO 2017 dataset, where we use the validation split.  
778 For both datasets, we cluster images into 50 domains based on ResNet features and then sample 40  
779 images from each cluster, resulting in a total of 2,000 images per dataset.

780 For the Captioner models, we randomly select one of the following instructions:

756  
757

## Instruction given to captioner models

758  
759  
760  
761  
762  
763  
764  
765

1. Describe this image in detail.
2. Describe this image in detail. Instead of describing the imaginary content, only describe the content one can determine confidently from the image.
3. Provide a detailed description of the image, but only include elements that are clearly visible and verifiable.
4. Describe this image in detail. Minimize aesthetic descriptions as much as possible.
5. Provide a detailed, factual description without using emotional language.

766 **Text-to-image models.** We employ two text-to-image models. The first is stabilityai/stable-diffusion-3.5-medium, a diffusion-based generative model that we run locally via the Diffusers library on GPU hardware. The second is OpenAI’s gpt-image-1, which is accessed through the Responses API with gpt-4o-mini acting as the controller for image generation. For both models, we use identical prompts. To encourage category diversity, we predefine 170 object categories and randomly select one to be included in each prompt. The selected category is then inserted into an instruction given to gpt-4o-mini, which produces a 3–4 sentence description following the specification below.

774  
775

## Instruction given to GPT-4o-mini for producing text-to-image prompts

776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789

- I want to create prompts to generate image using text to image model. The prompts need to satisfy the following criteria.
1. The prompts include 3-4 sentences.
  2. They need to describe a scene including target.
  3. They need to describe the state of the objects, what they are doing.
  4. They need to describe the location of the object in image, (e.g., left, right, bottom, top, etc)
  5. They also need to describe where the objects are looking at (e.g., left, right, bottom, top, or towards some) if the object is some organism.
- Can you suggest a prompt? Please return in the form of dictionary, with a key of “prompt”.  
Output:

## C.2 VOTING AND QUALITY CONTROL

We first recruited five annotators and conducted a pilot on one hundred images. The authors reviewed all annotations, and annotators who failed to meet our quality standards were not assigned further items. This process allowed us to identify trusted annotators. Each trusted annotator was then assigned between one thousand and two thousand images. The authors checked the quality for every batch of about two hundred images. If the annotations did not meet our standards, annotators were required to re-annotate before proceeding.

After the main annotation, we applied multi-round voting. Annotator-specific weights were assigned, with trusted annotators given higher weights. The aggregated votes were used to determine the final labels. For the *incorrect* (hallucination) category, we adopted a stricter rule: if one trusted annotator or two annotators labeled an item as incorrect, the authors manually reviewed it, since hallucinations are more difficult to detect reliably than correctness. Finally, the authors adjudicated all ambiguous cases. This combination of pilot screening, ongoing audits, weighted voting, and final review ensured high-quality hallucination detection annotations.

## C.3 ANNOTATOR RECRUITMENT

For the hallucination detection task, we recruited crowd annotators and offered compensation based on the phase and level of effort. On average, annotators received around \$100 for completing 2,000 images during the detection phase. Since the hallucination type annotation required more careful reading and reasoning, the compensation was higher, averaging around \$150 for each model output. The exact amount varied slightly depending on the annotator’s country of residence. We did not

810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836

**Caption Annotation Tool**

15 / 2000

The image depicts a large stone statue of a human figure holding an object in front of an architectural structure.

The figure is robed and stands upright with eyes slightly closed and a neutral expression.

It holds a spherical object emitting a bright light.

Behind the statue are two tall, cone-shaped towers with flat tops and crosses.

The towers are part of a red-brick building with white accents and contain multiple arched windows.

The central part of the building features a circular clock above an entrance.

The sky above is partly cloudy.

Figure A: Example of an interface used for the hallucination detection.

837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857

**Error Annotation**

Model: sd

Image 21/867

Prev 21 Go Next

In a sunlit garden, a vibrant orange carrot is nestled in rich, dark soil on the left side of the image, **partially** exposed as if it is peeking out from the ground.

Object Attribute Number Text Relation Location Direction Illusion Other Unknown More

To its right, a curious rabbit with soft, white fur is intently **looking at the carrot**, its ears perked up in excitement.

Object Attribute Number Text Relation Location **Direction** Illusion Other Unknown More

In the background, blooming flowers sway gently in the breeze, their colors contrasting beautifully with the earthy tones of the soil.

Object Attribute Number Text Relation Location Direction Illusion Other Unknown More

Above the scene, **a clear blue sky** adds to the serene atmosphere, casting gentle light over the garden.

Object Attribute Number Text Relation Location Direction **Illusion** Other Unknown More



Figure B: Example of an interface used for the hallucination type annotation.

858  
859  
860  
861  
862  
863  
restrict annotators by location, but we required strong English reading skills, which were verified during the pilot stage. We recruited annotators on Upwork<sup>3</sup>, Freelancer<sup>4</sup>, and CrowdWorks<sup>5</sup>.

<sup>3</sup><https://www.upwork.com/>

<sup>4</sup><https://www.freelancer.com/>

Table B: Types of hallucinations categorized for analysis.

| Type      | Description                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------|
| Object    | Misidentifies an object or uses an incorrect noun (e.g., calling a dog a cat).                                             |
| Attribute | Incorrect description of an object’s property such as color, size, or action (e.g., red car described as blue).            |
| Number    | Incorrectly states the number of objects or people (e.g., “three people” when only two are present).                       |
| Text      | Misreads or misrepresents textual information in the image (e.g., misreading a store sign).                                |
| Relation  | Incorrect description of relationships between objects (e.g., “a man riding a horse” when he is standing next to it).      |
| Location  | Misrepresents the position of an object in the image (e.g., “a cup on the table” when it is on the floor).                 |
| Direction | Incorrectly describes the direction/orientation of an object (e.g., “a person facing left” when they face right).          |
| Illusion  | Describes objects, scenes, or actions that do not exist at all (e.g., mentioning “a flying bird” when no bird is present). |

|                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Type: Object<br>Captioner: Llama-4<br><br>The image depicts a young girl with her mouth covered by a piece of <b>tape</b> , conveying a sense of silence or restraint.  | <br>Type: Attribute<br>Captioner: LLaVA<br><br>The bear’s eyes are <b>closed</b> , adding to the sense of tranquility in the scene.                                             |
| <br>Type: Number<br>Captioner: CogVLM<br><br><b>Four</b> skiers are in the frame, each wearing distinctive skiing attire and numbers.                                       | <br>Type: Text<br>Captioner: Qwen-2<br><br>The primary focus is on a large, partially broken-down sign that reads <b>“Don’t Feed the Dead”</b> in a distressed, scratchy font. |
| <br>Type: Relation<br>Text2Image: GPT-Gen<br><br>A steaming cup of tea rests delicately <b>on the arm rest</b> of the chair, sending wisps of fragrant vapor into the air. | <br>Type: Location<br>Text2Imag: SD<br><br>In a serene meadow, an adorable alpaca stands on the <b>left side</b> of the image, gazing curiously towards the right.             |
| <br>Type: Direction<br>Captioner: GPT<br><br>The bird is facing to the <b>right</b> , and its beak is in contact with a cluster of berries.                               | <br>Type: Illusion<br>Captioner: ShareGPT<br><br>One of them is <b>holding a towel</b> , perhaps ready to wipe off the player’s sweat after an intense rally.                |

Figure C: Example annotations of error type. Hallucinations are highlighted in red.

Figure A shows the annotation interface for the hallucination detection phase, while Figure B shows the interface used for the hallucination type annotation phase.

#### C.4 HALLUCINATION TYPE AND LOCATION ANNOTATION

Table B shows the eight hallucination type categories used in the HalCap dataset. These categories cover both fine-grained object- and attribute-level mistakes as well as broader contextual errors. Figure C shows annotation examples for each error type. Hallucinations are highlighted in red.

#### C.5 ADDITIONAL ANALYSIS

**Detailed comparison against existing datasets.** Table C describes the detailed comparison against prior hallucination detection datasets applicable for HalDec. Our dataset includes more responses and includes text-to-image models as the evaluation target. In particular, it offers larger textual coverage, covering 1.6M words, 94k sentences, and a vocabulary of 17k unique word types, than prior datasets.

<sup>5</sup><https://crowdworks.jp/>

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

Table C: Compared to existing hallucination detector benchmarks for image captions based on their evaluation split, HalDec-Bench offers the largest number of responses, providing annotations for at least 1,000 responses per model across eight models. This scale enables detailed, model-wise performance analysis and facilitates a deeper understanding of detector characteristics. For datasets that are not publicly available or lack information, the corresponding statistics are reported as NA.

| Dataset                          | Granularity | # responses | # halluc. types | # models | # words | # sentences | # vocab. | # unique image | Text to Image |
|----------------------------------|-------------|-------------|-----------------|----------|---------|-------------|----------|----------------|---------------|
| HaELM (Wang et al., 2023b)       | Response    | 5k          | X               | 1        | 518k    | 28k         | 6k       | 5k             | X             |
| MHalDetect (Gunjal et al., 2024) | Segment     | 4k          | X               | 1        | 258k    | 14k         | 4k       | 1k             | X             |
| MHaluBench (Chen et al., 2024b)  | Segment     | 1k          | 4               | 5        | 15k     | 1k          | 2k       | 1k             | ✓             |
| ZINA (Wada et al., 2025)         | Segment     | 7k          | 6               | 12       | NA      | NA          | NA       | NA             | X             |
| HalDec-Bench (Ours)              | Segment     | 14k         | 9               | 8        | 1.6M    | 94k         | 17k      | 4k             | ✓             |

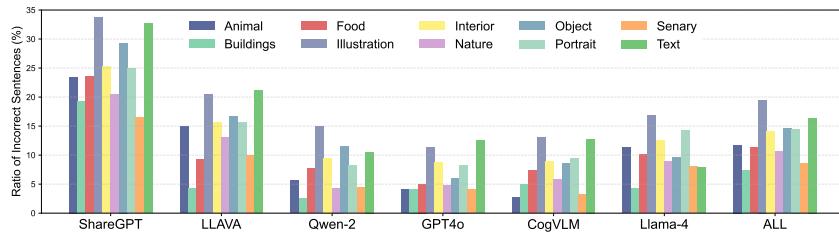


Figure D: **Ratio of incorrect sentences for each image domain.** All models tend to produce more errors in domains such as *illustration* and *Text*.

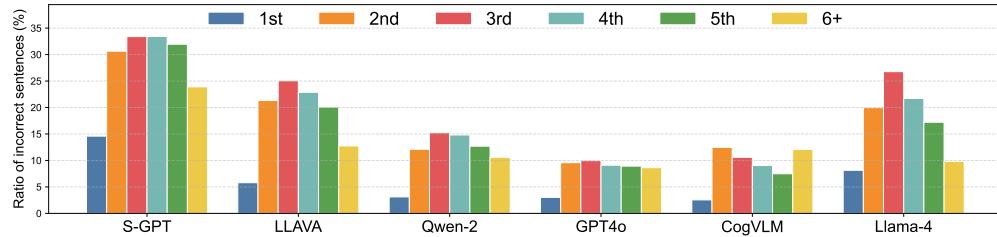


Figure E: **Ratio of incorrect sentences within each sentence position per model.** Different colors indicate different positions. All models produce fewer errors at the 1st position.

**Image domain.** Figure D illustrates the ratio of incorrect sentences on each image category in the CC12M. All Captioners tend to produce more errors in *Text* and *Illustration* domains, while they are relatively robust in real images. This can be because of the bias in the training data of the Captioners.

**Error analysis w.r.t position of the sentence.** In Fig. E, we present the ratio of incorrect sentences across sentence positions for each model. Among image captioning models, incorrect sentences tend to appear most frequently in the second to fourth positions. Interestingly, the very first sentence is less likely to contain hallucinations. This may be because the first sentence often serves as an overall image caption. In contrast, the second and subsequent sentences typically provide more detailed descriptions, which are more prone to errors. For positions beyond the sixth sentence, the error rate decreases again. These later sentences often serve as overall conclusions or closing remarks rather than detailed descriptions, which may make them similar to the first sentence and thus less prone to errors.

**Analysis w.r.t hallucination types.** Figure F describes the type of hallucinations we provide. Our dataset covers various kinds of hallucinations.

## D DETAILS OF EXPERIMENTAL SETUPS

### D.1 DETAILS OF EVALUATION

**Source of models.** We employ models available in HuggingFace and base our code on the HuggingFace Transformers package.

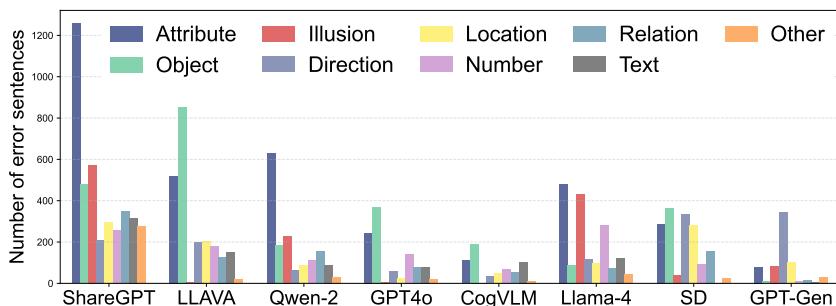


Figure F: **Number of hallucinations for each category.** Most models make many mistakes in attributes and text.

**Computation.** At most eight A100 80GB GPUs are used for inference of a single model.

**Prompt.** We employ the prompt below to compute the alignment score for decoder-based VLM.

Prompt to compute image-sentence alignment

You are given an image and a caption describing the given image. Your task is to judge if the caption describes the image correctly. If you think the sentence does not describe the image correctly, return low the score. If you think there is no mistake in the caption, return high score. Judge the correctness from 0-100 points. Return the output in the form of dictionary, e.g., “score”: 50. Please first output the correctness points before explaining the reason for the score.

Caption:

Similarly, we use the prompt below to obtain the results of the chain of thought.

Chain-of-thought prompt

You are given an image and a caption describing the given image. Your task is to judge if the caption describes the image correctly. If you think the sentence does not describe the image correctly, return low the score. If you think there is no mistake in the caption, return high score. Judge the correctness from 0-100 points. Return the output in the form of dictionary, e.g., “score”: 50. Please first explain the reason of scoring in \*\* two or three \*\* sentences and output the correctness points as shown above.

Caption:

**Parsing.** After obtaining the text output, we write a parser to convert the output into an integer. Models sometimes did not properly follow the prompt, and we could not parse such output. For such a sample, we assign 50 as its alignment score. In Table 2, we present models with their failure rate less than 5%. Also, the failure rate of a well-performing model is very low.

**Annotation details in self-preference analysis.** In Sec. 4.2, we additionally provide sentence-level hallucination existence labels for Qwen-2.5 (32B) and Gemma-3 (27B). To reduce the cost of annotation, we follow an annotation procedure different from the other 8 models, yet in a quality-ensured manner. Specifically, we randomly pick 500 images and generate captions using two models. Then, one quality-ensured annotator gives an annotation to 500 captions. This produces enough samples for analysis. We will include this split when publishing the dataset.

**Prompt in hallucination localization.** We employ the prompt below to obtain the results of hallucination localization.

1026  
1027

## Prompt for hallucination localization

1028  
1029  
1030  
1031

You are given an image and a caption describing the given image. Your task is to localize the segment of the caption, which describes the image incorrectly. Please output the segment by marking the incorrect parts by `**[]**`, e.g., A `**[red]**` bird singing in a tree. Return the output in the form of a dictionary. Example format.

1032  
1033  
1034  
1035  
1036  
1037  
1038

```
```json
{
  "output": "A **[red]** bird singing in a tree."
}
```

```

Caption:

1039  
1040  
1041  
1042  
1043  
1044  
1045

**Evaluation metric in hallucination localization.** We evaluate the alignment between the word spans predicted by models and the ground-truth (GT) spans using an Intersection-over-Union (IoU) based criterion. Concretely, we compute the IoU between the predicted word range and the GT word range. In Table 4, a prediction is considered correct if its IoU with a GT span is greater than or equal to 0.3. Based on this criterion, we measure precision as the proportion of predicted spans that are judged correct.

1046  
1047  
1048

## E ADDITIONAL EXPERIMENTS

1049  
1050

Table D: Results of using Chain-of-Thought (COT).

| Detector       | COT | Image-to-Caption Models |                    |                    |                    |                    |                    | Text-to-Image Models |                    |
|----------------|-----|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|
|                |     | S-GPT                   | Llava              | Qwen-2             | GPT4o              | CogVLM             | Llama-4            | SD                   | GPT-Gen            |
| Llama-4 (109B) | ✓   | 80.7                    | 78.6               | 77.6               | 67.5               | 77.2               | 59.9               | 81.1                 | 64.7               |
|                |     | 80.6 <b>(-0.1)</b>      | 80.8 <b>(+2.2)</b> | 80.0 <b>(+2.4)</b> | 71.1 <b>(+3.6)</b> | 80.1 <b>(+2.9)</b> | 62.4 <b>(+2.5)</b> | 80.8 <b>(-0.3)</b>   | 65.1 <b>(+0.4)</b> |
| GPT4.1-mini    | ✓   | 77.8                    | 75.8               | 74.4               | 65.8               | 69.2               | 66.0               | 68.7                 | 56.1               |
|                |     | 79.0 <b>(+1.2)</b>      | 76.2 <b>(+0.4)</b> | 75.0 <b>(+0.6)</b> | 63.4 <b>(-2.4)</b> | 71.6 <b>(+2.4)</b> | 63.8 <b>(-2.2)</b> | 73.2 <b>(+4.5)</b>   | 56.2 <b>(+0.1)</b> |

1057  
1058  
1059  
1060  
1061  
1062  
1063

**Chain-of-Thought improves the performance?** Table D evaluates the impact of chain-of-thought reasoning (Wei et al., 2022), where detectors are prompted to generate a reasoning path before producing a score (see above for prompt details). For Llama-4, COT generally improves performance, whereas for some Captioners, the gains are marginal or even slightly negative. Results for GPT4.1-mini are mixed, wherein improvements highly depend on the evaluation target.

1064  
1065

Table E: Ensembling detectors' output improves performance in almost all cases. We highlight the increase or decrease from the *better* model used for ensembling next to each score.

| Detector      | Num. of Ensemble | Image-to-Caption Models |                    |                    |                    |                    |                    | Text-to-Image Models |                    |
|---------------|------------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|
|               |                  | S-GPT                   | Llava              | Qwen-2             | GPT4o              | CogVLM             | Llama-4            | SD                   | GPT-Gen            |
| Llama-4-scout | 1                | 80.6                    | 80.8               | 80.0               | 71.1               | 80.1               | 62.4               | 80.8                 | 65.1               |
| Llama-4-scout | 5                | 83.2 <b>(+2.6)</b>      | 83.0 <b>(+2.2)</b> | 81.8 <b>(+1.9)</b> | 74.4 <b>(+3.4)</b> | 82.2 <b>(+2.1)</b> | 65.1 <b>(+2.7)</b> | 83.0 <b>(+2.2)</b>   | 65.9 <b>(+0.8)</b> |
| Llama-4-scout | 10               | 83.7 <b>(+3.1)</b>      | 83.4 <b>(+2.6)</b> | 82.2 <b>(+2.3)</b> | 75.0 <b>(+3.9)</b> | 82.8 <b>(+2.7)</b> | 65.7 <b>(+3.3)</b> | 83.4 <b>(+2.6)</b>   | 66.4 <b>(+1.3)</b> |

1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

**Self-ensemble improves performance.** We further study the potential of ensembling. Unlike the analysis above, we ensemble outputs from a single model to refine detector's score (Farinhos et al., 2023; Jiang et al., 2023). To get different scores from a single model, we obtain different reasoning paths by stochastic sampling in the chain-of-thought. To ensure the diversity of COT, we set the temperature as 1.5 and  $\text{top}_p$  as 0.9. Table E presents the results in Llama-4, where the performance consistently improves in all Captioners. Also, using more ensemble paths tends to improve the performance, while the increase seems to saturate. Model ensembling can be an interesting direction to improve the performance in this task.

1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
Table F: Comparison to existing HalDec approaches.

| Detector                   | GPT4o | SD   |
|----------------------------|-------|------|
| UniHD (Chen et al., 2024b) | 62.6  | 71.0 |
| Qwen-2.5 32B               | 66.1  | 68.9 |
| Gemma-3 27B                | 61.0  | 63.7 |
| Llama-4 109B               | 67.7  | 81.1 |
| GPT-4.1-mini               | 65.8  | 68.7 |

Table G: Mean IoU for hallucination localization task. Localizing the segment of the hallucinated caption remains difficult even for performant models.

| Detector    | Params | Image-to-Caption Models |             |             |             |             | Text-to-Image Models |             | Avg.        |             |
|-------------|--------|-------------------------|-------------|-------------|-------------|-------------|----------------------|-------------|-------------|-------------|
|             |        | S-GPT                   | Llava       | Qwen-2      | GPT4o       | CogVLM      | Llama-4              | SD          |             |             |
| Qwen-2.5    | 32B    | 13.8                    | 15.1        | 11.7        | 15.1        | 16.0        | 10.7                 | 11.4        | 9.4         | 12.9        |
| GPT-4o mini | -      | 21.6                    | 22.4        | 18.3        | <b>23.3</b> | <b>21.5</b> | 16.4                 | <b>12.5</b> | <b>11.9</b> | 18.5        |
| Llama-4     | 109B   | 22.6                    | 20.8        | 22.7        | 26.4        | 23.2        | 17.3                 | 10.7        | 9.0         | 19.1        |
| Llama-4     | 400B   | <b>24.8</b>             | <b>22.1</b> | <b>23.3</b> | 26.0        | 21.7        | <b>18.0</b>          | 11.9        | 9.3         | <b>19.6</b> |

**VLM detectors can surpass prior approaches.** Table F presents the comparison to UniHD (Chen et al., 2024b), which prompts LLM to utilize an open-vocabulary detector and OCR engine. The results indicate that advanced VLMs can surpass the approach without using such external tools. More detailed discussion is available in the appendix.

**Mean intersection over union in hallucination localization.** Table G shows the results of mean IoU in hallucinated segment localization. Specifically, we compute the intersection over union between the predicted and ground-truth segments and compute the average for all samples. Overall, the performance is consistent with what is reported in Table 4.

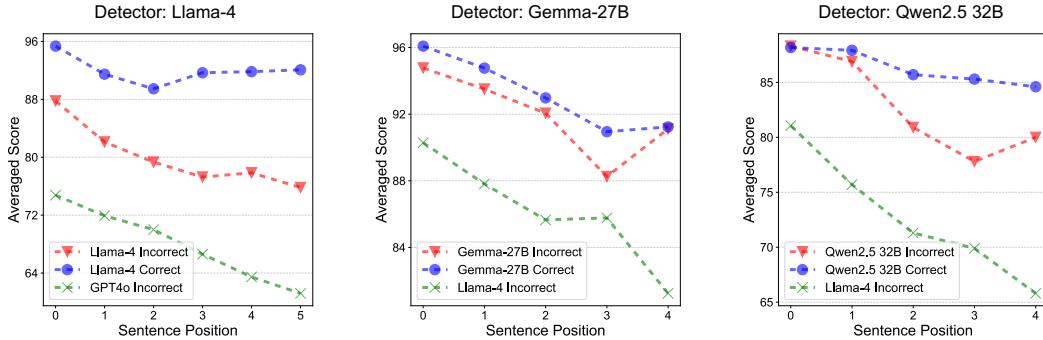


Figure G: Detector's output score for their own output captions.

**Additional results in self-preference evaluation.** Fig. G illustrates self-preference score analysis for Gemma-27B, Llama-4, and Qwen2.5. Their self-preference tendency is significant, especially for Gemma-27B and Qwen2.5.

**Additional examples of VLMs' outputs.** Figure H illustrates examples of input images, sentences, and corresponding correctness scores inferred by VLMs. VLMs tend to make errors in the location of the objects, the relationship between them, and small visual details.

## F ADDITIONAL EXAMPLES OF ANNOTATIONS

We provide additional figures illustrating annotation results and representative hallucination cases: ShareGPT (Fig. I), LLaVA (Fig. J), Qwen-2 (Fig. L), GPT-4o (Fig. L), CogVLM (Fig. M), LLaMA-4 (Fig. N), Stable Diffusion (Fig. O), and GPT-Gen (Fig. P).

|      |  |  |  |
|------|--|--|--|
| 1134 |  |  |  |
| 1135 |  |  |  |
| 1136 |  |  |  |
| 1137 |  |  |  |
| 1138 |  |  |  |
| 1139 |  |  |  |
| 1140 |  |  |  |
| 1141 |  |  |  |
| 1142 |  |  |  |
| 1143 |  |  |  |
| 1144 |  |  |  |
| 1145 |  |  |  |
| 1146 |  |  |  |
| 1147 |  |  |  |
| 1148 |  |  |  |
| 1149 |  |  |  |
| 1150 |  |  |  |
| 1151 |  |  |  |
| 1152 |  |  |  |
| 1153 |  |  |  |
| 1154 |  |  |  |
| 1155 |  |  |  |
| 1156 |  |  |  |
| 1157 |  |  |  |
| 1158 |  |  |  |
| 1159 |  |  |  |
| 1160 |  |  |  |
| 1161 |  |  |  |
| 1162 |  |  |  |
| 1163 |  |  |  |
| 1164 |  |  |  |
| 1165 |  |  |  |
| 1166 |  |  |  |
| 1167 |  |  |  |
| 1168 |  |  |  |
| 1169 |  |  |  |
| 1170 |  |  |  |
| 1171 |  |  |  |
| 1172 |  |  |  |
| 1173 |  |  |  |
| 1174 |  |  |  |
| 1175 |  |  |  |
| 1176 |  |  |  |
| 1177 |  |  |  |
| 1178 |  |  |  |
| 1179 |  |  |  |
| 1180 |  |  |  |
| 1181 |  |  |  |
| 1182 |  |  |  |
| 1183 |  |  |  |
| 1184 |  |  |  |
| 1185 |  |  |  |
| 1186 |  |  |  |
| 1187 |  |  |  |

Figure H: Examples of input image and sentences with detectors' correctness scores. Higher scores indicate greater confidence in correctness. We highlight detectors' errors in red within the text.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241



The image captures a serene and inviting outdoor patio area.

The precise placement of objects and their relative positions contribute to the overall balance and harmony of the scene.

Dominating the scene is a large window that frames a picturesque view of a pool and lush greenery, offering a glimpse into the tranquility of the surroundings.

The window is framed by a sturdy brick wall, adding a rustic charm to the setting.

**Number** In front of the window, **two** wicker chairs with vibrant floral cushions invite relaxation.

A potted plant rests on the floor next to the chairs, adding a touch of nature to the scene.

**Attribute** On the right side of the image, a painting of a bird in **flight** brings a dynamic element to the otherwise static scene.

**Attribute** The bird, captured **mid-flight**, adds a sense of movement and life to the composition.

Overall, the image presents a harmonious blend of man-made structures and natural elements, creating a space that is both functional and aesthetically pleasing.



In the center of a white background, there's a lively cartoon can of milk.

The entire scene is set against a stark white background, which puts the focus entirely on the can and its actions.

The image is simple yet engaging, with the can's actions and expressions adding a touch of whimsy and humor.

**Illusion** The can, painted in hues of blue and white, is anthropomorphized with a pair of arms and **legs**.

It's not just any can, though.

This one has a face, complete with eyes, a nose, and a mouth, giving it a friendly and approachable demeanor.

**Attribute** The can is actively engaged in an action—it's **holding up** a lightbulb above its head.

The lightbulb, a symbol of an idea or inspiration, is glowing brightly, indicating that the can has had a sudden thought or realization.

**Illusion** Adding to the can's character, it's wearing a **hat**.

**Illusion** The **hat** is brown, contrasting with the blue and white of the can.

**Attribute** The word "MILK" is boldly written on the can in **black** letters, standing out against the blue and white background.



In the vast expanse of the clear blue sky, a vibrant kite dances in the wind.

The kite, a striking contrast of red and white, is adorned with black stripes that add a touch of elegance to its appearance.

**Object** It's not just any ordinary kite, but one that bears the logo of a **bird**, perhaps symbolizing freedom and soaring heights.

The kite is tethered to the earth by four strings, two on each side, held firmly by unseen hands on the ground.

These strings, like lifelines, connect the kite to its earthly roots, ensuring it doesn't stray too far from home.

**Location** The kite is positioned towards the top **right corner** of the image, as if it's eagerly reaching for the heavens.

Its position relative to the edges of the image suggests it's flying high above any potential obstructions.

This image captures a moment of joy and freedom, a snapshot of a kite's journey against the backdrop of an endless blue sky.

Figure I: Example annotations of Share-GPT.

1242

1243

1244

1245

1246

1247



1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

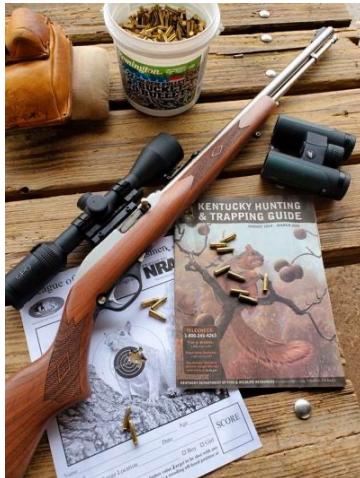
1258

1259

1260

1261

1262



1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279



1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

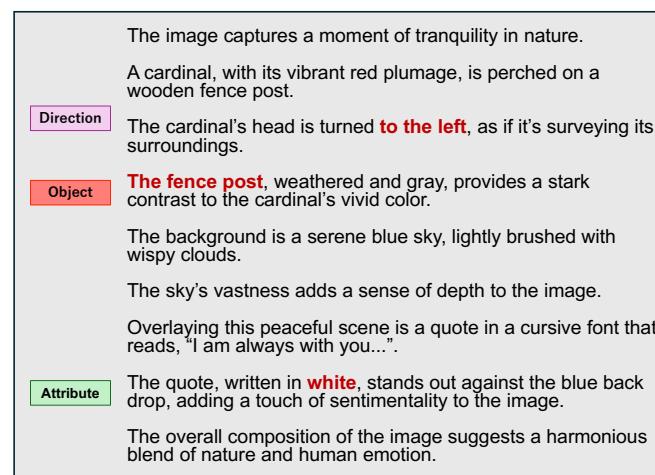
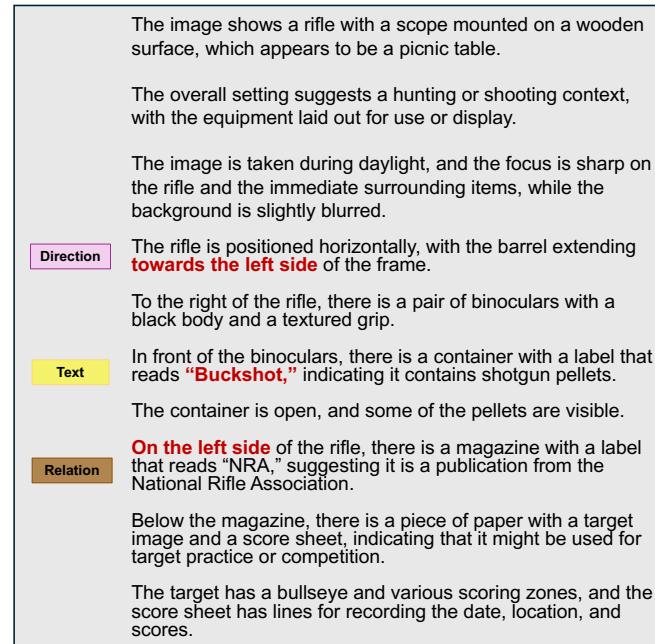
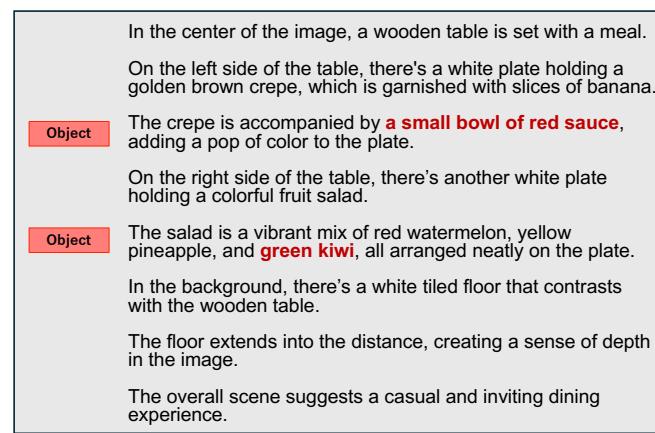


Figure J: Example annotations of LLaVA.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349



The image depicts a bronze sculpture of two individuals engaged in a conversation.

**Object**

One figure, appearing to be a **man**, is seated on a stone bench, while the other, likely a woman, stands beside him.

Both figures are dressed in vintage clothing, suggesting a historical or time-period-specific setting.

The bench is placed on a paved area, and there are bags placed at the feet of the figures.

**Number**

In the background, there are **three** people wearing modern clothing, standing and appearing to be engaged in a conversation or waiting.

The scene is set in a city environment, with a building and a partially open gate visible in the background.



The image shows a deep-dish pizza on a metal plate, with one slice **partially** removed.

The pizza has a thick crust and is topped with a generous amount of tomato sauce and cheese.

There is a spatula placed on the plate, likely used for serving.

**Attribute**

In the background, there is a person **holding** a glass of white wine.

The table appears to be made of dark wood, and there is a glass of water visible next to the wine glass.

The setting suggests a casual dining environment.



The image depicts a serene pastoral scene of three cows grazing in a lush green field.

**Attribute**

The foreground prominently features a brown cow with a **white** marking on its face, which is focused on grazing.

To the left, there is a black cow with distinctive white horns, also engaged in grazing.

**Direction**

In the background, partially obscured by the greenery, is another black cow, appearing to be standing and possibly looking in the **direction** of the camera.

The field is expansive, with the cows dispersed across the landscape, suggesting a peaceful and abundant grazing environment.

The background shows a mixture of trees and clear skies, adding to the natural beauty of the scene.

Figure K: Example annotations of Qwen-2.

1350

1351

1352

1353

1354

1355

1356

1357

1358



The image depicts the interior of a bar with a group of people seated around a wooden bar counter.

**Relation**

The ceiling features a woven design, and a fan is mounted **above** the counter.

In the foreground, two men are sitting at the bar; one is holding a drink and appears to be smiling, while the other is holding a cigarette.

**Object**

Bottles and glasses are visible on the counter, along with various bar items like **bottle openers** and condiments.

**Attribute**

Further along the bar, two men and a **woman are engaged in conversation**, with one man wearing a sleeveless shirt and a hat.

The lighting is warm, giving the space a cozy ambiance.

1369

1370



The image features two individuals posing against a bright pink background decorated with small vinyl records and hanging spiral ribbons in red and orange.

The person on the left is wearing a green military-style helmet and holding a banana.

They are dressed in a suit with a dark tie and are wearing a bracelet on their wrist.

**Object**

The person on the right is wearing a black police helmet with an emblem on the front and **silver hoop earrings**.

They have short hair and are wearing a black top with a gray knitted shawl over it.

**Direction**

Both individuals are looking in the **same direction** with a slightly surprised or thoughtful expression.

1381

1382

1383



The image shows two dogs and a cat lying on a bed.

The bedspread is light-colored with a quilt at the top.

The larger dog, with a tan coat, is lying diagonally across the bed.

The smaller dog, with a darker brindle coat, is curled up near the top left of the bed.

**Relation**

The cat, with a gray coat, is **nestled between them** on the quilt.

**Attribute**

There are two books on the bed, one with a visible cover and one with the cover **facing down**.

The visible book cover has an image and text, but the details are unclear from the image.

In the background, there is a nightstand with various items, and curtains cover the window behind the bed.

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure L: Example annotations of GPT4o.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457



This image is a Sequence Diagram that illustrates the dynamic behavior of a time-oriented system.

It shows interactions between different objects and classes, such as 'Instance of object', 'Class Message', 'Anonymous object', and **'Object lifetimes'**.

The diagram uses various symbols like 'a1', **'a2'**, **'b1'**, **'b2'**, and arrows to indicate the flow of messages and the sequence of events.



The image is a black and white photograph that captures an outdoor scene.

In the foreground, there is a fire hydrant with the text 'MUELLER' and **'1914'** inscribed on it.

The hydrant is attached to a concrete base.

In the background, there is a wooden structure, possibly a deck or porch, with a person standing on it

The person appears to be **looking out of a window or door**.

The surroundings include some trees, shrubs, and a rocky wall.



The image showcases a street scene in what appears to be an urban area.

In the foreground, there is a white bus with the number '33' displayed on its front, heading towards **'Castro'**.

The bus has an advertisement on its side.

To the left of the bus, there is a building with a red facade and a sign that reads 'BankofAmerica'.

The street is lined with trees, and in the background, there is a tall tower, possibly a communication or observation tower.

The sky is clear, suggesting a sunny day.

Figure M: Example annotations of CogVLM.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511



The image depicts a young woman in a boxing ring, wearing black and yellow boxing gloves.

The woman has long brown hair tied back in a pony tail and is dressed in a sleeveless top.

**Attribute**

She is positioned centrally in the frame, with her **right** arm extended forward, showcasing her glove.

**Illusion**

In the foreground, **another pair of boxing gloves** is visible, although they are out of focus.

The background features a blue floor and white ropes surrounding the ring, with windows on the left side that allow natural light to enter.

The overall atmosphere suggests that the woman is engaged in a training session or preparing for a fight, exuding a sense of determination and focus.



The image shows a cat lying on a bed in front of a bookshelf.

The cat is orange and white, with a white chest and paws, and an orange back and head.

**Direction**

It has pointy ears and appears to be looking **at the camera**.

The cat is lying on a bed with a yellow, green, blue, and white quilt or comforter.

The bed appears to have a white sheet or comforter underneath the quilt.

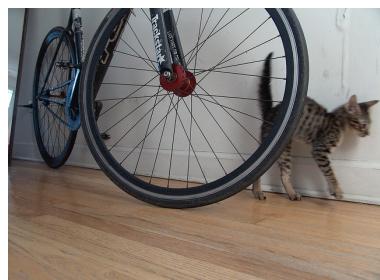
In the background, there is a brown wooden book shelf filled with books of various colors and sizes.

**Attribute**

The books are arranged in rows, with some standing upright and others **lying flat**.

The wall behind the bookshelf is painted light blue.

The overall atmosphere of the image suggests a cozy and comfortable setting, possibly a bedroom or study.



The image depicts a cat walking behind a bicycle wheel, with the cat's body partially obscured by the wheel.

The cat is positioned on a light-colored hardwood floor, facing to the right.

It has a slender build and features a brown coat with black stripes, as well as a long tail.

In the foreground, the bicycle wheel is prominently displayed, showcasing its black tire and silver rim.

**Text**

The wheel is attached to a black fork with white text that reads **"Trekstar"** and other illegible words.

**Illusion**

To the left of the main wheel, **another bicycle wheel** is visible, featuring a blue rim and black tire.

The overall atmosphere of the image suggests that the cat is exploring its surroundings, possibly in a home or indoor setting.

Figure N: Example annotations of Llama-4.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559



Attribute

In a sunlit garden, a vibrant orange carrot is nestled in rich, dark soil on the left side of the image, **partially** exposed as if it is peeking out from the ground.

Direction

To its right, a curious rabbit with soft, white fur is intently **looking at the carrot**, its ears perked up in excitement.

In the background, blooming flowers sway gently in the breeze, their colors contrasting beautifully with the earthy tones of the soil.

Illusion

Above the scene, **a clear blue sky** adds to the serene atmosphere, casting gentle light over the garden.



Location

In a serene forest clearing bathed in early morning sunlight, a majestic moose stands proudly **on the right side** of the scene, its dark coat gleaming.

Attribute

It **lowers its head** to nibble on the lush greenery that sprawls at its hooves while keeping a vigilant gaze towards the left, scanning for any signs of movement.

Soft rays filter through the tall pines behind it, casting gentle shadows on the dried leaves covering the forest floor.

In the background, **flickers of a sparkling stream** reflect the sun's glow as it weaves through the trees.



Location

In a sunlit park **on the left side** of the scene, an old leather baseball glove rests on the grass, slightly worn from countless games.

Direction

Next to it, a new baseball gleams in the afternoon light, ready to be thrown but currently standing motionless.

In the background, a young boy in a bright baseball cap stands by a fence, **looking towards the** glove with eager anticipation in his eyes, wondering when he can play catch again.

Figure O: Example annotations of Stable Diffusion.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619



In a cozy children's bedroom, a fluffy teddy bear is nestled on the soft, cloud-patterned rug at the center of the room.

Direction

Its bright button eyes gaze thoughtfully **toward the window**, where soft rays of sunlight filter through pastel curtains, casting a warm glow around.

On the left side of the scene, a pile of colorful building blocks seems to spill out of a cheerful toy basket, while on the right, a collection of books rests neatly on a shelf, hinting at adventure awaits.

Attribute

The teddy bear, **slightly tilted**, watches over the joyful mess, embodying the protective whimsy of childhood.



In a bright kitchen filled with the aroma of freshly baked cookies, a glowing microwave stands prominently on the countertop to the left, **its door slightly open** as if inviting a warm snack.

Attribute

A curious little cat with green eyes **sits on the floor** in front of it, gazing intently at the microwave's insides, waiting eagerly for the beep that announces its treat is ready.

A plate of colorful cupcakes sits on the table in the background, casting a soft shadow as sunlight filters through the window.

The wall above the microwave is adorned with recipe notes, adding a cozy, lived-in feel to the scene.



In the verdant wetlands of a sultry summer's afternoon, a crocodile lounge on a sundrenched, flattened rock at the right-hand side of the scene.

Direction

Its muscular body is soaked and dripping with water, remaining vigilant as it scans the shimmering pond that stretches outward in front of it.

Attribute

Surrounded by reeds and lily pads, its eyes glisten in the sunlight as it looks **towards tiny fish** darting happily beneath the surface, captivated by movement right below.

Illusion

Meanwhile, colorful dragonflies flit high in the air, **casting fleeting shadows** on this eager predator's competent posture.

Figure P: Example annotations of GPT-Gen.