LLM-VeriPPA: Power, Performance, and Area-aware Verilog Code
Generation and Refinement with Large Language Models

Anonymous ACL submission

Abstract

As Large Language Models (LLMs) gain in-
creasing prominence across a variety of do-
mains and inspired by their remarkable ability
to generate high-quality content in response to
human language instructions. This study delves
into the application of LLMs within the field of
hardware design, specifically in the generation
and refinement of Verilog code. We introduce
a novel framework VeriPPA designed to assess
and enhance LLM efficiency in this specialized
area. Our method includes generating initial
Verilog code using LLMs, followed by a unique
two-stage refinement process. The first stage
focuses on improving the functional and syntac-
tic integrity of the code, while the second stage
aims to optimize the code in line with Power-
Performance-Area (PPA) constraints, an essen-
tial aspect of effective hardware design. This
dual-phase approach of error correction and
PPA optimization has led to notable improve-
ments in the quality of LLM-generated Ver-
ilog code. Our framework achieves a success
rate of 81.37% for syntactic correctness and
62.0% for functional accuracy in code genera-
tion, surpassing current state-of-the-art (SOTA)
methods, e.g., 73% for syntactic correctness
and 46% for functional accuracy. These results
highlight the potential of LLMs in handling
complex technical areas, and indicate an en-
couraging development in the automation of
hardware design processes. Our source codes
can be found on Github'.

1 Introduction

With Moore’s law driving increased design com-
plexity and chip capacity, the chip design requires
more effort. Machine learning (ML) has success-
fully integrated into chip design for logic synthesis
(Haaswijk et al., 2018; Hosny et al., 2020), place-
ment (Ward et al.), routing (Liang et al., 2020;
Maarouf et al., 2018), testing (Chen et al., 2012;
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Wang et al., 2018; Liu et al., 2019), and verification
(Fine and Ziv, 2003; Hu et al., 2018). The popular-
ity of agile hardware design exploration has been
on the rise due to the growth of large language
models (LLMs). A promising direction is using
natural language instruction to generate hardware
description language (HDL), e.g., Verilog, aim-
ing to greatly lower hardware design barriers and
increase design productivity, especially for users
who do not possess extensive expertise in chip de-
sign. Despite the efforts, Verilog benchmarking
has unique challenges in terms of the wide range
of hardware designs (Liu et al., 2023).

Two orthogonal research trends have both at-
tracted enormous interests (Thakur et al., 2023; Lu
et al., 2023; Liu et al., 2023; Blocklove et al., 2023;
Chang et al., 2023). The first trend is efficiently
finetuning LLMs such as CodeGen (Nijkamp et al.,
2022), with representatives works such as Thakur
et al. (Thakur et al., 2023), Chip-Chat (Blocklove
et al., 2023), Chip-GPT (Chang et al., 2023). How-
ever, due to limited Verilog data sources, these
works mainly target the scale of simple and small
circuits (e.g., <20 designs with a medium of <45
HDL lines) (Lu et al., 2023). The relatively low
scalability and solution quality have propelled the
second trend — enrich Verilog source. Like oil,
data is an immensely valuable resource. One could
not generate high quality HDL codes without hav-
ing LLMs trained on vast amount of such data.
RTLLM (Lu et al., 2023) and VerilogEval (Liu
et al., 2023) introduce specialized benchmarking
framework (i.e., 30 designs from RTLLm and 156
designs from HDLBits (HDLBits, 2023) from Ver-
ilogEval) to assess the generation quality of LLM:s.
However, they either do not offer Power, Perfor-
mance, and Area (PPA) analysis for the generated
codes (e.g., VerilogEval), or the generated Verilog
codes are directly extracted and synthesized using
commercial tools to obtain PPA results, without
considering PPA feedback (e.g., RTLLM). Thus,
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their solution quality is still limited.

In this work, as the first attempt, we integrate
power, performance, and area-constraints into Ver-
ilog generation, and propose VeriPPA, a open-
source framework with multi-round Verilog gener-
ation and error feedback, shown in Figure 1. We
first generate initial Verilog codes using LLMs,
followed by a unique two-stage refinement pro-
cess. The first stage focuses on improving the
syntax and functionality, while the second stage
aims to optimize the code in line with PPA con-
straints, an essential aspect to ensure hardware
design quality. Compared with state-of-the-arts
(SOTAs), e.g., RTLLM (Lu et al., 2023), Verilo-
gEval (Liu et al., 2023), our VeriPPA achieves a
success rate of 62.0% (+16%) for functional accu-
racy and 81.37% (+8.3%) for syntactic correctness
in Verilog code generation. Our key contributions
are summarized here:

* We use the detailed error diagnostics from the
iverilog simulator (Williams, 2023), and pin-
point the exact location of syntactic or func-
tional discrepancies as indicated by testbench
failures as new prompts. We use multi-round
generation to enhance the syntax and function-
ality correctness.

* To further ensure that the generated Verilog
codes are synthesizable, and design quality
(i.e., PPA) is sound, we use Synopsys Design
Compiler to perform logic synthesis (and tech-
nology mapping) on the open source ASAP
7nm Predictive PDK, and check all designs’
warnings/errors, and PPA report. We then in-
tegrate these PPA reports and warnings/errors
with our PPA goal into the next round prompt
for further refinement.

* We incorporate in-context learning (ICL) to
significantly improve the LLM performance
in generating Verilog codes with only a few
demonstration examples, especially when la-
beled data are scarce. By carefully select-
ing diverse text-to-Verilog pairs, ICL demon-
strates superior performance and generaliza-
tion capabilities compared to fine-tuning in
limited example scenarios, thus increasing the
performance of Verilog code generation.

2 Background and Related works

Finetune LLMs. Thakur et al. (Thakur et al., 2023)
advocate for the fine-tuning of open-source LLMs

such as CodeGen (Nijkamp et al., 2022) to specifi-
cally generate Verilog code tailored for target de-
signs. Subsequently, Chip-Chat (Blocklove et al.,
2023) delves into the intricacies of hardware design
using LLMs, highlighting the markedly superior
performance of ChatGPT compared to other open-
source LLMs. Chip-GPT (Chang et al., 2023) also
focuses on the task of register-transfer level (RTL)
design by leveraging the capabilities of ChatGPT.
These studies pave the way for a promising fu-
ture where language models play a pivotal role in
facilitating and enhancing various aspects of ag-
ile hardware design exploration. However, these
works mainly target the scale of simple and small
circuits (e.g., <20 designs with a medium of <45
HDL lines), as pointed out in (Lu et al., 2023).
Enrich Verilog Source. Several recent efforts fo-
cuse on enriching Verilog codes. RTLLM (Lu et al.,
2023) introduces a benchmarking framework con-
sisting of 30 designs that are specifically aimed
at enhancing the scalability of benchmark designs.
Furthermore, it utilizes effective prompt engineer-
ing techniques to improve the generation quality.
VerilogEval (Liu et al., 2023) assesses the perfor-
mance of LLM in the realm of Verilog code gener-
ation for hardware design and verification. It com-
prises 156 problems from the Verilog instructional
website HDLBits. However, VerilogEval (Liu et al.,
2023) does not offer PPA analysis for the generated
codes. In RTLLM, the generated Verilog codes
are directly extracted and synthesized using com-
mercial tools to obtain PPA results, without PPA
constraint-based feedback. Thus they suffer from
limited generation quality.

3 Framework

3.1 Design Overview

In our VeriPPA framework, as illustrated in Fig-
ure 1, we use a text-based description (.tzt file)
of Hardware Design, designated as L, to serve as
input/prompt for the LLMs. L details the module
name, and specifies both input and output signals
with the corresponding bit widths. We use LLM
to parse L and subsequently generate the corre-
sponding Verilog codes, V. V is then subjected to
a rigorous validation sequence, beginning with a
Simulator that checks both syntax and functionality.
In the first loop, if unsuccessful, we will input the
outcomes along with any syntax and functionality
errors, into the LLLM for the generation of subse-
quent attempts. If successful, the code undergoes
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Figure 1: This visualization captures the step-by-step process where an LLM synthesizes Verilog codes from
hardware design prompts, with the ensuing code subjected to thorough validation by a Simulator and scrutinized for

adherence to Power-Performance-Area (PPA) checks.

Power-Performance-Area (PPA) checks to ensure
compliance with constraints. In the second loop,
we check all designs’ warnings/errors during logic
synthesis and using PPA reports. If not satisfied,
both the design and its corresponding PPA report
will be fed back to the VeriRectify (Section 3.3) for
refinement. This validation workflow ensures that
the LLM-generated Verilog codes not only meet
functional specifications but also is optimized for
PPA considerations.

3.2 Code Generation and Testing

VeriPPA incorporates the ICARUS Verilog sim-
ulator (Williams, 2023) to automate the evalua-
tion (testing) of the generated codes. In con-
trast to high-level program languages such as
Python, Verilog requires the use of testbenches,
T ={T1,T>,...,T,}, tosystematically assess the
code’s functionality, encompassing a wide array of
test scenarios. Integrating the ICARUS Verilog sim-
ulator into VeriPPA provides immediate feedback
on the code’s syntactical and operational integrity.
The ICARUS Verilog simulator could pinpoint the
exact location of syntactic errors or functional fails
based on testbench test case failures. This inte-
grated approach contrasts with frameworks such
as RTLLM (Lu et al., 2023), where an external
simulator is used to check the correctness of the
generated Verilog codes.

3.3 VeriRectify

The refinement process, termed "VeriRectify," is
pivotal to ensuring the correctness of the generated
Verilog codes. In Figure 2, the top box displays
the syntax errors and functional fails found in the
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Figure 2: The diagram illustrates the process of syntac-
tic and functional code verification.

output of simulation (e.g., booth_multiplier) from
the ICARUS Verilog simulator. During the recti-
fication phase, we utilize a tailored prompt (Inte-
grating the error details with additional text) for
the LLMs, for error correction. This approach
allows the LLM to specifically address the en-
countered issues, which is fundamentally different
from RTLLM (Lu et al., 2023) (using a generalized
prompt for all designs). Figure 2 shows that the
LLM effectively amends the error in the Verilog
codes for the booth_multiplier design.



Algorithm 1: Multi-Round Verilog Code
Generation using LLM

Require: User prompt P, iteration limit K
Ensure: Correct Verilog code Vyinai or Vi

1: 10

2: conv < [] # initialize a new conversation history list
3: conv < Append user prompt (P) to conversation
4: Vi +
LLM-generated code using prompt Pin historyconv
E; + Error detection function using simulator(D(V;))
while F; # ) AND ¢ < K do

conv +—
Append error information (E;) to conversation

8: Vit1 <+ LLM-generated code using prompt Pj,cw
9: E;+1 < Error detection using simulator (D (Vi41))
10 i+i+4+1
11: end while
12: if E; = () then
13: Vfinal «~V
14: else
15: Viinal < Vi
16: end if
17: return Viipa

qaw

3.3.1 Multi-round Conversation with Error

Feedback

We further integrate a multi-iteration dialogue with
an error feedback mechanism, analogous to human
problem-solving techniques. This method is de-
signed as a recursive function that improves the
output by carefully analyzing and correcting the
errors found in previous iterations. Let V; denote
the Verilog code resultant from the i'" iteration, and
E; represent the associated set of identified errors
at this stage. Initially, Vj is the first generated code
accompanied by its detected errors Fy. Then the
refinement function, R(V;, E;), which takes as in-
put V; and E;, and yields an enhanced code version
Vi+1 as output. Simultaneously, an error detec-
tion function D(V;) is employed to identify errors
within V;, generating F;. The iterative process can
be viewed as follows:

Viger = R(Vi, E;) and Eipqy = D(Vigr) (1)

This process repeats until either no errors are de-
tected or a predefined iteration limit, K is reached,
shown in Algorithm 1, i.e., the iteration halts if,
D(Viy1)=0ori = K. K is empirically adjustable
(say 4) based on observed diminishing returns in
LLM performance improvements across iterations.

3.4 Power Performance & Area (PPA)
Checking

The VeriRectify process ensures the design to pass
both register-transfer level (RTL) syntax check and
cycle-accurate functional simulation. However,

RTL simulation does not guarantee that the design
(Verilog code) is synthesizable. Furthermore, the
quality of the hardware design must be measured
by its power, performance, and area metrics.

Our approach takes a step further by inspecting
PPA of the design V' which passes the VeriRectify
process as the following:

- {V if PPA(V') satisfies,
VeriRectify(V, PPA(V)) otherwise.
2
In this work, our PPA check calls Synopsys De-
sign Compiler to perform logic synthesis (and tech-
nology mapping) on the open-source ASAP 7nm
Predictive PDK (Vashishtha et al., 2017). We check
all designs’ warning/error messages during the
logic synthesis, and the power (uW), area (um?),
and clock (ps) for quality. When the Verilog design
can be synthesized and meets the PPA goal, it re-
sults in a pass. Otherwise, both the design and its
corresponding PPA report will be fed back to the
VeriRectify (Section 3.3) for refinement.

3.5 In-Context Learning

LLMs have demonstrated remarkable in-context
learning (ICL) capabilities (Radford et al., 2019;
Brown et al., 2020). We will further improve the
code quality using ICL. We use tailored prompts
(Questions) with optimization strategies such as
Pipelining, Clock Gating, Parallel Operation, and
Hierarchical Design, associated with Verilog ex-
amples (Answers). The LLM generates the opti-
mized Verilog codes (Answer) based on the tailored
prompts (Questions).

=

q(t|v) :H (trlt<p),

3)

t- are the questions and answers of strategies
(i.e., pielining, gate clocking). ti is the Verilog
code not passing the PPA goal. v indicates demon-
stration example tokens. q is parameterized by the
LLM. The equation describes the in-context learn-
ing of a large language model, where the model
learns to predict the next token in the sequence by
considering the previous demonstration examples.
In our case, we carefully select the text-to-Verilog
pairs to ensure that the examples cover a range of
different Verilog designs, such as addition, multipli-
cation, single-stage design, and pipelined design.
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Figure 3: Correctness of generated Verilog code with respect to correction attempt on RTLLM dataset, using (a)
GPT-3.5; (b) GPT-4-v1; Dash lines: Syntax; Solid lines: Functionality.
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Figure 4: Correctness of generated Verilog code with respect to correction attempt on RTLLM dataset, using (a)
GPT-4; (b) GPT-4-4shot. Dash lines: Syntax; Solid lines: Functionality.

Table 1: PPA results of generated Verilog code

Design Name GPT-4 GPT-4 (4-shot)
Clock | Power | Area || Clock | Power | Area
®) | W) [ m® || ps) | W) | (um?)
adder_8bit 318.5 6.3 38.5 | 333.1 6.1 429
adder_16bit 3422 | 109 104.5 | 135.1 | 41.1 152.8
adder_32bit 500.0 | 14.2 | 211.6 | 500.0 | 14.7 | 213.2
multi_booth 409.0 | 112.1 | 526.0 | 409.0 | 112.1 | 526.0
right_shifter 475 | 1443 | 429 475 | 1443 | 429
width_8to16 74.1 | 2232 | 145.8 | 145.6 | 128.7 | 157.2
edge_detect 61.5 49.0 233 61.5 49.0 23.3
mux 54.7 | 2153 86.1 54.7 | 2153 86.1
pe 500.0 | 552.5 | 2546.5 | 500.0 | 541.0 | 2488.6
asyn_fifo 295.2 | 406.4 | 1279.3 | 228.3 | 526.6 | 1295.4
counter_12 1344 | 33.1 40.6 1245 | 346 36.4
fsm 88.3 32.7 31.5 68.7 49.0 50.2
multi_pipe_4bit | 254.7 | 40.7 131.3 - - -
pulse_detect 103 | 187.5 13.5 32.7 59.1 13.5
calendar - - - 208.6 | 86.6 199.0

4 Evaluation

4.1 Datasets

In assessing our VeriPPA framework, we utilize
two benchmark datasets. Firstly, the RTLLM
dataset (Lu et al., 2023) includes 29 designs.

Secondly, we employ the VerilogEval dataset
(Liu et al., 2023), which comprises two subsets:
VerilogEval-human, featuring 156 designs, and
VerilogEval-machine, consisting of 108 designs.

4.2 Experimental Setup

We demonstrate the effectiveness of our VeriPPA
framework for generating PPA-optimized Verilog
code for the given designs. We adopt, GPT-3.5
(OpenAl, 2023a) and GPT-4 (OpenAl, 2023b) as
our LLM models. We use n=1, temperature temp =
0.7, and a context length of 2048 in our setting. Fur-
ther, we incorporate the ICARUS Verilog simulator
(Williams, 2023) to automate the testing of the gen-
erated code. For PPA check, we perform the logic
synthesis using Synopsys Design Compiler with
compile_ultra command and we use the ASAP
7nm Predictive PDK (Vashishtha et al., 2017). We
implement an in-house simulator to sweep the tim-
ing constraints to find the fastest achievable clock
frequency for all the generated designs. All ex-



periments are conducted on a Linux- based host
with AMD EPYC 7543 32-Core Processor and an
NVIDIA A100-SXM 80 GB.

4.3 Generation Correctness

This study evaluates Verilog code generation accu-
racy using two primary metrics: syntax checking
and functionality verification. Figures 3 and 4,
shows the results of our methodology of improving
Verilog correctness through successive correction
attempts. We generate five different codes for each
design description, attempting up to four correc-
tions within each generation. We set correction
attempts to four because, after certain attempts,
the efficiency of these corrections diminishes, as
the LLMs tend to provide repetitive responses to
identical errors.

In Figure 3, we plot syntax and functionality
correctness percentages against the number of cor-
rection attempts. The graph features a solid line for
syntax correctness and a dotted line for functional-
ity correctness. Functionality is evaluated the same
as RTLLM (Lu et al., 2023), considering a design
functionally correct if at least one generated code
passes the functionality test. We use GPT-3.5 and
observe initial syntax correctness of 44.13% and
functionality correctness of 24.13%, as shown in
Figure 3 (a). After applying correction attempts,
our VeriPPA achieves the correctness of 65.51% for
syntax and 31.03% for functionality. Next, we com-
pare to another baseline RTLLM (Lu et al., 2023)
which uses a self-learning technique on top of GPT
model to improve the correctness, which initially
scores 24.82% in syntax and 27.58% in function-
ality without corrections. The reason for the low
accuracy is that the response to self-planning from
GPT-3.5 generates different planning approaches
but not Verilog codes directly. Please note that
integrating our correction approach into RTLLM
increases the maximum syntax and functionality
correctness to 49.65% and 34.48%, respectively.

We then evaluate two versions of the GPT-4
model. The first, GPT-4-0314 (v1), shows an ini-
tial syntax correctness of 56.55% and functionality
correctness of 37.93%. Our correction methods
could enhance the correctness to 71.03% for syn-
tax and 51.72% for functionality. Our VeriPPA
enhances RTLLM’s syntax correctness to 75.17%
and functionality to 51.72%, from 62.75% and
37.93% respectively, as indicated in Figure 3 (b).
For the base GPT-4 model, we notice an increase
in syntax correctness from 66.2% to 81.37% by the

fourth attempt and in functionality from 37.93%
to 48.27%. With our VeriPPA method, RTLLM’s
syntax correctness further improved from 60% to
77.93%, and functionality from 34.48% to 48.27%,
as shown in Figure 4 (a).

Finally, testing the GPT-4 model with four-shot
learning, we observe a correctness score improve-
ment in syntax from 70.34% to 79.31% and in func-
tionality from 37.93% to 41.37%. Our method in-
creases RTLLM’s syntax correctness from 66.89%
to 81.37%. The functionality correctness notably
can be increased from 44.82% to 62.06% after four
attempts, as demonstrated in Figure 4 (b). This sig-
nificant improvement highlights the effectiveness
of VeriPPA in enhancing the functional accuracy
of the hardware designs.

In evaluating our VeriPPA framework with Ver-
ilogEval datasets, we found notable improvements.
For the VerilogEval-Machine dataset, We show syn-
tax and functionality correctness against the num-
ber of correction attempts in Figure 5, our method
increases syntax accuracy from 92.11% to 99.56%
for GPT-4 case. Functionality correctness also in-
creased from 33.57% to 43.79% using GPT-4, and
further to 45.25% with GPT-4’s four-shot learning.
This shows that the four-shot learning is effective
in improving the functionality correctness of the
design. The VerilogEval-human dataset shows sim-
ilar trends, where syntax correctness increases from
91.28% to 97.17% when we use GPT-4. function-
ality accuracy is improved from 29.48% to 39.74%
through the application of GPT-4 and its four-shot
learning variant as shown in the Figure 6. This
underscores our framework’s effectiveness in en-
hancing both syntax and functionality in Verilog
code generation.
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Figure 5: Correctness of generated Verilog code with
respect to correction attempt on VerilogEval-Machine
dataset. Dash lines: Syntax; Solid lines: Functionality.
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clock less than 300ps
module adder_32bit #(parameter SIZE = 32)(
input [SIZE-1:0] A, // index from 0
input [SIZE-1:0] B, // index from 0
output [SIZE-1:0] S, // index from 0
output C32);

endmodule

Please do not modify the name of module.
Always give the verilog code which
starts with module and end with endmodule.

Non —optimized Optimized Pipelined adder_32bit:
PPA resuls: PPA constraint module adder_32bit#

Example: based prompt

adder_32bit > + » LM ¥ Endmodule

Clock: 500ps Context - PPA

Power:14.72 uW Based leaming Results:Clock: 180 ps Power:587.
Area:213.21 um 31uW Area:1005.67 um

(a) (b) ©) @)

Figure 7: Optimization Flow, (a) Non-optimized PPA
results, (b) PPA constraint-based prompt and ICL, (c)
LLM, (d) Optimized results

4.4 PPA Optimization

We use the Synopsis Design Compiler for synthe-
sizing the designs, culminating in the production of
PPA reports. The PPA results of complex designs
are encapsulated in Table 1. This table, though
comprehensive, does not encompass specific de-
sign constraints. Similar to the ChipGPT approach
(Chang et al., 2023), where an output manager and
enumerative search finalize the PPA from multi-
ple reports, our process also generates multiple
PPA reports for each design. An example is the
pulse_detect design, which consistently met cri-
teria across five evaluations of passing function-
ally and syntactically. Therefore, in post-synthesis,
we collate five PPA reports for the pulse_detect
design, and we select the most optimized one to
include in Table 1.

Table 2: PPA Optimized Verilog Design Results

‘ Design Name H Clock (ps) ‘ Power (W) ‘ Area (;um) ‘

adder_32bit 180.0 587.31 1005.67
multi_booth 1232 42.39 42.92

pe 325.0 1206.0 4863.88

asyn_fifo 114.8 988.92 1344.86

It is crucial that PPA results do not conform to
specialized design requirements, a standard prac-
tice in industrial applications. To address this dis-
parity, we further perform the PPA constraint-based
feedback mechanism, integrated with ICL, as il-
lustrated in Figure 7. This approach represents a
significant step towards aligning LL.M-generated
codes with industry-specific PPA requirements.
Figure 7 demonstrates our process, starting with
the collection of synthesized design outputs that re-
quire optimization. For example, adder_32bit, is
initially synthesized with a 500ps clock as shown in
Figure 7 (a). To enhance the speed of adder_32bit,
we impose a clock constraint, aiming for a clock
speed of less than 300ps, as outlined in the PPA
constraint-based prompt in Figure 7. The frame-
work instructs the LLM to consider various op-
timization strategies, including Pipelining, Clock
Gating, Parallel Operation, and Hierarchical De-
sign. It also encourages the exploration of addi-
tional methods to generate Verilog code that meets
the defined optimization constraints, as illustrated
in the context-based learning segment of Figure 7.

Upon providing the PPA-based constraint
prompt and context to the LLM, we analyze the
resultant Verilog code for syntax and functional
accuracy, making corrections where necessary. If
the code passes both checks, we proceed to its final
synthesis, achieving an optimized Verilog code as
shown in Figure 7 (d), where the adder_32bit op-
erates at an improved 180ps clock. In Table 2, we
present the results of selected optimized designs.
Notably, no design from the VerilogEval (Liu et al.,
2023) dataset features in Table 2, as those designs
did not require complex optimization.

4.5 Line of Codes

We use a scatter plot to illustrate the average num-
ber of lines of codes (LOC) for different Verilog
files, as shown in Figure 8. The y-axis indicates the
percentage LOC and the x-axis denotes the specific
circuit categories. It indicates that our generated
codes have a wide range of circuit coverage.

4.6 Language construction converage

We further count the occurrences of different mod-
ules such as always blocks, module declarations,
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Figure 8: Scatter plot showing the average number of
lines of code per circuit type, illustrating the relative
complexity and coding effort required for each category.

conditional statements (If statements, else if state-
ments), case statements, and others, these frequen-
cies are then normalized to present their relative
percentages in Figure 9. It signifies that our gener-
ated codes cover a diverse set of design modules.

5% = Modules

= Module Instantiations
Always Blocks
Begin-End Blocks

= If Statements

m Else If Statements

= For Loops

m Case Statements

m Conditional Operator

u Declarations

Figure 9: Proportional usage of Verilog constructs, illus-
trating the dataset’s composition and dominant modules.

4.7 t-SNE Visualization

We use the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) for dimensionality reduction and
then K-means clustering to group the similar points
in the elliptical shapes, as illustrated in Figure 10.
The clusters, namely Module-Heavy, Conditional-
Intensive, Always-Block-Rich, Timing-Control
Dominant, and Complex State Machines, are the
top five categories based on frequency. Table 3

Table 3: Distribution of Modules and Clusters

Clusters Labels Percentage (%)
Timing-Control Dominant Begin-End Blocks 42.74
Module Instantiations 18.92
Module-Heavy Modules 7.01
Declarations 4.89
Conditional-Intensive ~ —L Stalements 13.70
Else If Statements 2.61
Always-Block-Rich Always Blocks 7.99
Conditional Operator 0.98
Complex State Machines ~ For Loops 0.82
Case Statements 0.33

presents the distribution of high-level categories
identified through K-means clustering applied to

modules in the generated Verilog codes. The per-
centages reflect the normalized frequency of each
module, showcasing the predominant modules and
their associated high-level clusters within the Ver-
ilog code generation process.

t-SNE i with K-means Clusters and Elliptical Boundaries

- S
. Madule-Hea\/\

-5 Conditional-Intensive
Always-Block-Rich
Timing-Control Dominant
Complex State Machines

Dimension 2

-12 -11 -10 -9 -8 -7
Dimension 1

Figure 10: Visualization using t-SNE and K-means clus-
tering, demonstrating the data’s segmentation and the
underlying structure.

5 Limitations

In this study, we employed GPT-4 for conducting
our experiments due to the observed limitations in
the accuracy of code generation when using the
free available version of LLM, specifically GPT-
3.5, which exhibited lower correctness in generated
outputs. Consequently, this necessitated the use of
GPT-4, leading to increased experimental costs.
Moreover, the decision to limit correction attempts
to four was informed by empirical evidence indicat-
ing that beyond this threshold, the LLM (GPT-4)
tends to produce identical Verilog outputs for given
prompts with errors most of the time.

6 Conclusion

In this paper, we introduce a novel framework
VeriPPA, designed to assess and enhance LLM ef-
ficiency in this specialized area. Our method in-
cludes generating initial Verilog code using LLMs,
followed by a unique two-stage refinement process.
The first stage focuses on improving the functional
and syntactic integrity of the code, while the sec-
ond stage aims to optimize the code in line with
Power-Performance-Area (PPA) constraints, an es-
sential aspect of effective hardware design. This
dual-phase approach of error correction and PPA
optimization has led to notable improvements in
the quality of LLM-generated Verilog code. Our
framework schieves 62.0% (+16%) for functional
accuracy and 81.37% (+8.3%) for syntactic cor-
rectness in Verilog code generation, compared to
SOTAs.
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