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Abstract001

This paper focuses on Dialogue Aspect-based002
Sentiment Quadruple (DiaASQ) analysis, aim-003
ing to extract structured quadruples from multi-004
turn conversations. Applying Large Language005
Models (LLMs) for this specific task presents006
two primary challenges: the accurate extrac-007
tion of multiple elements and the understand-008
ing of complex dialogue reply structure. To009
tackle these issues, we propose a novel LLM-010
based multi-task approach, named Task-aware011
Contrastive Mixture of Experts (TaCoMoE),012
to tackle the DiaASQ task by integrating expert-013
level contrastive loss within task-oriented mix-014
ture of experts layer. TaCoMoE minimizes015
the distance between the representations of016
the same expert in the semantic space while017
maximizing the distance between the repre-018
sentations of different experts to efficiently019
learn representations of different task sam-020
ples. Additionally, we design a Graph-Centric021
Dialogue Structuring strategy for represent-022
ing dialogue reply structure and perform non-023
opinion utterances detection to enhance the024
performance of quadruple extraction. Exten-025
sive experiments are conducted on the Di-026
aASQ dataset, demonstrating that our method027
significantly outperforms existing parameter-028
efficient fine-tuning techniques in terms of029
both accuracy and computational efficiency.030
The code is available at https://anonymous.031
4open.science/r/TaCoMoE-08B4.032

1 Introduction033

Dialogue Aspect-based Sentiment Quadruple (Di-034

aASQ) is a newly-emergent task aiming to extract035

the sentiment quadruple (i.e., targets, aspects, opin-036

ions, and sentiments) from conversations (Li et al.,037

2023a), which plays a pivotal role in sentiment anal-038

ysis (Cambria, 2016; Hu et al., 2020; Mao et al.,039

2024) and developing sentiment-support dialog sys-040

tems (Merdivan et al., 2019; Zhou et al., 2022; Vla-041

chos et al., 2024). The accurate dialogue quadruple042

extraction can benefit sentiment analysis, clinical043

Figure 1: A concrete DiaASQ sample demonstrating
how our approach with LLM architectures differs from
traditional methods.

treatment (Chen et al., 2020b; Tu et al., 2024), prod- 044

uct and service feedback (Mukku et al., 2023), etc. 045

046

Compared to traditional Aspect-based Sentiment 047

Analysis (ABSA) tasks that extracting opinions 048

or sentiment preferences towards specific aspects 049

from a single piece of text (Zhang et al., 2021b; 050

Yan et al., 2021; Deng et al., 2023), the DiaASQ 051

task is notably more challenging due to its com- 052

plex multi-party dialogue structure and contextual 053

dependencies. Recently, the research on dialogue 054

aspect-based sentiment quadruple has been gradu- 055

ally gaining recognition, leading to a series of ad- 056

vancements (Li et al., 2023a; Luo et al., 2024b; Li 057

et al., 2024). In addition, Large Language Models 058

(LLMs) have demonstrated significant potential in 059

Aspect-based Sentiment Analysis tasks (Fei et al., 060

2023; Varia et al., 2023; Wang et al., 2023). How- 061

ever, the effectiveness of LLMs on the DiaASQ 062

task has not been effectively explored and existing 063

studies for DiaASQ have several key limitations 064

which prevent their performance. 065

Firstly, insufficient learning of cross-task shared 066

features and knowledge. DiaASQ involves multi- 067

ple tasks (e.g., single-element extraction, quadru- 068

ple extraction), and traditional methods struggle 069

to fully utilize the complementarity between tasks 070
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(Chen et al., 2020a; Scaria et al., 2024), resulting071

in the model failing to achieve consistent perfor-072

mance across all tasks. Secondly, lack of effec-073

tive modeling for dialogue reply dependency struc-074

tures. Previous methods often require complex075

graph representation encoders to explicitly model076

these dependency structures (Zhang et al., 2023; Li077

et al., 2024), which increases computational over-078

head and complexity, especially when applied to079

large language models (Zhang et al., 2022; Fatemi080

et al., 2024). Thirdly, the impact of non-opinion081

utterances on DiaASQ performance has not been082

thoroughly investigated. These utterances often ac-083

count for a significant proportion of the data and084

can interfere with the model’s understanding and085

predictions (Larson et al., 2019; Zhang et al., 2024).086

Figure 1 illustrates a comparison between previous087

methods and our generative large model-based ap-088

proach, in which we perform quadruple extraction089

and non-opinion detection for each utterance.090

In this paper, we propose a novel approach091

called Task-aware Contrastive Mixture of Experts092

(TaCoMoE) framework for the DiaASQ task,093

which integrates task-oriented mixture of ex-094

perts layer into LLM with contrastive learning to095

learn distinct task-shared and -specific knowledge.096

Specifically, we first introduce the extraction of097

individual elements and the analysis of dialogue098

reply dependencies, in addition to the main task of099

quadruple extraction. On one hand, for all tasks100

that involve dialogue dependency inputs or target101

outputs, we design a formalized text description102

strategy to encourage large models to efficiently103

utilize dialogue reply dependencies. On the other104

hand, we treat utterances that do not contain any105

quadruples as recognition targets as well, as these106

utterances often constitute a significant proportion107

in real-world scenarios. Secondly, we perform108

utterance-level processing with task-oriented rout-109

ing, which is integrated into the LLM, to learn110

separate sets of parameters for each task. Addi-111

tionally, each expert is designed as two low-rank112

matrices to ensure parameter efficiency. Finally,113

we introduce contrastive learning into each task-114

oriented Mixture of Experts layer, treating outputs115

from the same expert as positive pairs and outputs116

from different experts as negative pairs to learn the117

distinct features of different tasks.118

We conduct experiments on the public DiaASQ119

benchmark dataset, which includes both English120

and Chinese data. Results consistently demonstrate121

that our TaCoMoE significantly outperforms other122

state-of-the-art methods on the DiaASQ task, show- 123

ing the effectiveness and superiority of our method. 124

Additionally, our analysis indicates that consider- 125

ing non-opinion utterances in the DiaASQ task is 126

essential and has a positive impact on quadruple 127

extraction. 128

Our main contributions can be summarized as 129

follows: 130

• We introduce a novel LLM-based approach for 131

addressing the DiaASQ task by incorporating 132

expert-level contrastive loss into task-oriented 133

mixture of experts layer. 134

• We explore converting dialogues into a universal 135

code-like format to represent reply dependency 136

structures between utterances, eliminating the 137

need for an additional graph encoder. 138

• We explicitly consider non-opinion utterances 139

and validate that identifying these utterances also 140

make a crucial contribution to the DiaASQ task. 141

• Extensive experimental results demonstrate that 142

our method surpasses existing state-of-the-art 143

(SOTA) approaches and validate the effective- 144

ness of key components in our framework. 145

2 Related Work 146

The related work is provided in Appendix A. 147

3 Method 148

We begin by providing a formal definition of the Di- 149

aASQ task. A dialogue is represented as a sequence 150

of utterances paired with their respective speakers: 151

D = {(s1, u1), (s2, u2), . . . , (s|D|, u|D|)}, where 152

ui = {wi1, wi2, . . . } denotes the i-th utterance as 153

a set of tokens, and si indicates the speaker of 154

ui. In addition, a reply list L = {l1, l2, . . . , l|D|} 155

is provided, where li identifies the current utter- 156

ance ui is replying to. The primary objective of 157

this task is to extract a collection of quadruples: 158

C = {(ti, ai, oi, pi)}|C|
i=1, where ti, ai, oi, and pi 159

are spans that correspond to the target, aspect, opin- 160

ion, and sentiment polarity, respectively. 161

The proposed TaCoMoE consists of three main 162

components: dialogue input engineering, task- 163

oriented mixture of experts layer, and contrastive 164

loss. The overall architecture of TaCoMoE is illus- 165

trated in Figure 2. 166
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<root> speaker0: This was totally beaten by Xiaomi.

<u1> speaker1: Looking at the price, is Xiaomi Mi 12 

beaten to death? 

<u2> speaker2 : So looking at the price , any car can beat 

RR? [ beg for mercy ]

<u3> speaker1: Is this a car? They are all assembled 

factories , don't pretend!

<u4> speaker3: Three cameras? It feels good.

<u5> speaker4: GT2 Pro looks good.
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Figure 2: Illustration of the overall framework of TaCoMOE, which consists of three essential components: Dialogue
Input Engineering, Task-oriented Mixture of Experts Layer, Contrastive Learning.

3.1 Dialogue Input Engineering167

To enhance the model’s understanding of dia-168

logue reply relationships and improve the accu-169

racy of element extraction, we introduced three170

single-element extraction tasks and a dialogue re-171

ply relationship analysis task in addition to the172

quadruple extraction task, aiming to capture multi-173

dimensional features.174

The first challenge is how to align the dialogue175

reply dependencies with the sequence format or176

structure required by LLMs. Building upon previ-177

ous work addressing the alignment between graphs178

and text (Wang et al., 2024), we propose a Graph-179

Centric Dialogue Structuring (GCDS) strategy to180

transform the dialogue into a simple code-like for-181

mat. Formally, given one dialogue d ∈ D, we de-182

note M(.) as the structured format verbalizer, and183

the original graph can be mapped into a sequence184

as Ci = M(d). For each utterance in the dialogue,185

we assigned it a sequence identifier <u> indicating186

its position in the dialogue. For the fundamental187

format, all utterances are listed as a sequence with188

entity_list, while all reply dependencies are listed189

as a sequence with variable triple_list. The specific190

example is shown in Figure 3.191

After obtaining the structured textual representa-192

tion of dialogue reply dependencies, we decompose193

the tasks into two different graph-centric instruc-194

tion tasks: element extraction tasks E and dialogue195

reply dependency analysis task R. E corresponds196

to the extraction of three single elements and tuple197

extraction (i.e., pair extraction and quadruple ex-198

Figure 3: A specific sample to illustrate the transforma-
tion process of the Graph-Centric Dialogue Structuring
strategy.

traction) in Figure 2. Additionally, in the quadruple 199

extraction task, we prompt the model to first deter- 200

mine whether each utterance is a non-opinion. For 201

the E , both the dialogue and its structured textual 202

representation are provided as inputs to help the 203

LLM better utilize the dialogue reply dependency 204

information. For the R, only the dialogue is given 205

as input, while the structured textual representation 206

of the dialogue reply dependencies is used as the 207

target output. This aims to enhance the LLM’s 208

ability to analyze the structure of the dialogue. Fi- 209

nally, given one dialogue d ∈ D, the LLM can be 210

optimized by maximum likelihood with: 211

L(Tj) = −
Nj∑
i=1

log πθ(Yi = Ai|Xi), (1) 212
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where πθ denotes the LLM with trainable parame-213

ters θ, Y is the model output, X and A respectively214

represent the input sequence and reference label,215

which depends on the specific task definition.216

3.2 Task-oriented Mixture of Experts Layer217

Existing studies demonstrate that task-related in-218

formation is helpful for improving model perfor-219

mance (Liu et al., 2024; Tian et al., 2024). We220

assume that there is task-shared knowledge among221

element extraction tasks and dialogue reply depen-222

dency analysis task, and by learning this knowl-223

edge, the model can achieve better performance in224

each task. To learn task-shared knowledge better,225

we replace each dense layer in the LLM with a226

task-oriented mixture of experts (MoE) layer.227

In the task-oriented MoE layer, every expert can228

be denoted as {Ei}Ni=1 and is constructed as two229

decomposed low-rank matrices, where N denotes230

the number of experts. For the samples from task231

Tj ∈ {E ,R}, the output of intermediate LLM lay-232

ers can be expressed as during the forward process233

of a linear layer paired with the task-oriented MoE234

layer, Specifically, each task is assigned a unique235

task identifier token. Then the task identifier token236

is fed into the task-motivated gate network. Upon237

identifying a task Tj , we extract the j-th column238

of E, which serves as the representation vector for239

that task, symbolized as ej ∈ RdT , where RdT rep-240

resents the dimension of the task embedding. Ad-241

ditionally, a linear transformation is applied to de-242

termine the contribution weights for task Tj . This243

calculation is represented by the following equa-244

tion:245

ωj = Softmax(W T ej), (2)246

where ωj ∈ RN represents the contribution weight247

vector tailored for task Tj . The transformation248

matrix is denoted as WT ∈ RN×dT . To avoid249

excessively large weights, a softmax operation is250

leveraged to normalize the contribution weights.251

Based on this structure, the forward process of a252

linear layer paired with a task-oriented MoE layer253

for samples from task Tj is expressed as:254

hj = W0xj +
α

r
·

N∑
i=1

ωji · Ei(xj)255

= W0xj +
α

r
·

N∑
i=1

ωji ·BiAixj , (3)256

where hj and xj represent the input and output of257

intermediate LLM layers for samples from Tj . The258

matrices Bi ∈ Rdin× r
N and Ai ∈ R

r
N
×dout form 259

the expert Ei. The hyper-parameter N denotes 260

the number of experts in MOELoRA, and for each 261

expert, the rank of matrices A and B is r
N . 262

3.3 Expert-Level Contrastive Learning 263

In the task-oriented mixture of experts layer, we 264

aim to reduce feature redundancy between tasks 265

and allow experts to focus on handling distinct 266

task characteristics, thereby improving the overall 267

efficiency of the model. To enhance expert differ- 268

entiation and representation learning, we incorpo- 269

rate contrastive learning into the mixture of experts 270

layer. Inspired by previous work (He et al., 2020; 271

Luo et al., 2024a), our approach encourages repre- 272

sentations of inter-expert to be more discriminative 273

while maintaining intra-expert consistency. 274

Given a input sample x, let E(x) = 275

{E1(x), . . . , En(x)} denote the set of expert out- 276

puts, where Ei(x) ∈ RL×D, L is the sequence 277

length activated by Ei and D is the hidden dimen- 278

sion. We first compute the gating activation for 279

each expert via element-wise product: 280

G = MeanPool(E(x))⊙ ωj , (4) 281

where ωj ∈ RN represents the contribution weight 282

vector same as in Equation 2. Then, we construct 283

a binary mask to select activated tokens per expert 284

using: M = (G > ϵ), where ϵ denotes the thresh- 285

old. Each token’s expert representation is then L2- 286

normalized: ˆE(x) = E(x)
∥E(x)∥2 to ensure numerical 287

stability in contrastive similarity computations. 288

In terms of the contrastive pair construction, the 289

outputs of the same expert are treated as positive 290

samples, while the outputs of different experts are 291

considered negative samples. We define the binary 292

mask matrix P ∈ {0, 1}N×L×L as: 293

Pq,k =

{
Pq,k+ , if q, k belong to the same expert
Pq,k− , otherwise

(5) 294

To construct the similarity matrix and stabilize 295

training and prevent numerical overflow, we com- 296

pute: 297

Ŝ = exp

(
S

τ

)
,S = ˆE(x) · ˆE(x)

⊤
, (6) 298

where τ represents the temperature coefficient. To 299

compute the final contrastive probability distribu- 300

tion, we normalize the similarity scores within each 301

row: 302
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pq,(k+,k−) =
Ŝq,k+ · Pq,k+∑
k− Ŝq,k− · Pq,k−

, (7)303

the contrastive loss is then formulated as:304

Lcontrastive = −
∑
q ̸=k+

log(pq,(k+,k−)). (8)305

This contrastive loss forces representations of to-306

kens assigned to the same expert to be close in307

the learned space while separating representations308

assigned to different experts. The final training ob-309

jective is a combination of the contrastive loss and310

the objective function for multi-task fine-tuning:311

L = L(Tj) + λLcontrastive, (9)312

where λ is a hyperparameter controlling the trade-313

off between the primary extraction task and con-314

trastive expert learning.315

4 Experimental Settings316

4.1 Dataset317

We evaluate TaCoMoE using the DiaASQ dataset318

(Li et al., 2023a), the first multilingual dataset de-319

signed for dialogue-level aspect-based sentiment320

analysis. The raw data is sourced from the largest321

Chinese social media platform, comprising 1,000322

dialogues available in both Chinese and English.323

Specifically, the dataset features multipart, multi-324

turn conversations centered primarily on mobile325

phone-related topics. More detail is in Appendix326

B.327

4.2 Comparison Methods328

SpERT (Eberts and Ulges, 2019) features entity329

recognition and filtering, as well as relation classi-330

fication with a context representation.331

CRFExtract (Cai et al., 2021) adapts one of the332

representative aspect-opinion co-extraction system.333

ParaPhrase (Zhang et al., 2021a) reveals a more334

comprehensive and complete aspect-level senti-335

ment structure.336

Span-ASTE (Xu et al., 2021) considers the in-337

teraction between the whole spans of targets and338

opinions when predicting their sentiment relation.339

Meta-WP (Li et al., 2023a) manages to incorpo-340

rate rich dialogue-specific and discourse feature341

representations.342

SADD (Luo et al., 2024b) proposes a multi-343

granularity denoising generation model for denois-344

ing and a distribution-based solution for debiasing.345

Figure 4: The results of experiments for expert number.

DMIN (Huang et al., 2024) enhances utterance in- 346

teractions at the token level and introduces a novel 347

integrator to address the challenge of data integra- 348

tion. 349

H2DT (Li et al., 2024) leverages unified discourse 350

features and triadic interaction for dialogue senti- 351

ment quadruple extraction. 352

ChatGPT4 (OpenAI, 2023) is a large language 353

model developed by OpenAI, capable of under- 354

standing and generating human-like text across di- 355

verse tasks and domains. 356

ChatGLM (GLM et al., 2024) is an open-source, 357

bilingual large language model, designed for dia- 358

logue and general-purpose language understanding 359

tasks. 360

4.3 Evaluation Metrics 361

Following previous work (Li et al., 2023a, 2024), 362

we mainly measure the performances in terms 363

of four angles: span match (i.e., Target, Aspect, 364

and Opinion), pair extraction (i.e., Target-Aspect, 365

Aspect-Opinion, and Target-Opinion), triplet detec- 366

tion (i.e., Target-Aspect-Opinion), quadruple ex- 367

traction (i.e., Target-Aspect-Opinion-Sentiment), 368

and non-opinion detection through precision, re- 369

call, and F1 score metrics. 370

4.4 Implementation Details 371

TaCoMoE uses ChatGLM3-6B1 as the robust back- 372

bone model comprising 28 transformer layers, 373

which are implemented in the Huggingface Trans- 374

formers library (Wolf et al., 2020) and utilizes low 375

rank adaptation (LoRA) (Hu et al., 2021) to per- 376

form parameter-efficient learning with rank = 16 377

and set the rank of each expert to 2. Specifically, 378

we conduct dedicated experiments to investigate 379

the impact of the number of experts on quadruple 380

extraction performance. As shown in the experi- 381

mental results in the Figure 4, we observe that the 382

model achieved the best score when the number of 383

experts is set to 8. Therefore, we ultimately set the 384

1https://huggingface.co/THUDM/chatglm3-6b
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Data Methods
Entity (F1) Pair (F1) Triplet Quadruple

T A O T-A T-O A-O P R F P R F

ZH

CRF-Extract 91.11 75.24 50.06 32.47 26.78 18.90 / / 9.25 / / 8.81
SpERT 90.69 76.81 54.06 38.05 31.28 29.05 / / 14.19 / / 13.00
ParaPhrase / / / 37.81 34.32 27.76 / / 27.98 / / 23.27
Span-ASTE / / / 44.13 33.42 32.21 / / 30.85 / / 27.42
Meta-WP 90.23 76.94 59.35 48.61 43.31 45.44 / / 37.51 / / 34.94
SADD / / / 51.13 46.72 47.87 / / 41.05 / / 37.80
DMIN / / / 57.62 51.65 56.16 / / 47.50 / / 44.49
H2DT 91.72 76.93 61.87 50.48 48.39 52.40 45.40 40.50 42.81 42.78 38.17 40.34
LLM-based
ChatGPT4 4-shot 36.89 37.69 39.03 19.72 18.78 22.85 11.59 14.50 12.88 10.67 13.36 11.86
ChatGLM3LoRA 68.06 65.73 47.88 46.86 32.28 36.89 20.48 28.12 23.70 20.48 28.12 23.70
ChatGLM3KTO 68.84 64.42 48.17 46.49 33.12 37.44 30.81 26.97 28.77 27.91 24.68 26.20
TaCoMoE 91.18 81.48 64.63 55.85 52.48 52.55 45.87 42.49 44.12 42.58 39.44 40.95

EN

CRF-Extract 88.31 71.71 47.90 34.31 21.90 19.21 / / 12.80 / / 11.59
SpERT 87.82 74.65 54.17 28.33 23.64 23.64 / / 13.38 / / 13.07
ParaPhrase / / / 37.22 32.19 30.78 / / 26.76 / / 24.54
Span-ASTE / / / 42.19 30.44 45.90 / / 28.34 / / 26.99
Meta-WP 88.62 74.71 60.22 47.91 45.58 44.27 / / 36.80 / / 33.31
SADD / / / 50.82 49.64 49.70 / / 43.32 / / 38.87
DMIN / / / 53.49 52.66 52.09 / / 42.31 / / 39.22
H2DT 88.69 73.81 62.61 48.69 48.84 52.47 44.36 40.23 42.19 41.01 37.20 39.01
LLM-based
ChatGPT4 4-shot 47.63 29.07 37.17 22.72 27.40 18.45 12.55 20.18 15.48 11.61 18.77 14.34
ChatGLM3LoRA 70.76 61.99 52.25 46.92 41.07 40.33 33.01 31.09 32.02 29.39 27.80 28.57
ChatGLM3KTO 73.28 61.39 53.57 47.04 42.69 41.35 35.82 32.71 34.19 31.62 28.94 30.22
TaCoMoE 91.04 77.02 63.13 54.53 52.86 53.71 44.09 44.27 44.18 41.99 42.16 42.08

Table 1: Performance (%) evaluation metrics for entity, pair, triplet, and quadruple extraction in both ZH (Chinese)
and EN (English) datasets. The best results are highlighted in bold and the second best results are underlined. ’/’
means that the results are unavailable from the original paper. The results of all LLM-based methods are derived
from experiments conducted using self-constructed instruction data.

number of experts to 8. The optimizer is AdamW385

(Loshchilov and Hutter, 2017) in all stages with386

initial learning rates of 2e-4. The maximum length387

is set as 2048 and batch size is set to 16. The388

TaCoMoE is trained on 4×24G NVIDIA RTX4090389

GPUs. For all experiments, we report the results as390

the average over three runs with different random391

seeds.392

5 Results and Discussions393

5.1 Comparison with Baseline Models394

The overall performance of all the compared base-395

lines and proposed TaCoMoE on the DiaASQ396

dataset is presented in Table 1.397

Item Extraction We observe that our method398

outperforms all previous models on the item de-399

tection task for both datasets. This is attributed400

to the fact that our method, in contrast to previ-401

ous approaches, adopts a multi-task framework402

and incorporates the single-element extraction task.403

On the English dataset, our method achieves im-404

provements of 2.35%, 2.31%, and 0.52% over the405

previous state-of-the-art for the three sub-element406

extraction tasks, respectively. On the Chinese407

dataset, TaCoMoE achieves marked improvements408

of 4.54% and 2.76% on the aspect and opinion409

extraction. 410

Pair Extraction TaCoMoE achieves improve- 411

ments on all metrics in pair extraction compared 412

with SADD and H2DT, indicating that it has excel- 413

lent ability in pairing binary relationships. In terms 414

of the English dataset, significant improvements are 415

observed in the T-A and A-O pair detection, with 416

gains of 1.04% and 1.24% in F1 scores, respec- 417

tively. The T-O pair detection also demonstrates 418

a smaller improvement of 0.20%. In terms of the 419

Chinese dataset, the T-O pair detection showcases 420

improvements of 0.83% in F1 score. 421

Triplet and Quadruple Extraction Regarding 422

triplet extraction (i.e., Identification F1), TaCoMoE 423

surpasses DMIN and SADD by 1.87% and 0.86% 424

on English dataset, demonstrating the superiority 425

of our proposed method in entity extraction and 426

triplet correspondence. In the quadruple extraction 427

task, TaCoMoE consistently obtains the best micro 428

F1 score over comparison methods. Specifically, 429

TaCoMoE obtains 2.86% absolute improvements 430

on English dataset. Experimental results demon- 431

strate that TaCoMoE achieves the new state-of-the- 432

art performances on English dataset. 433

Discussion on Suboptimal Performance We 434

observe that, compared to DMIN, TaCoMoE yields 435
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slightly lower results on the Chinese dataset. The436

main reason is that DMIN employs different back-437

bone models for Chinese and English datasets;438

specifically, it utilizes a customized pre-trained lan-439

guage model optimized for Chinese on the Chi-440

nese dataset, which already exhibits strong perfor-441

mance in tuple extraction tasks. In contrast, our442

method uses a large language model as the back-443

bone, which, as shown in the experimental results,444

performs relatively poorly in quad-tuple extraction445

tasks—even after supervised fine-tuning, it can-446

not match previous state-of-the-art results. Nev-447

ertheless, TaCoMoE achieves competitive perfor-448

mance while jointly handling data in two different449

languages, which we believe makes it a fair and450

meaningful comparison to DMIN. Naturally, our451

approach is applicable to large language models452

of varying scales, and we plan to conduct further453

investigations in this direction.454

Compared to LLM-based Methods In addi-455

tion to the comparisons with the aforementioned456

SOTA results, we also observe that our method457

demonstrates superior efficiency when compared458

with LLM-based approaches. It consistently out-459

performs the compared supervised fine-tuning and460

reinforcement learning methods in both item ex-461

traction and tuple extraction tasks.462

5.2 Ablation Study463

In this section, we perform ablation studies to an-464

alyze the effects of critical modules in our TaCo-465

MoE, detailed in Table 2.466

Effects of Contrastive Learning To study the467

effect of contrastive learning, we remove the LCon.468

Experimental results show that the performances of469

TaCoMoEw/oLCon
decrease in all metrics on both470

English and Chinese datasets. The performances on471

both datasets prove the effectiveness of expert-level472

contrastive learning. The visual demonstration of473

the further analysis comparing the impact of con-474

trastive loss on the distribution of expert outputs in475

the semantic space is provided in Appendix C.1.476

Effects of Non-opinion Detection To analyze477

the impact of non-opinion detection (NOD), we478

ignore the identification of utterances that do not479

contain opinions during the fine-tuning process and480

focus solely on quadruple extraction. As shown481

in 2, the performances of TaCoMOEw/o NOD fall482

sharply in all metrics. Taking the English dataset483

as an example, the model’s performance on triplet484

and quadruple extraction decreased by 10.17% and485

9.32%, respectively. The results prove the impor-486

tance and superiority of considering non-opinion 487

detection detection. A more detailed comparison 488

with other LLM-based methods will be presented 489

in Section 5.3.

Methods Chinese (F1) English (F1)

Trip. Quad. Trip. Quad.

TaCoMoE 43.12 40.95 44.18 42.08

w/o LCon 40.75↓2.37 38.66↓2.29 42.57↓1.61 39.87↓2.21
w/o NOD 31.16↓11.96 29.66↓11.29 34.01↓10.17 32.76↓9.32
w/o GCDS 40.30↓2.82 38.51↓2.44 41.59↓2.54 40.00↓2.08
- w/o Structure 41.51↓1.61 39.63↓1.32 42.64↓1.54 40.82↓1.26
- w/o T Reply 41.67↓1.45 39.12↓1.83 43.05↓1.13 41.03↓1.05

Table 2: Performance (%) comparison on Chinese and
English datasets (F1 score).

490

Effects of Graph-Centric Dialogue Struc- 491

turing Since we utilize Graph-Centric Dia- 492

logue Structuring strategy in both the task 493

of dialogue reply relationship analysis and 494

the dialogue input, we implement three vari- 495

ants: TaCoMoEw/oT Reply , TaCoMoEw/o Structure, 496

and TaCoMoEw/o GCDS. These three variants re- 497

spectively represent the removal of the dialogue 498

reply relationship analysis task, the exclusion of 499

the reply relationship, and the elimination of both 500

the dialogue reply relationship analysis task and 501

the reply relationship. Experimental results demon- 502

strate that the performances of these three variants 503

drop considerably on both English and Chinese 504

datasets. The experimental results of our further 505

validation of the GCDS strategy in understanding 506

context and leveraging reply relationships are de- 507

tailed in the Appendix C.3. 508

5.3 Analysis of Non-opinion Detection 509

To rigorously investigate the contribution of non- 510

opinion detection, we conduct experiments in two 511

settings: training without non-opinion detection 512

(w/o NOD) and with non-opinion detection (w 513

NOD). The results are displayed in Table 3. 514

Since there has been no prior work specifically 515

analyzing non-opinion utterances in the DiaASQ 516

task, we conduct comparative experiments with 517

ChatGPT-44shot and ChatGLM3LoRA (GLM et al., 518

2024). Examples of instruction templates for few- 519

shot and fine-tuning can be found in the Appendix 520

D. It is evident that TaCoMoE achieves results 521

that far exceed those of the other two methods, 522

regardless of whether non-opinion detection is per- 523

formed. For intra-method, we find that the fine- 524

tuned method performs better when considering 525

non-opinion detection compared to not consider- 526
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Figure 5: Case study. The primary target, aspect, and opinion in the dialogue are highlighted in different colors.

ing it. Additionally, after performing non-opinion527

detection, the model shows a more significant im-528

provement in handling both quadruple and non-529

opinion utterances. This indicates that the model is530

better able to distinguish whether utterances con-531

tain opinions, thereby achieving improved results532

in quadruple extraction.

Train Methods
With-O With-O + Non-O

Trip. Quad. Trip. Quad.

EN

w/o NOD

ChatGPT44shot 23.70 22.47 18.09 17.14
ChatGLM3LoRA 32.48 30.39 25.93 23.86

TaCoMoE 43.47 41.88 34.01 32.76
∆ (TaCoMoE) 10.99↑ 11.49↑ 8.08↑ 8.90↑

w NOD

ChatGPT44shot 19.04 17.71 15.48 14.34
ChatGLM3LoRA 33.40 30.77 30.58 28.61

TaCoMoE 46.12 43.93 44.18 42.08
∆ (TaCoMoE) 12.72↑ 13.16↑ 13.60↑ 13.47↑

ZH

w/o NOD

ChatGPT44shot 18.99 17.59 15.06 13.94
ChatGLM3LoRA 29.04 27.19 22.84 21.39

TaCoMoE 38.84 37.59 31.16 29.66
∆ (TaCoMoE) 9.80↑ 10.40↑ 8.32↑ 8.27↑

w NOD

ChatGPT44shot 14.89 13.72 12.88 11.86
ChatGLM3LoRA 29.14 27.30 27.95 26.20

TaCoMoE 44.94 41.74 43.12 40.95
∆ (TaCoMoE) 15.80↑ 14.44↑ 15.17↑ 14.75↑

Table 3: Performance (%) comparison of different meth-
ods in w NOD and w/o NOD scenarios. With-O refers
to utterances that contain opinions, while Non-O refers
to utterances that do not contain opinions.

533

5.4 Case Study534

To better understand how non-opinion detection535

affects the quadruple extraction results, we present536

a specific case in Figure 5.537

Intuitively, we can observe that when consider- 538

ing non-opinion detection, our method correctly 539

identifies <u2> and <u4> as "statement-non- 540

opinion." In contrast, the model without performing 541

non-opinion detection incorrectly extracts quadru- 542

ples from these utterances. Actually, taking the 543

<u4> as an example, it describes a dilemma in 544

making a choice rather than explicitly expressing 545

sentiment toward a specific Target-Aspect. Aside 546

from this, we also observe that models that do not 547

handle non-opinion cases tend to more easily mis- 548

interpret the speaker’s opinion, leading to incorrect 549

extraction of the final quadruples. Taking <u3> 550

as an example, TaCoMoE correctly identifies the 551

quadruples in the sentence but additionally extracts 552

an incorrect quadruple, whereas TaCoMOEw/o NOD 553

incorrectly identifies two quadruples. In this utter- 554

ance, ’pay attention’ and ’convenience’ do not refer 555

to any product, but rather express the speaker’s at- 556

titude. 557

6 Conclusion 558

In this paper, we propose an LLM-based approach 559

that integrates contrastive learning to the task- 560

oriented mixture of experts. Additionally, we de- 561

fine non-opinion utterances that contain no opinion 562

associated with targets or aspects and incorporate 563

non-opinion detection. For modeling dialogue re- 564

sponse relations, we employ a Graph-Centric Di- 565

alogue Structuring strategy, enabling the LLM to 566

understand dialogue reply structure. Experimental 567

results and analyses illustrate the effectiveness of 568

our proposed TaCoMoE. 569
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7 Limitations570

Although the proposed TaCoMoE achieves state-of-571

the-art results on the DiaASQ task, our approach572

still has its own limitations. Firstly, we use con-573

trastive learning in the mixture-of-experts layer and574

treat the experts’ outputs on activated tokens as575

positive and negative sample pairs, which increases576

training time. Secondly, the effectiveness of our577

proposed Graph-Centric Dialogue Structuring strat-578

egy has not yet been validated on other tasks, and579

although it does not require an additional graph580

encoder, it increases the context length, leading581

to higher memory usage. Lastly, we have prelim-582

inarily explored the contribution of non-opinion583

utterances to the DiaASQ task, but how to more584

effectively distinguish whether utterances contain585

opinions or their opinions refer to any specific tar-586

get or aspect remains to be further investigated.587
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A Related Work955

Aspect-Based Sentiment Analysis (ABSA), a sub-956

field of sentiment analysis (Liu, 2012; Pontiki et al.,957

2014; Wang et al., 2016), initially focused on ex-958

tracting single elements (e.g. target, aspect terms,959

categories, and opinion terms) (Li et al., 2018a,b;960

Peng et al., 2019) and subsequent research shifting 961

towards multi-pair extraction (e.g. aspect-opinion 962

pair extraction, aspect sentiment term extraction, 963

and aspect sentiment quadruple extraction) (Wu 964

et al., 2021; Chen et al., 2022; Mao et al., 2022). 965

Early research primarily targeted short, unstruc- 966

tured plain texts, and ABSA has now become a 967

pivotal research area in the field of affective com- 968

puting (Li et al., 2022; Chen et al., 2023). 969

Conversational Aspect-based Sentiment 970

Quadruple Analysis (DiaASQ) is a new sub-task 971

of ABSA with complex textual content and 972

structures. Li et al. (2023a) design the multi-view 973

interaction layer and fuse rotary position embed- 974

ding (RoPE) to model the dialogue utterance 975

interactions. Li et al. (2024) introduce a token-level 976

heterogeneous graph to model the complexities of 977

speaker roles and reply relationships, enhancing 978

the understanding of dialogue features. Luo et al. 979

(2024b) propose segmentation-aided order bias 980

mitigation model to simultaneously address both 981

the one-to-many training challenge and the order 982

bias. 983

Discourse Structure intuitively enhances the 984

model’s ability to encode unstructured human con- 985

versations more effectively, enabling it to focus 986

on key utterances and achieve more accurate dia- 987

logue quadruple extraction and sentiment predic- 988

tion. Deep sequential models are regarded as practi- 989

cal approaches for conversational discourse parsing 990

(Shi and Huang, 2019; Liu and Chen, 2021). More 991

recently, Peng et al. (2022) introduce a global-to- 992

local hierarchical graph network to model hierar- 993

chical discourse structures in dialogues. Li et al. 994

(2023b) employ relational graph convolutional net- 995

works (RGCN) as the base graph network to en- 996

code the discourse structure as the symbolic knowl- 997

edge. Zhang et al. (2023) propose DisGAT to in- 998

tegrate discourse structural information, which is 999

built upon graph attention networks (GAT). Non- 1000

opinion Utterances The meaning and purpose of 1001

an utterance are influenced by specific contexts or 1002

dialogue history (Schröder et al., 2013). In the 1003

DiaASQ task, opinions are often closely linked to 1004

sentiment polarity. If an utterance does not con- 1005

tain an opinion or the opinion expressed fails to 1006

refer to any specific target or aspect, then it is also 1007

impossible to determine a clear sentiment or ex- 1008

tract a complete quadruple from that utterance. In 1009

an earlier study on dialogue, Godfrey et al. (1992) 1010

introduce 42 types of dialogue acts, including state- 1011

ments that primarily convey factual information, 1012
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Dataset
Dialogue Items Pairs Quadruples

Dia. Utt. Tgt. Asp. Opi. T-A T-O A-O Intra. Cross.

EN
train 800 5,947 6,613 5,109 5,523 4,699 5,931 3,989 3,442 972
valid 100 748 822 644 719 603 750 509 423 132
test 100 757 829 681 592 592 751 496 422 123

ZH
train 800 5,947 6,652 5,220 5,622 4,823 6,062 4,297 3,594 1,013
valid 100 748 823 662 764 621 758 538 440 137
test 100 757 833 690 705 597 767 523 433 125

Table 4: The statistics of experimental datasets. ‘Dia.’ and ‘Utt.’ refer to dialogue and utterance, respectively. ‘Tgt’,
‘Asp’, and ‘Opi’ refer to target, aspect, and opinion terms, respectively. ‘Intra’ and ‘Cross’ refer to the intra-/cross
utterance quadruples.

which are defined as statement-non-opinion. Given1013

the uncertainty in defining the boundary for identi-1014

fying out-of-scope utterances, Larson et al. (2019)1015

define them as those that do not belong to any of1016

the existing intent classes and Zhang et al. (2024)1017

adopt this definition in a recent study about intent1018

recognition. Inspired by the aforementioned work,1019

we believe that considering non-opinion utterances1020

better aligns with real-world scenarios and practi-1021

cal applications. In this paper, we define statement-1022

non-opinion utterances as those that do not contain1023

extractable opinions or their opinions do not re-1024

fer to any specific target or aspect.1025

B Dataset Statistics1026

The statistics of DiaASQ dataset are reported in1027

Table 4. The dataset is divided into train/test/dev1028

sets in an 8:1:1 ratio. Also, there is an average of1029

one sentimental expression in each utterance.1030

C In-depth Analysis1031

C.1 Experts Representation Visualization1032

(a) w/o LCon (b) TaCoMoE

Figure 6: t-SNE visualization of representations learned
by each expert. Each color represents the output of
a specific expert, each point represents a token’s 2D
projection after t-SNE dimensionality reduction, and
the distribution of points reflects the division of labor
among experts.

Figure 7: Triplet and quadruple extraction scores
on cross-utterance instances. The term ’w/o reply’
and ’w/o structure’ denotes the TaCoMoEw/oT Reply ,
TaCoMoEw/o Structure.

We qualitatively visualize the learned represen- 1033

tations of the experts with t-SNE (van der Maaten 1034

and Hinton, 2008). Figure 6 shows the visualiza- 1035

tion of the samples from different tasks. Compared 1036

with not using contrastive objective, the distribu- 1037

tion of each expert representation learned by our 1038

TaCoMoE is more tight and united. It indicates 1039

that, under TaCoMoE, the outputs of the same ex- 1040

pert are closer, enhancing the expert’s focus on 1041

specific tasks. The outputs of different experts are 1042

farther apart, helping the model allocate resources 1043

more effectively in multi-task learning, promoting 1044

clear division of labor, and reducing interference 1045

between tasks. 1046

C.2 Experiment Result in Cross-utterance 1047

To further analyze our proposed Graph-Centric Di- 1048

alogue Structuring strategy, we compare the per- 1049

formance of TaCoMoE, TaCoMoEw/oT Reply , and 1050

TaCoMoEw/o Structure on cross-utterance quadruples 1051

as demonstrated in Figure 7. 1052

Cross-utterance quadruple refers to the elements 1053

of the quadruples potentially coming from differ- 1054

ent utterances. The comparison results show that 1055

removing either the task or the reply relationships 1056

leads to a noticeable decrease in the model’s per- 1057
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Data Methods
Entity (F1) Pair (F1) Triplet Quadruple

T A O T-A T-O A-O P R F P R F

ZH
w Linear Textual 89.54 78.84 61.42 48.79 49.83 48.70 38.34 39.84 39.08 36.39 37.82 37.09
w GCDS 91.18 81.48 64.63 55.85 52.48 52.55 45.87 42.49 44.12 42.58 39.44 40.95

EN
w Linear Textual 90.06 77.51 57.64 51.50 49.56 50.95 40.99 42.00 41.49 38.58 39.53 39.05
w GCDS 91.04 77.02 63.13 54.53 52.86 53.71 44.09 44.27 44.18 41.99 42.16 42.08

Table 5: Performance (%) evaluation metrics for entity, pair, triplet, and quadruple extraction in both ZH (Chinese)
and EN (English) datasets.

formance on extracting cross-utterance quadruples.1058

As such, TaCoMoE, enhanced with the GCDS strat-1059

egy, shows a marginal but discernible improvement1060

in the extraction of cross-utterance quadruples on1061

both Chinese and English datasets. Combining the1062

experimental results mentioned above with those1063

presented in Section 5.2 underscores the superiority1064

and robustness of the proposed GCDS strategy.1065

C.3 Compared with Linear Textual1066

Description1067

In this section, we compare our proposed Graph-1068

Centric Dialogue Structuring strategy with a simple1069

linear textual description. The results are shown1070

in the Table 5. The results show that the pro-1071

posed GCDS strategy outperforms the simple linear1072

prompts in single-element extraction, pairwise tu-1073

ple extraction, triplet, and quadruplet extraction1074

tasks, demonstrating the effectiveness of the strat-1075

egy.1076

D Instruction1077

In this section, we provide examples of instruction1078

templates for conducting few-shot learning with1079

ChatGPT-4. The detailed instructions are detailed1080

in Figure 8.1081

For the quadruple extraction task, we first assign1082

a specific role to the dialogue model and inform1083

it of the particular task at hand along with its def-1084

inition. Following this, we establish several rules1085

to standardize the model’s output, making it more1086

aligned with real-label outputs and easier to eval-1087

uate using metrics. Specifically, for the few-shot1088

learning with ChatGPT-4, we designed two ver-1089

sions: one that considers non-opinion detection1090

and one that does not. For the version that includes1091

non-opinion detection, we added utterances labeled1092

as ’statement-non-opinion’ along with normal con-1093

taining quadruple utterances to the examples. For1094

the latter version, we only included utterances with1095

quadruple.1096
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Figure 8: Instructions for conducting few-shot learning with ChatGPT4 in quadruple extraction task.
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