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ABSTRACT

Video editing task has gained widespread attention in recent years due to their
practical applications and rapid advancements, driven by the emergence of dif-
fusion techniques and Multi-modal Large Language Models (MLLMs). How-
ever, current automatic evaluation metrics for video editing are mostly unreli-
able and poorly aligned with human judgments. As a result, researchers heavily
rely on human annotation for evaluation, which is not only time-consuming and
labor-intensive but also difficult to ensure consistency and objectivity. To address
this issue, we introduce VEBench, the largest-ever video editing meta-evaluation
benchmark to evaluate the reliability of automatic metrics. It includes 152 video
clips and 962 text prompts, from which 160 instances are sampled to generate
1,280 edited videos using 8 open-source video editing models, accompanied by
human annotations. Especially, the text prompts are first crafted using GPT-4,
followed by manual review and careful categorization based on editing types for
a systematic evaluation. Our human annotations cover 3 criteria: Textual Faith-
fulness, Frame Consistency, and Video Fidelity, ensuring the comprehensiveness
of evaluation. Since human evaluation is costly, we also propose VEScore, em-
ploying MLLMs as evaluators to assess edited videos from the criteria above.
Experiments show that the best-performing video editing model only reaches an
average score of 3.18 (out of a perfect 5), highlighting the challenge of VEBench.
Besides, results from more than 10 MLLMs demonstrate the great potential of
utilizing VEScore for automatic evaluation. Notably, for Textual Faithfulness,
VEScore equipped with LLaVA-OneVision-7B achieves a Pearson Correlation
score of 0.48, significantly outperforming previous methods based on CLIP with
the highest score of 0.21. The dataset and code will be released upon acceptance.

1 INTRODUCTION

Video editing has witnessed significant improvements in recent years, with the burgeoning of diffu-
sion techniques (Ho et al., 2020; Rombach et al., 2022) and Multi-modal Large Language Models
(MLLMs) (OpenAI, 2024; Reid et al., 2024). Notably, most studies in this field focus on text-guided
video editing (Wu et al., 2023a; Yang et al., 2023), which offers a straightforward and intuitive edit-
ing process by simply modifying the video caption.

Despite these advancements, the evaluation of video editing still lacks reliable metrics. Current au-
tomatic evaluation methods fall short in both comprehensiveness and robustness, due to the inherent
complexity of assessing the quality of edits. On the one hand, it’s evident that there is a lack of a
unified standard for these evaluation methods. The varied criteria used across studies, ranging from
textual alignment to temporal consistency, hinder the systematic comparison of different works (Qi
et al., 2023; Wu et al., 2023a). On the other hand, existing CLIP-based metrics (Hessel et al., 2021;
Parmar et al., 2023) often poorly align with human judgments, leading to discrepancies in evalua-
tion results (Wu et al., 2023a; Qi et al., 2023; Geyer et al., 2023; Wang et al., 2023). Consequently,
the evaluation of video editing often necessitates substantial reliance on human annotations, which
are time-consuming, labor-intensive, and prone to inconsistency due to subjective interpretations by
different annotators.
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To tackle these challenges, we propose VEBench in this paper. It serves as a comprehensive meta-
evaluation benchmark to aid in developing more effective automatic evaluation systems for video
editing. As shown in Figure 1, the establishment of VEBench goes through the following three
steps:

(1) Data Collection. We gather video clips from the DAVIS dataset (Pont-Tuset et al., 2017; Caelles
et al., 2018; 2019) and develop an automatic method to efficiently generate a diverse range of text
prompts. Specifically, we notice that the primary focus of existing text prompts is often on entities
within video captions (Wu et al., 2023a; Yang et al., 2023). To leverage this, we utilize GPT-4V
to generate video captions as source prompts, and subsequently create text prompts by employing
an LLM to replace the identified entities within these captions. This process is then followed by
manual reviews to ensure the quality of prompts. Through the above steps, we collect instances
for the subsequent data taxonomy, with each instance containing a video, video caption, and text
prompt.

(2) Data Taxonomy. We then categorize the above instances based on editing type (Content or
Style) and the number of editing targets (Single or Multiple), enabling in-depth analyses of model
capabilities from multiple perspectives. Content Editing primarily focuses on modifying specific
entities within the video, such as animals or objects. Whereas, Style Editing is concerned with
transforming the overall artistic style of the video, such as converting the original video into Van
Gogh’s style or comic style. The number of editing targets is closely related to difficulty levels,
with Multiple-Target editing requiring the models to precisely follow the text prompts, meanwhile
producing natural videos.

(3) Data Annotation. We finally propose three evaluation criteria to comprehensively assess the
edited videos: Textual Faithfulness, Frame Consistency, and Video Fidelity. Utilizing these criteria,
we engage annotators to evaluate edited videos, generated by a wide range of models including 8
open-source video editing models. This approach not only facilitates a systematic analysis of these
models but also enables a meta-evaluation of current and future video editing metrics.

Furthermore, we propose an automatic scoring system, VEScore, leveraging the capabilities of
various MLLMs. This system is inspired by recent studies (Fu et al., 2023; Yujie et al., 2023) that
effectively utilize (M)LLMs to assess tasks challenging for traditional metrics. Given that current
MLLMs have acquired extensive world knowledge from vast training corpora and exhibit improved
alignment with human preferences through visual instruction tuning, VEScore serves as a more
robust and scalable automatic method compared to traditional metrics.

Experiments on various video editing models and automatic evaluation metrics show that, VEBench
poses significant challenges, with the top-performing model achieving an average score of 3.18 out
of 5 across the three criteria. More analyses indicate that existing models struggle with editing types
involving fine details, such as Human Editing and Animal Editing. Besides, they perform signif-
icantly worse on Multiple-Target editing, with an average drop of 2 points from Single-Target to
Multiple-Target categories. Finally, we demonstrate the great potential of employing VEScore for
automatic evaluation after investigating more than 10 MLLMs. Though there is still much room for
improvement, we observe notable improvements in alignments with human preference over tradi-
tional metrics across all criteria.

In summary, we contribute VEBench and VEScore to foster the development of comprehensive
and automatic evaluation for video editing. We suggest future research to explore their methods
on VEBench and further enhance VEScore by employing more robust MLLMs and refining the
instructions through prompt engineering.

2 RELATED WORK

2.1 TEXT-GUIDED VIDEO EDITING

Benchmarks In the development process of text-guided video editing, there has been a notable
lack of a unified framework for evaluation. Previous studies typically select several video clips from
DAVIS (Wu et al., 2023a) or YouTube (Molad et al., 2023) and manually design text prompts for
further inference and evaluation. TGVE (Wu et al., 2023b) summarizes previous evaluation methods
and introduces a new benchmark. However, it is limited by the data scale (comprising 76 videos and
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304 text prompts) and coverage of editing types (involving only 4 types). In comparison, VEBench
offers richer and more diverse instances for evaluation. Besides, it serves as a meta-evaluation
benchmark for developing automatic scoring systems.

Evaluation Metrics There are three key automatic evaluation metrics commonly employed in
recent years for text-guided video editing task:

• Textual Alignment (Wu et al., 2023a). This metric assesses the degree of alignment between the
text prompts and the edited video frames by computing the average similarity.

• Frame Accuracy (Parmar et al., 2023). This metric measures the percentage of frames in edited
videos that have a higher CLIP similarity to the text prompt than to the source prompt, indicating
the effectiveness of per-frame edits.

• Temporal Consistency (Qi et al., 2023). It evaluates the smoothness of edits across consecutive
frames by computing the similarity between consecutive frames.

However, due to the poor reliability of these automatic metrics, previous studies have to rely on User
Preference (Wu et al., 2023a; Geyer et al., 2023; Wang et al., 2023; Ceylan et al., 2023; Li et al.,
2024b; Kara et al., 2024) for more accurate evaluation. Nonetheless, they often suffer from higher
costs and inconsistency across different studies due to the subjectivity of annotators.

Methods Most approaches for text-guided video editing are built upon diffusion models, which
demonstrate remarkable success in image synthesis (Ho et al., 2020; Rombach et al., 2022; Ramesh
et al., 2022) and image editing (Zhang et al., 2023b; Tumanyan et al., 2023). Dreamix (Molad et al.,
2023) is the first to utilize video diffusion models on this task through fine-tuning. However, consid-
ering computational constraints and overall video quality, later studies (Wu et al., 2023a; Qi et al.,
2023) have shifted towards leveraging image diffusion models for video editing. Besides, recent
research (Ceylan et al., 2023; Li et al., 2024b; Kara et al., 2024) further focuses on maintaining the
temporal consistency between adjacent frames, effectively ensuring the smoothness and coherence
of produced videos.

2.2 META EVALUATION

Meta evaluation aims to assess the reliability of automatic metrics by examining how closely they
align with human judgments (Fabbri et al., 2021; Fu et al., 2023). There are three primary corre-
lation measures used in meta-evaluation: Pearson Correlation (r) (Freedman et al., 2007), which
determines the linear association between two variables; Spearman’s Rho (ρ) (Zar, 2005), which
evaluates the monotonic connection between two variables; and Kendall’s Tau (τ ) (Kendall, 1938),
which assesses the ordinal relationship between two variables. Previous studies have applied meta
evaluation to tasks such as text summarization (Wang et al., 2020; Fabbri et al., 2021; Gopalakr-
ishnan et al., 2023), machine translation (Freitag et al., 2021), and image-text matching task (Yujie
et al., 2023), contributing to the development of more comprehensive evaluation metrics that better
correlate with human judgments.

2.3 (M)LLMS AS EVALUATORS

Recently, (M)LLMs have greatly advanced the development of various research fields (OpenAI,
2023; Team et al., 2023). One popular direction is utilizing (M)LLMs as automatic scoring sys-
tems (Fu et al., 2023; Liu et al., 2023; Chan et al., 2023; Zheng et al., 2023; Yujie et al., 2023).
By prompting them to follow evaluation criteria, (M)LLMs can provide judgments that align more
closely with human preferences than traditional metrics. Thus, this approach proves particularly
valuable for complex tasks that heavily rely on human evaluations, such as open-ended generation
(Zheng et al., 2023) and text-to-image generation (Yujie et al., 2023). For text-guided video editing,
using MLLMs for automatic evaluation remains unexplored, due to the absence of a unified evalua-
tion benchmark and the inherently challenging nature of the task. To the best of our knowledge, our
work is the first attempt to explore this approach for text-guided video editing evaluation and also
provide the best configuration after investigating more than 10 MLLMs.
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Text Prompt

Multi-modal Large Language Model

Large Language Model

VEBench

Data Taxonomy

Textual Faithfulness

Frame Consistency

Video Fidelity
Human Evaluator

&
Multi-modal Large Language Model

Data Annotation

A brown bear walking on rocks in a zoo.
Source Prompt

A polar bear walking on the Arctic ice.
Text Prompt

Input Video Editing Model

Animal

Object

Background

Human

Overall Style

Color Transfer

Content 
Editing

Style 
Editing

Single-Target

Multiple-Target

Large Language Model

Template

Figure 1: The construction process of VEBench involves three main steps: Data Collection, where
high-quality videos and text prompts are gathered; Data Taxonomy, where instances are categorized
by editing types and target numbers; and Data Annotation, where human evaluations are conducted
based on three criteria: Textual Faithfulness, Frame Consistency, and Video Fidelity.

3 VEBENCH

In this section, we describe the three steps of constructing VEBench: data collection (Section 3.1),
data taxonomy (Section 3.2), and data annotation (Section 3.3).

3.1 DATA COLLECTION

The data collection process of VEBench consists of Video Collection and Text Prompt Generation
substeps. All data produced in each substep is manually reviewed to ensure the quality, detailed in
Appendix A.

Video Collection Following previous research (Wu et al., 2023a), we gather video clips from the
publicly available DAVIS datasets (Pont-Tuset et al., 2017; Caelles et al., 2018; 2019), which are
specifically tailored for video object segmentation tasks. By collating data from DAVIS 2017 to
DAVIS 2019 and removing duplicates, we obtain 210 video clips in total. Subsequently, we conduct
a careful manual review to filter out videos featuring indistinct objects or of substandard quality and
finally obtain 152 high-quality videos suitable for editing. Given the current video editing models
do not support excessively long videos or high-resolution inputs, we resize all videos to a resolution
of 480× 480 and uniformly sample 25 frames from the original videos.

Text Prompt Generation As illustrated in the left of Figure 1, we develop an entity-centric au-
tomatic generation approach to produce diverse text prompts. This draws inspiration from prior
research on object, background, and animal editing (Wu et al., 2023a; Huang et al., 2024), where
most edited targets typically manifest as entities within the corresponding video captions. To be spe-
cific, we first adopt GPT-4V to obtain captions for each video, which also serve as source prompts in
text-guided video editing task. To ensure quality, a manual review is conducted to eliminate any in-
accuracies in the generated captions. Next, we utilize GPT-4 to extract entities from these captions.
Then, text prompts are crafted by instructing GPT-4 based on the extracted entities, as shown in
Appendix B.1. Especially, the given instruction encourages GPT-4 to maintain the original semantic
meaning of captions, thereby enhancing the suitability for video editing task.
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3.2 DATA TAXONOMY

One of the challenges in video editing stems from the diversity of editing types and their combi-
nations, which significantly escalate the difficulty. As current video editing models underperform
on complex video editing tasks, analyzing their performance across various editing types can pro-
vide valuable insights for improvement. To this end, we perform data taxonomy on the collected
instances based on their editing types and number of targets as shown in the upper-right of Figure 1.

Table 1: Examples of different editing types with original video captions and corresponding text
prompts. The first six rows represent Single-Target Editing categories, including Human Editing,
Animal Editing, Object Editing, Background Editing, Overall Style Editing, and Color Transfer.
The final row illustrates an example of Multiple-Target Editing. The highlighted text indicates the
editing targets.

Category Video Caption Text Prompt

Human Editing A man in shorts is fixing a bike in the
room

A robot in shorts is fixing a bike in the
room

Animal Editing A dog is running on a grassy path in a
yard with a fence

A cat is running on a grassy path in a
yard with a fence

Object Editing A suv driving down a winding road with
mountains in the background

A jeep driving down a winding road
with mountains in the background

Background Editing A suv driving down a winding road with
mountains in the background

A suv driving down a winding road with
a volcano in the background

Overall Style Editing A man in shorts is fixing a bike in the
garage

A man in shorts is fixing a bike in the
garage, in oil painting style

Color Transfer A man in shorts is fixing a bike in the
garage

A man in shorts is fixing a bike in the
room, in grayscale

Multiple-Target Editing A suv driving down a winding road with
mountains in the background

A jeep driving down a winding road
with a volcano in the background, in
Van Gogh style

Editing Type Inspired by earlier studies (Wu et al., 2023a; Huang et al., 2024), we categorize
the instances into Content Editing and Style Editing. Content Editing concentrates on local mod-
ifications to specific objects within videos, encompassing Human Editing, Animal Editing, Object
Editing, and Background Editing. In contrast, Style Editing emphasizes global changes to all content
involved in videos, including Overall Style Editing and Color Transfer. Examples of these editing
types are shown in Table 1.

Target Number Most previous studies (Wu et al., 2023b; Qi et al., 2023; Kara et al., 2024) mainly
focus on Single-Target editing, ignoring the practical requirement of editing multiple targets in a
video. To tackle this limitation, we further sort the data into Single and Multiple categories. For
instance, the case illustrated in Figure 1 belongs to the Multiple-Target category, because it involves
two specific editing targets, “brown bear” and “zoo”, which are asked to be edited as “polar bear”
and “Arctic ice”, respectively. Intuitively, editing multiple targets is notably more challenging for
current models, which may require better mechanisms and training strategies to reach promising
performance. By providing these evaluation subsets, we can foster the advancement of video edit-
ing models in tackling more intricate editing tasks, finally moving towards practical video editing
applications.

Through the above substeps, we ultimately collect 962 text prompts, which are further categorized
based on Content Editing and Style Editing, as well as Single-Target and Multiple-Target edits. The
detailed data statistics can be found in Appendix B.2.

3.3 DATA ANNOTATION

The further goal of VEBench is to facilitate the meta-evaluation for video editing scoring systems.
To this end, we sample 160 instances, which are then inferred by 8 different video editing models,
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resulting in a total of 1,280 edited videos. Then, we hire 4 professional annotators to provide human
evaluation for these generated videos, as illustrated in the lower-right of Figure 1. Each annotator
is assigned 30 instances per day to avoid fatigue and we also conduct regular spot checks to ensure
annotation quality. We consider the following criteria to comprehensively evaluate each video:

• Textual Faithfulness. It evaluates how well the edited video aligns with the text prompt. A higher
score indicates that the edited video accurately reflects all the details specified in the text prompt.

• Frame Consistency. This metric assesses the continuity between frames in the edited video. A
higher score indicates seamless transitions with no noticeable jumps between frames.

• Video Fidelity. This measures the quality and visual consistency of the edited video, considering
factors such as color, resolution, dynamic range, and motion coherence. A higher score indicates
excellent video quality, with no detectable issues in color, sharpness, or continuity, whereas a
lower score suggests problems such as blurriness, color distortion, and poor continuity.

The annotated scores for all criteria range from 1 to 5, where 5 denotes a state of flawlessness. De-
tailed annotation guidelines regarding these criteria are provided in Appendix C.1. As implemented
in FETV (Liu et al., 2024b), we select Kendall’s Tau (τ ), Spearman’s Rho (ρ), and Krippendorff’s
Alpha (α) (Krippendorff, 2018) for the evaluation of inter-annotator agreements. From Table 2 we
observe that the inter-annotator agreements across all metrics and three criteria exceed 0.6, indicat-
ing minimal variability among annotators and reinforcing the reliability of the human annotation
process.

The detailed human annotation interface, including the display of source prompts, text prompts, and
the original and edited videos, can be found in the Appendix C.2.

Table 2: Inter-annotator agreement scores for our proposed three evaluation criteria: Textual Faith-
fulness, Frame Consistency, and Video Fidelity. Kendall’s τ and Spearman’s ρ are averaged across
all pairwise correlations between annotators. The ± symbol represents standard deviations.

Textual Faithfulness Frame Consistency Video Fidelity
Kendall’s τ 0.64 ± 0.07 0.65 ± 0.02 0.61 ± 0.03
Spearman’s ρ 0.71 ± 0.08 0.73 ± 0.02 0.69 ± 0.03
Krippendorff’s α 0.696 0.669 0.663

4 MLLMS AS EVALUATORS FOR TEXT-GUIDED VIDEO EDITING

Due to the intricate nature of this task, previous automatic evaluation metrics are mostly built upon
CLIP models (Radford et al., 2021). However, CLIP models are recognized for their limited dis-
cernment capabilities, particularly in complex scenarios (Tong et al., 2024). Besides, these intuitive
approaches often lack comprehensiveness and have not undergone strict verification, leading to the
poor reliability of these metrics.

Inspired by previous research on the effectiveness of using (M)LLMs to evaluate various tasks (e.g.,
open-ended questions) (Fu et al., 2023; Chan et al., 2023; Yujie et al., 2023), we introduce MLLMs
as evaluators to address this challenge.

As illustrated in Figure 2, for each instance, an MLLM processes the instruction, source prompt, text
prompt, edited video, and the detailed guideline of evaluation criteria to generate the corresponding
scores. Notably, not all MLLMs support video inputs. For the models that do, we directly input
the videos. For the remaining models, we uniformly sample frames from the videos and use them
as multiple image inputs. Then, using three separate queries, we can derive three scores for each
criterion based on the responses of MLLM. By leveraging its capabilities in visual perception and
instruction-following, we derive detailed scores for each criterion, akin to those provided by human
annotators.
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Edited video

Multi-modal Large Language Model

Criteria: 

Input

A brown bear walking on rocks in a zoo.

Video Fidelity: 
This evaluates the realism of the edited video, including factors such as 
color accuracy, overall visual quality, and viewer experience.

Source prompt:       Text prompt: 

A polar bear walking on the Arctic ice.

Frame Consistency: 
This assesses the continuity between adjacent frames in the edited video.

Textual Faithfulness: 
This measures the degree to which the edited video aligns with the text 
description provided for editing.
• 1: The edited video completely misaligns with the text description.
• 2: The edited video mostly misaligns with the text description.
• 3: The edited video generally aligns with the text description, but many 

details are missing.
• 4: The edited video aligns with the text description in most aspects, with 

only a few details not reflected.
• 5: The edited video fully aligns with the text description, capturing all 

details accurately.

The score is {generated_score}. Reason: {explanation of why this score was given}.

You are given a video that has been edited by a video editing model, alongside its 
corresponding text prompt and the description of the original video. Your task is to 
watch the video and evaluate it on a scale from 1 to 5 according to the scoring criteria 
provided below. After generating the score, provide a brief explanation of your 
reasoning. 

Answer in the format:

Response
Video Fidelity: 
The score is 4. 
Reason: The video is close to realistic, 
with good overall quality and only minor 
imperfections in rare instances. The color 
of the polar bear and the Arctic ice are 
accurately depicted, contributing to a 
visually appealing Arctic environment. 
However, there are minor imperfections, 
such as slight pixelation in some frames, 
which affect the viewer experience.

Frame Consistency: 
The score is 4. 
Reason: The video editing model has 
done a good job in maintaining the 
continuity between frames, resulting in a 
smooth viewing experience. The frames 
flow smoothly and continuously with 
only minimal jumps in a very few scenes. 
The polar bear's movement and the icy 
environment are consistently represented 
throughout the video. 

Textual Faithfulness: 
The score is 5. 
Reason: The edited video fully aligns 
with the text prompt, capturing all details 
accurately. The video depicts a polar bear 
walking on the Arctic ice, which is 
exactly what the edited text description 
stated. The bear's movements and the icy 
environment are clearly presented, 
demonstrating a high degree of textual 
faithfulness. 

Figure 2: Automatic scoring process utilizing MLLMs based on three evaluation criteria: Textual
Faithfulness, Frame Consistency, and Video Fidelity. The MLLM evaluates the instruction, source
prompt, text prompt, and edited video according to detailed guidelines, generating corresponding
scores.

Table 3: Overall performance of Video Editing Models on VEBench and its Single / Multiple-Target
subsets. TF, FC, and VF denote Textual Faithfulness, Frame Consistency, and Video Fidelity, re-
spectively. Avg is the average of these 3 scores.

Model
VEBench-ALL VEBench-Single VEBench-Multiple

TF FC VF Avg TF FC VF Avg TF FC VF Avg

VidToMe 3.35 3.10 2.93 3.13 3.99 3.61 3.41 3.67 2.39 2.34 2.22 2.32
TokenFlow 3.31 3.15 3.08 3.18 4.02 3.67 3.60 3.76 2.24 2.37 2.29 2.30
Text2Video-Zero 2.73 1.67 1.59 2.00 2.97 1.89 1.76 2.20 2.37 1.34 1.34 1.68
FateZero 3.08 3.14 3.14 3.12 3.99 3.95 3.97 3.97 1.70 1.93 1.91 1.85
Tune-A-Video 3.21 2.54 2.29 2.68 3.69 2.92 2.60 3.07 2.49 1.98 1.82 2.09
RAVE 3.38 3.11 2.96 3.15 3.94 3.49 3.32 3.58 2.54 2.54 2.43 2.51
vid2vid-zero 3.07 2.10 2.09 2.42 3.51 2.32 2.33 2.72 2.41 1.77 1.73 1.97
Pix2Video 3.39 2.75 2.62 2.92 3.81 3.03 2.88 3.24 2.75 2.33 2.23 2.44

5 EXPERIMENTS

5.1 MODEL EVALUATION

As mentioned in Section 3.3, our human annotations cover 8 mainstream open-source video editing
models, including VidToMe (Li et al., 2024b), TokenFlow (Geyer et al., 2023), Text2Video-Zero
(Khachatryan et al., 2023), FateZero (Qi et al., 2023), Tune-A-Video (Wu et al., 2023a), RAVE
(Kara et al., 2024), vid2vid-zero (Wang et al., 2023), and Pix2Video (Ceylan et al., 2023). We first
investigate the performance of these models (Table 3) and then further conduct detailed analyses on
different editing categories (Figure 4) of VEBench. Observations are as follows:

TokenFlow Performs Best Among the Video Editing Models, yet Still Has Much Room to Improve
As illustrated in Table 3, TokenFlow achieves the highest overall average score of 3.18, succeeded by
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RAVE and VidToMe, with respective scores of 3.15 and 3.13. Notably, all these models emphasize
inter-frame feature correspondences, which aids in achieving higher frame consistency and video
fidelity compared to other models. Nonetheless, they still fall short of perfection, considering the
maximum score of 5. This highlights the challenges presented by our VEBench and underscores the
necessity for developing more robust video editing models.

Creating Natural and High-fidelity Videos Poses a Significant Challenge for Video Editing Mod-
els A successful edit must not only accurately modify the target as specified in the text prompt but
also ensure the smoothness and fidelity of the edited video. We observe that nearly all models have
considerably lower Frame Consistency and Video Fidelity scores compared to Textual Faithfulness
ones. Besides, the same conclusion can be drawn from Figure 3, which shows that for Textual Faith-
fulness, the most common human annotation score is 4. In contrast, regarding Frame Consistency
and Video Fidelity, the score distribution peaks at 2. Some studies (Ceylan et al., 2023; Li et al.,
2024b; Kara et al., 2024) have effectively addressed this issue by integrating inter-frame feature
correspondences. Popular cutting-edge video generation techniques may also help to improve these
parts.
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Figure 3: Distribution of human annotation scores on VEBench across three criteria: Textual Faith-
fulness, Frame Consistency, and Video Fidelity. Different colors are used to represent scores from 1
to 5, with the same color scheme applied consistently across all three charts for each score.

Conducting Multiple-Target Editing Presents a Substantial Challenge for Existing Video Editing
Models As depicted on the right side of Table 3, we further investigate the performance of these
models on VEBench subsets involving either single or multiple editing targets. We observe a signif-
icant decline in model performance when transitioning from VEBench-Single to VEBench-Multiple
across all models. Particularly, FateZero achieves the best performance on VEBench-Single but ex-
periences a 2-point decrease on VEBench-Multiple. This observation highlights that current models
still struggle to effectively follow complex text prompts. Further efforts are needed to address this
problem.

Current Video Editing Models Struggle with Precise Editing As illustrated in Figure 4, these
models show relatively stronger performance in general style editing tasks, such as Color Transfer,
but perform worse when it comes to fine object editing, particularly for Human and Animal. This
is primarily due to the fact that these categories require more detailed and substantial modifications,
exemplified by editing like “camel to elephant” or “man to woman”. This demonstrates that current
models still face difficulties in achieving precise and careful editing.

5.2 METRIC EVALUATION

Table 4 shows the meta-evaluation results on traditional metrics and our VEScore using various
MLLMs on the 1,280 human-annotated instances. The traditional metrics we evaluate include
commonly used CLIP-Textual-Alignment (Wu et al., 2023a), CLIP-Frame-Acc (Qi et al., 2023),
CLIP-Temporal-Consistency (Wu et al., 2023a), and LAION-Aesthetic-Predictor (Schuhmann et al.,
2022), each of which focuses on only one of three proposed criteria. Although prior work did not em-
ploy an automatic scoring metric for video fidelity, we use the LAION-Aesthetic-Predictor as a tra-
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Figure 4: Comparison of different models across six subcategories, evaluated by our proposed three
criteria: Textual Faithfulness, Frame Consistency, and Video Fidelity.

Table 4: Overall performance of traditional metrics and MLLMs on our benchmark. Empty symbol
(-) indicates that the model is unable to correctly follow the evaluation criteria or not support the
evaluation of certain criteria. The metrics r(↑), ρ(↑), and τ (↑) correspond to Pearson Correlation,
Spearman Correlation, and Kendall’s Tau, respectively.

Evaluator Parameters
Textual Faithfulness Frame Consistency Video Fidelity

r(↑) ρ(↑) τ (↑) r(↑) ρ(↑) τ (↑) r(↑) ρ(↑) τ (↑)

Traditional score system
CLIP-Textual-Alignment 428M 0.21 0.15 0.11 - - - - - -
CLIP-Frame-Acc 428M 0.07 -0.01 0.00 - - - - - -
CLIP-Temporal-Consistency 428M - - - 0.26 0.27 0.19 - - -
LAION-Aesthetic-Predictor 428M - - - - - - 0.05 0.04 0.03
Open-source MLLMs
TimeChat 7B 0.19 0.15 0.12 0.12 0.11 0.08 0.14 0.14 0.11
Video-LLaMA 7B - - - - - - - - -
Video-LLaMA-2 7B 0.42 0.45 0.36 0.22 0.21 0.16 0.11 0.11 0.09
Kangaroo 7B - - - - - - - - -
Qwen-VL-Chat 7B 0.33 0.32 0.26 0.15 0.17 0.14 0.10 0.14 0.12
LLaVA-NeXT-Video 7B 0.17 0.19 0.15 -0.01 -0.02 -0.02 0.00 -0.02 -0.02
LLaVA-NeXT-Video 32B 0.47 0.48 0.39 0.27 0.28 0.23 0.27 0.28 0.22
LLaVA-OneVision 7B 0.49 0.48 0.39 0.17 0.18 0.14 0.07 0.07 0.06
LLaVA-OneVision 70B 0.46 0.44 0.35 0.19 0.20 0.16 0.22 0.23 0.19
VILA 34B 0.39 0.39 0.31 0.22 0.23 0.18 0.16 0.16 0.13
Closed-source MLLMs
GPT-4o-0806 - 0.36 0.33 0.26 0.35 0.35 0.27 0.24 0.27 0.22
GPT-4o - 0.31 0.28 0.23 0.26 0.28 0.22 0.18 0.19 0.15
Gemini-pro - 0.37 0.34 0.27 0.25 0.27 0.21 0.26 0.29 0.23

ditional metric. This predictor incorporates an MLP based on CLIP and generates a score reflecting
the overall aesthetic expressiveness of an image. Following the calculation method of CLIP-Textual-
Alignment, we take the average score of all edited video frames as the final score. To be specific, we
employ clip-vit-large-patch14 (Radford et al., 2021) for computing traditional CLIP-based metrics.
Regarding our method, we investigate a variety of open-source and closed-source MLLMs, includ-
ing TimeChat (Ren et al., 2024), Video-LLaMA (Zhang et al., 2023a), Video-LLaMA-2 (Cheng
et al., 2024), Kangaroo (Liu et al., 2024a), Qwen-VL-Chat (Bai et al., 2023), LLaVA-NeXT-Video
(Zhang et al., 2024), LLaVA-OneVision (Li et al., 2024a), VILA (Lin et al., 2023), GPT-4o (OpenAI,
2024), and Gemini-pro (Reid et al., 2024).

Traditional Metrics Struggle to Align with Human Judgments Traditional metrics in video edit-
ing tasks demonstrate a marked weakness in correlating with human judgments. The CLIP-Frame-
Acc and LAION-Aesthetic-Predictor yield scores around 0 for their respective criteria, which im-
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plies a near absence of correlation with human annotations. Although CLIP-Textual-Faithfulness
and CLIP-Frame-Consistency show some positive correlations, their correlation scores remain be-
low 0.3, indicating their limited reliability. These results systematically echo the previous findings,
underscoring the urgent need for building robust scoring systems.

VEScore Shows Great Potential for Reliable Evaluation VEScore consistently gives better cor-
relation scores compared to traditional metrics when adopting some recent MLLMs, which have
undergone better alignment tuning. Specifically, VEScore especially helps in evaluating Textual
Faithfulness, even when employing 7B open-source LLaVA-OneVision, achieving an impressive r
of 0.49. Besides, LLaVA-OneVision-7B even outperforms closed-source MLLMs (0.49 vs. 0.37 of
r). This suggests that factors such as instruction tuning data and task-specific optimizations may
have a greater influence on performance than the model scale. For Frame Consistency and Video
Fidelity, its performance may not be as robust, with scores ranging from 0.2 ∼ 0.4 when using
large-scale models (e.g., LLaVA-NeXT-Video-32B and closed-sourced MLLMs). Nevertheless, it
still significantly outperforms previous metrics. We believe it has great potential for further im-
provements by searching for more effective instructions and developing stronger MLLMs.

Statistics of Failure Cases for VEScore Using Different MLLMs As shown in Appendix B.3,
both Video-LLaMA and Kangaroo fail to generate responses in the required format, leading to null
outputs. Specifically, Video-LLaMA only produces video descriptions, while Kangaroo is restricted
to selecting predefined options like A, B, or C. This highlights the importance of the generalization
capabilities of MLLMs. Most open-source MLLMs can follow the required format and generate
appropriate outputs. In contrast, closed-source MLLMs tend to refuse to answer more frequently.
Despite receiving video inputs or extracted frames, closed-source MLLMs frequently struggle, often
responding with statements like, “I’m sorry, I cannot process any information from the real world,”
or “I’m unable to watch videos, but I can assist with text-based tasks.”. This underscores the chal-
lenge of balancing the multi-modal instruction-following abilities, the safety of MLLMs, and the
foundational capabilities of LLMs.

6 CONCLUSION

In this paper, we introduce VEBench, a comprehensive meta-evaluation benchmark designed to
assess the reliability of automatic evaluation metrics in text-guided video editing. VEBench com-
prises 152 high-quality video clips, 962 meticulously crafted text prompts, and human annotations
of 1,280 edited videos generated by 8 state-of-the-art open-source video editing models. By catego-
rizing the data based on editing types and the number of targets, we provide a structured framework
for in-depth analysis of model capabilities.

Our experiments reveal that existing video editing models still face significant challenges, partic-
ularly in ensuring frame consistency and video fidelity, as well as handling complex editing tasks
involving multiple targets. Notably, we demonstrate that current automatic evaluation metrics, pri-
marily based on CLIP models, exhibit poor alignment with human judgments.

To address this gap, we propose VEScore, leveraging MLLMs as automatic evaluators. Our results
from more than 10 prominent MLLMs show that VEScore aligns with human evaluations signif-
icantly better than traditional metrics across all criteria: Textual Faithfulness, Frame Consistency,
and Video Fidelity. This finding underscores the potential of MLLMs to automate the evaluation
process effectively, reducing the reliance on time-consuming and inconsistent human annotations.

We believe that VEBench will serve as a valuable resource for the research community, facilitating
the development of more robust video editing models and more reliable automatic evaluation met-
rics. Future work could explore enhancing the evaluation of MLLMs capabilities further, as well as
extending VEBench to include more diverse video content and editing tasks. Additionally, investi-
gating methods to improve frame consistency and video fidelity in video editing models remains a
promising direction for advancing the field.
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A MORE DETAILS OF HUMAN QUALITY REVIEW

Throughout the data construction process, we implement human quality reviews at each stage of
Data Collection to ensure the reliability and accuracy of the data.

First, we apply a quality filter to the videos obtained from the Video Collection stage. A checklist is
used for manual inspection, and any videos that fail to meet the criteria are discarded:

Video Quality Guidelines:

1. Does the video feature a clear and identifiable main subject?
2. Is the overall video quality acceptable (i.e., not too poor)?
3. Are camera movements in the video smooth, without being overly abrupt or disorienting?

Next, we assess the captions generated by GPT-4V for quality. As in the previous step, we use a
checklist to verify and, if necessary, correct the captions based on the following standards:

Generated Video Caption Guidelines:

1. Does the caption accurately describe the core elements of the video?
2. Does the caption provide a comprehensive description of the video’s elements, including

background and animals?
3. Is the caption grammatically correct?
4. Is the caption overall fluent and coherent?

After refining the captions manually to ensure their quality, we proceed to generate text prompts
based on the extracted entities. A final checklist is used to verify the quality of the generated text
prompts:

Generated Text Prompt Guidelines:

1. Does the generated text prompt accurately modify or replace the target entity’s vocabulary?
2. Is the replacement vocabulary suitable for video editing tasks?
3. Is the generated text prompt grammatically correct?
4. Is the text prompt fluent and coherent overall?

B MORE DETAILS OF VEBENCH

B.1 TEMPLATE FOR TEXT PROMPTS

As illustrated in Figure 5, our template for generating text prompts is designed to streamline the
process by providing a structured framework. The template consists of three main components: the
instructions, the caption, and the entities extracted from the caption.

B.2 DATA STATISTICS

We provide a detailed summary of the VEBench statistics. As shown in Table 5, VEBench includes
152 video clips with consistent resolution and length, along with 962 corresponding text prompts.
These prompts span a variety of editing tasks, ranging from Single-Target editing to more complex
Multiple-Target editing, ensuring a diverse set of scenarios for video editing evaluation. For further
inference and meta-evaluation, a subset of 160 text prompts is sampled to create a focused test set.

To further illustrate the diversity of VEBench, we also provide word clouds for the Content Editing
and Style Editing categories. As illustrated in Figure 6, VEBench encompasses two main categories:
Content Editing and Style Editing. There is a noticeable distinction in the data distribution between
these two categories. As shown in Figure 6a, content editing primarily involves elements such
as robots, cats, and beaches, while Style Editing, as shown in Figure 6b, includes elements like
watercolor, Van Gogh, and painting. This demonstrates the intuitive understanding of the prompt
distribution and highlights the diversity of our VEBench.
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I will provide you with an original caption text and entity, please modify the original caption according to 
the entity, the caption after modification should only replace the entities in the entity list, and the modified 
entity words should be as close as possible to the original entity.

Instructions

A horse is running in the field.
Caption

[horse]
Entities in Caption

A donkey is running in the field.
Generated Text Prompt

Figure 5: The template used for generating text prompts, consisting of instructions, the original
caption, and extracted entities.

(a) Word cloud of Content Editing category, in-
cluding Human Editing, Animal Editing, Object
Editing, and Background Editing.

(b) Word cloud of Style Editing category, includ-
ing Overall Style Editing and Color Transfer.

Figure 6: Visualization of key terms from the Content Editing and Style Editing categories in
VEBench, highlighting the distribution and emphasis of various editing types.
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Table 5: Data statistics of our VEBench.

Statistic Number

Video Statistics
Total video clips 152
Video resolution 480× 480
Video Length 25 frames

Text Prompts Statistics
Total text prompts 962

- Single-Target Editing 658
- Animal Editing 43
- Human Editing 91
- Object Editing 82
- Background Editing 138
- Overall Style Editing 152
- Color Transfer 152

- Multiple-Target Editing 304

Text Prompts Statistics for Meta Evaluation
Total text prompts 160

- Single-Target Editing 96
- Animal Editing 12
- Human Editing 12
- Object Editing 12
- Background Editing 12
- Overall Style Editing 24
- Color Transfer 24

- Multiple-Target Editing 64

Maximum editing target 5
Minimum editing target 1
Average editing target 1.8
Maximum caption length 29
Minimum caption length 6
Average caption length 14.4
Maximum text prompt length 29
Minimum text prompt length 7
Average text prompt length 16.5

B.3 ANALYSIS OF UNMATCHED RESPONSES IN MLLMS

We further analyze the number of unmatched responses across different MLLMs for each of the
three evaluation criteria: Textual Faithfulness, Frame Consistency, and Video Fidelity.

As shown in Table 6, we observe that both Video-LLaMA and Kangaroo struggle to produce re-
sponses in the required format, resulting in null outputs. In contrast, other open-source MLLMs
demonstrate superior instruction-following abilities, as indicated by their minimal unmatched re-
sponses. However, some closed-source models, such as GPT-4o and Gemini-pro, often fail to pro-
vide adequate responses, frequently refusing to process video inputs or extracted frames. These
models typically respond with statements like “I’m unable to process real-world information” or “I
cannot analyze videos but can assist with text-based tasks.”.

C MORE DETAILS OF HUMAN ANNOTATION SETUPS

C.1 EVALUATION GUIDELINES

As shown in Tables 7, 8, and 9, we provide detailed guidelines for evaluators to ensure consistent
and accurate scoring. The evaluation is based on three key criteria: Textual Faithfulness, Frame
Consistency, and Video Fidelity. For each criterion, we define specific score levels ranging from
1 to 5, with 5 representing the highest quality and 1 representing the lowest. These guidelines are
designed to help evaluators assess the quality of the edited videos in a reliable manner.
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Table 6: Number of unmatched answers for different evaluators on three criteria.

Evaluator Parameters Textual Faithfulness Frame Consistency Video Fidelity
Open-source MLLMs
TimeChat 7B 0 0 0
Video-LLaMA 7B 1280 1280 1280
Video-LLaMA-2 7B 11 209 339
Kangaroo 7B 1280 1280 1280
Qwen-VL-Chat 7B 0 0 0
LLaVA-NeXT-Video 7B 0 0 0
LLaVA-NeXT-Video 32B 0 0 0
LLaVA-OneVision 7B 0 0 0
LLaVA-OneVision 70B 0 0 0
VILA 34B 5 4 2
Closed-source MLLMs
GPT-4o-0806 - 148 171 104
GPT-4o - 3 1 2
Gemini-pro - 187 360 181

Table 7: Guidelines for evaluating Textual Faithfulness on our VEBench.

Score Textual Faithfulness
5 The edited video fully aligns with the text prompt, capturing all details accu-

rately.

4 The edited video aligns with the text prompt in most aspects, with only a few
details not reflected.

3 The edited video generally aligns with the text prompt, but many details are
missing.

2 The edited video mostly misaligns with the text prompt.

1 The edited video completely misaligns with the text prompt.

Table 8: Guidelines for evaluating Frame Consistency on our VEBench.

Score Frame Consistency
5 The frames flow smoothly and continuously without any noticeable jumps.

4 The continuity between frames is good, with only minimal jumps in a very few
scenes.

3 The continuity between frames is average, with minor jumps in some scenes.

2 The continuity between frames is poor, with noticeable jumps.

1 There is no continuity between frames, resulting in a poor viewing experience.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Guidelines for evaluating Video Fidelity on our VEBench.

Score Video Fidelity
5 The video is fully realistic, with excellent visual quality and no noticeable

flaws, providing a perfect viewing experience.

4 The video is close to realistic, with good overall quality and only minor imper-
fections in rare instances.

3 The video has slight color distortion and is generally acceptable, but some
unnatural elements are still noticeable.

2 The video has significant color distortion and overall visual quality issues, with
noticeable inconsistencies.

1 The video suffers from severe color distortion, poor visual quality, and weak
overall presentation, leading to a very poor viewing experience.
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Figure 7: Screenshot of the human annotation interface, showing the current instance where “Man”
in the original video is replaced by “Woman” in the edited video.

C.2 EVALUATION INTERFACE

As shown in Figure 7 and Figure 8, we develop a specialized tool designed for scoring text-guided
video editing tasks. The interface primarily displays the source prompt, text prompt, editing tar-
get, and original and edited video, along with basic controls, three criteria scoring buttons, and an
expandable detailed data annotation guideline.
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Figure 8: Screenshot of the human annotation interface, showing the current instance where “Mon-
key” in the original video is replaced by “Gorilla” in the edited video.
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