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Abstract

As Large Language Models (LLMs) gain in-001
creasing prominence across a variety of do-002
mains and inspired by their remarkable ability003
to generate high-quality content in response to004
human language instructions. This study delves005
into the application of LLMs within the field of006
hardware design, specifically in the generation007
and refinement of Verilog code. We introduce008
a novel framework VeriPPA designed to assess009
and enhance LLM efficiency in this specialized010
area. Our method includes generating initial011
Verilog code using LLMs, followed by a unique012
two-stage refinement process. The first stage013
focuses on improving the functional and syntac-014
tic integrity of the code, while the second stage015
aims to optimize the code in line with Power-016
Performance-Area (PPA) constraints, an essen-017
tial aspect of effective hardware design. This018
dual-phase approach of error correction and019
PPA optimization has led to notable improve-020
ments in the quality of LLM-generated Ver-021
ilog code. Our framework achieves a success022
rate of 81.37% for syntactic correctness and023
62.0% for functional accuracy in code genera-024
tion, surpassing current state-of-the-art (SOTA)025
methods, e.g., 73% for syntactic correctness026
and 46% for functional accuracy. These results027
highlight the potential of LLMs in handling028
complex technical areas, and indicate an en-029
couraging development in the automation of030
hardware design processes. Our source codes031
can be found on Github1.032

1 Introduction033

With Moore’s law driving increased design com-034

plexity and chip capacity, the chip design requires035

more effort. Machine learning (ML) has success-036

fully integrated into chip design for logic synthesis037

(Haaswijk et al., 2018; Hosny et al., 2020), place-038

ment (Ward et al.), routing (Liang et al., 2020;039

Maarouf et al., 2018), testing (Chen et al., 2012;040

1https://anonymous.4open.science/r/
LLM-VeriPPA-10B7

Wang et al., 2018; Liu et al., 2019), and verification 041

(Fine and Ziv, 2003; Hu et al., 2018). The popular- 042

ity of agile hardware design exploration has been 043

on the rise due to the growth of large language 044

models (LLMs). A promising direction is using 045

natural language instruction to generate hardware 046

description language (HDL), e.g., Verilog, aim- 047

ing to greatly lower hardware design barriers and 048

increase design productivity, especially for users 049

who do not possess extensive expertise in chip de- 050

sign. Despite the efforts, Verilog benchmarking 051

has unique challenges in terms of the wide range 052

of hardware designs (Liu et al., 2023). 053

Two orthogonal research trends have both at- 054

tracted enormous interests (Thakur et al., 2023; Lu 055

et al., 2023; Liu et al., 2023; Blocklove et al., 2023; 056

Chang et al., 2023). The first trend is efficiently 057

finetuning LLMs such as CodeGen (Nijkamp et al., 058

2022), with representatives works such as Thakur 059

et al. (Thakur et al., 2023), Chip-Chat (Blocklove 060

et al., 2023), Chip-GPT (Chang et al., 2023). How- 061

ever, due to limited Verilog data sources, these 062

works mainly target the scale of simple and small 063

circuits (e.g., <20 designs with a medium of <45 064

HDL lines) (Lu et al., 2023). The relatively low 065

scalability and solution quality have propelled the 066

second trend – enrich Verilog source. Like oil, 067

data is an immensely valuable resource. One could 068

not generate high quality HDL codes without hav- 069

ing LLMs trained on vast amount of such data. 070

RTLLM (Lu et al., 2023) and VerilogEval (Liu 071

et al., 2023) introduce specialized benchmarking 072

framework (i.e., 30 designs from RTLLm and 156 073

designs from HDLBits (HDLBits, 2023) from Ver- 074

ilogEval) to assess the generation quality of LLMs. 075

However, they either do not offer Power, Perfor- 076

mance, and Area (PPA) analysis for the generated 077

codes (e.g., VerilogEval), or the generated Verilog 078

codes are directly extracted and synthesized using 079

commercial tools to obtain PPA results, without 080

considering PPA feedback (e.g., RTLLM). Thus, 081

1

https://anonymous.4open.science/r/LLM-VeriPPA-10B7
https://anonymous.4open.science/r/LLM-VeriPPA-10B7


their solution quality is still limited.082

In this work, as the first attempt, we integrate083

power, performance, and area-constraints into Ver-084

ilog generation, and propose VeriPPA, a open-085

source framework with multi-round Verilog gener-086

ation and error feedback, shown in Figure 1. We087

first generate initial Verilog codes using LLMs,088

followed by a unique two-stage refinement pro-089

cess. The first stage focuses on improving the090

syntax and functionality, while the second stage091

aims to optimize the code in line with PPA con-092

straints, an essential aspect to ensure hardware093

design quality. Compared with state-of-the-arts094

(SOTAs), e.g., RTLLM (Lu et al., 2023), Verilo-095

gEval (Liu et al., 2023), our VeriPPA achieves a096

success rate of 62.0% (+16%) for functional accu-097

racy and 81.37% (+8.3%) for syntactic correctness098

in Verilog code generation. Our key contributions099

are summarized here:100

• We use the detailed error diagnostics from the101

iverilog simulator (Williams, 2023), and pin-102

point the exact location of syntactic or func-103

tional discrepancies as indicated by testbench104

failures as new prompts. We use multi-round105

generation to enhance the syntax and function-106

ality correctness.107

• To further ensure that the generated Verilog108

codes are synthesizable, and design quality109

(i.e., PPA) is sound, we use Synopsys Design110

Compiler to perform logic synthesis (and tech-111

nology mapping) on the open source ASAP112

7nm Predictive PDK, and check all designs’113

warnings/errors, and PPA report. We then in-114

tegrate these PPA reports and warnings/errors115

with our PPA goal into the next round prompt116

for further refinement.117

• We incorporate in-context learning (ICL) to118

significantly improve the LLM performance119

in generating Verilog codes with only a few120

demonstration examples, especially when la-121

beled data are scarce. By carefully select-122

ing diverse text-to-Verilog pairs, ICL demon-123

strates superior performance and generaliza-124

tion capabilities compared to fine-tuning in125

limited example scenarios, thus increasing the126

performance of Verilog code generation.127

2 Background and Related works128

Finetune LLMs. Thakur et al. (Thakur et al., 2023)129

advocate for the fine-tuning of open-source LLMs130

such as CodeGen (Nijkamp et al., 2022) to specifi- 131

cally generate Verilog code tailored for target de- 132

signs. Subsequently, Chip-Chat (Blocklove et al., 133

2023) delves into the intricacies of hardware design 134

using LLMs, highlighting the markedly superior 135

performance of ChatGPT compared to other open- 136

source LLMs. Chip-GPT (Chang et al., 2023) also 137

focuses on the task of register-transfer level (RTL) 138

design by leveraging the capabilities of ChatGPT. 139

These studies pave the way for a promising fu- 140

ture where language models play a pivotal role in 141

facilitating and enhancing various aspects of ag- 142

ile hardware design exploration. However, these 143

works mainly target the scale of simple and small 144

circuits (e.g., <20 designs with a medium of <45 145

HDL lines), as pointed out in (Lu et al., 2023). 146

Enrich Verilog Source. Several recent efforts fo- 147

cuse on enriching Verilog codes. RTLLM (Lu et al., 148

2023) introduces a benchmarking framework con- 149

sisting of 30 designs that are specifically aimed 150

at enhancing the scalability of benchmark designs. 151

Furthermore, it utilizes effective prompt engineer- 152

ing techniques to improve the generation quality. 153

VerilogEval (Liu et al., 2023) assesses the perfor- 154

mance of LLM in the realm of Verilog code gener- 155

ation for hardware design and verification. It com- 156

prises 156 problems from the Verilog instructional 157

website HDLBits. However, VerilogEval (Liu et al., 158

2023) does not offer PPA analysis for the generated 159

codes. In RTLLM, the generated Verilog codes 160

are directly extracted and synthesized using com- 161

mercial tools to obtain PPA results, without PPA 162

constraint-based feedback. Thus they suffer from 163

limited generation quality. 164

3 Framework 165

3.1 Design Overview 166

In our VeriPPA framework, as illustrated in Fig- 167

ure 1, we use a text-based description (.txt file) 168

of Hardware Design, designated as L, to serve as 169

input/prompt for the LLMs. L details the module 170

name, and specifies both input and output signals 171

with the corresponding bit widths. We use LLM 172

to parse L and subsequently generate the corre- 173

sponding Verilog codes, V . V is then subjected to 174

a rigorous validation sequence, beginning with a 175

Simulator that checks both syntax and functionality. 176

In the first loop, if unsuccessful, we will input the 177

outcomes along with any syntax and functionality 178

errors, into the LLM for the generation of subse- 179

quent attempts. If successful, the code undergoes 180
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module adder_16bit (
input [15:0] a,
input [15:0] b,
input c_up,
output [15:0] y,
output Co

);
…..
….
generate

for (i = 1; i < 16; i = i + 
1) begin : adder_loop

assign sum[i] = a[i] ^ 
b[i] ^ carry[i - 1];

assign carry[i] = (a[i] 
& b[i]) | (carry[i - 1] & 
(a[i] ^ b[i]));

end
endgenerate
assign y = sum;
assign Co = carry[15];
Endmodule
Code passed.

PassSimulator
(syntax+ functionality)

PPA check
(Design Specific 

Constraints)
Constraints 

Meet

LLM Generated 
Verilog Code

LLM Optimized Verilog  Code

Please act as a 
professional verilog
designer.

Implement a module of 
a 16-bit full adder.
Module name:
adder_16bit
Input ports：

input [15:0] a,
input [15:0] b,
input c_up

Output ports：
output [15:0] y,
output Co

LLM Optimized Verilog  
Codeyuyuhj

Hardware design 
description prompt

VeriRectify
Error + Prompt

N
ot

 P
as

s
PPA Aware Prompt:
In Context Learning 

(4-shot)

C
on

st
ra

in
ts

 
N

ot
 M

ee
t

Testbench

GPT-3.5
GPT- 4

…

Dataset
Hardware Design Description Prompt

Figure 1: This visualization captures the step-by-step process where an LLM synthesizes Verilog codes from
hardware design prompts, with the ensuing code subjected to thorough validation by a Simulator and scrutinized for
adherence to Power-Performance-Area (PPA) checks.

Power-Performance-Area (PPA) checks to ensure181

compliance with constraints. In the second loop,182

we check all designs’ warnings/errors during logic183

synthesis and using PPA reports. If not satisfied,184

both the design and its corresponding PPA report185

will be fed back to the VeriRectify (Section 3.3) for186

refinement. This validation workflow ensures that187

the LLM-generated Verilog codes not only meet188

functional specifications but also is optimized for189

PPA considerations.190

3.2 Code Generation and Testing191

VeriPPA incorporates the ICARUS Verilog sim-192

ulator (Williams, 2023) to automate the evalua-193

tion (testing) of the generated codes. In con-194

trast to high-level program languages such as195

Python, Verilog requires the use of testbenches,196

T = {T1, T2, . . . , Tm}, to systematically assess the197

code’s functionality, encompassing a wide array of198

test scenarios. Integrating the ICARUS Verilog sim-199

ulator into VeriPPA provides immediate feedback200

on the code’s syntactical and operational integrity.201

The ICARUS Verilog simulator could pinpoint the202

exact location of syntactic errors or functional fails203

based on testbench test case failures. This inte-204

grated approach contrasts with frameworks such205

as RTLLM (Lu et al., 2023), where an external206

simulator is used to check the correctness of the207

generated Verilog codes.208

3.3 VeriRectify209

The refinement process, termed "VeriRectify," is210

pivotal to ensuring the correctness of the generated211

Verilog codes. In Figure 2, the top box displays212

the syntax errors and functional fails found in the213

error occurred during Simulator:
Syntax Error:
multi_booth_generated.v:17: syntax error
multi_booth_generated.v:17: error: Syntax error between internal '}’
and closing '}' of repeat concatenation.

multi_booth_generated.v:18: syntax error
multi_booth_generated.v:18: error: Syntax error between internal '}’
and closing '}' of repeat concatenation.
Functionality Error:
/multi_booth/testbench.v:67: invalid file descriptor (0x0) given to $fscanf.

Detailed Example of Simulator Output

1.Simulator Errors

LLM: using precise error and other details
LLM_Generated_Verilog _Code_Vn

2.VeriRectify:Error refinement

Error Details:
multi_booth_generated.v:17: syntax error
multi_booth_generated.v:17: error: Syntax error between internal '}’
and closing '}' of repeat concatenation.
multi_booth_generated.v:18: syntax error
multi_booth_generated.v:18: error: Syntax error between internal '}’
and closing '}' of repeat concatenation.
multi_booth/testbench.v:67: invalid file descriptor (0x0) given to $fscanf
Prompt
Please see the errors in previously generated code
Please write entire code by fixing the errors in previous code

Do not write testbench. Please only give me the code, for anything beside 
code, please properly comment it out.

LLM_Generated_Verilog _Code_V1

LOOP * n

PPA check
Pass

Figure 2: The diagram illustrates the process of syntac-
tic and functional code verification.

output of simulation (e.g., booth_multiplier) from 214

the ICARUS Verilog simulator. During the recti- 215

fication phase, we utilize a tailored prompt (Inte- 216

grating the error details with additional text) for 217

the LLMs, for error correction. This approach 218

allows the LLM to specifically address the en- 219

countered issues, which is fundamentally different 220

from RTLLM (Lu et al., 2023) (using a generalized 221

prompt for all designs). Figure 2 shows that the 222

LLM effectively amends the error in the Verilog 223

codes for the booth_multiplier design. 224
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Algorithm 1: Multi-Round Verilog Code
Generation using LLM

Require: User prompt P , iteration limit K
Ensure: Correct Verilog code Vfinal or VK

1: i← 0
2: conv ← [] # initialize a new conversation history list
3: conv ← Append user prompt (P ) to conversation
4: Vi ←

LLM-generated code using prompt P in historyconv
5: Ei ← Error detection function using simulator(D(Vi))
6: while Ei ̸= ∅ AND i < K do
7: conv ←

Append error information (Ei) to conversation
8: Vi+1 ← LLM-generated code using prompt Pnew

9: Ei+1 ← Error detection using simulator (D(Vi+1))
10: i← i+ 1
11: end while
12: if Ei = ∅ then
13: Vfinal ← Vi

14: else
15: Vfinal ← VK

16: end if
17: return Vfinal

3.3.1 Multi-round Conversation with Error225

Feedback226

We further integrate a multi-iteration dialogue with227

an error feedback mechanism, analogous to human228

problem-solving techniques. This method is de-229

signed as a recursive function that improves the230

output by carefully analyzing and correcting the231

errors found in previous iterations. Let Vi denote232

the Verilog code resultant from the ith iteration, and233

Ei represent the associated set of identified errors234

at this stage. Initially, V0 is the first generated code235

accompanied by its detected errors E0. Then the236

refinement function, R(Vi, Ei), which takes as in-237

put Vi and Ei, and yields an enhanced code version238

Vi+1 as output. Simultaneously, an error detec-239

tion function D(Vi) is employed to identify errors240

within Vi, generating Ei. The iterative process can241

be viewed as follows:242

Vi+1 = R(Vi, Ei) and Ei+1 = D(Vi+1) (1)243

This process repeats until either no errors are de-244

tected or a predefined iteration limit, K is reached,245

shown in Algorithm 1, i.e., the iteration halts if,246

D(Vi+1)=∅ or i = K. K is empirically adjustable247

(say 4) based on observed diminishing returns in248

LLM performance improvements across iterations.249

3.4 Power Performance & Area (PPA)250

Checking251

The VeriRectify process ensures the design to pass252

both register-transfer level (RTL) syntax check and253

cycle-accurate functional simulation. However,254

RTL simulation does not guarantee that the design 255

(Verilog code) is synthesizable. Furthermore, the 256

quality of the hardware design must be measured 257

by its power, performance, and area metrics. 258

Our approach takes a step further by inspecting 259

PPA of the design V which passes the VeriRectify 260

process as the following: 261

V =

{
V if PPA(V ) satisfies,
VeriRectify(V, PPA(V )) otherwise.

(2) 262

In this work, our PPA check calls Synopsys De- 263

sign Compiler to perform logic synthesis (and tech- 264

nology mapping) on the open-source ASAP 7nm 265

Predictive PDK (Vashishtha et al., 2017). We check 266

all designs’ warning/error messages during the 267

logic synthesis, and the power (µW), area (µm2), 268

and clock (ps) for quality. When the Verilog design 269

can be synthesized and meets the PPA goal, it re- 270

sults in a pass. Otherwise, both the design and its 271

corresponding PPA report will be fed back to the 272

VeriRectify (Section 3.3) for refinement. 273

3.5 In-Context Learning 274

LLMs have demonstrated remarkable in-context 275

learning (ICL) capabilities (Radford et al., 2019; 276

Brown et al., 2020). We will further improve the 277

code quality using ICL. We use tailored prompts 278

(Questions) with optimization strategies such as 279

Pipelining, Clock Gating, Parallel Operation, and 280

Hierarchical Design, associated with Verilog ex- 281

amples (Answers). The LLM generates the opti- 282

mized Verilog codes (Answer) based on the tailored 283

prompts (Questions). 284

q(t|v) =
K∏
k=1

q(tk|t<k), (3) 285

t<k are the questions and answers of strategies 286

(i.e., pielining, gate clocking). tk is the Verilog 287

code not passing the PPA goal. v indicates demon- 288

stration example tokens. q is parameterized by the 289

LLM. The equation describes the in-context learn- 290

ing of a large language model, where the model 291

learns to predict the next token in the sequence by 292

considering the previous demonstration examples. 293

In our case, we carefully select the text-to-Verilog 294

pairs to ensure that the examples cover a range of 295

different Verilog designs, such as addition, multipli- 296

cation, single-stage design, and pipelined design. 297
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Figure 3: Correctness of generated Verilog code with respect to correction attempt on RTLLM dataset, using (a)
GPT-3.5; (b) GPT-4-v1; Dash lines: Syntax; Solid lines: Functionality.
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Figure 4: Correctness of generated Verilog code with respect to correction attempt on RTLLM dataset, using (a)
GPT-4; (b) GPT-4-4shot. Dash lines: Syntax; Solid lines: Functionality.

Table 1: PPA results of generated Verilog code

Design Name GPT-4 GPT-4 (4-shot)
Clock
(ps)

Power
(µW)

Area
(µm2)

Clock
(ps)

Power
(µW)

Area
(µm2)

adder_8bit 318.5 6.3 38.5 333.1 6.1 42.9
adder_16bit 342.2 10.9 104.5 135.1 41.1 152.8
adder_32bit 500.0 14.2 211.6 500.0 14.7 213.2
multi_booth 409.0 112.1 526.0 409.0 112.1 526.0
right_shifter 47.5 144.3 42.9 47.5 144.3 42.9
width_8to16 74.1 223.2 145.8 145.6 128.7 157.2
edge_detect 61.5 49.0 23.3 61.5 49.0 23.3

mux 54.7 215.3 86.1 54.7 215.3 86.1
pe 500.0 552.5 2546.5 500.0 541.0 2488.6

asyn_fifo 295.2 406.4 1279.3 228.3 526.6 1295.4
counter_12 134.4 33.1 40.6 124.5 34.6 36.4

fsm 88.3 32.7 31.5 68.7 49.0 50.2
multi_pipe_4bit 254.7 40.7 131.3 - - -

pulse_detect 10.3 187.5 13.5 32.7 59.1 13.5
calendar - - - 208.6 86.6 199.0

4 Evaluation298

4.1 Datasets299

In assessing our VeriPPA framework, we utilize300

two benchmark datasets. Firstly, the RTLLM301

dataset (Lu et al., 2023) includes 29 designs.302

Secondly, we employ the VerilogEval dataset 303

(Liu et al., 2023), which comprises two subsets: 304

VerilogEval-human, featuring 156 designs, and 305

VerilogEval-machine, consisting of 108 designs. 306

4.2 Experimental Setup 307

We demonstrate the effectiveness of our VeriPPA 308

framework for generating PPA-optimized Verilog 309

code for the given designs. We adopt, GPT-3.5 310

(OpenAI, 2023a) and GPT-4 (OpenAI, 2023b) as 311

our LLM models. We use n=1, temperature temp = 312

0.7, and a context length of 2048 in our setting. Fur- 313

ther, we incorporate the ICARUS Verilog simulator 314

(Williams, 2023) to automate the testing of the gen- 315

erated code. For PPA check, we perform the logic 316

synthesis using Synopsys Design Compiler with 317

compile_ultra command and we use the ASAP 318

7nm Predictive PDK (Vashishtha et al., 2017). We 319

implement an in-house simulator to sweep the tim- 320

ing constraints to find the fastest achievable clock 321

frequency for all the generated designs. All ex- 322
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periments are conducted on a Linux- based host323

with AMD EPYC 7543 32-Core Processor and an324

NVIDIA A100-SXM 80 GB.325

4.3 Generation Correctness326

This study evaluates Verilog code generation accu-327

racy using two primary metrics: syntax checking328

and functionality verification. Figures 3 and 4,329

shows the results of our methodology of improving330

Verilog correctness through successive correction331

attempts. We generate five different codes for each332

design description, attempting up to four correc-333

tions within each generation. We set correction334

attempts to four because, after certain attempts,335

the efficiency of these corrections diminishes, as336

the LLMs tend to provide repetitive responses to337

identical errors.338

In Figure 3, we plot syntax and functionality339

correctness percentages against the number of cor-340

rection attempts. The graph features a solid line for341

syntax correctness and a dotted line for functional-342

ity correctness. Functionality is evaluated the same343

as RTLLM (Lu et al., 2023), considering a design344

functionally correct if at least one generated code345

passes the functionality test. We use GPT-3.5 and346

observe initial syntax correctness of 44.13% and347

functionality correctness of 24.13%, as shown in348

Figure 3 (a). After applying correction attempts,349

our VeriPPA achieves the correctness of 65.51% for350

syntax and 31.03% for functionality. Next, we com-351

pare to another baseline RTLLM (Lu et al., 2023)352

which uses a self-learning technique on top of GPT353

model to improve the correctness, which initially354

scores 24.82% in syntax and 27.58% in function-355

ality without corrections. The reason for the low356

accuracy is that the response to self-planning from357

GPT-3.5 generates different planning approaches358

but not Verilog codes directly. Please note that359

integrating our correction approach into RTLLM360

increases the maximum syntax and functionality361

correctness to 49.65% and 34.48%, respectively.362

We then evaluate two versions of the GPT-4363

model. The first, GPT-4-0314 (v1), shows an ini-364

tial syntax correctness of 56.55% and functionality365

correctness of 37.93%. Our correction methods366

could enhance the correctness to 71.03% for syn-367

tax and 51.72% for functionality. Our VeriPPA368

enhances RTLLM’s syntax correctness to 75.17%369

and functionality to 51.72%, from 62.75% and370

37.93% respectively, as indicated in Figure 3 (b).371

For the base GPT-4 model, we notice an increase372

in syntax correctness from 66.2% to 81.37% by the373

fourth attempt and in functionality from 37.93% 374

to 48.27%. With our VeriPPA method, RTLLM’s 375

syntax correctness further improved from 60% to 376

77.93%, and functionality from 34.48% to 48.27%, 377

as shown in Figure 4 (a). 378

Finally, testing the GPT-4 model with four-shot 379

learning, we observe a correctness score improve- 380

ment in syntax from 70.34% to 79.31% and in func- 381

tionality from 37.93% to 41.37%. Our method in- 382

creases RTLLM’s syntax correctness from 66.89% 383

to 81.37%. The functionality correctness notably 384

can be increased from 44.82% to 62.06% after four 385

attempts, as demonstrated in Figure 4 (b). This sig- 386

nificant improvement highlights the effectiveness 387

of VeriPPA in enhancing the functional accuracy 388

of the hardware designs. 389

In evaluating our VeriPPA framework with Ver- 390

ilogEval datasets, we found notable improvements. 391

For the VerilogEval-Machine dataset, We show syn- 392

tax and functionality correctness against the num- 393

ber of correction attempts in Figure 5, our method 394

increases syntax accuracy from 92.11% to 99.56% 395

for GPT-4 case. Functionality correctness also in- 396

creased from 33.57% to 43.79% using GPT-4, and 397

further to 45.25% with GPT-4’s four-shot learning. 398

This shows that the four-shot learning is effective 399

in improving the functionality correctness of the 400

design. The VerilogEval-human dataset shows sim- 401

ilar trends, where syntax correctness increases from 402

91.28% to 97.17% when we use GPT-4. function- 403

ality accuracy is improved from 29.48% to 39.74% 404

through the application of GPT-4 and its four-shot 405

learning variant as shown in the Figure 6. This 406

underscores our framework’s effectiveness in en- 407

hancing both syntax and functionality in Verilog 408

code generation. 409
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Figure 5: Correctness of generated Verilog code with
respect to correction attempt on VerilogEval-Machine
dataset. Dash lines: Syntax; Solid lines: Functionality.
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PPA constraint
based prompt

+
Context -

Based learning

Optimized Pipelined adder_32bit:
module adder_32bit#
...
Endmodule
PPA 
Results:Clock:180 ps Power:587.
31 uW  Area:1005.67 um

Non –optimized
PPA results:
Example: 
adder_32bit
Clock: 500ps
Power:14.72 uW
Area:213.21 um

Context -Based learning:
To Improve Power, Performance,
and Area (PPA) in Verilog designs, Here are some 
strategies.
Strategy: Pipelining
Example : Verilog codes
Non- pipeline implementation:
Pipeline implementation:
Strategy: Clock Gating
Example: Verilog Code:
Non-clock gating
clock gating
Strategy : Parallel Operations
Example: Verilog Code
Non-Parallel
Parallel
Strategy: Adding Hierarchy
Example:Verilog Code
Non-Hierachical implementation
Hierachical implementation
Analyze the design methodologies and optimizations
provided in the above examples.
Also, suggest improvements or alternative strategies 
based on these methodologies and also other 
techniques
not used in above examples.

PPA constraint-based prompt:
In following designs implementation,
500ps clock can be synthesized.
Area of the design is 213.217918um.
Power required is 14.7292uW.

Please optimize following design to achieve:
clock less than 300ps
module adder_32bit #(parameter SIZE = 32)(

 input [SIZE-1:0] A, // index from 0
 input [SIZE-1:0] B, // index from 0
 output [SIZE-1:0] S, // index from 0
 output C32);
 -------------
 ----------
 -----------

 endmodule

Please do not modify the name of module.
Always give the verilog code which
starts with module and end with endmodule.

LLM

b c da

b(i) b(ii)

(  ) (  ) (  ) (  )

Figure 7: Optimization Flow, (a) Non-optimized PPA
results, (b) PPA constraint-based prompt and ICL, (c)
LLM, (d) Optimized results

4.4 PPA Optimization410

We use the Synopsis Design Compiler for synthe-411

sizing the designs, culminating in the production of412

PPA reports. The PPA results of complex designs413

are encapsulated in Table 1. This table, though414

comprehensive, does not encompass specific de-415

sign constraints. Similar to the ChipGPT approach416

(Chang et al., 2023), where an output manager and417

enumerative search finalize the PPA from multi-418

ple reports, our process also generates multiple419

PPA reports for each design. An example is the420

pulse_detect design, which consistently met cri-421

teria across five evaluations of passing function-422

ally and syntactically. Therefore, in post-synthesis,423

we collate five PPA reports for the pulse_detect424

design, and we select the most optimized one to425

include in Table 1.426

Table 2: PPA Optimized Verilog Design Results

Design Name Clock (ps) Power (µW) Area (µm)
adder_32bit 180.0 587.31 1005.67
multi_booth 123.2 42.39 42.92

pe 325.0 1206.0 4863.88
asyn_fifo 114.8 988.92 1344.86

It is crucial that PPA results do not conform to 427

specialized design requirements, a standard prac- 428

tice in industrial applications. To address this dis- 429

parity, we further perform the PPA constraint-based 430

feedback mechanism, integrated with ICL, as il- 431

lustrated in Figure 7. This approach represents a 432

significant step towards aligning LLM-generated 433

codes with industry-specific PPA requirements. 434

Figure 7 demonstrates our process, starting with 435

the collection of synthesized design outputs that re- 436

quire optimization. For example, adder_32bit, is 437

initially synthesized with a 500ps clock as shown in 438

Figure 7 (a). To enhance the speed of adder_32bit, 439

we impose a clock constraint, aiming for a clock 440

speed of less than 300ps, as outlined in the PPA 441

constraint-based prompt in Figure 7. The frame- 442

work instructs the LLM to consider various op- 443

timization strategies, including Pipelining, Clock 444

Gating, Parallel Operation, and Hierarchical De- 445

sign. It also encourages the exploration of addi- 446

tional methods to generate Verilog code that meets 447

the defined optimization constraints, as illustrated 448

in the context-based learning segment of Figure 7. 449

Upon providing the PPA-based constraint 450

prompt and context to the LLM, we analyze the 451

resultant Verilog code for syntax and functional 452

accuracy, making corrections where necessary. If 453

the code passes both checks, we proceed to its final 454

synthesis, achieving an optimized Verilog code as 455

shown in Figure 7 (d), where the adder_32bit op- 456

erates at an improved 180ps clock. In Table 2, we 457

present the results of selected optimized designs. 458

Notably, no design from the VerilogEval (Liu et al., 459

2023) dataset features in Table 2, as those designs 460

did not require complex optimization. 461

4.5 Line of Codes 462

We use a scatter plot to illustrate the average num- 463

ber of lines of codes (LOC) for different Verilog 464

files, as shown in Figure 8. The y-axis indicates the 465

percentage LOC and the x-axis denotes the specific 466

circuit categories. It indicates that our generated 467

codes have a wide range of circuit coverage. 468

4.6 Language construction converage 469

We further count the occurrences of different mod- 470

ules such as always blocks, module declarations, 471
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Figure 8: Scatter plot showing the average number of
lines of code per circuit type, illustrating the relative
complexity and coding effort required for each category.

conditional statements (If statements, else if state-472

ments), case statements, and others, these frequen-473

cies are then normalized to present their relative474

percentages in Figure 9. It signifies that our gener-475

ated codes cover a diverse set of design modules.476
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If Statements
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For Loops

Case Statements

Conditional Operator

Declarations

Figure 9: Proportional usage of Verilog constructs, illus-
trating the dataset’s composition and dominant modules.

4.7 t-SNE Visualization477

We use the t-distributed Stochastic Neighbor Em-478

bedding (t-SNE) for dimensionality reduction and479

then K-means clustering to group the similar points480

in the elliptical shapes, as illustrated in Figure 10.481

The clusters, namely Module-Heavy, Conditional-482

Intensive, Always-Block-Rich, Timing-Control483

Dominant, and Complex State Machines, are the484

top five categories based on frequency. Table 3

Table 3: Distribution of Modules and Clusters

Clusters Labels Percentage (%)
Timing-Control Dominant Begin-End Blocks 42.74

Module-Heavy
Module Instantiations 18.92
Modules 7.01
Declarations 4.89

Conditional-Intensive If Statements 13.70
Else If Statements 2.61

Always-Block-Rich Always Blocks 7.99

Complex State Machines
Conditional Operator 0.98
For Loops 0.82
Case Statements 0.33

485
presents the distribution of high-level categories486

identified through K-means clustering applied to487

modules in the generated Verilog codes. The per- 488

centages reflect the normalized frequency of each 489

module, showcasing the predominant modules and 490

their associated high-level clusters within the Ver- 491

ilog code generation process. 492
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Figure 10: Visualization using t-SNE and K-means clus-
tering, demonstrating the data’s segmentation and the
underlying structure.

5 Limitations 493

In this study, we employed GPT-4 for conducting 494

our experiments due to the observed limitations in 495

the accuracy of code generation when using the 496

free available version of LLM, specifically GPT- 497

3.5, which exhibited lower correctness in generated 498

outputs. Consequently, this necessitated the use of 499

GPT-4, leading to increased experimental costs. 500

Moreover, the decision to limit correction attempts 501

to four was informed by empirical evidence indicat- 502

ing that beyond this threshold, the LLM (GPT-4) 503

tends to produce identical Verilog outputs for given 504

prompts with errors most of the time. 505

6 Conclusion 506

In this paper, we introduce a novel framework 507

VeriPPA, designed to assess and enhance LLM ef- 508

ficiency in this specialized area. Our method in- 509

cludes generating initial Verilog code using LLMs, 510

followed by a unique two-stage refinement process. 511

The first stage focuses on improving the functional 512

and syntactic integrity of the code, while the sec- 513

ond stage aims to optimize the code in line with 514

Power-Performance-Area (PPA) constraints, an es- 515

sential aspect of effective hardware design. This 516

dual-phase approach of error correction and PPA 517

optimization has led to notable improvements in 518

the quality of LLM-generated Verilog code. Our 519

framework schieves 62.0% (+16%) for functional 520

accuracy and 81.37% (+8.3%) for syntactic cor- 521

rectness in Verilog code generation, compared to 522

SOTAs. 523
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