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ABSTRACT

When a dynamical system can be modeled as a sequence of observations, Granger
causality is a powerful approach for detecting predictive interactions between its
variables. However, traditional Granger causal inference has limited utility in
domains where the dynamics need to be represented as directed acyclic graphs
(DAGs) rather than as a linear sequence, such as with cell differentiation trajec-
tories. Here, we present GrID-Net, a framework based on graph neural networks
with lagged message passing for Granger causal inference on DAG-structured sys-
tems. Our motivating application is the analysis of single-cell multimodal data to
identify genomic loci that mediate the regulation of specific genes. To our knowl-
edge, GrID-Net is the first single-cell analysis tool that accounts for the temporal
lag between a genomic locus becoming accessible and its downstream effect on a
target gene’s expression. We applied GrID-Net on multimodal single-cell assays
that profile chromatin accessibility (ATAC-seq) and gene expression (RNA-seq)
in the same cell and show that it dramatically outperforms existing methods for
inferring regulatory locus–gene links, achieving up to 71% greater agreement with
independent population genetics-based estimates. By extending Granger causality
to DAG-structured dynamical systems, our work unlocks new domains for causal
analyses and, more specifically, opens a path towards elucidating gene regulatory
interactions relevant to cellular differentiation and complex human diseases at un-
precedented scale and resolution.1

1 INTRODUCTION

Understanding the structure of a multivariate dynamical system often boils down to deciphering the
causal relationships between its variables. Since inferring true causality is often infeasible, requiring
additional experiments or independent mechanistic insight, statistical analysis of observational data
to identify predictive relationships between the system’s variables can be very valuable. The frame-
work of Granger causality does exactly that: in a dataset where observations are temporally ordered,
a time-dependent variable x (with value xt at time t) is said to “Granger cause” a second variable
y if the history of x at time t (i.e., x1, . . . , xt−1) is significantly predictive of y at time t even after
accounting for y’s own history (Granger, 1969; Shojaie & Fox, 2021). Originating in economet-
rics, Granger causality has been a powerful tool in many domains including biology, finance, and
social sciences (Fujita et al., 2007; Yao et al., 2015; Benhmad, 2012; Rasheed & Tahir, 2012). The
prerequisite for applying Granger causality, however, is that there be a clear sequential ordering of
observations, i.e., the data must conform to a total ordering along time.

Often, only a partial ordering of the observations is possible. For instance, cell differentiation
trajectories may have branches. In text-mining, the citation graph of publications captures the flow
of ideas and knowledge. In such cases, the dynamics of the system are more suitably represented
as a directed acyclic graph (DAG) corresponding to the partial ordering, with nodes of the DAG
representing dynamical states and its edges indicating the flow of information between states.

∗Co-corresponding authors: {rsingh,bab}@csail.mit.edu
1The code for GrID-Net is available at https://github.com/alexw16/gridnet.
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Figure 1: OVERVIEW (a) We extend the concept of Granger causality, previously applied only to sequentially
ordered observations, to partial orderings, i.e., where the information flow can be described as a directed acyclic
graph (DAG). (b) GrID-Net, our approach for inferring Granger causality on a DAG-structured system, is a
graph neural network framework with lagged message-passing (`, L,h are defined in Sec. 2.2). (c) To identify
genomic loci whose accessibility Granger causes the expression of a specific gene, we apply GrID-Net on
multimodal single-cell data where chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) have
been profiled in the same cell. We model the lag between them by relating the RNA-seq readouts of a cell
not to the ATAC-seq readouts of the same cell but to ATAC-seq readouts of cells slightly earlier in the profiled
biological process, applying GrID-Net on a DAG constructed from the kNN graph of cells with edges oriented
as per pseudotime. (d) GrID-Net leverages the biological intuition that the accessibility of a specific genomic
locus (ATAC-seq) precedes the binding of regulator proteins to the locus, thus Granger causing the expression
levels for its targeted gene (RNA-seq) to be changed.

The key conceptual advance of this work is extending the applicability of Granger causality to sys-
tems with partially ordered observations (Figure 1a). On a DAG where each node takes on multi-
variate values, we define a variable x as Granger causing another variable y if the latter’s value yv at
the DAG node v can be significantly predicted by the values of x at the ancestor nodes of v, even after
accounting for yv’s own ancestral history. We introduce GrID-Net (Granger Inference on DAGs), a
graph neural network (GNN) framework for Granger causal inference in dynamical systems that can
be represented as DAGs (Figure 1b). We modify the standard GNN architecture to enable lagged
message-passing on the DAG, enabling us to accumulate past information for a variable accord-
ing to the DAG’s structure. This, combined with a mathematical formulation of Granger causality
more amenable to neural networks, allows GrID-Net to recover nonlinear long-range Granger causal
dependencies between the variables.

While our problem formulation is fully general and GrID-Net is broadly applicable, our motivating
application is inferring noncoding genomic loci that influence the expression of a specific gene.
We apply GrID-Net to single-cell multimodal studies that assay chromatin accessibility (ATAC-seq)
and gene expression (RNA-seq) in the same cell, seeking to identify Granger causal relationships
between the accessibility of individual chromatin regions (ATAC-seq “peaks”) and the expression
of specific genes. The system dynamics are represented by a DAG where each node corresponds to
a cell. Edges connect cells in similar dynamic states (i.e. similar ATAC-seq and RNA-seq profiles),
with edge directions estimated by a pseudotime analysis (Haghverdi et al., 2016) (Figure 1c).

Our work addresses a pressing need to identify temporally causal relationships between noncoding
loci and gene expression, as traditional approaches for doing so are expensive and slow. The latter
include population genetics techniques like expression quantitative trait locus (eQTL) studies, in
which human genetic variability at a particular genomic locus is associated with expression changes
in the gene of interest. Alternatively, perturbation-based approaches directly seek to identify gene
expression changes in response to CRISPR alterations of specific noncoding genomic loci (Fulco
et al., 2016). In contrast, we capitalize on the emergence of single-cell multimodal assays that
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profile ATAC-seq and RNA-seq simultaneously and offer a new way of discovering such regulatory
relationships. Rather than requiring the large population sizes of eQTL studies or being limited
to specific noncoding loci as in the perturbation-based approaches, these multimodal experiments
enable unbiased high-throughput, genome-wide estimations of peak–gene associations.

However, leveraging this data will require algorithmic innovations. Over 99.5% of ATAC-seq ob-
servations (“peaks”) in a cell are reported as empty (Singh et al., 2021; Zhang et al., 2019), and this
sparsity constrains current approaches. A key limitation of existing methods is also that they are
based on correlation estimates and cannot capture the dynamics governing the temporally causal re-
lationship between chromatin accessibility and gene expression. For a noncoding locus to influence
a gene’s expression, the locus typically must first become accessible, upon which regulator proteins
act on it to drive a change in gene expression (Figure 1d). This causal mechanism, therefore, entails
temporal asynchrony between the ATAC-seq and RNA-seq modalities (Lara-Astiaso et al., 2014;
Ostuni et al., 2013). GrID-Net is specifically designed to recover these dynamics between peaks and
genes while being robust to the noise and sparsity in single-cell data.

We apply GrID-Net on three single-cell multimodal datasets that characterize a range of dynamic
processes, including cancer drug response and cellular differentiation. We show that GrID-Net
substantially outperforms current methods in identifying known peak–gene links. To our knowledge,
this work presents both the first framework for Granger causal inference on dynamical systems
represented as DAGs and the first single-cell method to explicitly model the temporal asynchrony
between chromatin accessibility and gene expression.

2 METHODS

2.1 BACKGROUND ON GRANGER CAUSALITY: STANDARD FORMULATIONS

In time series analyses, the classical Granger causality framework uses the vector autoregressive
(VAR) model, which can be expressed as follows (Lütkepohl, 2005).

yt =

L∑
`=1

a
(`)
1 yt−` +

L∑
`=1

a
(`)
2 xt−` + εt (1)

Here, yt, xt ∈ R are values at time t for two stationary time series y and x, respectively; a(`)1 and
a
(`)
2 are coefficients that specify how lag ` affects the future of time series y; and εt is a zero-mean

noise term. In this model, yt is assumed to be a linear combination of the L most recent values of y
and x each, with x said to Granger cause time series y if and only if a(`)2 6= 0 for all `.

A more generalized formulation — the one we follow — for performing Granger causal inference is
to consider two related models for forecasting time series y. A full model considers the past values
of both y and x to forecast y, while a reduced model excludes the effect of x, only containing terms
related to the past values of y.

yt = f (full)(yt−1, ..., yt−L;xt−1, ..., xt−L) + εt (2)

yt = f (reduced)(yt−1, ..., yt−L) + εt (3)

Here, f (full)(·) and f (reduced)(·) are generalized functions that specify how the value of yt depends
on past values of y and x. The predictions of the two models are then compared, upon which a
Granger causal relationship is declared if the full model’s predictions are significantly more accurate.

2.2 GRANGER CAUSALITY ON A DAG: GRAPH NEURAL NETWORK FORMULATION

Let the data be represented by a DAG G = (V, E) with n = |V| nodes (i.e., observations) and
directed edges E indicating the information flow or partial order between these observations. For
instance, when applied to the case of standard Granger causal inference on time series data, G would
be the linear graph corresponding to the time series. Let y,x ∈ Rn correspond to the values of
variables y and x on the nodes in V , with x putatively Granger-causing y. To infer Granger causality,
we compare the full and reduced models as above:
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y = g(h̃(full)
y + ch̃(full)

x ) + ε (4)

y = g(h̃(reduced)
y ) + ε (5)

Here, h̃(full)
y , h̃

(reduced)
y , h̃

(full)
x ∈ Rn represent the historical information of y or x (as denoted

by the subscript) that is aggregated by graph neural network (GNN) layers. For a history h̃, the
value h̃[v] at node v ∈ V is the information accumulated from v’s ancestors in G. While h̃(full)

y

and h̃(reduced)
y are outputs determined from similar architectures, their learned weights and bias

terms end up being different since h̃(full)
y is influenced by its interaction with h̃x. The coefficient c

mediates this interaction and describes the effect of x’s history on y. In addition, ε ∈ Rn is a zero-
mean noise term. We also include g(·) as an optional link function that maps its input to the support
of the distribution of variable y. In our single-cell application, we set g as the exponential function
since the target variable (y) represents normalized transcript counts, which are non-negative.

For brevity, we only describe how h̃(full)
x is computed, with h̃(full)

y and h̃(reduced)
y being indepen-

dently computed analogously. Also, sincex occurs only in the full model, for notational convenience
we drop its superscript (full) below, writing just h̃x. We express h̃x as the mean of the outputs of L
consecutive GNN layers, denoting the layerwise outputs as h(`)

x :

h̃x =
1

L

L∑
`=1

h(`)
x (6)

h(`)
x =

{
σ(w

(`)
x AT

+h
(`−1)
x + b

(`)
x ) if ` > 1

σ(w
(`)
x ATx+ b

(`)
x ) if ` = 1

(7)

Here, w(`)
x , b

(`)
x ∈ R are the per-layer weight and bias terms, respectively. σ(·) represents the

nonlinear activation in each of the GNN layers, chosen here to be the hyperbolic tangent function.
A and A+ ∈ Rn×n are matrices defined by the DAG structure. A is the column-normalized
adjacency matrix of G, with Aij = 1

dj
if edge (i, j) ∈ E and 0 otherwise, where dj is the in-degree

of node j. We note that a DAG does not have self-loops, so the diagonal terms of A are zero. In
A+, we include these diagonal terms, setting them to the same value as others in the column (i.e.,
dj is incremented by 1 inA+ to preserve normalization).

Together,A andA+ allow us to extend the key intuition of Granger causality to DAGs: predicting a
value at node v from the values of its ancestors that are within L steps. The first layer introduces the
lag, using information at the parents of v but not the information at v itself. Each subsequent layer
introduces the preceding set of parents, with the diagonal term in A+ ensuring that information
already stored at v is integrated with the new information propagated via v’s parents. The sequence
of GNN layers therefore reflects the successive aggregation of past information by traversing L steps
backward along the DAG for each node in the graph. Thus, we are able to conceptually match time
series-based formulations (e.g., Eqn. 1) but with the crucial advantage of leveraging the richness of
a DAG’s structure in directing the information flow and aggregating sparse data.

2.3 COMPARING FULL AND REDUCED MODELS TO INFER GRANGER CAUSALITY

Let Θ
(full)
y ,Θ

(reduced)
y ,Θ

(full)
x ∈ R2L denote the set of parameters for the full and reduced models,

with Θ
(full)
x = {w(1)

x , ..., w
(L)
x ; b

(1)
x , ..., b

(L)
x } and Θ

(full)
y ,Θ

(reduced)
y defined analogously. All the

Θ parameters are jointly learned by minimizing the combined loss of the full and reduced models
(Montalto et al., 2015):

L(total) =
∑

x,y∈P

(∑
v∈V
L(ŷ(full)v , yv) +

∑
v∈V
L(ŷ(reduced)v , yv)

)
(8)

where ŷ(full)v and ŷ(reduced)v correspond to the predictions for observation v by the full and reduced
models, respectively. We note that the full and reduced models have completely separate parameters
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(see discussion in Appendix A.8). Also, in a multivariate system, not all pairwise combinations
of variables may be relevant: P is the subset of x, y variable pairs whose putative Granger-causal
interactions are of interest.

To infer Granger causal interactions between y and x, we compare the set of loss terms associated
with the full model L(ŷ

(full)
v , yv) to those of the reduced model L(ŷ

(reduced)
v , yv), noting that the

precise functional form of L depends on the domain. If x does not Granger cause y, the full and
reduced models will have similar explanatory power and hence similar loss values. Otherwise, the
full model will have a lower loss. We assess this by a one-tailed F-test, comparing the residual sum
of squares of the reduced and full models; an alternative assessment using Welch’s t-test yielded
very similar results (Appendix A.7). We rank the set of candidate x–y interactions by the F-statistic,
with a higher score corresponding to stronger evidence for a Granger causal interaction.

2.4 DOMAIN-SPECIFIC MODEL CUSTOMIZATION

The loss L should be chosen as appropriate for the domain. In our single-cell context, y corresponds
to gene expression. We preprocessed RNA-seq transcript counts, normalizing and log transforming
them so that the mean squared error loss was appropriate; we note that most methods based on
Pearson correlation of gene expression also seek to minimize squared loss, explicitly or implicitly.

The GrID-Net model can also be customized to account for different lags and lookbacks. The num-
ber of GNN layers L corresponds to the maximum amount of past information desired. Similarly, to
introduce a k-hop lag, the first k GNN layers would use the matrix A while the later layers would
useA+. In the sections above, we described a one-hop lag that we have used for all analyses here.

2.5 TRAINING DETAILS AND HYPERPARAMETERS

GrID-Net models were trained using the Adam optimizer with a learning rate of 0.001 for 20 epochs
or until convergence (defined to be the point at which the relative change in the loss function is
less than 0.1/|P| across consecutive epochs). A minibatch size of 1024 candidate peak–gene pairs
was used during training, and trainable parameters in the model were initialized using Glorot ini-
tialization (Bengio & Glorot, 2010). All GrID-Net models consisted of L = 10 GNN layers; the
architectures of the three sub-models (h̃(reduced)

y , h̃(full)
y , and h̃(full)

x ) were identical but separate.
All models were implemented in PyTorch and trained on a single NVIDIA Tesla V100 GPU.

3 RELATED WORK

Single-cell multimodal methods: The emergence of single-cell multimodal assays has led to the
development of tools to leverage the joint profiling of multiple genomic, epigenetic, and functional
features in each cell. Many of these tools aim to synthesize the multiple modalities within a dataset
to perform downstream analyses that elucidate cell state or gene programs (Singh et al., 2021; Arge-
laguet et al., 2020; Gayoso et al., 2021). Meanwhile, efforts to detect associations at the level of
specific features across modalities have thus far been limited. Current approaches for inferring
peak–gene associations predominately rely on simply calculating correlations between these two
modalities (Ma et al., 2020; Zhu et al., 2019; Liu et al., 2019). Not only do these correlation-based
approaches fail to account for the temporal asynchrony between chromatin accessibility and gene ex-
pression, but they are also sensitive to the inherent noisiness of single-cell data (Zhang et al., 2019).
These limitations point to the need for going beyond analyzing mere correlations to leveraging the
joint dynamics of these features in causal inference frameworks, like Granger causality.

Granger causality: Recent approaches for extending Granger causality have primarily focused on
enabling the detection of nonlinear or graph-based interactions in multivariate time series data. One
category of methods involves nonlinear kernel-based regression models (Marinazzo et al., 2008;
Ren et al., 2020); another seeks to learn graphs that describe causal relationships between variables
(Basu et al., 2015; Shojaie & Michailidis, 2010). Neural network-based Granger causality models
have also more recently been proposed to account for more generalized nonlinear interactions (Tank
et al., 2018; Marcinkevičs & Vogt, 2021). Of these methods, efforts have been made to leverage
specific neural network architectures to more fully take advantage of the sequential ordering of
observations in time series data (Khanna & Tan, 2020; Nauta et al., 2019). Customized Granger
causal approaches have also been designed for specific biological applications (Finkle et al., 2018).
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As a clarification, we distinguish the DAGs referred to in this paper from the concept of “causal
graphs”. Here, each node in the DAG corresponds to a state with an associated multivariate obser-
vation, and edges describe the ordering between states. In contrast, a causal graph describes a data
generation process with nodes corresponding to the dynamical system’s variables. In our single-cell
peak–gene inference application, performing Granger causal inference on a DAG allows us to cap-
ture the diversity of cell states as well as their dynamics. We note that using the standard Granger
causality framework would require forcing the rich heterogeneity of a single-cell dataset into a se-
quential ordering of cells along pseudotime, a suboptimal choice due to the possibility of multiple
differentiation trajectories, substantial biological and technical variation in single-cell data (Zhang
et al., 2019), and multiple cells representing very similar cell states (Baran et al., 2019).

We also note that a limitation of most Granger causal analyses — including ours — is the inabil-
ity to rule out hidden confounders that might mediate the interaction between x and y (Mastakouri
et al., 2021). Nonetheless, such analysis remains valuable in our peak–gene inference task, as it
enables the identification of peak–gene relationships that are temporally causal, upon which a short-
list of hypotheses can be generated for subsequent perturbational or population genetics studies.
More importantly, even indirect peak–gene interactions are biologically meaningful. In future work,
other approaches for causal inference (e.g., Entner & Hoyer (2010); Pfister et al. (2019)) includ-
ing Bayesian inference (Brodersen et al., 2015; Glymour et al., 2019) or structural equation models
(Spirtes & Zhang, 2016) could be applied to address this limitation.

4 RESULTS

Datasets and Preprocessing We analyzed three single-cell multimodal datasets with per-cell
ATAC-seq and RNA-seq profiles that characterize a range of dynamical systems, including cell dif-
ferentiation and drug-treatment responses (Cao et al., 2018; Chen et al., 2019; Ma et al., 2020). The
sci-CAR dataset profiled 3,260 human lung adenocarcinoma-derived A549 cells after dexametha-
sone treatment. The SNARE-seq dataset evaluated 5,081 cells from the mouse neonatal cerebral
cortex. Lastly, the SHARE-seq dataset contained 34,774 cells from differentiating skin cells in
mouse. We applied geometric sketching (Hie et al., 2019) to identify a representative subset of
5,000 cells for the SHARE-seq dataset, which we use for all downstream analyses. These datasets
are high-dimensional (about 200, 000 peaks and 30, 000 genes per cell) and sparse (over 99.5% of
peaks in a cell have zero counts). For each dataset, GrID-Net produces results that are specific to
the cell type/state composition of the study. While we chose these studies to be tissue-specific, there
remains some diversity in cell type and state due to cell-differentiation and perturbation-response
variability. To flexibly hone in on specific cell types within a study, users can adapt GrID-Net by
simply filtering the dataset to preserve only the cells of interest.

Following recommended practice (Hie et al., 2020), we preprocessed each dataset by applying
log(1+CPM/10) and log(1+CPM/100) transformations to the raw RNA-seq and ATAC-seq count
data, respectively; here CPM indicates counts per million. The transformed RNA-seq data for each
gene was also divided by the maximum value for that gene. For each single-cell multimodal dataset,
we then compiled a set of candidate peak–gene pairs (i.e., P in Eqn. 8) by selecting ATAC-seq peaks
within 1 Mb from each gene (Appendix A.3). We chose this genomic-distance cutoff because almost
all enhancer-gene pairs reported in a recent benchmark study were within 1 Mb (Moore et al., 2019).
After this filtering, we evaluated 507,408, 916,939, and 872,039 candidate peak–gene pairs for the
sci-CAR, SHARE-seq, and SNARE-seq datasets, respectively. Training GrID-Net on these sets of
candidate peak–gene pairs took roughly 2–6 hours and required a maximum of 40 GB of RAM. We
further discuss scalability, runtime and memory usage details along with recommendations for using
geometric sketching (Hie et al., 2019) for large datasets in Appendix A.12.

DAG construction For each of the three multimodal datasets, a kNN graph was constructed on
cell representations that unified information from both gene expression and chromatin accessibility
via Schema (Appendix A.1, Singh et al. (2021)); other approaches for integrating data modalities
(e.g., manifold alignment (Cao et al., 2020)) could also be used here. We next inferred a pseudotime
value for each cell. Edges in the kNN graph were then retained only if they aligned with the direc-
tion of increasing pseudotime, thus ensuring that no cycles exist and the resulting graph is a DAG.
In our results below, we used k=15 to build the kNN graph and the diffusion pseudotime algorithm
(Haghverdi et al., 2016) to infer pseudotime stamps, although we found GrID-Net to be robust (Ap-
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pendix A.2) to the choice of k and other approaches for inferring pseudotime, specifically, Palantir
(Setty et al., 2019) and Monocle (Qiu et al., 2017).

Evaluating causality by using independent information A key contribution of this work is a
framework for systematically evaluating putative Granger causal peak–gene relationships; to our
knowledge, no such framework currently exists. Since ground truth genome-scale perturbational
data is unavailable, we propose that the prediction of peak–gene associations be compared against
independent, cell type-matched information sources. One information source we use are eQTLs
from cell types matched to those profiled in the single-cell studies. An eQTL is a locus-gene pair
that associates naturally occurring genetic variability at a locus to gene expression variations ob-
served in large populations, thus serving as a proxy for direct perturbation of the locus (Nica &
Dermitzakis, 2013). We also evaluate against cell type-matched chromatin interaction (Hi-C/5C)
data that report pairs of genomic loci that are spatially close in the 3D structure of the genome
(Schoenfelder & Fraser, 2019). Intuitively, chromatin interaction and accessibility are both mani-
festations of the underlying gene regulatory process so that, compared to random peak–gene pairs,
causal pairs should more likely be in close spatial (i.e., Hi-C) proximity.

We note that, in absolute terms, a high overlap of Granger causal peak–gene pairs with these datasets
should not be expected. Like ATAC-seq, both eQTLs and chromatin interaction capture the underly-
ing biology only indirectly and are themselves prone to errors: eQTLs are confounded by correlated
mutations elsewhere in the genome and Hi-C/5C data suffers from similar sparsity issues as ATAC-
seq. Therefore, we focus here on a relative evaluation, comparing GrID-Net’s overlap with these
datasets against that of alternative approaches. Also, while good overlap with both eQTL and chro-
matin interaction datasets is desirable, we believe emphasis should be given to eQTLs since they are
the better proxy for an actual perturbation.

Benchmarking We evaluated two correlation-based techniques used in previous single-cell multi-
modal studies (Cao et al., 2018; Chen et al., 2019; Ma et al., 2020): a) Pearson correlation (Pearson
Corr) of peak counts and gene expression, with each cell considered an independent observation;
and b) Pearson correlation computed after averaging the RNA-seq and ATAC-seq profiles of each
cell and its 50 neighbors in the kNN graph of cells (Pseudocell Corr). The pseudocell approach,
currently the state-of-the-art, seeks robustness by replacing point estimates in the ATAC-seq (or
RNA-seq) space with local averages. We used the absolute value of the correlation scores to rank
peak–gene pairs in our analyses below. To assess the advantage of operating on a DAG for partially
ordered data, we also computed a traditional, linear Granger causal estimate using vector autoregres-
sion (VAR Granger) and a state-of-the-art generalized vector autoregression method for nonlinear
Granger causal inference (GVAR). For both these methods, data was forced into a total ordering
along pseudotime by partitioning the pseudotime range into 100 bins of equal size and averaging the
ATAC-seq and RNA-seq profiles across cells assigned to each bin (Appendix A.4). We note that the
Pseudocell Corr method uses information from just the kNN graph structure, while both the VAR
Granger and GVAR methods use only pseudotime information. By making use of both the kNN
graph and pseudotime information, GrID-Net is able to combine their strengths.

Predicting eQTLs We obtained eQTL data from the GTEx project for the human cell types that
most closely correspond to the cells from the single-cell multimodal assays (GTEx Consortium,
2013). For the lung adenocarcinoma-derived A549 cells in the sci-CAR dataset, we used eQTL
data for human lungs. The SHARE-seq and SNARE-seq studies profiled mouse tissues, for which
matching eQTL data is limited. Since human and mouse epigenomes show strong conservation
(Gjoneska et al., 2015; Xiao et al., 2012), we used eQTL data for human skin and the cerebral
cortex, respectively (see Appendix A.5), and mapped this data to the mouse genome. For each
dataset, we retained peak–gene pairs with a matching locus–gene pair in the eQTL data.

To assess the effectiveness of GrID-Net in predicting eQTLs, we labeled peak–gene pairs associated
with eQTLs as true (eQTL p < 10−10) or false (eQTL p > 0.9), discarding pairs that were not in
either category. GrID-Net and the alternative methods were evaluated on their accuracy in predict-
ing the true eQTLs based on the ranking of association scores generated by each method for each
peak–gene pair. Across all datasets, GrID-Net outperformed the other methods in predicting eQTLs,
achieving the highest AUPRC (area under precision-recall curve) and AUROC (area under receiver
operating characteristic) in all cases, indicating that peak–gene pairs prioritized by GrID-Net more
closely align with evidence from population genetics (Table 1). The non-linear Granger approach
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(GVAR) performs slightly better than linear approach (VAR Granger); however, both methods per-
formed substantially worse than GrID-Net, pointing to the advantage of the DAG-based inference
approach for such systems over standard Granger-causal inference on forcibly-ordered data.

Table 1: eQTL prediction accuracy on three multimodal datasets

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Pearson Corr 0.0594 0.514 0.0306 0.515 0.0096 0.619
Pseudocell Corr 0.0591 0.512 0.0385 0.541 0.0084 0.573
VAR Granger 0.0542 0.493 0.0321 0.506 0.0037 0.439
GVAR (nonlinear) 0.0556 ± 0.0016 0.497 ± 0.016 0.0330 ± 0.0039 0.536 ± 0.049 0.0040 ± 0.0004 0.485 ± 0.070
GrID-Net 0.0645 ± 0.0004 0.530 ± 0.002 0.0604 ± 0.0041 0.606 ± 0.019 0.0198 ± 0.0088 0.681 ± 0.006

Predicting chromatin interactions We obtained chromatin interaction data for the specific cell
types and experimental settings profiled in the three single-cell multimodal datasets (Davis et al.,
2018; Dixon et al., 2012; Poterlowicz et al., 2017). Chromatin interactions were determined for a
peak–gene pair by identifying the pairs of genomic windows in the corresponding chromatin inter-
action dataset that overlapped the peak and the transcription start site (TSS) of the gene. We then
identified the peak–gene pairs with significant chromatin interactions (Appendix A.6) and compared
the accuracy of GrID-Net and alternative methods in predicting these pairs. We found that GrID-
Net achieved the highest AUPRC and AUROC values in this prediction task across all datasets,
demonstrating its ability to better identify these key functional features in gene regulation (Table 2).

Table 2: Chromatin interaction prediction accuracy on three multimodal datasets

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Pearson Corr 0.0105 0.502 0.0093 0.356 0.0106 0.513
Pseudocell Corr 0.0103 0.496 0.0113 0.506 0.0108 0.517
VAR Granger 0.0101 0.491 0.0207 0.474 0.0102 0.504
GVAR (nonlinear) 0.0103 ± 0.0001 0.509 ± 0.005 0.0108 ± 0.0014 0.440 ± 0.124 0.0104 ± 0.0003 0.516 ± 0.013
GrID-Net 0.0113 ± 0.0000 0.550 ± 0.001 0.0402 ± 0.0023 0.753 ± 0.010 0.0115 ± 0.0002 0.540 ± 0.006

GrID-Net is more robust to sparse data than existing approaches We hypothesized that GrID-
Net’s message passing procedure, which aggregates sparse and noisy measurements across cells
using the DAG’s structure, would offer it robustness to the sparsity of single-cell multimodal data.
Because of differing true-positive rates between the full set of candidate peak–gene pairs and the
sparse data subset (Appendix A.9, Table 15), the relative performance of methods are compared
within rather than across settings. We focused on the subset of genes or peaks for which data is
especially sparse (fewer than 5% or 2% of cells for genes or peaks, respectively). Evaluating the
various methods on the eQTL prediction task on this subset, we found that GrID-Net’s outperfor-
mance compared to the alternatives was accentuated (Table 3, additional details in Appendix A.9).
GrID-Net also noticeably outperforms the other methods in predicting significant chromatin inter-
actions associated with peak–gene pairs consisting of sparse genes or peaks. These results provide
further evidence of GrID-Net’s utility in extracting insights from sparse single-cell data.

Table 3: eQTL and chromatin interaction prediction accuracy for sparse genes and peak (AUPRC)
eQTL Chromatin interactions

Method
sci-CAR SHARE-seq SNARE-seq sci-CAR SHARE-seq SNARE-seq

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Pearson Corr 0.0607 0.0566 0.0472 0.0195 0.0136 0.0078 0.0116 0.0106 0.0140 0.0184 0.0102 0.0088
Pseudocell Corr 0.0589 0.0562 0.0567 0.0167 0.0122 0.0058 0.0114 0.0104 0.0116 0.0154 0.0101 0.0089
VAR Granger 0.0494 0.0520 0.0445 0.0168 0.0045 0.0029 0.0115 0.0101 0.0049 0.0664 0.0097 0.0087
GVAR (nonlinear) 0.0512 0.0533 0.0496 0.0261 0.0047 0.0027 0.0113 0.0104 0.0068 0.0117 0.0098 0.0091
GrID-Net 0.0668 0.0628 0.0818 0.1450 0.0218 0.0169 0.0121 0.0113 0.0455 0.0596 0.0116 0.0098

Peak–gene pairs prioritized by GrID-Net are supported by TF motif and ChIP-seq data To
assess the functional relevance of the detected peak–gene pairs, we sought to relate high-scoring
peaks to the transcription factors (TFs) that might bind there. We selected the highest scoring 1% of
peak–gene pairs from each of GrID-Net and its alternatives. We next applied Homer (Heinz et al.,
2010) to identify TF binding motifs that are co-enriched in sets of peaks linked to a particular gene.
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The presence of these co-enriched motifs is potentially indicative of coordinated regulatory control,
whereby a gene is modulated by multiple TF binding events featuring the same or related sets of TFs
(Pott & Lieb, 2015; Carleton et al., 2017). Consequently, the co-occurrence of these motifs serves
as a proxy for the functional significance of the proposed peak–gene pairs. Across all datasets,
we observed that the peak–gene pairs detected by GrID-Net were associated with 10–50 times more
enriched TF binding motifs than the other methods (Table 4), with GrID-Net’s outperformance being
statistically significant (p < 10−10, one-sided binomial test with Bonferroni correction, details
in Appendix A.10). These results suggest that GrID-Net may serve a valuable role in unveiling
mechanistic insights into TF-gene regulatory control.

We further evaluated the functional importance of detected peak–gene pairs by comparing peaks in
these peak–gene pairs to TF binding sites supported by TF ChIP-seq experimental data (Oki et al.,
2018). We first obtained TF ChIP-seq data for the specific cell type(s) represented in each single-
cell multimodal dataset. For each of these datasets, we then identified the 0.1% of peaks involved
in the highest scoring peak–gene pairs and determined the proportion of such peaks that overlapped
with ChIP-seq-derived TF binding sites. We observed that peaks prioritized by GrID-Net more
consistently overlapped TF binding sites relative to other methods across all three datasets (Table 4).
As TF binding sites are indicative of functional regulatory roles for noncoding loci (Valouev et al.,
2008), GrID-Net’s effectiveness in prioritizing peaks bound by TFs provides additional evidence for
its ability to reveal important gene regulatory roles for specific loci in the noncoding genome.

Table 4: Functional relevance of peak–gene pairs. Left: Number of putative TF-target gene relations detected
from top 1% of peak–gene pairs. Right: Proportion of prioritized peaks associated with TF binding sites.

Number of putative TF-target gene relations Proportion of peaks overlapping TF binding sites
Method sci-CAR SHARE-seq SNARE-seq sci-CAR SHARE-seq SNARE-seq

Pearson Corr 2 95 0 0.630 0.521 0.232
Pseudocell Corr 16 68 23 0.565 0.573 0.261
VAR Granger 2 45 56 0.652 0.479 0.268
GVAR 2.9 ±1.9 19.9 ±1.1 10.2 ±1.3 0.703 ±0.070 0.528 ±0.049 0.245 ±0.033
GrID-Net 173 ± 71 226 ± 31 1275 ± 55 0.862 ± 0.013 0.774 ± 0.012 0.573 ± 0.004

Investigating a link between genomic distance and regulatory control We also explored if
larger peak–gene genomic distances correspond to greater temporal lags between peak accessibility
and gene expression. By varying L (the number of GNN layers), we allowed for greater pseudotime
difference between peaks and genes, finding that architectures with larger L did produce a larger
proportion of distal (vs. proximal) peak–gene pairs in their top hits (Appendix A.11; Tables 16, 17).

5 DISCUSSION

We extend the applicability of Granger causal analysis to dynamical systems represented as DAGs,
introducing GrID-Net to perform such inference. GrID-Net takes advantage of the expressive power
of graph neural networks, enabling the detection of long-range nonlinear interactions between vari-
ables. We focused on applying it to study multimodal single-cell gene regulatory dynamics, given
the prevalence of graph-based representations of cellular landscapes in the field. GrID-Net demon-
strated substantial improvements in accuracy relative to current methods in predicting peak–gene
links from independent, cell type-matched information sources. Capitalizing on the high resolution
of ATAC peaks (∼ 1 kb), regulatory links detected by GrID-Net from single-cell multimodal assays
may be used to precisely hone in on functional regions within noncoding loci or to complement
existing chromatin interaction data towards this goal (Fulco et al., 2019; Nasser et al., 2021). This
increased resolution, combined with the genome-wide scale of single-cell multimodal assays, po-
sitions GrID-Net to serve as a vital tool for furthering our understanding of key aspects of gene
regulatory dynamics relevant to fundamental biology and disease.

Additionally, the ever growing quantities of network data across numerous non-biological domains,
including social media networks and financial transaction networks, also points to the broader ap-
plicability of GrID-Net. The ability of GrID-Net to capture long-range, nonlinear interactions in
DAGs opens the door to novel analyses on the many existing datasets that are characterized by these
graph-based dynamics as well.
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tools used for biology-specific analyses (e.g., Homer) are publicly available, and we have described
the specific settings that were used for this study in the “Appendix” section. We have also de-
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A APPENDIX

A.1 DAG CONSTRUCTION DETAILS

For the three single-cell multimodal datasets, we applied a standard log(1+CPM/10) transformation
to the raw RNA-seq counts data and a log(1+CPM/100) transformation to the raw ATAC-seq counts
data, where CPM indicates counts per million. Genes and accessible regions detected in fewer than
0.1% of cells in each dataset were excluded. For each dataset, the expression of each gene was
scaled to unit variance and zero mean, after which the top 2000 most highly variable genes (Satija
et al., 2015) were retained. In the original SHARE-seq and SNARE-seq studies, topic modeling-
based approaches were used to transform ATAC-seq counts data for downstream trajectory analyses,
prompting us to transform the ATAC-seq counts in these datasets using tf-idf, a procedure derived
from text-based topic modeling that has been applied extensively to analyze single-cell ATAC-seq
data (Cusanovich et al., a;b;c).

The normalized RNA-seq and ATAC-seq data were then projected onto their top 100 principal com-
ponents (excluding components that have Spearman correlation ρ > 0.9 with the total counts per
cell). Schema (Singh et al., 2021) was then used to generate unified representations for each cell
that synthesize information from both the RNA-seq and ATAC-seq representations. For the sci-CAR
and SNARE-seq datasets, RNA-seq was used as the primary modality in Schema with ATAC-seq
acting as a secondary modality. For the sci-CAR dataset, the time of data collection post-drug treat-
ment was used as a tertiary modality. Meanwhile, ATAC-seq served as the primary modality for
the SHARE-seq dataset, as the original SHARE-seq study identified strong cell cycle effects repre-
sented in the RNA-seq data for certain subpopulations of cells and consequently used ATAC-seq as
the modality for analyzing lineage dynamics for the dataset (Ma et al., 2020). We set the minimum
correlation between the primary and the remaining modalities to be 0.9 in Schema. For each dataset,
a kNN graph (k = 15) based on distances between the unified representations generated by Schema
was constructed. Pseudotime stamps were then inferred for each cell based on this kNN graph using
diffusion pseudotime (Haghverdi et al., 2016). Finally, edges in the kNN graph that cohere with the
direction of increasing pseudotime are retained to generate a DAG.
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A.2 DAG ROBUSTNESS ANALYSIS

In addition to the diffusion pseudotime algorithm, we also evaluated Palantir and Monocle for in-
ferring pseudotime. The performance of GrID-Net was robust to the choice of algorithm (Tables 5,
6,7,8).

Table 5: eQTL prediction accuracy by pseudotime algorithm

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Diffusion 0.065± 0.0004 0.530± 0.0019 0.060± 0.0041 0.606± 0.0194 0.020± 0.0088 0.681± 0.0055
Palantir 0.064± 0.0004 0.530± 0.0018 0.060± 0.0028 0.611± 0.0083 0.019± 0.0068 0.682± 0.0106
Monocle 0.065± 0.0004 0.531± 0.0019 0.061± 0.0057 0.605± 0.0266 0.018± 0.0068 0.675± 0.0099

Table 6: Chromatin interaction prediction accuracy by pseudotime algorithm

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Diffusion 0.011± 0.0000 0.550± 0.0008 0.040± 0.0023 0.753± 0.0105 0.011± 0.0002 0.540± 0.0060
Palantir 0.011± 0.0000 0.550± 0.0009 0.057± 0.0193 0.783± 0.0373 0.011± 0.0001 0.543± 0.0039
Monocle 0.011± 0.0000 0.548± 0.0010 0.057± 0.0209 0.793± 0.0525 0.011± 0.0002 0.544± 0.0052

Table 7: eQTL prediction accuracy by k in kNN-graph construction

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

k=30 0.0645 ± 0.0004 0.5303 ± 0.0019 0.0630 ± 0.0051 0.6151 ± 0.0162 0.0196 ± 0.0087 0.6788 ± 0.0101
k=50 0.0645 ± 0.0004 0.5302 ± 0.0017 0.0629 ± 0.0069 0.6159 ± 0.0160 0.0198 ± 0.0088 0.6778 ± 0.0108
k=15 0.0645 ± 0.0004 0.5299 ± 0.0019 0.0604 ± 0.0041 0.6060 ± 0.0194 0.0198 ± 0.0088 0.6805 ± 0.0055

A.3 SINGLE-CELL DATA PREPROCESSING AND CANDIDATE PEAK–GENE PAIR SELECTION

We applied the same CPM and log transformations as above to the raw RNA-seq and ATAC-seq
counts data for all three single-cell multimodal datasets. We then scaled the RNA-seq data for each
gene by the maximum value for that gene, so that expression values for all genes in each dataset
are in the same [0,1] range. The peak–gene pairs considered for each dataset were determined by
selecting genes and peaks detected in greater than 0.1% of cells and then retaining all peak–gene pair
combinations in which the peak is within 1 Mb of the gene. For the SHARE-seq dataset, we only
considered peaks detected in greater than 1% of cells so as to have a comparable set of candidate
peak–gene pairs across the three datsets.

A.4 BENCHMARKING

For the VAR Granger model, peak–gene pairs were scored on the − log10(p)-value as-
sociated with the statistical significance of Granger causality, as calculated using the
grangercausalitytests function with default settings in the statsmodels package
(Seabold & Perktold, 2010).

A.5 MATCHING EQTLS WITH SINGLE-CELL ATAC-SEQ & RNA-SEQ DATA

The procedure to match a peak–gene pair with a eQTL variant–gene pair involved identifying all
catalogued variants positioned in the peak of interest and selecting the variant with the most statis-
tically significant association with the gene in the peak–gene pair. To perform this procedure for
the SNARE-seq and SHARE-seq datasets, we used liftOver (Gonzalez et al., 2021) with default
settings to convert human genomic coordinates represented in the GTEx datasets to mouse coordi-
nates. We chose to use human eQTL data here because it is important to obtain tissue-specific eQTL
data. Unfortunately, there is relatively little eQTL data available in mouse and, to our knowledge,
when available it is organized around different strains of mice rather than tissues (Doss et al., 2005;
Hofstetter et al., 2007). On the other hand, the transfer of eQTL knowledge from human to mouse
is well-motivated because the epigenome is largely conserved across mouse and human (Gjoneska
et al., 2015; Xiao et al., 2012).
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Table 8: Chromatin interaction prediction accuracy by k in kNN-graph construction

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

k=30 0.0113 ± 0.0000 0.5499 ± 0.0009 0.0362 ± 0.0036 0.7233 ± 0.0264 0.0114 ± 0.0002 0.5408 ± 0.0053
k=50 0.0113 ± 0.0000 0.5503 ± 0.0009 0.0351 ± 0.0046 0.7152 ± 0.0272 0.0113 ± 0.0002 0.5373 ± 0.0057
k=15 0.0113 ± 0.0000 0.5497 ± 0.0008 0.0402 ± 0.0023 0.7527 ± 0.0105 0.0115 ± 0.0002 0.5400 ± 0.0060

A.6 CHROMATIN INTERACTION DATA PREPROCESSING

For the sci-CAR, SHARE-seq, and SNARE-seq datasets, the corresponding chromatin interaction
datasets contained scores indicating the frequency of interactions between genomic windows. We
retained peak–gene pairs that were matched with the genomic windows presented in the chromatin
interaction datasets and chose the most frequent 1% of interactions as the set to be predicted.

A.7 COMPARISON OF F-TEST AND WELCH’S T-TEST TO RANK PUTATIVE PEAK–GENE
INTERACTIONS

For each candidate peak–gene pair, we compare the full and reduced models using an F-test, as
is common in Granger causal inference. Specifically, we evaluate the sum-of-squared-errors of
the reduced and full models as per an F distribution with (2L+ 1, n− 4L− 1) degrees of freedom.
Here, n is the number of cells, each of the LGNN layers includes two parameters (the full model has
two such architectures while the reduced model has one) and c is an additional parameter in the full
model. Another approach would be to compare the full and reduced models’ losses with the Welch’s
t-test, where the alternative hypothesis is that the mean of the loss terms for the full model is less
than the mean of the loss terms for the reduced model. In both approaches, candidate interactions are
then ranked by the test statistic with higher scores corresponding to a stronger likelihood of Granger
causal interaction.

We compared the performance of the two tests on the eQTL and chromatin interaction prediction
tasks, finding that they yielded very similar results (Tables 9,10). This similarity is likely due to
our use of the test statistics to rank peak–gene pairs, upon which the top-ranking pairs are selected.
Since the degrees of freedom are identical across all candidate pairs, their ranking depends only on
the relative losses of the full and reduced models.

Table 9: Comparison of F-test and t-test on eQTL prediction accuracy

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

F-test 0.0645 ± 0.0004 0.5300 ± 0.0020 0.0604 ± 0.0041 0.6060 ± 0.0190 0.0198 ± 0.0088 0.6810 ± 0.0060
t-test 0.0697 ± 0.0006 0.5400 ± 0.0020 0.0573 ± 0.0047 0.6100 ± 0.0180 0.0175 ± 0.0062 0.6770 ± 0.0080

Table 10: Comparison of F-test and t-test on chromatin interaction prediction accuracy

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

F-test 0.0113 ± 0.0000 0.5500 ± 0.0010 0.0402 ± 0.0023 0.7530 ± 0.0100 0.0115 ± 0.0002 0.5400 ± 0.0060
t-test 0.0109 ± 0.0000 0.5460 ± 0.0010 0.0375 ± 0.0066 0.7620 ± 0.0110 0.0115 ± 0.0003 0.5370 ± 0.0070

A.8 COMPARISON OF COMBINED AND SEPARATED LOSS FUNCTIONS FOR FULL AND
REDUCED MODELS

During the GNN’s training, the sum of the losses of the full and reduced models is optimized.
Since the two models do not share any parameters, optimizing the sum of their losses corresponds
to optimizing each loss separately. We chose this joint-optimization strategy for efficiency and
to avoid stochastic variations if the models were trained separately. Nonetheless, to confirm that
optimizing the sum of losses does not introduce any unintended dependencies, we also evaluated
GrID-Net’s performance on the eQTL and chromatin interaction prediction tasks when the models
were optimized in completely separate training runs. The results for separate and joint training were
essentially identical (Tables 11, 12), suggesting that our joint training works as intended.
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Table 11: Comparison of combined and separated loss functions on eQTL prediction accuracy

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Separated 0.0645 ± 0.0004 0.530 ± 0.002 0.0603 ± 0.0043 0.605 ± 0.020 0.0201 ± 0.0085 0.684 ± 0.006
Combined 0.0645 ± 0.0004 0.530 ± 0.002 0.0604 ± 0.0041 0.606 ± 0.019 0.0198 ± 0.0088 0.681 ± 0.006

Table 12: Comparison of combined and separated loss functions on chromatin interaction prediction accuracy

Method
sci-CAR SHARE-seq SNARE-seq

AUPRC AUROC AUPRC AUROC AUPRC AUROC

Separated 0.0113 ± 0.0000 0.550 ± 0.001 0.0404 ± 0.0019 0.752 ± 0.010 0.0115 ± 0.0002 0.539 ± 0.006
Combined 0.0113 ± 0.0000 0.550 ± 0.001 0.0402 ± 0.0023 0.753 ± 0.010 0.0115 ± 0.0002 0.540 ± 0.006

A.9 ROBUSTNESS OF GRID-NET TO SPARSITY

Tables 13 and 14 expand upon the results in Table 3 by also showing standard deviations (across three
runs) of GVAR’s and GrID-Net’s AUPRC results; the other methods are fully deterministic and their
results do not change across runs. Table 13 shows the baseline proportions of true positives across
the different comparison conditions to provide context for differences in the range of AUPRC values
across these conditions.

Table 13: eQTL prediction accuracy for sparse genes and peak (AUPRC). Accompanies Table 3.

Method
sci-CAR SHARE-seq SNARE-seq

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Pearson Corr 0.0607 0.0566 0.0472 0.0195 0.0136 0.0078
Pseudocell Corr 0.0589 0.0562 0.0567 0.0167 0.0122 0.0058
VAR Granger 0.0494 0.0520 0.0445 0.0168 0.0045 0.0029
GVAR (nonlinear) 0.0512 ± 0.0014 0.0533 ± 0.0015 0.0496 ± 0.0049 0.0261 ± 0.0040 0.0047 ± 0.0004 0.0027 ± 0.0002
GrID-Net 0.0668 ± 0.0008 0.0628 ± 0.0004 0.0818 ± 0.0051 0.1450 ± 0.0310 0.0218 ± 0.0096 0.0169 ± 0.0082

A.10 TF BINDING MOTIF ENRICHMENT ANALYSIS

For each gene that was associated with more than 5 peaks in the highest scoring 1% peak–gene
pairs, we applied HOMER with default parameters on the genomic windows defined by the set
of peaks to test for enrichment of TF binding motifs (Heinz et al., 2010). We used a Benjamini-
Hochberg-corrected p-value cutoff of 0.01 to call enriched TF binding motifs. Against each baseline,
the statistical significance of the difference between GrID-Net and the baseline in the number of
enriched motifs was assessed via a one-sided binomial test, with Bonferroni correction for multiple
hypothesis testing. All comparisons were significant at the p < 10−10 level.

A.11 GRID-NET SUGGESTS POSSIBLE LINK BETWEEN GENOMIC DISTANCE AND TEMPORAL
REGULATORY CONTROL

GrID-Net’s explicit consideration of the temporal asynchrony between chromatin accessibility and
gene expression enables the genome-wide study of lags in gene regulation for the very first time.
We classified peak–gene pairs as proximal (genomic distance < 10kb) or distal (≥ 100 kb). We
then evaluated different architectures of GrID-Net that vary in the number of GNN layers L, hy-
pothesizing that architectures with higher L (i.e., allowing greater pseudotime difference between
peaks and genes) may detect more distal peak–gene pairs. Inspecting the top 1% of peak–gene pairs
detected by different architectures, we found this to indeed be the case: across all datasets, archi-
tectures with higher L detected larger ratios of distal-to-proximal peak–gene pairs (Tables 16, 17),
suggesting that distal peak–gene interactions may be marked by longer pseudotime difference be-
tween peak and genes. This finding suggests the possibility of a previously unreported link between
genomic distance and the temporal lag between a regulatory element’s accessibility and its target
gene’s expression. However, like other Granger causal analyses, our approach also can not account
for hidden confounders; this is especially pertinent here since the greater pseudotemporal lag be-
tween distal peaks and genes may be mediated by other regulatory mechanisms rather than being
a direct influence. One hypothesis is that the complex coordination of regulatory factors required
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Table 14: Chromatin interaction prediction accuracy for sparse genes and peak (AUPRC). Accompanies Table
3.

Method
sci-CAR SHARE-seq SNARE-seq

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Sparse
Genes

Sparse
Peaks

Pearson Corr 0.0116 0.0106 0.0140 0.0184 0.0102 0.0088
Pseudocell Corr 0.0114 0.0104 0.0116 0.0154 0.0101 0.0089
VAR Granger 0.0115 0.0101 0.0049 0.0664 0.0097 0.0087
GVAR (nonlinear) 0.0113 ± 0.0000 0.0104 ± 0.0001 0.0068 ± 0.0010 0.0117 ± 0.0034 0.0098 ± 0.0003 0.0091 ± 0.0003
GrID-Net 0.0121 ± 0.0001 0.0113 ± 0.0000 0.0455 ± 0.0144 0.0596 ± 0.0177 0.0116 ± 0.0002 0.0098 ± 0.0002

Table 15: Baseline proportions of true positives in full, sparse gene, and sparse peak comparison conditions.

Category
sci-CAR SHARE-seq SNARE-seq

eQTL Chrom Int eQTL Chrom Int eQTL Chrom Int

Full 0.0558 0.0101 0.0302 0.0111 0.00401 0.0100
Sparse Genes 0.0515 0.0113 0.0452 0.0071 0.00488 0.0095
Sparse Peaks 0.0535 0.0102 0.0192 0.0111 0.00284 0.0085

to enable distal regulatory interactions is associated with greater lags between distal regulatory ele-
ments’ accessibility and the gene expression changes they affect (Panigrahi & O’Malley, 2021).

Table 16: Percentages of peak–gene pairs within 10kb

sci-CAR SHARE-seq SNARE-seq

2 GNN Layers 14.5% 6.04% 2.53%
5 GNN Layers 14.1% 5.20% 2.35%
10 GNN Layers 13.7% 5.33% 2.25%

A.12 RUNTIME AND MEMORY USAGE

GrID-Net’s runtime and memory usage are dependent on a variety of factors, most notably the
number of nodes in the DAG describing the system of interest. In our model, the DAG is represented
by the N × N adjacency matrices A and A+, where n is the number of nodes in the DAG (i.e.
number of cells in a multimodal single-cell dataset). These matrices serve as the primary bottlenecks
for both runtime and memory usage. Memory usage scales quadratically with n, while calculations
involving A or A+ can be parallelized on a GPU to reduce the runtime. For very large single-
cell datasets, we recommend the use of sketching techniques (Hie et al., 2019; DeMeo & Berger,
2020) so that the matrices will fit into GPU memory. In addition, training time scales linearly with
the number of candidate peak-gene pairs. In our results above, we evaluated 507,408, 916,939,
and 872,039 candidate peak–gene pairs for the sci-CAR, SHARE-seq, and SNARE-seq datasets,
respectively. For these same datasets, we considered systems of 3,260, 5,000, and 5,081 cells. The
average total runtime for GrID-Net was 1.8 hours, 5.5 hours, and 5.3 hours, while peak memory
usage was approximately 31 GB, 35 GB, and 39 GB for these respective datasets.
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Table 17: Ratio of distal (> 100kb) to proximal (< 10kb) peak–gene pairs in the top 1% hits

sci-CAR SHARE-seq SNARE-seq

2 GNN Layers 6.10 ± 0.062 12.53 ± 0.128 35.97 ± 1.322
5 GNN Layers 6.23 ± 0.119 15.33 ± 0.522 37.45 ± 1.774
10 GNN Layers 6.05 ± 0.055 15.77 ± 0.150 41.16 ± 1.228
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